1
|
Botia-Carreño EO, Elghandour MMMY, Jack A, Inyang UA, Kreuzer-Redmer S, Salem AZM. Influence of dietary protein levels on nano-encapsulated Yucca schidigera extract and its effects on in vitro ruminal greenhouse gas production and fermentation dynamics. Sci Rep 2025; 15:9385. [PMID: 40102540 PMCID: PMC11920244 DOI: 10.1038/s41598-025-94238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
The influence of nano-encapsulated Yucca schidigera extract (YSE) on total gas (GP), ruminal methane (CH4), carbon monoxide (CO), hydrogen sulphide (H2S) production, and fermentation activities of diets based on two different protein levels were investigated. A completely randomized experimental design with a factorial arrangement (2 × 4 × 4) with three replications was used. Factor 1 was the dietary protein levels (14%and 18%), factor 2 was the types of extracts used (TE; negative control (without extract), positive control (empty chitosan nano-capsules), Y. schidigera extract nano-capsules, and crude Y. schidigera extract), and factor 3 the doses of each type of extract (ED; 0-, 0.25-, 0.5-, and 1.0- mL extract/g DM). Nano-chitosan reduced the GP production with a higher protein level by 24.9% after 48 h while the crude extract elevated it. At both crude protein levels, the interaction of crude extract at an ED of 0.25 mL extract/g DM generated a higher volume of CH4 at 6 h (p = 0.001 and 0.001 respectively) compared to the volume generated by the negative control. The 0.25 mL extract/g DM extract for both the crude extract and nano-extract elicited higher and lower CO production at 6 h (p < 0.0001), respectively. Nano-chitosan at 0.25 mL extract/g DM resulted in less H2S produced at 6 h than when crude extract was used at the same dose and a higher protein level (p = 0.027). The ED did not significantly affect any of the parameters under consideration as used under lower protein levels. However, TE affected pH and dry matter degradability (p < 0.0001) while the interaction of both TE and ED impacted both CH4:SCFA and CH4:ME (p = 0.045) with higher and lower values obtained for nano-chitosan and the negative control, respectively. In conclusion, nano-chitosan at a higher protein level proved its antimicrobial property, and although the production of CO increased at 14% protein, in vitro fermentation indicated its ability to minimize the production of GP, methane and hydrogen sulphide in the rumen, and to boost the degradability of DM and methane conversion efficiency.
Collapse
Affiliation(s)
- Edwin Oswaldo Botia-Carreño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Ciudad de México, Mexico
| | - Mona M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico
| | - Akaninyene Jack
- Department of Animal Science, Faculty of Agriculture, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Udoh A Inyang
- Department of Animal Science, Faculty of Agriculture, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Susanne Kreuzer-Redmer
- Centre for Animal Nutrition and Animal Welfare Sciences, Clinical Department for Farm Animals and Food System Safety, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (Di.S.S.P.A.), Università degli Studi di Bari, Via Giovanni Amendola, 165/A, 70126, Bari, BA, Italy.
| |
Collapse
|
2
|
Hernández O, López A, Ceron-Cucchi ME, AdégbéÏga Alabi CD, Loza C, Juárez Sequeira AV, Fissolo HM, García EM, Gere JI. Whole Cottonseed as an Effective Strategy to Mitigate Enteric Methane Emissions in Cattle Fed Low-Quality Forages. Animals (Basel) 2025; 15:819. [PMID: 40150348 PMCID: PMC11939489 DOI: 10.3390/ani15060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
This study evaluated enteric methane (CH₄) emissions, dry matter intake (DMI), and performance in rearing beef heifers fed either a Guinea-grass-only diet (0WCS) or Guinea grass supplemented with whole cottonseed (WCS) at 0.5% of body weight (BW). Twenty-four Braford heifers were randomly allocated into four pens (three animals per pen) per treatment over two experimental periods. Methane emissions were measured using the SF₆ tracer technique. Heifers receiving WCS supplementation produced 29% less CH₄ (120.64 vs. 169.54 g/day for 0.5WCS and 0WCS, respectively; p = 0.02) and showed a 22% reduction in CH₄ yield (7.30% vs. 9.41% of gross energy intake; p = 0.02). Methane intensity was 33% lower in supplemented heifers (0.37 vs. 0.55 g CH₄/kg BW; p = 0.01). However, WCS supplementation significantly reduced total DMI and forage DMI (p = 0.01 and p < 0.01, respectively). In terms of performance, heifers in the 0.5WCS group gained 0.28 kg/day, while those in the 0WCS group lost 0.10 kg/day. These results indicate that WCS supplementation mitigates CH₄ emissions while improving weight gain in beef heifers fed low-quality forage diets, making it a promising strategy for enhancing the sustainability of beef cattle production systems.
Collapse
Affiliation(s)
- Olegario Hernández
- Estación Experimental Agropecuaria Santiago del Estero, Instituto Nacional de Tecnología Agropecuaria (INTA), Jujuy 850, Santiago del Estero 4200, Argentina; (A.L.); (H.M.F.)
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, Santiago del Estero 4200, Argentina;
| | - Agustín López
- Estación Experimental Agropecuaria Santiago del Estero, Instituto Nacional de Tecnología Agropecuaria (INTA), Jujuy 850, Santiago del Estero 4200, Argentina; (A.L.); (H.M.F.)
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, Santiago del Estero 4200, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma Buenos Aires C1033AAJ, Argentina; (M.E.C.-C.); (E.M.G.)
| | - Maria Esperanza Ceron-Cucchi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma Buenos Aires C1033AAJ, Argentina; (M.E.C.-C.); (E.M.G.)
- Instituto de Patobiología Veterinaria (IPVet), Instituto Nacional de Tecnología Agropecuaria (INTA-CONICET), Hurlingham C1417AZE, Argentina
- Unidad de Investigación y Desarrollo de las Ingenierías, Universidad Tecnológica Nacional, Facultad Regional Buenos Aires (UTN FRBA), Ciudad Autónoma Buenos Aires C1179AAQ, Argentina;
| | - Cham Donald AdégbéÏga Alabi
- Laboratory of Ecology, Health and Animal Production (LESPA), Faculty of Agronomy (FA), University of Parakou (UP), Parakou O1 BP 123, Benin;
| | - Cecilia Loza
- Unidad de Investigación y Desarrollo de las Ingenierías, Universidad Tecnológica Nacional, Facultad Regional Buenos Aires (UTN FRBA), Ciudad Autónoma Buenos Aires C1179AAQ, Argentina;
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - Ana Veronica Juárez Sequeira
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, Santiago del Estero 4200, Argentina;
| | - Héctor Miguel Fissolo
- Estación Experimental Agropecuaria Santiago del Estero, Instituto Nacional de Tecnología Agropecuaria (INTA), Jujuy 850, Santiago del Estero 4200, Argentina; (A.L.); (H.M.F.)
| | - Elisa Mariana García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma Buenos Aires C1033AAJ, Argentina; (M.E.C.-C.); (E.M.G.)
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero 4200, Argentina
| | - José Ignacio Gere
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma Buenos Aires C1033AAJ, Argentina; (M.E.C.-C.); (E.M.G.)
- Unidad de Investigación y Desarrollo de las Ingenierías, Universidad Tecnológica Nacional, Facultad Regional Buenos Aires (UTN FRBA), Ciudad Autónoma Buenos Aires C1179AAQ, Argentina;
| |
Collapse
|
3
|
Adeniji YA, Bomberger R, Goodall SR, Hristov AN, Stefenoni HA, Harvatine KJ. Effect of increasing dietary fat by feeding 15% whole cottonseed on milk production, total-tract digestibility, and methane emission in dairy cows. J Dairy Sci 2025; 108:2393-2406. [PMID: 40032408 DOI: 10.3168/jds.2024-25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/09/2024] [Indexed: 03/05/2025]
Abstract
Whole cottonseed (WCS) is fed as a source of fat, protein, and fiber. Cottonseed is high in unsaturated fatty acids (FA) but is considered lower risk for biohydrogenation-induced milk fat depression because it is slowly released in the rumen. Unsaturated FA have been reported to decrease methane emissions in some experiments, but the effect of FA source is unclear. The objective of the current experiment was to investigate the effect of FA from WCS on milk and methane production and total-tract nutrient digestibility. Sixteen multiparous cows were arranged in a crossover design with 21-d periods. Treatments were 15% WCS substituted for a mixture of cottonseed hulls and soybean meal. Cottonseed had no effect on DMI and milk yield (MY) but increased milk fat concentration (0.2 percentage units) and yield (110 g/d). Cottonseed also decreased the concentration of FA <16 C and 16 C in milk fat and increased FA >16 C and trans-10 18:1 and trans-11 18:1. Increasing dietary fat had no effect on the efficiency of transfer of 18 C FA to milk. There was no effect on milk protein concentration and yield. Whole cottonseed decreased apparent total-tract digestibility of OM and DM due to a decline in NDF digestibility, but less than 3% of seeds consumed were recovered intact in the feces. Whole cottonseed increased digestibility of 16 C FA, but the digestibility of total and 18 C FA were not changed. The production (g/d), yield (g/kg of DMI), and intensity (g/kg of MY or ECM) of H2, CH4, and CO2 were not changed with WCS. Plasma total gossypol and the positive and negative isomers increased with WCS but were below toxic levels. In conclusion, increasing dietary UFA by feeding 15% WCS increased milk fat yield through an increased supply of preformed FA and did not affect methane production under these dietary conditions.
Collapse
Affiliation(s)
- Y A Adeniji
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - R Bomberger
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - S R Goodall
- S. Richard Goodall Consulting, Erie, CO 80516
| | - A N Hristov
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - H A Stefenoni
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802
| | - K J Harvatine
- Department of Animal Science, Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
4
|
Ma W, Malik MI, Iwaasa AD, Wang H, Wang H, Yang J, Bai B, Jing J, Hu G, Hao L, Liu S. The Effects of Supplemental Feeding on Methane Emissions from Yak Grazing in the Warm Season. Animals (Basel) 2025; 15:518. [PMID: 40002999 PMCID: PMC11851667 DOI: 10.3390/ani15040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The yak industry constitutes a pivotal segment of livestock development across the Qinghai-Tibetan Plateau and adjacent pastoral regions. Existing studies have shown that supplemental feeding for grazing yaks significantly improves meat quality and growth performance, but its effect on enteric methane (CH4) emission from yaks has never been reported, so the present experiment aimed to investigate the effect of supplemental feeding of grazing yaks on CH4 emissions in three different periods of the warm season. Thirty male yaks were randomly assigned to two groups, with 15 yaks per group, The groups were designated as the grazing group (GR), with traditional grazing methods and with an initial body weight of 94.56 ± 3.9 kg, and the supplemental feeding group (GRS) with an initial body weight of 95.01 ± 4.1 kg, which received 1500 g/d of supplemental feed for 120 days. The methane emissions of the two groups were measured at the late regreening period (LRP), the greening-grass period (GGP), and the browning period (BRP) using the SF6 tracer method. The results showed that GRS increased (p < 0.01) the total DMI during warm season but decreased (p < 0.01) the forage intake at the LRP and GGP, resulting in a significantly reduced methane yield per kg of BW gain and per kg of DMD in warm-season grazing yaks (p < 0.01), a significantly reduced methane production per kg of DMI and methane energy to gross energy ratio in grazing yaks during the GGP (p < 0.05), and a similarly significantly decrease in methane production per kg of DMI and methane energy to gross energy ratio in grazing yaks during the BRP (p < 0.01). In conclusion, supplemental nutrition for grazing yaks during the warm season in alpine grasslands significantly enhances growth performance, reduces methane emissions, and improves dietary energy utilization efficiency.
Collapse
Affiliation(s)
- Wanhao Ma
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
- Qinghai Yak Breeding Extension Service Center, Datong 810100, China
| | | | - Alan D. Iwaasa
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK S9H 3X2, Canada
| | - Hong Wang
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK S9H 3X2, Canada
| | - Hongli Wang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Jinfen Yang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Binqiang Bai
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Jianwu Jing
- Qinghai Yak Breeding Extension Service Center, Datong 810100, China
| | - Guangwei Hu
- Qinghai Yak Breeding Extension Service Center, Datong 810100, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| | - Shujie Liu
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
Neves ALA, Vieira RAM, Vargas-Bello-Pérez E, Chen Y, McAllister T, Ominski KH, Lin L, Guan LL. Impact of Feed Composition on Rumen Microbial Dynamics and Phenotypic Traits in Beef Cattle. Microorganisms 2025; 13:310. [PMID: 40005677 PMCID: PMC11857910 DOI: 10.3390/microorganisms13020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The rumen microbiome is central to feed digestion and host performance, making it an important target for improving ruminant productivity and sustainability. This study investigated how feed composition influences rumen microbial abundance and phenotypic traits in beef cattle. Fifty-nine Angus bulls were assigned to forage- and grain-based diets in a randomized block design, evaluating microbial dynamics, methane emissions, and feed efficiency. Quantitative PCR (qPCR) quantified bacterial, archaeal, fungal, and protozoal populations. Grain-based diets reduced bacterial and fungal counts compared to forage diets (1.1 × 1011 vs. 2.8 × 1011 copies of 16S rRNA genes and 1.5 × 103 vs. 3.5 × 104 copies of 18S rRNA genes/mL, respectively), while protozoan and methanogen populations remained stable. Microbial abundance correlated with feed intake metrics, including dry matter and neutral detergent fiber intakes. Methane emissions were lower in grain-fed bulls (14.8 vs. 18.0 L CH4/kg DMI), though feed efficiency metrics showed no direct association with microbial abundance. Comparative analysis revealed adaptive microbial shifts in response to dietary changes, with functional redundancy maintaining rumen stability and supporting host performance. These findings provide insights into how feed composition shapes rumen microbial dynamics and host phenotypes, highlighting the functional adaptability of the rumen microbiome during dietary transitions.
