1
|
Li X, Meng Z, Malik AU, Zhang S, Wang Q. Maintaining the quality of postharvest broccoli by inhibiting ethylene accumulation using diacetyl. Front Nutr 2022; 9:1055651. [PMID: 36458179 PMCID: PMC9707704 DOI: 10.3389/fnut.2022.1055651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Broccoli (Brassica oleracea L. var. Italic) is rich in nutrition. However, it is susceptible to yellowing after harvest, leading to nutritional and economic losses. In this study, diacetyl, a natural food additive compound, was selected to inhibit the yellowing of broccoli florets and maintain the nutrient quality during storage time. It was found that 20 μl L-1 diacetyl treatment for 12 h could significantly delay the yellowing and decrease the weight loss and lignin content of broccoli florets. Meanwhile, diacetyl could maintain higher contents of chlorophyll, vitamin C and flavonoids and suppress the transcript levels of chlorophyll degradation-related genes in broccoli florets. Moreover, accumulations of reactive oxygen species (ROS) were inhibited by diacetyl treatment. Under diacetyl treatment, the generation of ethylene was prevented by inhibiting the activities and related-gene expressions of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Based on our findings, exogenous diacetyl could be employed as a novel bioactive molecule for retarding the yellowing and maintaining the quality of postharvest broccoli.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Zan Meng
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Song Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| |
Collapse
|
2
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Perini MA, Sin IN, Reyes Jara AM, Gómez Lobato ME, Civello PM, Martínez GA. Hot water treatments performed in the base of the broccoli stem reduce postharvest senescence of broccoli ( Brassica oleracea L. Var italic) heads stored at 20 °C. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Pathirana R, West P, Hedderley D, Eason J. Cell death patterns in Arabidopsis cells subjected to four physiological stressors indicate multiple signalling pathways and cell cycle phase specificity. PROTOPLASMA 2017; 254:635-647. [PMID: 27193098 DOI: 10.1007/s00709-016-0977-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Corpse morphology, nuclear DNA fragmentation, expression of senescence-associated genes (SAG) and cysteine protease profiles were investigated to understand cell death patterns in a cell cycle-synchronised Arabidopsis thaliana cell suspension culture treated with four physiological stressors in the late G2 phase. Within 4 h of treatment, polyethylene glycol (PEG, 20 %), mannose (100 mM) and hydrogen peroxide (2 mM) caused DNA fragmentation coinciding with cell permeability to Evans Blue (EB) and produced corpse morphology corresponding to apoptosis-like programmed cell death (AL-PCD) with cytoplasmic retraction from the cell wall. Ethylene (8 mL per 250-mL flask) caused permeability of cells to EB without concomitant nuclear DNA fragmentation and cytoplasmic retraction, suggesting necrotic cell death. Mannose inducing glycolysis block and PEG causing dehydration resulted in relatively similar patterns of upregulation of SAG suggesting similar cell death signalling pathways for these two stress factors, whereas hydrogen peroxide caused unique patterns indicating an alternate pathway for cell death induced by oxidative stress. Ethylene did not cause appreciable changes in SAG expression, confirming necrotic cell death. Expression of AtDAD, BoMT1 and AtSAG2 genes, previously shown to be associated with plant senescence, also changed rapidly during AL-PCD in cultured cells. The profiles of nine distinct cysteine protease-active bands ranging in size from ca. 21.5 to 38.5 kDa found in the control cultures were also altered after treatment with the four stressors, with mannose and PEG again producing similar patterns. Results also suggest that cysteine proteases may have a role in necrotic cell death.
Collapse
Affiliation(s)
- Ranjith Pathirana
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand.
