1
|
Słupianek A, Dolzblasz A, Sokołowska K. Xylem Parenchyma-Role and Relevance in Wood Functioning in Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:1247. [PMID: 34205276 PMCID: PMC8235782 DOI: 10.3390/plants10061247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (A.D.); (K.S.)
| | | | | |
Collapse
|
2
|
Liu J, Gu L, Yu Y, Huang P, Wu Z, Zhang Q, Qian Y, Wan X, Sun Z. Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. PLANT, CELL & ENVIRONMENT 2019; 42:2584-2596. [PMID: 31083779 DOI: 10.1111/pce.13578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
It is well known that xylem embolism can be repaired by bark water uptake and that the sugar required for embolism refilling can be provided by corticular photosynthesis. However, the relationship between corticular photosynthesis and embolism repair by bark water uptake is still poorly understood. In this study, the role of corticular photosynthesis in embolism repair was assessed using Salix matsudana branch segments dehydrated to -1.9 MPa (P50 , water potential at 50% loss of conductivity). The results indicated that corticular photosynthesis significantly promoted water uptake and nonstructural carbohydrate (NSC) accumulation in the bark and xylem during soaking, thereby effectively enhancing the refilling of the embolized vessels and the recovery of hydraulic conductivity. Furthermore, the influence of the extent of dehydration on the embolism refilling enhanced by corticular photosynthesis was investigated. The enhanced refilling effects were much higher in the mildly dehydrated (-1.5 MPa) and moderately dehydrated (-1.9 MPa) branch segments than in the severely dehydrated (-2.2 MPa) branch segments. This study provides evidence that corticular photosynthesis plays a crucial role in xylem embolism repair by bark water uptake for mildly and moderately dehydrated branches.
Collapse
Affiliation(s)
- Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lin Gu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongchang Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhigang Wu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongqiang Qian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
3
|
Knipfer T, Barrios-Masias FH, Cuneo IF, Bouda M, Albuquerque CP, Brodersen CR, Kluepfel DA, McElrone AJ. Variations in xylem embolism susceptibility under drought between intact saplings of three walnut species. TREE PHYSIOLOGY 2018; 38:1180-1192. [PMID: 29850910 DOI: 10.1093/treephys/tpy049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
A germplasm collection containing varied Juglans genotypes holds potential to improve drought resistance of plant materials for commercial production. We used X-ray computed microtomography to evaluate stem xylem embolism susceptibility/repair in relation to vessel anatomical features (size, arrangement, connectivity and pit characteristics) in 2-year-old saplings of three Juglans species. In vivo analysis revealed interspecific variations in embolism susceptibility among Juglans microcarpa, J. hindsii (both native to arid habitats) and J. ailantifolia (native to mesic habitats). Stem xylem of J. microcarpa was more resistant to drought-induced embolism as compared with J. hindsii and J. ailantifolia (differences in embolism susceptibility among older and current year xylem were not detected in any species). Variations in most vessel anatomical traits were negligible among the three species; however, we detected substantial interspecific differences in intervessel pit characteristics. As compared with J. hindsii and J. ailantifolia, low embolism susceptibility in J. microcarpa was associated with smaller pit size in larger diameter vessels, a smaller area of the shared vessel wall occupied by pits, lower pit frequency and no changes in pit characteristics as vessel diameters increased. Changes in amount of embolized vessels following 40 days of re-watering were minor in intact saplings of all three species highlighting that an embolism repair mechanism did not contribute to drought recovery. In conclusion, our data indicate that interspecific variations in drought-induced embolism susceptibility are associated with species-specific pit characteristics, and these traits may provide a future target for breeding efforts aimed at selecting walnut germplasm with improved drought resistance.