Collapse
Affiliation(s)
- André L. A. Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Ricardo Augusto Mendonça Vieira
- Laboratório de Zootecnia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Einar Vargas-Bello-Pérez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico;
- Department of International Development, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Tim McAllister
- Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Kim H. Ominski
- Department of Animal Science & National Centre for Livestock and the Environment (NCLE), University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Limei Lin
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
6
|
Christodoulou C, Kliem KE, Auffret MD, Humphries DJ, Kirton P, Jalal H, Newbold JR, Davison N, Smith LG, Stergiadis S. Nutrient use and methane emissions in growing beef fed different protein sources and a pasture-based diet. J Anim Sci 2025; 103:skaf007. [PMID: 39821410 DOI: 10.1093/jas/skaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (n = 8), TMR with local brewers' spent grains (n = 8), TMR with local field beans (n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every 4 wk, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions. Feed intake (Calan gates), nutrient intakes, and CH4 emissions (GreenFeed) were also measured when animals were group-housed. In respiratory chambers, enteric CH4 yield per kg of dry matter intake (DMI), per kg of organic matter intake (OMI), and per kg body weight were lower (P < 0.05) for GRA. Feces and urine energy outputs were higher (P = 0.007 and P < 0.001, respectively) for GRA steers than concentrate-fed steers. Urinary nitrogen output (UNO, P = 0.026), manure (feces + urine) nitrogen output (MNO, P = 0.034), UNO/nitrogen intake (P = 0.002), and MNO/nitrogen intake (P = 0.006) were higher for GRA. During group-housing periods, CH4 emissions, measured by GreenFeed, were similar to those measured in chambers. Similar CH4 yield between treatments, expressed per kg digestible DMI and digestible OMI, may indicate that the lower diet digestibility was likely the reason for the reduced enteric CH4 emissions in pasture-based diets. The higher energy output and nitrogen losses, and the reduced nitrogen utilization for steers fed the fresh-cut ryegrass diet indicate less efficient energy and nitrogen utilization, which can be considered environmentally undesirable. The lower growth rates in the pasture-based system should also be accounted for when this is adopted for reducing production costs.
Collapse
Affiliation(s)
- Christos Christodoulou
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Kirsty E Kliem
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | | | - David J Humphries
- Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Reading RG2 9HX, UK
| | - Paul Kirton
- Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Reading RG2 9HX, UK
| | - Hassan Jalal
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - John R Newbold
- Dairy Research and Innovation Centre, Scotland's Rural College, Dumfries DG1 3NE, UK
| | - Nicholas Davison
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Laurence G Smith
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Department of Biosystem and Teknologi, Swedish University of Agricultural Sciences, SE-234 22 Lomma, Sweden
| | - Sokratis Stergiadis
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| |
Collapse
|
7
|
Amaral Júnior FP, Souza de Sousa CE, Rafael de Almeida Moreira B, Rodrigues Alves BJ, Longhini VZ, da Silva Cardoso A, Ruggieri AC. How does the chemical composition of dung affect nitrous oxide and methane emissions in pasture soils? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123630. [PMID: 39657474 DOI: 10.1016/j.jenvman.2024.123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
There is an important gap in how variations in herbivore dung composition affect GHG emissions on pastures, especially due to differences in dry matter (DM) and nitrogen contents. Oversimplifications can compromise the accuracy of mitigation strategies. This study aims to address this gap by investigating how the chemical composition of dung from different species influences GHG emissions in pasture systems. The results showed that drier dung led to higher cumulative N₂O emissions. The highest emissions were observed from goat at 9.47 mg N-N₂O g⁻1 dry soil, followed by sheep at 5.95 mg N-N₂O g⁻1 dry soil, beef cattle at 5.44 mg N₂O g⁻1 dry soil, dairy cattle at 2.67 mg N₂O g⁻1 dry soil, and horse at 0.83 mg N₂O g⁻1 dry soil. It was observed that higher dung moisture content generally corresponded to increased CH₄ emissions, except for horse dung. The highest cumulative CH₄ emission was for dairy cattle dung (8.29 mg C-CH₄ g⁻1 dry soil), followed by beef cattle (3.89 mg C-CH₄ g⁻1 dry soil), sheep (2.32 mg C-CH₄ g⁻1 dry soil), goats (1.89 mg C-CH₄ g⁻1 dry soil), and horses (1.66 mg C-CH₄ g⁻1 dry soil). Principal Component Analysis illustrated that PC1, named as diet quality, explained 61.9% of the variance, was positively correlated with N₂O and negatively correlated with fiber content and C/N ratio, while PC2, named as acetrophic and hydrogenotrophic methanogenesis, explained 19.6% of the variance, linking VS to reduced CH₄ emissions. This study establishes relationships between manure chemical composition and GHG emissions, filling a fundamental knowledge gap and supporting the development of cause-and-effect models.
Collapse
Affiliation(s)
- Francisco Paulo Amaral Júnior
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), SP, Brazil.
| | - Camila Eduarda Souza de Sousa
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), SP, Brazil
| | - Bruno Rafael de Almeida Moreira
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
| | | | | | | | - Ana Cláudia Ruggieri
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), SP, Brazil
| |
Collapse
|
8
|
Marino L, Altabe S, Colono CM, Podio M, Ortiz JPA, Balaban D, Stein J, Spoto N, Acuña C, Siena LA, Gerde J, Albertini E, Pessino SC. Transcriptome-guided breeding for Paspalum notatum: producing apomictic hybrids with enhanced omega-3 content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:2. [PMID: 39645625 PMCID: PMC11625688 DOI: 10.1007/s00122-024-04788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
KEY MESSAGE Transcriptomics- and FAME-GC-MS-assisted apomixis breeding generated Paspalum notatum hybrids with clonal reproduction and increased α-linolenic acid content, offering the potential to enhance livestock product's nutritional quality and reduce methane emissions A low omega-6:omega-3 fatty acid ratio is considered an indicator of the nutritional impact of milk fat on human health. In ruminants, major long-chain fatty acids, such as linoleic acid (18:2, omega-6) and α-linolenic acid (18:3, omega-3), originate from dietary sources and reach the milk via the bloodstream. Since forages are the primary source of long-chain fatty acids for such animals, they are potential targets for improving milk lipid composition. Moreover, a high 18:3 content in their diet is associated with reduced methane emissions during grazing. This work aimed to develop genotypes of the forage grass Paspalum notatum with high leaf 18:3 content and the ability for clonal reproduction via seeds (apomixis). We assembled diploid and polyploid Paspalum notatum leaf transcriptomes and recovered sequences of two metabolism genes associated with the establishment of lipid profiles, namely SUGAR-DEPENDENT 1 (SDP1) and PEROXISOMAL ABC TRANSPORTER 1 (PXA1). Primers were designed to amplify all expressed paralogs in leaves. qPCR was used to analyse SDP1 and PXA1 expression in seven divergent genotypes. Reduced levels of SDP1 and PXA1 were found in the polyploid sexual genotype Q4188. Fatty acid methyl esters/gas chromatography/mass spectrometry (FAME/GC/MS) assays confirmed an increased percentage of 18:3 in this genotype. Crosses between Q4188 and the obligate apomictic pollen donor Q4117 resulted in two apomictic F1 hybrids (JS9 and JS71) with reduced SDP1 and PXA1 levels, increased 18:3 content, and clonal maternal reproduction. These materials could enhance milk and meat quality while reducing greenhouse gas emissions during grazing.
Collapse
Affiliation(s)
- Lara Marino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), 27 de Febrero 27 Bis, 2000, Rosario, Argentina
| | - Carolina Marta Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Juan Pablo Amelio Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - David Balaban
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Nicolás Spoto
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Carlos Acuña
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Sargento Cabral 2134, 3400, Corrientes, Argentina
| | - Lorena Adelina Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - José Gerde
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Emidio Albertini
- Dipartimento Di Scienze Agrarie, Alimentari E Ambientali, Università Degli Studi Di Perugia, 06121, Perugia, Italy
| | - Silvina Claudia Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina.
| |
Collapse
|
9
|
Gere JI, Restovich SB, Mattera J, Cattoni MI, Ortiz-Chura A, Posse G, Cerón-Cucchi ME. Enteric Methane Emission from Cattle Grazing Systems with Cover Crops and Legume-Grass Pasture. Animals (Basel) 2024; 14:3535. [PMID: 39682500 DOI: 10.3390/ani14233535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
This study aims to quantify enteric methane (CH4) emission and dry matter intake (DMI) in beef steers under two rotational grazing systems: (i) a mixture of cover crops (vetch + ryegrass + forage radish) (CC) and (ii) alfalfa and fescue pasture (AFP). Eighteen Hereford steers were divided into two groups (nine steers per group), assigned to either the CC or AFP. Methane emissions were measured using the SF6 tracer technique. The results showed that steers grazing CC produced 29% less CH4 in g/d compared to those on the AFP (119.1 vs. 167.1 g/d for CC and AFP, p < 0.05) and 36% less CH4 yield (4.3 vs. 6.7% of gross energy intake). However, average daily gain (ADG), DMI, and CH4 intensity (gCH4/kg ADG) did not significantly differ between treatments. The integration of CC in a cattle grazing system has the potential to reduce CH4 emissions by improving forage quality.
Collapse
Affiliation(s)
- José Ignacio Gere
- Unidad de Investigación y Desarrollo de las Ingenierías, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional, Ciudad Autónoma Buenos Aires C1179AAQ, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma Buenos Aires C1033AAJ, Argentina
| | - Silvina Beatriz Restovich
- Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 32 km 4.5, Pergamino B2700XAC, Argentina
| | - Juan Mattera
- Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 32 km 4.5, Pergamino B2700XAC, Argentina
| | - María Isabel Cattoni
- Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 32 km 4.5, Pergamino B2700XAC, Argentina
| | - Abimael Ortiz-Chura
- UMR 1213 Herbivores Unit, Université Clermont Auvergne, INRAE, VetAgro Sup, F-63122 Saint-Genès-Champanelle, France
- Instituto de Patobiología Veterinaria (IPVet), Instituto Nacional de Tecnología Agropecuaria (INTA-CONICET), Hurlingham C1417AZE, Argentina
| | - Gabriela Posse
- Instituto de Clima y Agua, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham C1417AZE, Argentina
| | - María Esperanza Cerón-Cucchi
- Unidad de Investigación y Desarrollo de las Ingenierías, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional, Ciudad Autónoma Buenos Aires C1179AAQ, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma Buenos Aires C1033AAJ, Argentina
- Instituto de Patobiología Veterinaria (IPVet), Instituto Nacional de Tecnología Agropecuaria (INTA-CONICET), Hurlingham C1417AZE, Argentina
| |
Collapse
|
10
|
Frazier AN, Beck MR, Waldrip H, Koziel JA. Connecting the ruminant microbiome to climate change: insights from current ecological and evolutionary concepts. Front Microbiol 2024; 15:1503315. [PMID: 39687868 PMCID: PMC11646987 DOI: 10.3389/fmicb.2024.1503315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Ruminant livestock provide meat, milk, wool, and other products required for human subsistence. Within the digestive tract of ruminant animals, the rumen houses a complex and diverse microbial ecosystem. These microbes generate many of the nutrients that are needed by the host animal for maintenance and production. However, enteric methane (CH4) is also produced during the final stage of anaerobic digestion. Growing public concern for global climate change has driven the agriculture sector to enhance its investigation into CH4 mitigation. Many CH4 mitigation methods have been explored, with varying outcomes. With the advent of new sequencing technologies, the host-microbe interactions that mediate fermentation processes have been examined to enhance ruminant enteric CH4 mitigation strategies. In this review, we describe current knowledge of the factors driving ruminant microbial assembly, how this relates to functionality, and how CH4 mitigation approaches influence ecological and evolutionary gradients. Through the current literature, we elucidated that many ecological and evolutionary properties are working in tandem in the assembly of ruminant microbes and in the functionality of these microbes in methanogenesis. Additionally, we provide a conceptual framework for future research wherein ecological and evolutionary dynamics account for CH4 mitigation in ruminant microbial composition. Thus, preparation of future research should incorporate this framework to address the roles ecology and evolution have in anthropogenic climate change.
Collapse
Affiliation(s)
- A. Nathan Frazier
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Matthew R. Beck
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Heidi Waldrip
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Jacek A. Koziel
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| |
Collapse
|
11
|
Olagunju LK, Adelusi OO, Dele PA, Shaw Y, Brice RM, Orimaye OE, Villarreal-González JA, Kang HW, Kholif AE, Anele UY. Synergistic Effects of Mannan Oligosaccharides and Onion Peels on In Vitro Batch Culture Fermentation of High Concentrate and Forage Diets. Animals (Basel) 2024; 14:3180. [PMID: 39595233 PMCID: PMC11591183 DOI: 10.3390/ani14223180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The current study evaluated the effect of combining mannan oligosaccharide (MOS) and onion peel (OP) on ruminal in vitro total gas (GP), greenhouse gas emissions, dry matter and fiber fraction digestibility, partitioning factor (PF24; mg degradable DM per mL gas), microbial mass, and volatile fatty acids using two dietary substrates: high forage (HF) and high concentrate (HC) diets. The study was arranged as a 2 × 2 × 6 factorial design with two dietary substrates, two time points (6 and 24 h), and six treatments. The treatments included a control group with no MOS or OP administration and groups administered with 2% of a mixture containing MOS and OP in the following ratios: 1:0 (MOS), 0:1 (OP), 1:1 (MOS:OP), 1:2 (MOS:2OP), and 1:3 (MOS:3OP). No significant diet × treatment interactions were observed for any of the measured parameters. However, treatments decreased (p < 0.05) the undegraded portion of HC, and treatment × substrate interactions were significant (p < 0.05) for PF24 and microbial mass. The treatments in the HC diet produced higher GP (p < 0.001) at 6 h compared to the treatments in the HF diet. Administration of MOS:2OP to the HC diet increased GP at 24 h of incubation, while the lowest GP was observed with the OP in the HF diet. The administration of MOS, OP, and MOS:2OP to the HC diet decreased methane production at 24 h of incubation. Additionally, MOS:2OP and MOS:3OP increased (p < 0.001) degradable acid detergent fiber (dADF) in the HC diet at 6 h of incubation. Both OP and MOS:3OP decreased the degradability of acid detergent lignin in the HC diet (p < 0.001). The OP also resulted in the lowest DM disappearance (p < 0.001) at 24 h of incubation in the HF diet, while the MOS:3OP had the highest dADF. At the end of incubation, the highest productions of total volatile fatty acids and acetate were observed (p = 0.002) with the MOS:OP administration in the HC diet, whereas the lowest values were observed with MOS and OP administration to the HF diet. The inclusion of mannan oligosaccharide and onion peel combinations as additives improved substrate (HC and HF) fermentation, leading to higher GP and volatile fatty production, and modulated fiber degradability by improving the breakdown of acid detergent fiber and acid detergent lignin.