| | - Phillip West
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
- NZ Avocado, Level 5 Harrington House, 32 Harington Street, Tauranga, 3110, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | - Jocelyn Eason
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| |
Collapse
|
5
|
Lauxmann MA, Annunziata MG, Brunoud G, Wahl V, Koczut A, Burgos A, Olas JJ, Maximova E, Abel C, Schlereth A, Soja AM, Bläsing OE, Lunn JE, Vernoux T, Stitt M. Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth. PLANT, CELL & ENVIRONMENT 2016; 39:745-67. [PMID: 26351840 DOI: 10.1111/pce.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 05/21/2023]
Abstract
The impact of transient carbon depletion on reproductive growth in Arabidopsis was investigated by transferring long-photoperiod-grown plants to continuous darkness and returning them to a light-dark cycle. After 2 days of darkness, carbon reserves were depleted in reproductive sinks, and RNA in situ hybridization of marker transcripts showed that carbon starvation responses had been initiated in the meristem, anthers and ovules. Dark treatments of 2 or more days resulted in a bare-segment phenotype on the floral stem, with 23-27 aborted siliques. These resulted from impaired growth of immature siliques and abortion of mature and immature flowers. Depolarization of PIN1 protein and increased DII-VENUS expression pointed to rapid collapse of auxin gradients in the meristem and inhibition of primordia initiation. After transfer back to a light-dark cycle, flowers appeared and formed viable siliques and seeds. A similar phenotype was seen after transfer to sub-compensation point irradiance or CO2 . It also appeared in a milder form after a moderate decrease in irradiance and developed spontaneously in short photoperiods. We conclude that Arabidopsis inhibits primordia initiation and aborts flowers and very young siliques in C-limited conditions. This curtails demand, safeguarding meristem function and allowing renewal of reproductive growth when carbon becomes available again.
Collapse
Affiliation(s)
- Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Maria G Annunziata
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Géraldine Brunoud
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, Lyon, 69364, France
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Andrzej Koczut
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Asdrubal Burgos
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Justyna J Olas
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Eugenia Maximova
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Christin Abel
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Aleksandra M Soja
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Oliver E Bläsing
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Metanomics GmbH, Tegeler Weg 33, Berlin, 10589, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, Lyon, 69364, France
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
6
|
Moyle RL, Birch RG. Sugarcane Loading Stem Gene promoters drive transgene expression preferentially in the stem. PLANT MOLECULAR BIOLOGY 2013; 82:51-8. [PMID: 23479084 DOI: 10.1007/s11103-013-0034-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/21/2013] [Indexed: 05/10/2023]
Abstract
Promoter regions of six sugarcane Loading Stem Gene (ScLSG) alleles were analyzed using bioinformatic and transgenic approaches. Stable transgene expression analyses, on multiple independent lines per construct, revealed differences between ScLSG promoters in absolute levels and in tissue-selectivity of luciferase reporter activity. Four promoters drove peak expression in the sucrose-loading zone and maintained substantial expression throughout mature stems. One drove a pattern of gradual increase along the stem maturation profile. In general, stem: root expression ratio increased with plant age. The ScLSG5 promoter had the fewest light-enhanced and root-expression motifs in bioinformatic analysis, and drove the highest level and specificity of transgene expression in stems. This indicates the potential to further improve the stem specificity of ScLSG promoter sequences by eliminating enhancers of expression in other tissues. An intron in the 5'UTR was important for expression strength. The ScLSG promoters will be useful for research and biotechnology in sugarcane, where the tailored expression of transgenes in stems is important for enhanced accumulation of sugar or value-added products, and for development as a bioenergy feedstock.
Collapse
Affiliation(s)
- Richard L Moyle
- Hines Plant Science Building, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
7
|
Koia J, Moyle R, Hendry C, Lim L, Botella JR. Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 81:327-36. [PMID: 23263857 DOI: 10.1007/s11103-012-0002-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/12/2012] [Indexed: 05/10/2023]
Abstract
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5' untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.