Collapse
Affiliation(s)
- Thorsten Knipfer
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| | | | - Italo F Cuneo
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| | - Martin Bouda
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | | | - Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Daniel A Kluepfel
- USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, CA, USA
| | - Andrew J McElrone
- Department of Viticulture & Enology, University of California, Davis, CA, USA
- USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, CA, USA
| |
Collapse
|
4
|
Secchi F, Pagliarani C, Zwieniecki MA. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. PLANT, CELL & ENVIRONMENT 2017; 40:858-871. [PMID: 27628165 DOI: 10.1111/pce.12831] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/27/2016] [Indexed: 05/05/2023]
Abstract
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | - Chiara Pagliarani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | | |
Collapse
|
5
|
Knipfer T, Eustis A, Brodersen C, Walker AM, McElrone AJ. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. PLANT, CELL & ENVIRONMENT 2015; 38:1503-13. [PMID: 25495925 DOI: 10.1111/pce.12497] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 05/23/2023]
Abstract
Drought induces xylem embolism formation, but grapevines can refill non-functional vessels to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analysed in vivo embolism formation and repair using x-ray computed microtomography in three wild grapevine species from varied native habitats (Vitis riparia, V. arizonica, V. champinii) and related responses to measurements of leaf gas exchange and root pressure. Vulnerability to embolism formation was greatest in V. riparia, intermediate in V. arizonica and lowest in V. champinii. After re-watering, embolism repair was rapid and pronounced in V. riparia and V. arizonica, but limited or negligible in V. champinii even after numerous days. Similarly, root pressure measured after re-watering was positively correlated with drought stress severity for V. riparia and V. arizonica (species exhibiting embolism repair) but not for V. champinii. Drought-induced reductions in transpiration were greatest for V. riparia and least in V. champinii. Recovery of transpiration after re-watering was delayed for all species, but was greatest for V. champinii and most rapid in V. arizonica. These species exhibit varied responses to drought stress that involve maintenance/recovery of xylem transport capacity coordinated with root pressure and gas exchange responses.
Collapse
Affiliation(s)
- Thorsten Knipfer
- Department of Viticulture & Enology, University of California, Davis, CA, 95616, USA
| | - Ashley Eustis
- Department of Viticulture & Enology, University of California, Davis, CA, 95616, USA
| | - Craig Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Andrew M Walker
- Department of Viticulture & Enology, University of California, Davis, CA, 95616, USA
| | - Andrew J McElrone
- Department of Viticulture & Enology, University of California, Davis, CA, 95616, USA
- USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:48-53. [PMID: 22920998 DOI: 10.1016/j.plantsci.2012.06.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 05/05/2023]
Abstract
Angiosperm and coniferous tree species utilize a continuum of hydraulic strategies. Hydraulic safety margins (defined as differences between naturally occurring xylem pressures and pressures that would cause hydraulic dysfunction, or differences between pressures resulting in loss of hydraulic function in adjacent organs (e.g., stems vs. leaves) tend to be much greater in conifers than angiosperms and serve to prevent stem embolism. However, conifers tend to experience embolism more frequently in leaves and roots than angiosperms. Embolism repair is thought to occur by active transport of sugars into empty conduits followed by passive water movement. The most likely source of sugar for refilling is from nonstructural carbohydrate depolymerization in nearby parenchyma cells. Compared to angiosperms, conifers tend to have little parenchyma or nonstructural carbohydrates in their wood. The ability to rapidly repair embolisms may rely on having nearby parenchyma cells, which could explain the need for greater safety margins in conifer wood as compared to angiosperms. The frequent embolisms that occur in the distal portions of conifers are readily repaired, perhaps due to the abundant parenchyma in leaves and roots, and these distal tissues may act as hydraulic circuit breakers that prevent tension-induced embolisms in the attached stems. Frequent embolisms in conifer leaves may also be due to weaker stomatal response to changes in ambient humidity. Although there is a continuum of hydraulic strategies among woody plants, there appear to be two distinct 'behaviors' at the extremes: (1) embolism prevention and (2) embolism occurrence and subsequent repair.