Collapse
Affiliation(s)
- Lydia K. Olagunju
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Oludotun O. Adelusi
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Peter A. Dele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Yasmine Shaw
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Rosetta M. Brice
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Oluteru E. Orimaye
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Jorge A. Villarreal-González
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Hye Won Kang
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA;
| | - Ahmed E. Kholif
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| | - Uchenna Y. Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (O.O.A.); (P.A.D.); (Y.S.); (R.M.B.); (O.E.O.); (J.A.V.-G.); (A.E.K.)
| |
Collapse
|
12
|
Evangelista C, Milanesi M, Pietrucci D, Chillemi G, Bernabucci U. Enteric Methane Emission in Livestock Sector: Bibliometric Research from 1986 to 2024 with Text Mining and Topic Analysis Approach by Machine Learning Algorithms. Animals (Basel) 2024; 14:3158. [PMID: 39518881 PMCID: PMC11545165 DOI: 10.3390/ani14213158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Methane (CH4) from livestock, particularly enteric CH4 emission (EME), is one contributor to greenhouse gas emissions and climate change. This review analyzed 1294 scientific abstracts on EME in ruminants from 1986 to May 2024, using Scopus® data. Descriptive statistics, text mining, and topic analysis were performed. Publications on EME have risen significantly since 2005, with the Journal of Dairy Science being the most frequent publisher. Most studies (82.1%) were original research, with Northern Hemisphere countries leading in publication numbers. The most frequent terms were "milk", "cow", and "diet", while key research topics included greenhouse gas emissions from livestock, diet composition, and prediction models. Despite progress, some areas like CH4 emission from animals need further investigation.
Collapse
Affiliation(s)
- Chiara Evangelista
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (M.M.); (D.P.); (G.C.)
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (M.M.); (D.P.); (G.C.)
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (M.M.); (D.P.); (G.C.)
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (M.M.); (D.P.); (G.C.)
| | - Umberto Bernabucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
| |
Collapse
|
13
|
Xiao D, Meng T. Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants. Animals (Basel) 2024; 14:3153. [PMID: 39518876 PMCID: PMC11545084 DOI: 10.3390/ani14213153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
In the context of modern livestock farming, particularly in the ruminant industry, feed is a crucial factor that affects both the efficiency of production and animal health [...].
Collapse
Affiliation(s)
- Dingfu Xiao
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
14
|
Gutierrez-Oviedo FA, Richards AT, Javaid A, You M, Zang Y, Senevirathne ND, McFadden JW. Effects of abomasal infusion of soybean or sunflower lecithin on nutrient digestibility and milk production in lactating dairy cows. J Dairy Sci 2024; 107:9145-9154. [PMID: 38788840 DOI: 10.3168/jds.2023-24369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/01/2024] [Indexed: 05/26/2024]
Abstract
The fatty acid (FA) and phospholipid composition of dietary lecithin may influence FA digestibility and milk production in cattle. Eight multiparous Holstein cows (99.4 ± 9.2 DIM; 48.9 ± 3.8 kg of milk/d) were enrolled in a 3 × 3 incomplete Latin square design with 3 treatments provided as continuous abomasal infusates spanning 14-d experimental periods: water (CON), soybean lecithin (SBL; 74.5 g of deoiled soy lecithin), or sunflower lecithin (SFL; 133.5 g of hydrolyzed sunflower lecithin). Cows were fed the same diet, which contained (% DM) 27.0% NDF, 15.6% CP, 26.2% starch, and 5.87% FA. Treatments did not modify BW, milk fat, protein, or lactose contents, or the efficiency of producing ECM. Cows infused with SFL had greater milk yields than those receiving SBL or CON treatments. Cows infused with SFL had higher total solids, protein, and lactose yields than cows receiving the SBL or CON treatments. Sunflower lecithin enhanced feed efficiency (milk yield/DMI) relative to SBL or CON. Treatment did not affect intakes or apparent total-tract digestibilities for NDF, CP, starch, or 16-carbon (16C) FA. Cows receiving SFL had greater total FA and 18-carbon (18C) FA intakes than SBL or CON, but treatments did not affect their digestibility. Milk FA composition was modified by treatment. Cows receiving SFL had a greater concentration of PUFA and lower concentrations of SFA and MUFA in milk relative to SBL or CON. In conclusion, the abomasal infusion of SFL improved milk production and milk FA composition, indicating potential benefits for dairy cow nutrition and milk quality.
Collapse
Affiliation(s)
| | | | - A Javaid
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Mingyang You
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Yu Zang
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
15
|
Worku D. Unraveling the genetic basis of methane emission in dairy cattle: a comprehensive exploration and breeding approach to lower methane emissions. Anim Biotechnol 2024; 35:2362677. [PMID: 38860914 DOI: 10.1080/10495398.2024.2362677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ruminant animals, such as dairy cattle, produce CH4, which contributes to global warming emissions and reduces dietary energy for the cows. While the carbon foot print of milk production varies based on production systems, milk yield and farm management practices, enteric fermentation, and manure management are major contributors togreenhouse gas emissions from dairy cattle. Recent emerging evidence has revealed the existence of genetic variation for CH4 emission traits among dairy cattle, suggests their potential inclusion in breeding goals and genetic selection programs. Advancements in high-throughput sequencing technologies and analytical techniques have enabled the identification of potential metabolic biomarkers, candidate genes, and SNPs linked to methane emissions. Indeed, this review critically examines our current understanding of carbon foot print in milk production, major emission sources, rumen microbial community and enteric fermentation, and the genetic architecture of methane emission traits in dairy cattle. It also emphasizes important implications for breeding strategies aimed at halting methane emissions through selective breeding, microbiome driven breeding, breeding for feed efficiency, and breeding by gene editing.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Science, Injibara University, Injibara, Ethiopia
| |
Collapse
|
16
|
Zeng Y, Liu Z, Chen W, Qv K, Huang Y, Ade L, Hou F. Methane pulse spray and irrigation promote seed germination and seedling growth of common vetch. BMC PLANT BIOLOGY 2024; 24:971. [PMID: 39415102 PMCID: PMC11481452 DOI: 10.1186/s12870-024-05682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Grazing livestock emits methane through rumen intestinal activity, however, its impact on plant growth in grassland while grazing still has not been explored in detail. Therefore, the study examined the effects of methane pulse spray (MPS), according to grazing intensity, at four grazing intensities (0, 3.6, 5.0, and 6.5 sheep·hm- 2 yr- 1) on seed germination and seedling growth of common vetch (Vicia sativa), while two irrigation rates (35 and 53 ml d- 1) were employed to simulate the precipitation. RESULTS The study revealed significant interactions between MPS and irrigation rate on seed germination and seedling growth parameters. Under moderate MPS intensities (0.74 and 1.04 mol m- 2), seed germination rate, potential, index, and vigor index improved, especially at higher irrigation rates (53 ml d- 1). Conversely, excessive MPS (1.33 mol m- 2) inhibited particularly at the germination rate and growth,. The seedling growth dynamics fitted a logistic model, with MPS advancing the rapid growth phase and increasing maximum growth rates. CONCLUSIONS This study demonstrates that low to moderate levels of MPS from ruminants can promote seed germination and seedling growth of common vetch, while excessive MPS inhibits these processes. Irrigation enhances plant sensitivity to MPS, with wetter conditions (620 mm yr- 1) facilitating a more pronounced response. The findings introduce a new model elucidating plant responses to external perturbations, which can inform grazing management strategies in diverse ecosystems. In wetter regions, moderate grazing intensities may leverage MPS benefits, while arid regions require careful grazing regulation to maintain grassland-livestock balance.
Collapse
Affiliation(s)
- Yifeng Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhiqiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Weijun Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Ketan Qv
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yanxiang Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Luji Ade
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
17
|
Chelopo GM, Marume U. The effect of Vachellia eriolaba leaf meal inclusion on growth performance, blood parameters and methane gas emission in lambs fed diets containing ammoniated maize stover. Trop Anim Health Prod 2024; 56:323. [PMID: 39361053 PMCID: PMC11449980 DOI: 10.1007/s11250-024-04149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
The study evaluated the effect of Vachellia erioloba leaf meal in diets containing ammoniated maize stove on growth performance, methane emission and heath of growing lambs. Thirty-two female lambs were allocated to the following four dietary treatments: total mixed ration (TMR, control), 20% inclusion of untreated maize stover (UMS), 20% inclusion of ammoniated maize stover (AMS), and combined inclusion of 10% ammoniated maize stover and 10% Vachellia erioloba leaves (AMSVL). Each treatment was replicated 8 times and a lamb in an individual pen was regarded as an experimental unit in a completely randomized design. Feed intake was higher (P < 0.05) in lambs fed the AMS and AMSVL diets compared to those fed UMS. Final body weights were higher in lambs fed the AMS and AMSVL diets. Both average daily gain (ADG) and feed convention ratio (FCR) were not affected by diet. In comparison with the AMS and AMSVL diets, the lambs fed the UMS diet had the highest (P < 0.05) methane emission. Overall, lambs fed the control diets had the lowest (P < 0.05) methane gas emission. Blood hematological values were affected by diet with the AMSVL fed lambs having the highest (P < 0.05) mean platelet volume (MPV) and procalcitonin (PCT) values. Furthermore, total albumin, amylase and total bilirubin were the highest (P < 0.05) in lambs fed on the AMSVL diet. Lambs fed on AMS diet had the highest (P < 0.05) serum urea levels. It can be concluded that combined inclusion of ammoniated maize stover and Vachellia leaves improved feed value and lamb performance when compared to the individual inclusion of both UMS and AMS.
Collapse
Affiliation(s)
- G M Chelopo
- School of Agricultural Science, Faculty of Natural Sciences and Agriculture, North-West University, P. Bag X 2046, Mmabatho, 2735, South Africa
- Food Security and Safety Niche area, Faculty of Agriculture, Science and Technology, North-West University, P Bag X 2046, Mmabatho, 2735, South Africa
| | - U Marume
- School of Agricultural Science, Faculty of Natural Sciences and Agriculture, North-West University, P. Bag X 2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Niche area, Faculty of Agriculture, Science and Technology, North-West University, P Bag X 2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
18
|
Britten N, Mahendran S. Environmental sustainability and ruminant production: A UK veterinary perspective. Vet Rec 2024; 196:e4703. [PMID: 39327698 PMCID: PMC11698080 DOI: 10.1002/vetr.4703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Environmental sustainability is an issue of growing importance within the livestock industry, particularly for farmed ruminants. Changes to farming practices made to improve sustainability can have an impact on the health and welfare of animals, and so become the concern of veterinary practitioners. This review outlines the metrics used to measure sustainability and how sustainability interacts with ruminant health and welfare, allowing practitioners to incorporate environmental considerations into their existing livestock work. Topics covered include nutrition, disease control, genetics and stocking density.
Collapse
Affiliation(s)
- Nick Britten
- Royal Veterinary CollegeHatfieldUK
- Synergy Farm HealthRampisham DownUK
| | | |
Collapse
|
19
|
Xiong Z, Li Y, Zhang X, Zhang S, Li K, Zheng N, Zhao S, Wang J. Effects of biochanin A on lactational performance, nitrogen metabolism, and blood metabolites in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:441-449. [PMID: 39309972 PMCID: PMC11416632 DOI: 10.1016/j.aninu.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024]
Abstract
Optimizing nitrogen utilization efficiency and mitigating nitrogen losses in cows plays a pivotal role in fostering economic sustainability within contemporary agricultural systems. Biochanin A (BCA), a natural component in red clover, has the potential to improve nitrogen metabolism in dairy cows. The primary objective of this study was to probe the impact of biochanin A supplementation on lactational performance, nitrogen metabolism, and blood metabolites in dairy cows. A complete randomized block design experiment was conducted over 28 d, involving 36 multiparous Holstein cows (comparable milk yield = 37.1 ± 2.90 kg, BW = 642 ± 70.0 kg, days in milk = 92 ± 8.0 d, and parity = 2.4 ± 0.50), which were allocated to three treatment groups: the Control group (with 0 g/d BCA), the Low group (with 10 g/d per cow BCA), and the High group (with 40 g/d per cow BCA). Biochanin A supplementation improved the lactational performance of cows by increasing milk yield by 6.3% (P = 0.007) and feed efficiency by 12.7% (P = 0.009). Total intestinal apparent digestibility was unaffected by BCA supplementation (P > 0.05), but microbial nitrogen was increased by 30.0% (P = 0.002) for promoting nitrogen utilization efficiency by 20.7% (P = 0.004). Milk competent yields (protein, lactose, and non-fat milk solid) were increased with increasing BCA supplementation (P < 0.05). Urea nitrogen levels in plasma and milk were both decreased by BCA supplementation (P < 0.05). Blood routine parameters and plasma biochemical parameters both received no effect by BCA supplementation (P > 0.05). BCA did not affect body health of dairy cows. Additionally, none of the plasma endocrine hormones were affected (P > 0.05). A total of 95 significantly different metabolites were screened from the plasma metabolites of cows in the BCA-added and non-added groups. After performing an enrichment analysis of the metabolic pathways associated with the different metabolites, six specific pathways were identified: bile acid biosynthesis, aspartate metabolism, pyrimidine metabolism, arginine and proline metabolism, the urea cycle, and ammonia recycling. The inclusion of BCA is suggested to enhance milk yield and modulate nitrogen metabolism by influencing relevant metabolites within the metabolic pathways.