Collapse
Affiliation(s)
- Jonni Koia
- University of Queensland, Brisbane, 4072, Australia
| | | | | | | | | |
Collapse
|
8
|
Trivellini A, Jibran R, Watson LM, O’Donoghue EM, Ferrante A, Sullivan KL, Dijkwel PP, Hunter DA. Carbon deprivation-driven transcriptome reprogramming in detached developmentally arresting Arabidopsis inflorescences. PLANT PHYSIOLOGY 2012; 160:1357-72. [PMID: 22930749 PMCID: PMC3490613 DOI: 10.1104/pp.112.203083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/24/2012] [Indexed: 05/22/2023]
Abstract
Senescence is genetically controlled and activated in mature tissues during aging. However, immature plant tissues also display senescence-like symptoms when continuously exposed to adverse energy-depleting conditions. We used detached dark-held immature inflorescences of Arabidopsis (Arabidopsis thaliana) to understand the metabolic reprogramming occurring in immature tissues transitioning from rapid growth to precocious senescence. Macroscopic growth of the detached inflorescences rapidly ceased upon placement in water in the dark at 21°C. Inflorescences were completely degreened by 120 h of dark incubation and by 24 h had already lost 24% of their chlorophyll and 34% of their protein content. Comparative transcriptome profiling at 24 h revealed that inflorescence response at 24 h had a large carbon-deprivation component. Genes that positively regulate developmental senescence (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN92) and shade-avoidance syndrome (PHYTOCHROME INTERACTING FACTOR4 [PIF4] and PIF5) were up-regulated within 24 h. Mutations in these genes delayed degreening of the inflorescences. Their up-regulation was suppressed in dark-held inflorescences by glucose treatment, which promoted macroscopic growth and development and inhibited degreening of the inflorescences. Detached inflorescences held in the dark for 4 d were still able to reinitiate development to produce siliques upon being brought out to the light, indicating that the transcriptional reprogramming at 24 h was adaptive and reversible. Our results suggest that the response of detached immature tissues to dark storage involves interactions between carbohydrate status sensing and light deprivation signaling and that the dark-adaptive response of the tissues appears to utilize some of the same key regulators as developmental senescence.
Collapse
Affiliation(s)
- Alice Trivellini
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Rubina Jibran
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Lyn M. Watson
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Erin M. O’Donoghue
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Antonio Ferrante
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Kerry L. Sullivan
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Paul P. Dijkwel
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| | - Donald A. Hunter
- The New Zealand Institute for Plant Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand (A.T., R.J., L.M.W., E.M.O., K.L.S., D.A.H.); Department of Crop Biology, University of Pisa, 56124 Pisa, Italy (A.T.); Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand (R.J., P.P.D.); and Department of Plant Production, Università degli Studi di Milano, 20133 Milan, Italy (A.F.)
| |
Collapse
|
9
|
Liu MS, Li HC, Chang YM, Wu MT, Chen LFO. Proteomic analysis of stress-related proteins in transgenic broccoli harboring a gene for cytokinin production during postharvest senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:288-99. [PMID: 21763540 DOI: 10.1016/j.plantsci.2011.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 05/20/2023]
Abstract
Our previous study revealed a cytokinin-related retardation of post-harvest floret yellowing in transgenic broccoli (Brassica oleracea var. italica) that harbored the bacterial isopentenyltransferase (ipt) gene. We aimed to investigate the underlining mechanism of this delayed post-harvest senescence. We used 2D electrophoresis and liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry for a proteomics analysis of heads of ipt-transgenic and non-transgenic inbred lines of broccoli at harvest and after four days post-harvest storage. At harvest, we found an accumulation of stress-responsive proteins involved in maintenance of protein folding (putative protein disulfide isomerase, peptidyl-prolyl cis-trans isomerase and chaperonins), scavenging of reactive oxygen species (Mn superoxide dismutase), and stress protection [myrosinase-binding protein, jasmonate inducible protein, dynamin-like protein, NADH dehydrogenase (ubiquinone) Fe-S protein 1 and stress-inducible tetratricopeptide repeat-containing protein]. After four days' post-harvest storage of non-transgenic broccoli florets, the levels of proteins involved in protein folding and carbon fixation were decreased, which indicates cellular degradation and a change in metabolism toward senescence. In addition, staining for antioxidant enzyme activity of non-transgenic plants after post-harvest storage revealed a marked decrease in activity of Fe-superoxide dismutase and ascorbate peroxidase. Thus, the accumulation of stress-responsive proteins and antioxidant enzyme activity in ipt-transgenic broccoli are most likely associated with retardation of post-harvest senescence.
Collapse
Affiliation(s)
- Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Vegetables. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2010. [PMCID: PMC7121345 DOI: 10.1007/978-3-642-02391-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conscious promotion of health by an appropriate, balanced diet has become an important social request. Vegetable thereby possesses a special importance due to its high vitamin, mineral and dietary fibre content. Major progress has been made over the past few years in the transformation of vegetables. The expression of several genes has been inhibited by sense gene suppression, and new traits caused by new gene constructs are stably inherited. This chapter reviews advances in various traits such as disease resistance, abiotic stress tolerance, quality improvement, pharmaceutical and industrial application. Results are presented from most important vegetable families, like Solanaceae, Brassicaceae, Fabaceae, Cucurbitaceae, Asteraceae, Apiaceae, Chenopodiaceae and Liliaceae. Although many research trends in this report are positive, only a few transgenic vegetables have been released from confined into precommercial testing or into use.