Collapse
Affiliation(s)
- Daniel M Johnson
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
7
|
Sevanto S, Holbrook NM, Ball MC. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation. FRONTIERS IN PLANT SCIENCE 2012; 3:107. [PMID: 22685446 PMCID: PMC3368182 DOI: 10.3389/fpls.2012.00107] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/07/2012] [Indexed: 05/18/2023]
Abstract
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.
Collapse
Affiliation(s)
- Sanna Sevanto
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | | | | |
Collapse
|
8
|
Secchi F, Gilbert ME, Zwieniecki MA. Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling. PLANT PHYSIOLOGY 2011; 157:1419-29. [PMID: 21951466 PMCID: PMC3252146 DOI: 10.1104/pp.111.185124] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/26/2011] [Indexed: 05/18/2023]
Abstract
The mechanism of embolism repair in transpiring plants is still not understood, despite significant scientific effort. The refilling process is crucial to maintaining stem transport capacity and ensuring survival for plants experiencing dynamic changes in water stress. Refilling air-filled xylem vessels requires an energy and water source that can only be provided by adjacent living parenchyma cells. Here, we report an analysis of the transcriptome response of xylem parenchyma cells after embolism formation in Populus trichocarpa trees. Genes encoding aquaporins, ion transporters, and carbohydrate metabolic pathways were up-regulated, and there was a significant reduction in the expression of genes responding to oxidative stress. Thus, a novel view of the plant response to embolism emerges that suggests a role for oxygen in embolized vessels as a signal triggering xylem refilling and for the activity of cation transport as having a significant role in the generation of the energy gradient necessary to heal embolized vessels. These findings redefine current hypotheses surrounding the refilling phenomenon and provide insight into the complexity of the biological response to the seemingly simple physical event of xylem embolism formation.
Collapse
Affiliation(s)
- Francesca Secchi
- Arnold Arboretum, Harvard University, Boston, Massachusetts 02131, USA.
| | | | | |
Collapse
|
9
|
Nardini A, Lo Gullo MA, Salleo S. Refilling embolized xylem conduits: is it a matter of phloem unloading? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:604-11. [PMID: 21421408 DOI: 10.1016/j.plantsci.2010.12.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/17/2010] [Accepted: 12/29/2010] [Indexed: 05/18/2023]
Abstract
Long-distance water transport in plants relies on negative pressures established in continuous water columns in xylem conduits. Water under tension is in a metastable state and is prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity and eventually plant death. Experimental evidence suggests that plants can repair embolized xylem by pushing water from living vessel-associated cells into the gas-filled conduit lumina. Most surprisingly, embolism refilling is known to occur even when the bulk of still functioning xylem is under tension, a finding that is in seemingly contradiction to basic principles of thermodynamics. This review summarizes our current understanding of xylem refilling processes and speculates that embolism repair under tension can be envisioned as a particular case of phloem unloading, as suggested by several events and components of embolism repair, typically involved in phloem unloading mechanisms. Far from being a challenge to irreversible thermodynamics, embolism refilling is emerging as a finely regulated vital process essential for plant functioning under different environmental stresses.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | | | | |
Collapse
|
10
|
Secchi F, Zwieniecki MA. Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. PLANT, CELL & ENVIRONMENT 2011; 34:514-24. [PMID: 21118423 DOI: 10.1111/j.1365-3040.2010.02259.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Refilling of embolized vessels requires a source of water and the release of energy stored in xylem parenchyma cells. Past evidence suggests that embolism presence can trigger a biological response that is switched off upon successful vessel refilling. As embolism formation is a purely physical process and most biological triggers rely on chemical sensors, we hypothesized that accumulation of osmotic compounds in walls of embolized vessels are involved in the embolism sensing mechanism. Analysis of Populus trichocarpa's response to infiltration of sucrose, monosaccharides, polyethylene glycol and potassium chloride into the xylem revealed that only presence of sucrose resulted in a simultaneous physiological and molecular response similar to that induced by embolism. This response included reduction of the starch pool in xylem parenchyma cells and significant correlation of gene expression from aquaporins, amylases and sugar transporter families. The work provides evidence of the ability of plants to sense embolism and suggests that sucrose concentration is the stimulus that allows plants to trigger a biological response to embolism.