Collapse
Affiliation(s)
- Zhanbo Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kexin Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
20
|
Räisänen SE, Sigurðardóttir ÞH, Halmemies-Beauchet-Filleau A, Pitkänen O, Vanhatalo A, Sairanen A, Kokkonen T. Ruminal methane emission and lactational performance of cows fed rapeseed cake and oats on a grass silage-based diet. J Dairy Sci 2024; 107:6732-6741. [PMID: 38642648 DOI: 10.3168/jds.2023-24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
The objective of this experiment was to investigate the effect of lipid from rapeseed cake and oats on ruminal CH4 emission and lactational performance of dairy cows. Twelve lactating Nordic Red cows, of which 4 were primiparous, and averaging (±SD) 48 ± 22.9 DIM, 37.8 ± 7.14 kg/d milk yield were enrolled in a switch-back design experiment with 3 periods of 4 wk each. The cows were assigned into 6 pairs based on parity, DIM, milk yield, and BW at the beginning of the experiment. The experimental treatments were (1) rapeseed cake and oats (RSC+O), and (2) rapeseed meal and barley (RSM+B) as the concentrate feeds. Cows in each pair were randomly assigned to 1 of the 2 groups, which received the treatments in 2 different sequences (i.e., group 1 received RSC+O in period 1 and 3, and RSM+B in period 2, whereas group 2 was fed RSM+B in period 1 and 3, and RSC+O in period 2). The diets consisted of a partially mixed ration with grass silage mixed with either oats or barley, according to the treatment sequence, and the rapeseed cake or meal being mixed into a pellet with either oats or barley according to the treatments, and a mineral mix. The pellet was delivered at a fixed amount (i.e., 6 kg/d for multiparous and 5 kg/d for the primiparous cows) from the milking robot. The actual forage to concentrate ratios for RSC+O and RSM+B were 51:49 and 52:48, respectively, with NDF concentrations of 41.5% and 36.0% and CP concentrations of 17.0% and 16.7% of diet DM. Dry matter intake, milk yield, and gas exchange (with a GreenFeed system attached to the milking robot) were recorded daily, and milk composition and spot fecal samples were collected during the last week of each period. Based on feed analysis, and DMI of the cows during the experiment, the total fat content of the experimental diets was 4.1% and 2.7% of DM for RSC+O and RSM+B diets, respectively. Dry matter intake was 1.6 kg/d lower, and milk yield tended to be 1.0 kg/d greater for RSC+O versus RSM+B. There were no differences in ECM yield and milk composition between the treatments, whereas milk ME efficiency was greater for cows fed RSC+O than RSM+B. Methane yield (g/kg DMI) did not differ between treatments, but CH4 production (g/d) was 9.4% and CH4 intensity as g/kg ECM was 11.7% lower for RSC+O versus RSM+B. The lower CH4 production was likely caused by the lower DMI and fiber digestibility, observed with the RSC+O diet. In addition, the greater lipid intake also contributed to lower rate of fermentation and subsequent decrease in CH4 production. Overall, feeding rapeseed cake with oats in a grass silage-based diet increased feed efficiency while decreasing CH4 emission intensity in lactating cows. This provides a practical way of mitigating ruminal CH4 emission from dairy operations while maintaining milk production with commonly used feedstuffs in Nordic conditions.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland; Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - Þ H Sigurðardóttir
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - O Pitkänen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - A Sairanen
- Natural Resources Institute Finland (Luke), 71750 Maaninka, Finland
| | - T Kokkonen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
21
|
Connolly C, Timlin M, Hogan SA, O'Callaghan TF, Brodkorb A, O'Donovan M, Hennessy D, Fitzpatrick E, McCarthy K, Murphy JP, Brennan L. The Impact of Varying Pasture Levels on the Metabolomic Profile of Bovine Ruminal Fluid. Metabolites 2024; 14:476. [PMID: 39330483 PMCID: PMC11434397 DOI: 10.3390/metabo14090476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024] Open
Abstract
A pasture or concentrate-based dietary regime impacts a variety of factors including both ruminal health and function, and consequently milk production and quality. The objective of this study was to examine the effect of feeding differing pasture levels on the metabolite composition of bovine ruminal fluid. Ruminal fluid was obtained from rumen-cannulated spring-calving cows (N = 9, Holstein-Friesian breed, average lactation number = 5) fed one of three diets across a full lactation season. Group 1 (pasture) consumed perennial ryegrass supplemented with 5% concentrates; group 2 received a total mixed ration (TMR) diet; and group 3 received a partial mixed ration (PMR) diet which included pasture and a TMR. Samples were taken at two timepoints: morning and evening. Metabolomic analysis was performed using nuclear magnetic resonance (1H-NMR) spectroscopy. Statistical analysis revealed significant changes across the dietary regimes in both morning and evening samples, with distinct alterations in the metabolite composition of ruminal fluid from pasture-fed cows (FDR-adjusted p-value < 0.05). Acetate and butyrate were significantly higher in samples derived from a pasture-based diet whereas sugar-related metabolites were higher in concentrate-based samples. Furthermore, a distinct diurnal impact on the metabolite profile was evident. This work lays the foundation for understanding the complex interaction between dietary regime and ruminal health.
Collapse
Affiliation(s)
- Claire Connolly
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, D04 V1W8 Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Food for Health Ireland, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Mark Timlin
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, D04 V1W8 Dublin, Ireland
- Food for Health Ireland, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Sean A Hogan
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Tom F O'Callaghan
- School of Food and Nutritional Sciences, University College Cork, T12 Y337 Cork, Ireland
| | - André Brodkorb
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Michael O'Donovan
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302 Cork, Ireland
| | - Deirdre Hennessy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302 Cork, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K Cork, Ireland
| | - Ellen Fitzpatrick
- Teagasc, Environmental Research Centre, Johnstown Castle, Y35 Y521 Wexford, Ireland
| | - Kieran McCarthy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302 Cork, Ireland
| | - John P Murphy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302 Cork, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, D04 V1W8 Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Food for Health Ireland, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
22
|
Mao J, Wang L, Wang Z, Xue B, Peng Q, Hu R, Xiao J. High concentrate diets altered the structure and function of rumen microbiome in goats. Front Microbiol 2024; 15:1416883. [PMID: 39144219 PMCID: PMC11322510 DOI: 10.3389/fmicb.2024.1416883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
This study used metatranscriptomics to investigate the effects of concentrate diet level on rumen microbiome composition and function in goats. A total of 12 healthy 120-day-old Da'er goats were randomly allotted into two treatments: L group (low dietary concentrate level group, concentrate: forage ratio was 25: 75) and H group (high dietary concentrate level group, concentrate: forage ratio was 80: 20). The study included a 10-day pre-feeding period and a 60-day growth experiment. The results showed that compared with the L group, the average daily gain and the slaughter rate in the H group were increased, while the F/G was decreased; the concentration of lactate and ammonia nitrogen, and the proportion of butyrate and valerate in the rumen of the H group were increased, while the proportion of acetate, and the ratio of acetate to propionate were decreased (p < 0.05). Among rumen bacteria, compared with the L group, the H group significantly decreased the relative abundance of Firmicutes and Fibrobacteria at the phylum level, decreased the relative abundance of Bacteroidetes, Fibrobacter, and Sarcina and increased the relative abundance of Clostridium at the genus level, and decreased the relative abundance of Fibrobacter succinogenes, Sarcina sp. DSM 11001, Oscillibacter sp. KLE 1728, and Ruminococcus flavefaciens and increased the relative abundance of Clostridium sp. ND2 and Firmicutes bacteria CAG: 103 at the species level (p < 0.05). Among rumen fungi, the relative abundance of Basidiomycota, Neocallimastigomycota, Mortierella, Mortierella elongata, and Gonapodyna prolifera was lower in the H group than that in the L group (p < 0.05). Functional annotation results showed that the abundance of Glycoside hydrolases genes in rumen microbiome was significantly decreased in the H group compared to the L group (p < 0.05). The result of KEGG DEGs enrichment analysis showed that the gene expression of cellulose 1,4-β-cellobiosidase, acetyl-CoA hydrolase, lactate dehydrogenase, succinate-semialdehyde dehydrogenase, D-malate dehydrogenase and related genes in methane production pathways of rumen microbiome was decreased in the H group. In summary, feeding high concentrate diets improved the production performance of goats, altered the structure and composition of rumen microbiome and changed the function of rumen microbiome.
Collapse
Affiliation(s)
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
23
|
Ncho CM, Kim SH, Rang SA, Lee SS. A meta-analysis of probiotic interventions to mitigate ruminal methane emissions in cattle: implications for sustainable livestock farming. Animal 2024; 18:101180. [PMID: 38823282 DOI: 10.1016/j.animal.2024.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the significant impact of ruminants on methane emissions has garnered international attention. While dietary strategies have been implemented to solve this issue, probiotics gained the attention of researchers due to their sustainability. However, it is challenging to ascertain their effectiveness as an extensive range of strains and doses have been reported in the literature. Hence, the objective of this experiment was to perform a meta-analysis of probiotic interventions aiming to reduce ruminal methane emissions from cattle. From 362 articles retrieved from scientific databases, 85 articles were assessed independently by two reviewers, and 20 articles representing 49 comparisons were found eligible for meta-analysis. In each study, data such as mean, SD, and sample sizes of both the control and probiotic intervention groups were extracted. The outcomes of interest were methane emission, methane yield, and methane intensity. For the meta-analysis, effect sizes were pooled using a fixed effect or a random effect model depending on the heterogeneity. Afterward, sensitivity analyses were conducted to confirm the robustness of the findings. Overall pooled standardized mean differences (SMDs) with their confidence intervals (CIs) did not detect significant differences in methane emission (SMD = -0.04; 95% CI = -0.18-0.11; P = 0.632), methane yield (SMD = -0.08; 95% CI = -0.24-0.07; P = 0.291), and methane intensity (SMD = -0.22; 95% CI = -0.50-0.07; P = 0.129) between cattle supplemented with probiotics and the control group. However, subgroup analyses revealed that multiple-strain bacterial probiotics (SMD = -0.36; 95% CI = -0.62 to -0.11; P = 0.005), specifically the combination of bacteria involved in reductive acetogenesis and propionate production (SMD = -0.71; 95% CI = -1.04 to -0.36; P = 0.001), emerged as better interventions. Likewise, crossbreeds (SMD = -0.48; 95% CI = -0.78 to -0.18; P = 0.001) exhibited a more favorable response to the treatments. Furthermore, meta-regression demonstrated that longer periods of supplementation led to significant reductions in methane emissions (P = 0.001), yield (P = 0.032), and intensity (P = 0.012) effect sizes. Overall, the results of the current study suggest that cattle responses to probiotic interventions are highly dependent on the probiotic category. Therefore, extended trials performed with probiotics containing multiple bacterial strains are showing the most promising results. Ideally, further trials focusing on the use of probiotics to reduce ruminal methane in cattle should be conducted to complete the available literature.
Collapse
Affiliation(s)
- C M Ncho
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S-H Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S A Rang
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - S S Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea.
| |
Collapse
|
24
|
de Ondarza MB, de Souza VC, Kebreab E, Tricarico JM. Understanding potential opportunities and risks associated with feeding supplemental rumen available fats to mitigate enteric methane emissions in lactating dairy cows. J Dairy Sci 2024:S0022-0302(24)00836-1. [PMID: 38825101 DOI: 10.3168/jds.2023-24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
Supplemental dietary rumen available fats show promise as enteric methane (eCH4) mitigators for lactating dairy cows. However, concerns include variability in eCH4 response and possible negative effects on dairy cow performance. Successful implementation of this mitigation option requires better prediction of responses specifically to rumen available FA as well as understanding the modulating effects of other dietary and animal characteristics. Using meta-analytic and meta-regression techniques, 35 published studies with diet definition were used to assess changes in eCH4 emissions and lactation performance associated with supplemental fat, specific supplemental rumen available FA types, and other dietary characteristics. Enteric CH4 (g/d) was reduced by 3.77% per percentage unit of supplemental rumen available EE (RAEE). Supplemental rumen available PUFA (C18:2 and C18:3) and UFA (C18:1, C18:2, C18:3) mitigated eCH4 (g/d) emissions in dairy cows by 6.88 and 4.65% per percentage unit increase, respectively. The anti-methanogenic effects of PUFA, MUFA and MCFA increased with correspondingly greater basal dietary levels of each FA type. Higher rumen-degradable starch (RDS; > 18% DM) in the basal diet promoted greater reductions in eCH4 yield (eCH4/DMI, g/kg) with supplemental rumen available PUFA and UFA. Both milk fat percentage and yield (kg/d) were reduced with rumen available fat supplementation with a reduction of 7.8% and 6.0%, respectively, relative to control diets. Our results highlight the importance of determining basal levels of the rumen available FA before providing supplemental rumen available FA as an option for enteric eCH4 mitigation. Dairy nutritionists can use estimates generated from this analysis to predict changes in eCH4 emissions and dairy cow performance associated with dietary supplementation of rumen available EE and specific rumen available FA types for the purpose of eCH4 mitigation.
Collapse
Affiliation(s)
| | - Vinícius Carneiro de Souza
- Department of Animal Science, University of California, Davis, 2111 Meyer Hall, One Shields Avenue, Davis, CA, 95618, USA
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, 2111 Meyer Hall, One Shields Avenue, Davis, CA, 95618, USA
| | - Juan M Tricarico
- Dairy Management Inc., 10255 W. Higgins Road, Suite 900, Rosemont, IL 60018, USA.
| |
Collapse
|
25
|
O'Donnell C, Thorn C, Roskam E, Friel R, Kirwan SF, Waters SM, O'Flaherty V. Novel oxidising feed additives reduce in vitro methane emissions using the rumen simulation technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171808. [PMID: 38508273 DOI: 10.1016/j.scitotenv.2024.171808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.