Collapse
|
11
|
Hunter DA, Watson LM. The harvest-responsive region of the Asparagus officinalis sparagine synthetase promoter reveals complexity in the regulation of the harvest response. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1212-1223. [PMID: 32688868 DOI: 10.1071/fp08161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/15/2008] [Indexed: 06/11/2023]
Abstract
The activity of a 1915-bp asparagine synthetase (AS) promoter of Asparagus officinalis L. was induced in mature leaves of transgenic Arabidopsis thaliana (L.) Heynh. plants when the leaves were detached and held in water for 24 h. To understand this induction by harvest, variants of the AS promoter were linked to the β-glucuronidase GUS reporter gene. Harvest induction in the leaves required detachment and was not simply a wound response. Two regions in the AS promoter (Region A, -640 to -523; Region B, -524 to -383) were independently able to confer harvest response to the otherwise unresponsive -383AS (minimal) promoter. Region A was studied in further detail. Various truncations, deletions, or nucleotide substitutions of Region A affected activity and fold induction of the minimal promoter. However, no harvest-inducible cis-acting element within Region A was identified. Although the minimal promoter contained a dehydration-responsive element and ACGT elements similar to ABA-responsive regulatory motifs these were not needed by the upstream regulatory regions for directing harvest response. When four copies of Region A were linked to the minimal promoter it became highly active in leaves before harvest. Deletions within Region A showed that it required its complete 117 bp for driving harvest response, yet the region cannot simply be thought of as a harvest-responsive module, since its concatemerisation led to constitutive expression.
Collapse
Affiliation(s)
- Donald A Hunter
- New Zealand Institute for Crop and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| | - Lyn M Watson
- New Zealand Institute for Crop and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| |
Collapse
|
12
|
Eason JR, Patel D, Ryan D, Page B, Hedderley D, Watson L, West P. Controlled atmosphere treatment of broccoli after harvest delays senescence and induces the expression of novel BoCAR genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:445-56. [PMID: 17502152 DOI: 10.1016/j.plaphy.2007.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 04/02/2007] [Indexed: 05/15/2023]
Abstract
The current study examines the transcription of four genes (BoCAR1A, BoCAR5, BoCAR6-4 and BoCAR25) found to be up-regulated in response to high CO(2)/low O(2) treatment in broccoli (Brassica oleracea). Messenger RNA levels for the four genes declined after tissues were removed from CA. Physiological and biochemical changes and gene expression patterns were examined in broccoli tissues held in one of four different atmospheres, namely air (<1% CO(2), 21% O(2)), high carbon dioxide and low oxygen (CA 10% CO(2), 5% O(2)), low oxygen (0% CO(2), 5% O(2)), and high carbon dioxide (10% CO(2), 20% O(2)). In a second trial gene expression was examined in tissues held for short periods in CA (6h, 12h or 24h) followed by air. Broccoli tissues were also exposed to CA after 48 h in air to determine whether CA treatment was effective in up-regulating the CA-responsive genes and/or delaying senescence after early senescence-associated gene changes had been initiated. Northern analysis showed that a combined high CO(2) and low O(2) atmosphere was more effective than high CO(2) or low O(2) alone for inducing maximum gene expression and delaying postharvest broccoli senescence. In addition, broccoli tissues responded to CA treatment after a 48-h period in air with increased CA-responsive gene expression. Certain transcripts were down-regulated in tissues exposed to salt and water stresses that promoted senescence, and down-regulated in tissues treated with cytokinin, a treatment that delays postharvest senescence in broccoli. The up-regulation of these four BoCAR genes appears to be specific to CA treatment in harvested broccoli tissues.
Collapse
Affiliation(s)
- Jocelyn R Eason
- New Zealand Institute for Crop & Food Research Limited, Food Industry Science Centre, Private Bag 11 600, Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|