Collapse
Affiliation(s)
- Caroline O'Donnell
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| | - Camilla Thorn
- GlasPort Bio Ltd, Business Innovation Centre, University of Galway, Galway, Ireland
| | - Emily Roskam
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Ruairi Friel
- GlasPort Bio Ltd, Business Innovation Centre, University of Galway, Galway, Ireland
| | - Stuart F Kirwan
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Sinéad M Waters
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland; School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; GlasPort Bio Ltd, Business Innovation Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
26
|
Homem BGC, Borges LPC, de Lima IBG, Guimarães BC, Spasiani PP, Ferreira IM, Meo-Filho P, Berndt A, Alves BJR, Urquiaga S, Boddey RM, Casagrande DR. Forage peanut legume as a strategy for improving beef production without increasing livestock greenhouse gas emissions. Animal 2024; 18:101158. [PMID: 38703756 DOI: 10.1016/j.animal.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024] Open
Abstract
The transformation of pastures from a degraded state to sustainable productivity is a major challenge in tropical livestock production. Stoloniferous forage legumes such as Arachis pintoi (forage peanut) are one of the most promising alternatives for intensifying pasture-based beef livestock operations with reduced greenhouse gas (GHG) emissions. This 2-year study assessed beef cattle performance, nutrient intake and digestibility, and balance of GHG emissions in three pasture types (PT): (1) mixed Palisade grass - Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster (syn. Brachiaria brizantha Stapf cv. Marandu) and forage peanut (A. pintoi Krapov. & W.C. Greg. cv. BRS Mandobi) pastures (Mixed), (2) monoculture Palisade grass pastures with 150 kg of N/ha per year (Fertilised), and (3) monoculture Palisade grass without N fertiliser (Control). Continuous stocking with a variable stocking rate was used in a randomised complete block design, with four replicates per treatment. The average daily gain and carcass gain were not influenced by the PT (P = 0.439 and P = 0.100, respectively) and were, on average, 0.433 kg/animal per day and 83.4 kg/animal, respectively. Fertilised and Mixed pastures increased by 102 and 31.5%, respectively, the liveweight gain per area (kg/ha/yr) compared to the Control pasture (P < 0.001). The heifers in the Mixed pasture had lower CH4 emissions (g/animal per day; P = 0.009), achieving a reduction of 12.6 and 10.1% when compared to the Fertilised and Control pastures, respectively. Annual (N2O) emissions (g/animal) and per kg carcass weight gain were 59.8 and 63.1% lower, respectively, in the Mixed pasture compared to the Fertilised pasture (P < 0.001). Mixed pasture mitigated approximately 23% of kg CO2eq/kg of carcass when substituting 150 kg of N/ha per year via fertiliser. Mixed pastures with forage peanut are a promising solution to recover degraded tropical pastures by providing increased animal production with lower GHG emissions.
Collapse
Affiliation(s)
- B G C Homem
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil; Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - L P C Borges
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - I B G de Lima
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - B C Guimarães
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - P P Spasiani
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - I M Ferreira
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - P Meo-Filho
- Embrapa Southeast Livestock, Rodovia Washington Luiz, km 234, Sao Carlos, SP 13560-970, Brazil
| | - A Berndt
- Embrapa Southeast Livestock, Rodovia Washington Luiz, km 234, Sao Carlos, SP 13560-970, Brazil
| | - B J R Alves
- Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - S Urquiaga
- Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - R M Boddey
- Department of Soil Science, Federal Rural University of Rio de Janeiro, Rodovia BR 465, km 7, Seropédica, RJ 23897-000, Brazil
| | - D R Casagrande
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil.
| |
Collapse
|
27
|
Pozo-Leyva D, Casanova-Lugo F, López-González F, Celis-Álvarez MD, Cruz-Tamayo AA, Canúl-Solís JR, Chay-Canúl AJ. Impact of diversified grazing systems on milk production, nutrient use and enteric methane emissions in dual-purpose cows. Trop Anim Health Prod 2024; 56:140. [PMID: 38656670 DOI: 10.1007/s11250-024-03989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.
Collapse
Affiliation(s)
- Dixan Pozo-Leyva
- Tecnológico Nacional de México Campus I. T. de la Zona Maya, Carretera Chetumal-Escárcega km 21.5, Ejido Juan Sarabia, C.P. 77960. Othón P. Blanco, Quintana Roo, México
| | - Fernando Casanova-Lugo
- Tecnológico Nacional de México Campus I. T. de la Zona Maya, Carretera Chetumal-Escárcega km 21.5, Ejido Juan Sarabia, C.P. 77960. Othón P. Blanco, Quintana Roo, México.
| | - Felipe López-González
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Campus UAEM El Cerrillo, El Cerrillo Piedras Blancas, Toluca, Estado de México, C.P. 50090, México
| | - María D Celis-Álvarez
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Campus UAEM El Cerrillo, El Cerrillo Piedras Blancas, Toluca, Estado de México, C.P. 50090, México
| | - Alvar A Cruz-Tamayo
- Escuela Superior de Ciencias Agropecuarias, Universidad Autónoma de Campeche, C. 53 s/n, Unidad Esfuerzo y Trabajo I, Escárcega, Campeche, C.P. 24350, México
| | - Jorge R Canúl-Solís
- Tecnologico Nacional de México Campus I. T. de Tizimín, Avenida Cupules km 2.5, Tizimín Yucatán, CP. 97700, México
| | - Alfonso J Chay-Canúl
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, México. Carretera Villahermosa-Teapa, km 25, R/a. La Huasteca 2ª. Sección, Villahermosa, Tabasco, C.P. 86280, México
| |
Collapse
|
28
|
Fregulia P, Dias RJP, Campos MM, Tomich TR, Pereira LGR, Neves ALA. Composition of the rumen microbiome and its association with methane yield in dairy cattle raised in tropical conditions. Mol Biol Rep 2024; 51:447. [PMID: 38536522 PMCID: PMC10972937 DOI: 10.1007/s11033-024-09381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Methane (CH4) emissions from rumen fermentation are a significant contributor to global warming. Cattle with high CH4 emissions tend to exhibit lower efficiency in milk and meat production, as CH4 production represents a loss of the gross energy ingested by the animal. The objective of this study was to investigate the taxonomic and functional composition of the rumen microbiome associated with methane yield phenotype in dairy cattle raised in tropical areas. METHODS AND RESULTS Twenty-two Girolando (F1 Holstein x Gyr) heifers were classified based on their methane yield (g CH4 / kg dry matter intake (DMI)) as High CH4 yield and Low CH4 yield. Rumen contents were collected and analyzed using amplicon sequencing targeting the 16 and 18S rRNA genes. The diversity indexes showed no differences for the rumen microbiota associated with the high and low methane yield groups. However, the sparse partial least squares discriminant analysis (sPLS-DA) revealed different taxonomic profiles of prokaryotes related to High and Low CH4, but no difference was found for protozoa. The predicted functional profile of both prokaryotes and protozoa differed between High- and Low CH4 groups. CONCLUSIONS Our results suggest differences in rumen microbial composition between CH4 yield groups, with specific microorganisms being strongly associated with the Low (e.g. Veillonellaceae_UCG - 001) and High (e.g., Entodinium) CH4 groups. Additionally, specific microbial functions were found to be differentially more abundant in the Low CH4 group, such as K19341, as opposed to the High CH4 group, where K05352 was more prevalent. This study reinforces that identifying the key functional niches within the rumen is vital to understanding the ecological interplay that drives methane production.
Collapse
Affiliation(s)
- Priscila Fregulia
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, National Center for Research on Dairy Cattle, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Thierry Ribeiro Tomich
- Brazilian Agricultural Research Corporation, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, National Center for Research on Dairy Cattle, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Luiz Gustavo Ribeiro Pereira
- Brazilian Agricultural Research Corporation, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, National Center for Research on Dairy Cattle, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870, Denmark.
| |
Collapse
|
29
|
Cooke RF, Eloy LR, Bosco SC, Lasmar PVF, de Simas JMC, Leiva T, de Medeiros SR. An updated meta-analysis of the anti-methanogenic effects of monensin in beef cattle. Transl Anim Sci 2024; 8:txae032. [PMID: 38595989 PMCID: PMC11003526 DOI: 10.1093/tas/txae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Meta-analyses were performed to quantitatively summarize the effects of monensin on in vivo methane (CH4) production in beef cattle, and differentiate these outcomes according to dietary management, dose of monensin, and length of monensin supplementation. Data from 11 manuscripts describing 20 individual studies were used, and CH4 was converted to g/d when required. Studies were classified according to dose of monensin (mg/kg of diet dry matter), length of monensin supplementation prior to the last CH4 measurement, feeding management (ad libitum vs. limited-fed), and diet profile (high-forage or high-concentrate diets). Variance among studies were assessed using a χ² test of heterogeneity and calculated using I² statistics. The inclusion of monensin decreased (P < 0.01) CH4 production by 17.5 g/d when all studies were analyzed together. A moderate (P < 0.01) heterogeneity (I² = 55%) was detected for CH4 production estimates between studies; thus, meta-analyses were performed within classes. The reduction in CH4 differed (P < 0.01) according to dose of monensin, as it decreased (P < 0.01) by 25.6 g/d when the high recommended dose range was used (32 to 44 mg/kg), and tended to decrease (P ≤ 0.07) by 9.7 and 13.5 g/d when the moderate (≤31 mg/kg) and above recommended (≥45 mg/kg) doses were used, respectively. The reduction in CH4 also differed (P < 0.01) according to the length of monensin supplementation. Monensin decreased (P ≤ 0.05) CH4 production by 24.3 g/d when supplemented for <15 d, by 15.4 g/d when supplemented from 23 to 33 d, by 24.3 g/d when supplemented from 52 to 79 d, and tended to decrease (P = 0.06) CH4 production by 3.21 g/d when supplemented from 94 to 161 d. The reduction in CH4 did not differ (P = 0.37) according to diet profile, despite a 30% difference in reduction when monensin was added to high-forage (20.89 g/d) compared with high-concentrate diets (14.6 g/d). The reduction in CH4 tended to differ according to feeding management (P = 0.08), decreasing by 22.9 g/d (P < 0.01) when monensin was added to diets offered ad libitum, and by 11.5 g/d (P = 0.05) in limit-fed diets. Collectively, this study provides novel insights and further corroborates monensin as CH4 mitigation strategy in beef cattle operations. The most effective responses were observed during the first 79 d of monensin supplementation, and when monensin was included between 32 to 44 mg/kg of diet, was added to high-forage diets, and added to diets fed ad libitum.
Collapse
Affiliation(s)
- Reinaldo F Cooke
- Department of Animal Science - Texas A&M University, College Station, TX 77845, USA
| | - Lidiane R Eloy
- Analisa Soluções em Estatística, Porto Alegre, RS 90010-000, Brazil
| | - Sheila C Bosco
- Analisa Soluções em Estatística, Porto Alegre, RS 90010-000, Brazil
| | | | | | - Tiago Leiva
- Elanco Animal Health, São Paulo, SP 04703-002, Brazil
| | | |
Collapse
|
30
|
Coderoni S, Dell'Unto D, Cortignani R. Curbing methane emissions from Italian cattle farms. An agroeconomic modelling simulation of alternative policy tools. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119880. [PMID: 38159306 DOI: 10.1016/j.jenvman.2023.119880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Methane (CH4) emissions from cattle farms have been prioritised on the EU agenda, as shown by recent legislative initiatives. This study employs a supply-side agroeconomic model that mimics the behaviour of heterogeneous individual farms to simulate the application of alternative economic policy instruments to curb CH4 emissions from Italian cattle farms, as identified by the 2020 Farm Accountancy Data Network survey. Simulations consider increasing levels of a tax on each tonne of CH4 emitted or of a subsidy paid for each tonne of CH4 curbed with respect to the baseline. Individual marginal abatement costs are also derived. Besides, to consider possible technological options to curb emissions, a mitigation strategy is simulated, with different levels of costs and benefits to appraise the potential impacts on the sector. Relevant reductions in operating income are foreseen, the most substantial in farm types and size classes characterised by lower levels of carbon productivity. The introduction of the mitigation strategy shows that the outcome in terms of mitigation potential, without undermining production level, highly depends on the implementation costs, but can also vary widely due to heterogeneous farms' economic performances. Policy implications are also derived.
Collapse
Affiliation(s)
- Silvia Coderoni
- Department of Biosciences and Agricultural and Environmental Technologies, University of Teramo, Teramo, Italy.
| | - Davide Dell'Unto
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy.
| | - Raffaele Cortignani
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
31
|
Dressler EA, Bormann JM, Weaber RL, Rolf MM. Use of methane production data for genetic prediction in beef cattle: A review. Transl Anim Sci 2024; 8:txae014. [PMID: 38371425 PMCID: PMC10872685 DOI: 10.1093/tas/txae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Methane (CH4) is a greenhouse gas that is produced and emitted from ruminant animals through enteric fermentation. Methane production from cattle has an environmental impact and is an energetic inefficiency. In the beef industry, CH4 production from enteric fermentation impacts all three pillars of sustainability: environmental, social, and economic. A variety of factors influence the quantity of CH4 produced during enteric fermentation, including characteristics of the rumen and feed composition. There are several methodologies available to either quantify or estimate CH4 production from cattle, all with distinct advantages and disadvantages. Methodologies include respiration calorimetry, the sulfur-hexafluoride tracer technique, infrared spectroscopy, prediction models, and the GreenFeed system. Published studies assess the accuracy of the various methodologies and compare estimates from different methods. There are advantages and disadvantages of each technology as they relate to the use of these phenotypes in genetic evaluation systems. Heritability and variance components of CH4 production have been estimated using the different CH4 quantification methods. Agreement in both the amounts of CH4 emitted and heritability estimates of CH4 emissions between various measurement methodologies varies in the literature. Using greenhouse gas traits in selection indices along with relevant output traits could provide producers with a tool to make selection decisions on environmental sustainability while also considering productivity. The objective of this review was to discuss factors that influence CH4 production, methods to quantify CH4 production for genetic evaluation, and genetic parameters of CH4 production in beef cattle.
Collapse
Affiliation(s)
- Elizabeth A Dressler
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Jennifer M Bormann
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Robert L Weaber
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Megan M Rolf
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| |
Collapse
|
32
|
Carvalho PHV, Latack BC, Ferraz MVC, Nolasco LJRP, Meireles WR, Oliveira HOM, Zinn RA. Influence of low-level tannin supplementation on comparative growth performance of Holstein and Angus × Holstein cross calf-fed concentrate-based finishing diets for 328 d. J Anim Sci 2024; 102:skae087. [PMID: 38537121 PMCID: PMC11025623 DOI: 10.1093/jas/skae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The objective of the current study was to evaluate the effects of tannin and monensin supplementation in feedlot diets and breed (Holstein vs. Angus × Holstein) on growth performance, energetic efficiency, and carcass characteristics. Eighty purebred Holstein calves (HOL; initial body weight (BW) = 130 ± 5 kg) and 80 Angus × Holstein calves (AXH; initial BW = 129 ± 6 kg) were blocked by initial BW and randomly assigned to 40 pens. Dietary treatments consisted of a steam-flaked corn-based diet supplemented with (1) no feed additive (CON); (2) 30 mg of monensin/kg of dry matter (DM; MON; Rumensin 90, Elanco, Greenfield, IN); (3) 1.5 g tannin)/kg of DM (TAN; ByPro, 70% condensed tannin, SilvaFeed, Indunor, S.A., Buenos Aires, Argentina); (4) M + T, the combination of MON plus TAN dietary treatments. Data were analyzed as a randomized complete block in a 2 × 4 factorial arrangement of treatments, using pens as experimental units. There were no interactions (P > 0.05) between feed additives and breed. Supplemental MON increased (P ≤ 0.04) initial 112-d BW and gain efficiency. However, there were no dietary treatment effects (P > 0.10) on overall growth performance. Monensin supplementation decreased (P = 0.04) minimum daily ruminal temperature compared with other dietary treatments during July, but TAN did not affect ruminal temperature. Holstein steers had greater (P = 0.04) overall DM intake compared with AXH, with no difference (P = 0.19) in overall ADG, leading to increased (P < 0.01) gain efficiency for AXH compared with HOL. Dietary net energy for maintenance and gain, based on growth performance, were greater (P ≤ 0.01) for AXH vs HOL. Compared with HOL, AXH steers had greater (P ≤ 0.01) carcass weight, dressing percentage, kidney, pelvic, and heart fat, 12th rib fat thickness, longissimus area, and preliminary yield grade. Holstein steers had lower (P ≤ 0.04) minimum average ruminal temperature during June compared with AXH, with no differences (P ≥ 0.14) between breeds during July or August. Results indicate that feed additives did not appreciably affect steer growth performance and carcass characteristics, but crossbred AXH steers had greater growth performance, efficiency of dietary energy utilization, and carcass quality measures compared with HOL. This study observed a reduction (4.7%) in maintenance energy expenditure in AXH compared with HOL, implying in maintenance energy coefficient of 0.086 vs 0.082 for HOL and AXH, respectively.
Collapse
Affiliation(s)
- Pedro H V Carvalho
- AgNext, Department of Animal Science, Colorado State University, Fort Collins 80521, USA
- Department of Animal Science, University of California, Davis 95616, USA
| | - Brooke C Latack
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Holtville 92250, USA
| | - Marcos V C Ferraz
- Department of Animal Science, University of California, Davis 95616, USA
- Instituto de Ciências Sociais, Educação e Zootecnia, Universidade Federal do Amazonas, Parintins 69152240, Brazil
| | | | - Willi R Meireles
- Department of Animal Science, University of California, Davis 95616, USA
| | | | - Richard A Zinn
- Department of Animal Science, University of California, Davis 95616, USA
| |
Collapse
|
33
|
Rezaei Ahvanooei MR, Norouzian MA, Piray AH, Vahmani P, Ghaffari MH. Effects of monensin supplementation on rumen fermentation, methane emissions, nitrogen balance, and metabolic responses of dairy cows: A systematic review and dose-response meta-analysis. J Dairy Sci 2024; 107:607-624. [PMID: 37709041 DOI: 10.3168/jds.2023-23441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
To investigate the effects of supplemental monensin administration on the metabolic responses of dairy cows, a systematic review and dose-response meta-analysis were conducted. Initially, 604 studies were identified through comprehensive database searches, including Google Scholar, Scopus, Science Direct, and PubMed, using key words related to dairy cows, monensin, and metabolic outcomes. After a 2-stage screening process, 51 articles with a total of 60 experiments were selected for meta-analysis based on criteria such as study implementation date between 2001 and 2022, presence of a control group that did not receive monensin supplementation, reporting of at least 1 outcome variable, and presentation of means and corresponding errors. The meta-analysis used the 1-stage random-effects method, and sensitivity analyses were performed to assess the robustness of the results. The results showed that the administration of monensin at a dosage of 19 to 26 mg/kg was inversely related to methane emissions and that the administration of monensin at a dosage of 18 to 50 mg/kg resulted in a significant decrease in dry matter intake. Administration of monensin at doses of 13 to 28 and 15 to 24 mg/kg also resulted in a significant decrease in ruminal acetate proportion and an increase in propionate proportion, respectively, with no effects on ruminal butyrate, NH3, or pH levels. We found no effects on blood parameters or nitrogen retention, but a significant negative correlation was observed between monensin supplementation and fecal nitrogen excretion. Based on the analysis of all variables evaluated, the optimal dose range of monensin was estimated to be 19 to 24 mg/kg.
Collapse
Affiliation(s)
- M R Rezaei Ahvanooei
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, 3391653755 Tehran, Iran.
| | - M A Norouzian
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, 3391653755 Tehran, Iran
| | - A H Piray
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, 6714414971 Kermanshah, Iran
| | - P Vahmani
- Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
34
|
Salehian Z, Khalilvandi-Behroozyar H, Pirmohammadi R, Ahmadifard N, Almasi H, Ramin M. Investigating the effect of supplementing different levels of Isochrysis galbana on in vitro rumen fermentation parameters. Anim Sci J 2024; 95:e13929. [PMID: 38400743 DOI: 10.1111/asj.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 02/26/2024]
Abstract
This study aimed to investigate the effect of supplementing Isochrysis galbana (I. galbana) at levels of 0 (control), 1, 2, 3, 4, and 5 (g/100 g DM) of the diet on the gas production kinetics, methane production, rumen fermentation parameters, and relative microbial population in vitro. Supplementation of I. galbana at high level (5 g/100 g DM) caused a significant decrease in total gas production (p < 0.05). High supplementation rates (4 and 5 g/100 g DM) decreased CH4 production relative to the control by 18.4% and 23.2%, respectively. Although rumen ammonia nitrogen (N-NH3) and total volatile fatty acids (VFA) concentrations were affected by dietary treatments, but the VFA profile did not changed. The relative proportion of protozoa and methanogenic archaea as well as Anaerovibrio lipolytica, Prevotella spp., Ruminococcus flavefaciens, and Fibrobacter succinogenes were decreased significantly as a result of microalgae supplementation. However, the relative abundance of Ruminococcus albus, Butyrivibrio fibrisolvens and Selenomonas ruminantium were significantly increased (p < 0.05), related to the control group. As well, the pH was not affected by dietary treatments. It was concluded that I. galbana reduced in vitro CH4 production and methanogenic archaea that its worth to be investigated further in in vivo studies.
Collapse
Affiliation(s)
- Zahra Salehian
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Rasoul Pirmohammadi
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Nasrollah Ahmadifard
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Ramin
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
35
|
Cho H, Jeong S, Kang K, Lee M, Jeon S, Kang H, Kim H, Seo J, Oh J, Seo S. Effects of Dietary Fat Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Digestibility, Blood Metabolites, and Methane Emission in Growing Hanwoo Steers. Animals (Basel) 2023; 14:139. [PMID: 38200870 PMCID: PMC10778547 DOI: 10.3390/ani14010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
This study investigated the effect of different dietary fat levels in concentrate mixes on the growth performance, rumen characteristics, digestibility, blood metabolites, and methane emissions in growing Hanwoo steers. Thirty steers (386 ± 24.6 kg of body weight [BW]; 12 months old), blocked by BW, were randomly assigned to three dietary treatments with varying fat concentrations in concentrate mix (48, 74, and 99 g of ether extract per kg dry matte [DM]). The fat intake of the low-fat treatment represented 4.15% of the total dry matter intake (DMI), while the medium- and high-fat treatments accounted for 5.77% and 7.23% of total DMI, respectively. Concentrate mix DMI decreased with increasing fat level (p < 0.01). The growth rate and digestibility did not significantly differ based on the fat level (p > 0.05). As the fat level increased, propionate in the total ruminal volatile fatty acids increased, and butyrate and acetate-to-propionate decreased (p < 0.01). Cholesterol in blood serum increased significantly with increasing dietary fat levels (p < 0.01). Methane emissions exhibited a linear decrease with increasing fat level (p < 0.05). In conclusion, elevating fat content in the concentrates up to 100 g/kg DM reduced methane emissions without compromising the growth performance of growing Hanwoo steers.
Collapse
Affiliation(s)
- Hyunjin Cho
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Sinyong Jeong
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Kyewon Kang
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Mingyung Lee
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Seoyoung Jeon
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Hamin Kang
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.K.); (J.S.)
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.K.); (J.S.)
| | - Joonpyo Oh
- Cargill Animal Nutrition Korea, Seongnam 13630, Republic of Korea;
| | - Seongwon Seo
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| |
Collapse
|
36
|
Schilling-Hazlett A, Raynor EJ, Thompson L, Velez J, Place S, Stackhouse-Lawson K. On-Farm Methane Mitigation and Animal Health Assessment of a Commercially Available Tannin Supplement in Organic Dairy Heifers. Animals (Basel) 2023; 14:9. [PMID: 38200739 PMCID: PMC10777985 DOI: 10.3390/ani14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this experiment was to demonstrate the effectiveness of a commercially available tannin product (Silvafeed® ByPro, 70% tannic acid) as an enteric methane (CH4) mitigation and preventative animal health strategy in Holstein heifers (BW = 219 ± 17 kg; 9 mo), reared under organic production system requirements. Twenty heifers were randomly assigned to one of four commercial tannin supplementation treatments as follows: 0% (0 g/hd/d; CON), 0.075% (~5 g/hd/d; LOW), 0.15% (~10 g/hd/d; MED), and 0.30% (~21 g/hd/d; HIG) of dry matter intake (DMI). Heifers received their treatment in individual animal feeding stanchions and were fed a basal total mixed ration (TMR) through four SmartFeed Pro intake measurement bunk systems (C-Lock Inc., Rapid City, SD, USA) for 45 d. An automatic head chamber system (AHCS; i.e., GreenFeed, C-Lock Inc., Rapid City, SD, USA) was used to continuously evaluate enteric CH4 production. No effect was observed among the treatments for CH4 emissions (p ≥ 0.55), animal performance (p ≥ 0.38), or oxidative stress biomarker concentration (p ≥ 0.55). Superoxide dismutase (SOD) and reduced glutathione (GSH) concentrations exhibited a linear response to increasing tannin dose (p = 0.003), indicating a potential tannin effect on the antioxidant status of dairy heifers. This observation may encourage future tannin research relating to animal health, which may be of particular interest to organic dairy systems. The results of this study suggest that tannin supplementation at 0%, 0.075%, 0.15%, and 0.30% of DMI, did not alter CH4 emissions, animal performance, or oxidative stress biomarker concentration in organic Holstein heifers when assessed under an on-farm research approach. Further, the results of this study affirm the challenges associated with on-farm research and the development of climate-smart strategies that are capable of mitigating climate impacts in less controlled environments under standard working conditions.
Collapse
Affiliation(s)
- Ashley Schilling-Hazlett
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward J. Raynor
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Logan Thompson
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS 66502, USA
| | - Juan Velez
- Aurora Organic Dairy, Boulder, CO 80302, USA
| | - Sara Place
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kim Stackhouse-Lawson
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
37
|
Peng C, May A, Abeel T. Unveiling microbial biomarkers of ruminant methane emission through machine learning. Front Microbiol 2023; 14:1308363. [PMID: 38143860 PMCID: PMC10749206 DOI: 10.3389/fmicb.2023.1308363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Background Enteric methane from cow burps, which results from microbial fermentation of high-fiber feed in the rumen, is a significant contributor to greenhouse gas emissions. A promising strategy to address this problem is microbiome-based precision feed, which involves identifying key microorganisms for methane production. While machine learning algorithms have shown success in associating human gut microbiome with various human diseases, there have been limited efforts to employ these algorithms to establish microbial biomarkers for methane emissions in ruminants. Methods In this study, we aim to identify potential methane biomarkers for methane emission from ruminants by employing regression algorithms commonly used in human microbiome studies, coupled with different feature selection methods. To achieve this, we analyzed the microbiome compositions and identified possible confounding metadata variables in two large public datasets of Holstein cows. Using both the microbiome features and identified metadata variables, we trained different regressors to predict methane emission. With the optimized models, permutation tests were used to determine feature importance to find informative microbial features. Results Among the regression algorithms tested, random forest regression outperformed others and allowed the identification of several crucial microbial taxa for methane emission as members of the native rumen microbiome, including the genera Piromyces, Succinivibrionaceae UCG-002, and Acetobacter. Additionally, our results revealed that certain herd locations and feed composition markers, such as the lipid intake and neutral-detergent fiber intake, are also predictive features for methane emissions. Conclusion We demonstrated that machine learning, particularly regression algorithms, can effectively predict cow methane emissions and identify relevant rumen microorganisms. Our findings offer valuable insights for the development of microbiome-based precision feed strategies aiming at reducing methane emissions.
Collapse
Affiliation(s)
- Chengyao Peng
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Ali May
- dsm-firmenich, Science & Research, Delft, Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
38
|
Mech A, Devi GL, Sivaram M, Sirohi S, Dhali A, Kolte AP, Malik PK, Veeranna RK, Niketha L, Bhatta R. Assessment of carbon footprint of milk production and identification of its major determinants in smallholder dairy farms in Karnataka, India. J Dairy Sci 2023; 106:8847-8860. [PMID: 37641313 DOI: 10.3168/jds.2022-22153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
Indian dairy enterprise is dominated by smallholder dairy farms that contribute 72% of the country's total milk production. These smallholder dairy farms are often considered to emit substantial greenhouse gases (GHG) but are poor in productive performances. Therefore, it is crucial to estimate the carbon footprint (CF) of milk production of the smallholder Indian dairy farms. The primary objectives of the study were (1) Assessing the CF of milk production of smallholder dairy farms through life cycle analysis in south-interior Karnataka, India; (2) Identifying the hotspots of GHG emissions and significant factors influencing the CF of milk production in smallholder dairy production system. The study accounted GHG emissions from different sources and considered multiple functions of the smallholder production system. Estimations were made based on primary data collected from 47 farms and associated secondary data. For estimating the CF of milk production, the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) on a CO2-equivalent (CO2-eq) basis from feed production, enteric fermentation, manure management, transport and energy usage were allocated to fat- and protein-corrected milk (FPCM) based on mass balance, price (crop byproducts and residues) and feed digestibility. Principal component analysis and stepwise linear regression analysis were performed to identify the major factors influencing the CF. The average total GHG emissions (kg CO2-eq yr-1 farm-1) attributable to milk production based on mass, economic, and digestibility allocations were 8,936, 8,641, and 8,759, respectively. The contributions of CH4, N2O, and CO2 to the total farm GHG emission were 70.6%, 20.5%, and 7.69%, respectively. The major emission hotspots were CH4 emission from enteric fermentation (66.8%) and GHG emission from feed production (23.0%). The average CF of cradle-to-dairy cooperative milk production varied from 1.45 to 1.81 kg CO2-eq kg FPCM-1. The CF of milk production was more than 2-fold greater, when milk yield was below 3,500 kg lactating cow-1 yr-1. The FPCM yield 100 kg body weight-1, dry matter intake, and CH4 emission from manure management were the strongest determinants of the CF and explained 83.4% of the observed variation. The study emphasized the importance of considering multiple functions of a mixed crop-livestock-based dairy production system for estimating CF per unit of product. The results suggest that maintaining high-yielding dairy animals and adopting appropriate feeding strategies for better feed utilization are the possible effective interventions for reducing the CF of milk production.
Collapse
Affiliation(s)
- A Mech
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India.
| | - G Letha Devi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India
| | - M Sivaram
- ICAR-National Dairy Research Institute, Southern Regional Station, Adugodi, Bangalore, 560 030, India
| | - S Sirohi
- ICAR-National Dairy Research Institute, Karna, 132 001, Haryana, India
| | - A Dhali
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India
| | - A P Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India
| | - P K Malik
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India
| | - R K Veeranna
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India
| | - L Niketha
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India
| | - R Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560 030, India
| |
Collapse
|
39
|
van Gastelen S, Jan van Dooren H, Bannink A. Enteric and manure emissions from Holstein-Friesian dairy cattle fed grass silage-based or corn silage-based diets. J Dairy Sci 2023; 106:6094-6113. [PMID: 37479574 DOI: 10.3168/jds.2022-22378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/06/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to evaluate trade-offs between enteric and manure CH4 emissions, and the size of synergistic effects for CH4 and nitrogenous emissions (NH3 and N2O). Sixty-four Holstein-Friesian cows were blocked in groups of 4 based on parity, lactation stage, and milk yield. Cows within a block were randomly allocated to a dietary sequence in a crossover design with a grass silage-based diet (GS) and a corn silage-based diet (CS). The GS diet consisted of 50% grass silage and 50% concentrate, and CS consisted of 10% grass silage, 40% corn silage, and 50% concentrate (dry matter basis). The composition of the concentrate was identical for both diets. Cows were housed in groups of 16 animals, in 4 mechanically ventilated barn units for independent emission measurement. Treatment periods were composed of a 2-wk adaptation period followed by a 5-wk measurement period, 1 wk of which was without cows to allow separation of enteric and manure emissions. In each barn unit, ventilation rates and concentrations of CH4, CO2, NH3, and N2O in incoming and outgoing air were measured. Cow excretion of organic matter was higher for CS compared with GS. Enteric CH4 and cow-associated NH3 and N2O emissions (i.e., manure emissions excluded) were lower for CS compared with GS (-11, -40, and -45%, respectively). The CH4 and N2O emissions from stored manure (i.e., in absence of cows) were not affected by diet, whereas that of NH3 emission tended to be lower for CS compared with GS. In conclusion, there was no trade-off between enteric and manure CH4 emissions, and there were synergistic effects for CH4 and nitrogenous emissions when grass silage was exchanged for corn silage, without balancing the diets for crude protein content, in this short-term study.
Collapse
Affiliation(s)
- Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands.
| | - Hendrik Jan van Dooren
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
40
|
Wu Z, Nguyen D, Shrestha S, Raskin L, Khanal SK, Lee PH. Evaluation of Nanaerobic Digestion as a Mechanism to Explain Surplus Methane Production in Animal Rumina and Engineered Digesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12302-12314. [PMID: 37565790 PMCID: PMC10448717 DOI: 10.1021/acs.est.2c07813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Nanaerobes are a newly described class of microorganisms that use a unique cytochrome bd oxidase to achieve nanaerobic respiration at <2 μM dissolved oxygen (∼1% of atmospheric oxygen) but are not viable above this value due to the lack of other terminal oxidases. Although sharing an overlapping ecological niche with methanogenic archaea, the role of nanaerobes in methanogenic systems has not been studied so far. To explore their occurrence and significance, we re-analyzed published meta-omic datasets from animal rumina and waste-to-energy digesters, including conventional anaerobic digesters and anaerobic digesters with ultra-low oxygenation. Results show that animal rumina share broad similarities in the microbial community and system performance with oxygenated digesters, rather than with conventional anaerobic digesters, implying that trace levels of oxygen drive the efficient digestion in ruminants. The rumen system serves as an ideal model for the newly named nanaerobic digestion, as it relies on the synergistic co-occurrence of nanaerobes and methanogens for methane yield enhancement. The most abundant ruminal bacterial family Prevotellaceae contains many nanaerobes, which perform not only anaerobic fermentation but also nanaerobic respiration using cytochrome bd oxidase. These nanaerobes generally accompany hydrogenotrophic methanogens to constitute a thermodynamically and physiologically consistent framework for efficient methane generation. Our findings provide new insights into ruminal methane emissions and strategies to enhance methane generation from biomass.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
- Shanghai
Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Duc Nguyen
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
- The
Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Shilva Shrestha
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lutgarde Raskin
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
| | - Samir Kumar Khanal
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
| | - Po-Heng Lee
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
41
|
Lileikis T, Nainienė R, Bliznikas S, Uchockis V. Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals (Basel) 2023; 13:2586. [PMID: 37627377 PMCID: PMC10451764 DOI: 10.3390/ani13162586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This review examines the current state of knowledge regarding the effectiveness of different dietary ruminant enteric methane mitigation strategies and their modes of action together with the issues discussed regarding the potential harms/risks and applicability of such strategies. By investigating these strategies, we can enhance our understanding of the mechanisms by which they influence methane production and identify promising approaches for sustainable mitigation of methane emissions. Out of all nutritional strategies, the use of 3-nitrooxypropanol, red seaweed, tannins, saponins, essential oils, nitrates, and sulfates demonstrates the potential to reduce emissions and receives a lot of attention from the scientific community. The use of certain additives as pure compounds is challenging under certain conditions, such as pasture-based systems, so the potential use of forages with sufficient amounts of plant secondary metabolites is also explored. Additionally, improved forage quality (maturity and nutrient composition) might help to further reduce emissions. Red seaweed, although proven to be very effective in reducing emissions, raises some questions regarding the volatility of the main active compound, bromoform, and challenges regarding the cultivation of the seaweed. Other relatively new methods of mitigation, such as the use of cyanogenic glycosides, are also discussed in this article. Together with nitrates, cyanogenic glycosides pose serious risks to animal health, but research has proven their efficacy and safety when control measures are taken. Furthermore, the risks of nitrate use can be minimized by using probiotics. Some of the discussed strategies, namely monensin or halogenated hydrocarbons (as pure compounds), demonstrate efficacy but are unlikely to be implemented widely because of legal restrictions.
Collapse
Affiliation(s)
- Tomas Lileikis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Rasa Nainienė
- Department of Animal Breeding and Reproduction, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Saulius Bliznikas
- Analytical Laboratory, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Virginijus Uchockis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| |
Collapse
|
42
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Lee Y, Song T, Lee SS. Assessment of the Pinus koraiensis cone essential oil on methane production and microbial abundance using in vitro evaluation system. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
43
|
Marumo JL, LaPierre PA, Van Amburgh ME. Enteric Methane Emissions Prediction in Dairy Cattle and Effects of Monensin on Methane Emissions: A Meta-Analysis. Animals (Basel) 2023; 13:1392. [PMID: 37106954 PMCID: PMC10135289 DOI: 10.3390/ani13081392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Greenhouse gas emissions, such as enteric methane (CH4) from ruminant livestock, have been linked to global warming. Thus, easily applicable CH4 management strategies, including the inclusion of dietary additives, should be in place. The objectives of the current study were to: (i) compile a database of animal records that supplemented monensin and investigate the effect of monensin on CH4 emissions; (ii) identify the principal dietary, animal, and lactation performance input variables that predict enteric CH4 production (g/d) and yield (g/kg of dry matter intake DMI); (iii) develop empirical models that predict CH4 production and yield in dairy cattle; and (iv) evaluate the newly developed models and published models in the literature. A significant reduction in CH4 production and yield of 5.4% and 4.0%, respectively, was found with a monensin supplementation of ≤24 mg/kg DM. However, no robust models were developed from the monensin database because of inadequate observations under the current paper's inclusion/exclusion criteria. Thus, further long-term in vivo studies of monensin supplementation at ≤24 mg/kg DMI in dairy cattle on CH4 emissions specifically beyond 21 days of feeding are reported to ensure the monensin effects on the enteric CH4 are needed. In order to explore CH4 predictions independent of monensin, additional studies were added to the database. Subsequently, dairy cattle CH4 production prediction models were developed using a database generated from 18 in vivo studies, which included 61 treatment means from the combined data of lactating and non-lactating cows (COM) with a subset of 48 treatment means for lactating cows (LAC database). A leave-one-out cross-validation of the derived models showed that a DMI-only predictor model had a similar root mean square prediction error as a percentage of the mean observed value (RMSPE, %) on the COM and LAC database of 14.7 and 14.1%, respectively, and it was the key predictor of CH4 production. All databases observed an improvement in prediction abilities in CH4 production with DMI in the models along with dietary forage proportion inclusion and the quadratic term of dietary forage proportion. For the COM database, the CH4 yield was best predicted by the dietary forage proportion only, while the LAC database was for dietary forage proportion, milk fat, and protein yields. The best newly developed models showed improved predictions of CH4 emission compared to other published equations. Our results indicate that the inclusion of dietary composition along with DMI can provide an improved CH4 production prediction in dairy cattle.
Collapse
Affiliation(s)
- Joyce L. Marumo
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
44
|
da Cunha LL, Bremm C, Savian JV, Zubieta ÁS, Rossetto J, de Faccio Carvalho PC. Relevance of sward structure and forage nutrient contents in explaining methane emissions from grazing beef cattle and sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161695. [PMID: 36693572 DOI: 10.1016/j.scitotenv.2023.161695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Forage nutrient contents are an important factor explaining the dry matter intake (DMI), average daily gain (ADG), and methane emissions (CH4) of ruminants fed indoors. However, for grazing animals, the forage nutrient contents might be limited in explaining such response variables. We aimed to verify the explanatory power of forage nutrient contents and sward structure on daily intake, performance, and CH4 emissions by sheep and beef cattle grazing different grassland types in southern Brazil. We analyzed data from five grazing trials using sheep and beef cattle grazing on Italian ryegrass (Lolium multiflorum), mixed Italian ryegrass and black oat (Lolium multiflorum + Avena strigosa), pearl millet (Pennisetum americanum), and multispecies native grassland. We used mixed models, including the forage nutrient contents [crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF)], sward structure (sward height and herbage mass) and their interactions, as fixed effects and trial, season, methodologies, animal species, grassland type, and paddock, as random effects. The model for DMI (kg DM/LW0.75) had an adjusted coefficient of determination (R2adj) of 71.6 %, where 11.3, 23.1, and 37.2 % of the R2adj were explained by the forage nutrient contents, sward structure, and their interaction, respectively. The ADG (kg/LW0.75) model presented an R2adj of 74.2 %, with 12.5 % explained by forage nutrient contents, 29.3 % by sward structure, and 32.4 % by their interaction. The daily CH4 emission (g/LW0.75) model had a lower adjusted coefficient of determination (R2adj = 47.6 %), with 16.8 % explained by forage nutrient contents and 30.8 % explained by sward structure, but no effect of the interaction. Our results show that in grazing ecosystems, the forage nutrient contents explain a small fraction, and the greater explanatory power for DMI, ADG, and CH4 emissions models is related to sward structure descriptors, such as sward height and herbage mass. Moreover, the interaction between these variables explains most of the variation. In conclusion, forage nutrient contents and sward structure have different influences on DMI, ADG, and CH4 emissions by grazing ruminants. Because of its relevance to daily CH4 emissions, offering an optimal sward structure to grazing animals is a major climate-smart strategy to improve animal production and mitigate CH4 emissions in pastoral ecosystems.
Collapse
Affiliation(s)
- Lais Leal da Cunha
- Grazing Ecology Research Group, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Carolina Bremm
- State Foundation of Agricultural Research, Rua Gonçalves Dias, 570, Bairro Menino Deus, Porto Alegre, RS, Brazil
| | - Jean Victor Savian
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Pasturas y Forrajes, Estación Experimental INIA Treinta y Tres, Ruta 8 km 281, Treinta y Tres, Uruguay
| | - Ángel Sanchez Zubieta
- Grazing Ecology Research Group, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jusiane Rossetto
- Grazing Ecology Research Group, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
45
|
Santander D, Clariget J, Banchero G, Alecrim F, Simon Zinno C, Mariotta J, Gere J, Ciganda VS. Beef Steers and Enteric Methane: Reducing Emissions by Managing Forage Diet Fiber Content. Animals (Basel) 2023; 13:ani13071177. [PMID: 37048433 PMCID: PMC10093059 DOI: 10.3390/ani13071177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding the methane (CH4) emissions that are produced by enteric fermentation is one of the main problems to be solved for livestock, due to their GHG effects. These emissions are affected by the quantity and quality of their diets, thus, it is key to accurately define the intake and fiber content (NDF) of these forage diets. On the other hand, different emission prediction equations have been developed; however, there are scarce and uncertain results regarding their evaluation of the emissions that have been observed in forage diets. Therefore, the objectives of this study were to evaluate the effect of the NDF content of a forage diet on CH4 enteric emissions, and to evaluate the ability of models to predict the emissions from the animals that are consuming these forage diets. In total, thirty-six Angus steers (x¯ = 437 kg live weight) aged 18 months, blocked by live weight and placed in three automated feeding pens, were used to measure the enteric CH4. The animals were randomly assigned to two forage diets (n = 18), with moderate (<50%, MF) and high (>50%, HF) NDF contents. Their dry matter intake was recorded individually, and the CH4 emissions were measured using the SF6 tracer gas technique. For the model evaluation, six prediction equations were compared with 29 studies (n = 97 observations), analyzing the accuracy and precision of their estimates. The emission intensities per unit of DMI, per ADG, and per gross energy intake were significantly lower (p < 0.05) in the animals consuming the MF diet than in the animals consuming the HF diet (21.7 vs. 23.7 g CH4/kg DMI, 342 vs. 660 g CH4/kg ADG, and 6.7% vs. 7.5%, respectively), but there were no differences in the absolute emissions (p > 0.05). The best performing model was the IPCC 2006 model (r2 = 0.7, RMSE = 74.04). These results show that reducing the NDF content of a forage diet by at least 10% (52 g/kg DM) reduces the intensity of the g CH4/kg DMI by up to 8%, and that of the g CH4/kg ADG by almost half. The use of the IPCC 2006 model is suitable for estimating the CH4 emissions from animals consuming forage-based diets.
Collapse
Affiliation(s)
- Daniel Santander
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Juan Clariget
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Georgget Banchero
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Fabiano Alecrim
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
- Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Baptista s/n, Niterói 24020-141, Brazil
| | - Claudia Simon Zinno
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - Julieta Mariotta
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
| | - José Gere
- Engineering Research and Development Division, National Technological University (UTN), National Scientific and Technical Research Council (CONICET), Buenos Aires C1179, Argentina
| | - Verónica S. Ciganda
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental La Estanzuela, Ruta 50 km 11, Semillero, Colonia 70006, Uruguay
- Correspondence: ; Tel.: +598-98451147
| |
Collapse
|
46
|
In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Two in vitro studies were carried out on nonlactating dairy cows. Experiment 1 compared the methanogenesis and rumen fermentation parameters of various microalgae (Spirulina platensis, Chlorella vulgaris, and Schizochytrium spp.) and protein feeds (sunflower meal, soybean meal, and alfalfa hay) with monensin (MON). Rumen fermentation parameters were determined by an in vitro gas production system. Experiment 2 compared the ability of three microalgae to prevent acidosis. They were tested for 6 h against oat straw (100 mg) and MON (12 g/mL) to ameliorate ruminal acidosis caused by the addition of glucose (0.1 g/mL) as a fermentable carbohydrate with rumen fluid. In experiment 1, there were variations in the nutrient content of microalgae and protein sources. The dry matter content of the substrates ranged from 90 to 94%, and the organic matter content ranged from 82 to 88%, with Schizochytrium spp. having the highest. Protein content in algae and protein feeds ranged from 18–62% of dry matter (DM) to 16–48% DM, with S. platensis and C. vulgaris having the highest. The ether extract of Schizochytrium spp. (45.5% DM) was the highest of any substrate. In vitro rumen fermentation revealed that protein feeds increased the cumulative gas production at the highest level while MON caused a decrease. Ruminal pH was found to be higher in MON (6.95) and protein feeds (6.77–6.81) than in algae (6.37–6.50). In addition, in terms of metabolizable energy and digestible organic matter, protein feeds outperformed algae. The MON produced the least amount of methane (CH4) of any substrate, but Schizochytrium spp. demonstrated potential for CH4 reduction. In these groups, the decrease in CH4 production was accompanied by a decrease in total volatile fatty acids, acetate, and the acetate-to-propionate ratio, but an increase in propionate. Experiment 2 revealed MON as the most effective cure for controlling acidosis. However, C. vulgaris and Schizochytrium spp. had an effect on medium culture pH and demonstrated potential for acidosis prevention. This study found that algae can influence ruminal fermentation, have the potential to reduce CH4 production, and may reduce acidosis incidence rates. These assumptions, however, must be validated through in vivo studies.
Collapse
|
47
|
Micro- and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential. Animals (Basel) 2023; 13:ani13050796. [PMID: 36899652 PMCID: PMC10000192 DOI: 10.3390/ani13050796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
This study was conducted to provide alternative high-quality feed and to reduce methane production using a mixture of the minimum effective levels of Euglena gracilis, EG, and Asparagopsis taxiformis, AT. This study was performed as a 24 h in vitro batch culture. Chemical analysis demonstrated that EG is a highly nutritive material with 26.1% protein and 17.7% fat. The results showed that the supplementation of AT as a feed additive at 1 and 2.5% of the diet reduced methane production by 21 and 80%, respectively, while the inclusion of EG in the diet at 10 and 25% through partially replacing the concentrate mixture reduced methane production by 4 and 11%, respectively, with no adverse effects on fermentation parameters. The mixtures of AT 1% with both EG 10% and EG 25% had a greater reductive potential than the individual supplementation of these algae in decreasing methane yield by 29.9% and 40.0%, respectively, without adverse impacts on ruminal fermentation characteristics. These results revealed that the new feed formulation had a synergistic effect in reducing methane emissions. Thus, this approach could provide a new strategy for a sustainable animal production industry.
Collapse
|
48
|
Gunun P, Cherdthong A, Khejornsart P, Polyorach S, Kaewwongsa W, Gunun N. Potential Use of Kasedbok ( Neptunia javanica Miq.) on Feed Intake, Digestibility, Rumen Fermentation, and Microbial Populations in Thai Native Beef Cattle. Animals (Basel) 2023; 13:ani13040733. [PMID: 36830520 PMCID: PMC9952691 DOI: 10.3390/ani13040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
This experiment was conducted to determine the influence of Kasedbok (Neptunia javanica Miq.) on the feed utilization, rumen fermentation, and microbial population in Thai Native beef cattle. Four animals with a mean body weight of 295 ± 15 kg were randomly arranged in a 4 × 4 Latin square design. There were four treatments, utilizing 0, 80, 160, and 240 g/kg Kasedbok in concentrate. Local feed resources, including cassava chips, rice bran, palm kernel meal, and soybean meal, were utilized to formulate the concentrate diets, which contained between 11.8 and 12.0% crude protein (CP). The trial was conducted for four periods of three weeks each. The first two weeks consisted of an adaptation period, while the final week was a sampling period. The findings of the current study reveal that feed intake, dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility were similar between treatments. In addition, there was no effect of Kasedbok levels on rumen pH, blood urea nitrogen (BUN) concentration, or volatile fatty acid. However, increasing the inclusion level of Kasedbok linearly decreased CP digestibility and ammonia nitrogen (NH3-N) concentration (p = 0.04). In contrast, the population of fungal zoospores improved significantly (p = 0.03), while the bacterial and protozoal counts remained unchanged (p > 0.05). Furthermore, when the level of Kasedbok was increased from 0 to 80, 160, and 240 g/kg DM, the cost of concentrate decreased by 4.1, 7.8, and 10.6 USD/100 kg DM, respectively. The results of this experiment suggest that utilizing 240 g/kg of Kasedbok in a concentrated mixture will not affect feed utilization, rumen fermentation, improve microbial population, and reduce feed cost in Thai native beef cattle.
Collapse
Affiliation(s)
- Pongsatorn Gunun
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research, Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pichad Khejornsart
- Department of Agriculture and Resource, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphakiat Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand
| | - Sineenart Polyorach
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Walailuck Kaewwongsa
- Department of Animal Science, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Nirawan Gunun
- Department of Animal Science, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
- Correspondence: ; Tel.: +66-42-211-040
| |
Collapse
|
49
|
Wang D, Tang G, Yu J, Li Y, Wang Y, Chen L, Lei X, Cao Y, Yao J. Litter size influences rumen microbiota and fermentation efficiency, thus determining host early growth in goats. Front Microbiol 2023; 14:1098813. [PMID: 36744088 PMCID: PMC9895106 DOI: 10.3389/fmicb.2023.1098813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction Multiple litters are accompanied by low birth weight, low survival rates, and growth rates in goats during early life. Regulating rumen microbiota structure can indirectly or directly affect host metabolism and animal growth. However, the relationship between high litter size and rumen microbiome, rumen fermentation, and growth performance in goat kids is unclear. Methods In the present study, thirty 6-month-old, female goats were investigated, of which 10 goats were randomly chosen from single, twin and triplet goats respectively, and their birth weight was recorded. From birth, all goats were subjected to the same feed and management practices. Individual weaning and youth body weight were measured, and the rumen fluid samples were collected to characterize the bacterial communities and to determine the ruminal volatile fatty acids (VFA), free amino acids (AA), and free fatty acids (FA) concentration of those young goats. Results and Discussion Compared with the single and twin goats, triplet goats have lower weaning and youth body weight and average daily gain (ADG). Ruminal propionate, butyrate, and total VFA were decreased in triplet goats. Meanwhile, ruminal AA, such as branched chain amino acids (BCAA), essential amino acids (EAA), unsaturated fatty acids (UFA), and monounsaturated fatty acids (MUFA) were decreased, while saturated fatty acids (SFA) and odd and branched chain fatty acids (OBCFA) were increased in triplet goats. Our results also revealed that litter size significantly affected the rumen bacterial communities, and triplet goats had a lower the Firmicutes: Bacteroidota ratio, the abundance of Firmicutes phylum, Rikenellaceae family, and Rikenellaceae RC9 gut group, and had a higher proportion of Prevotellaceae family, and several genera of Prevotellaceae, such as Prevotella, and unclassified f Prevotellaceae. Furthermore, Spearman's correlation network analysis showed that the changes in the rumen bacteria were associated with changes in rumen metabolites. In conclusion, this study revealed that high litter size could bring disturbances to the microbial communities and decrease the rumen fermentation efficiency and growth performance, which can be utilized to better understand variation in microbial ecology that will improve growth performance in triplet goats.
Collapse
|
50
|
Carlson ZE, McPhillips LJ, Stowell RR, Erickson GE, Drewnoski M, MacDonald JC. Evaluation of growth performance, carcass characteristics, and methane and CO2 emissions of growing and finishing cattle raised in extensive or partial-intensive cow-calf production systems. J Anim Sci 2023; 101:skac368. [PMID: 36592745 PMCID: PMC9831092 DOI: 10.1093/jas/skac368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/04/2022] [Indexed: 01/04/2023] Open
Abstract
An experiment was conducted over 2 yr to measure performance and greenhouse gas (GHG) emissions of weaned calves from two cow-calf production systems. Crossbred steers and heifers (n = 270, initial body weight (BW) = 207 kg, SD = 35) were used in a randomized complete block design, with treatments applied to the cow-calf system. Treatments were: 1) a traditional system consisting of April to June calving with smooth bromegrass pasture and grazed corn residue as forage resources (TRAD); 2) an alternative system consisting of July to September calving utilizing partial-drylot feeding, summer-planted oats, and corn residue grazing (ALT). Calves from both production systems were weaned at the same age and grown (diet NEg = 1.05 Mcal kg-1) for approximately 117 d. The calves then transitioned to a high-grain finishing diet (year 1: NEg = 1.32 Mcal kg-1; year 2: NEg = 1.39 Mcal kg-1) and fed to a targeted 1.52 cm backfat. Growth performance in the grower phase resulted in greater (P < 0.01) average daily gain (1.39 vs. 1.22 ± 0.02 kg), greater gain:feed (P < 0.01; 0.157 vs. 0.137 ± 0.003) for ALT calves compared to TRAD calves, However, a lower initial BW (P < 0.01; 185 vs. 229 ± 4.9 kg) resulted in a lower ending BW (P < 0.01; 347 vs. 371 ± 2.9 kg) for ALT calves compared to TRAD calves in spite of improved growth performance. In the finisher phase, ALT calves gained less (1.52 vs. 1.81 ± 0.218 kg; P = 0.02), were less efficient (0.139 vs. 173 ± 0.0151; P = 0.01) but exhibited similar hot carcass weights (HCW) (388 vs. 381 ± 3.8 kg; P = 0.14) compared to TRAD calves. Each pen of calves was put into a large pen-scale chamber that continuously measured carbon dioxide (CO2) and methane (CH4) for 5 d during the grower and finisher phases. The average CH4 and CO2 production per unit of feed intake was used to calculate total GHG emissions over the entire grower and finisher phase. Overall, there were no differences (P ≥ 0.17) between treatments for CH4 per day and per kilogram dry matter intake (DMI). However, ALT calves tended to produce less (P ≤ 0.10) CO2 per day and per kilogram DMI than TRAD calves. Overall, methane emissions were greater in ALT calves (110.7 vs. 92.2 ± 8.3 g CH4 kg-1 HCW; P = 0.04) than TRAD calves. The ALT calves required 27 additional days on feed to market, which resulted in more total CH4 per animal across the entire feeding period (P = 0.02) than TRAD calves. Production systems that reduce days to market to achieve similar HCW may reduce GHG emissions.
Collapse
Affiliation(s)
- Zachary E Carlson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Levi J McPhillips
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rick R Stowell
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Galen E Erickson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mary Drewnoski
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jim C MacDonald
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|