Collapse
Affiliation(s)
- Francesca Secchi
- Arnold Arboretum of Harvard University, BioLabs 3114, 16 Dinivity Ave, Cambridge, MA 02138, USA.
| | | |
Collapse
|
11
|
Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. PLANT PHYSIOLOGY 2010; 154:1088-95. [PMID: 20841451 PMCID: PMC2971590 DOI: 10.1104/pp.110.162396] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/08/2010] [Indexed: 05/17/2023]
Abstract
Water moves through plants under tension and in a thermodynamically metastable state, leaving the nonliving vessels that transport this water vulnerable to blockage by gas embolisms. Failure to reestablish flow in embolized vessels can lead to systemic loss of hydraulic conductivity and ultimately death. Most plants have developed a mechanism to restore vessel functionality by refilling embolized vessels, but the details of this process in vessel networks under tension have remained unclear for decades. Here we present, to our knowledge, the first in vivo visualization and quantification of the refilling process for any species using high-resolution x-ray computed tomography. Successful vessel refilling in grapevine (Vitis vinifera) was dependent on water influx from surrounding living tissue at a rate of 6 × 10(-4) μm s(-1), with individual droplets expanding over time, filling vessels, and forcing the dissolution of entrapped gas. Both filling and draining processes could be observed in the same vessel, indicating that successful refilling requires hydraulic isolation from tensions that would otherwise prevent embolism repair. Our study demonstrates that despite the presence of tensions in the bulk xylem, plants are able to restore hydraulic conductivity in the xylem.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth A. Shackel
- Department of Viticulture and Enology (C.R.B., A.J.M., M.A.M.) and Department of Plant Sciences (K.A.S.), University of California, Davis, California 95616; United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California 95616 (A.J.M.); and Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (B.C.)
| |
Collapse
|
12
|
Trifilò P, Raimondo F, Lo Gullo MA, Nardini A, Salleo S. Hydraulic connections of leaves and fruit to the parent plant in Capsicum frutescens (hot pepper) during fruit ripening. ANNALS OF BOTANY 2010; 106:333-41. [PMID: 20525746 PMCID: PMC2908167 DOI: 10.1093/aob/mcq113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/29/2010] [Accepted: 04/26/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS The hydraulic architecture and water relations of fruits and leaves of Capsicum frutescens were measured before and during the fruiting phase in order to estimate the eventual impact of xylem cavitation and embolism on the hydraulic isolation of fruits and leaves before maturation/abscission. METHODS Measurements were performed at three different growth stages: (1) actively growing plants with some flowers before anthesis (GS1), (2) plants with about 50 % fully expanded leaves and immature fruits (GS2) and (3) plants with mature fruits and senescing basal leaves (GS3). Leaf conductance to water vapour as well as leaf and fruit water potential were measured. Hydraulic measurements were made using both the high-pressure flow meter (HPFM) and the vacuum chamber (VC) technique. KEY RESULTS The hydraulic architecture of hot pepper plants during the fruiting phase was clearly addressed to favour water supply to growing fruits. Hydraulic measurements revealed that leaves of GS1 plants as well as leaves and fruit peduncles of GS2 plants were free from significant xylem embolism. Substantial increases in leaf petiole and fruit peduncle resistivity were recorded in GS3 plants irrespective of the hydraulic technique used. The higher fraction of resistivity measured using the VC technique compared with the HPFM technique was apparently due to conduit embolism. CONCLUSIONS The present study is the first to look at the hydraulics of leaves and fruits during growth and maturation through direct, simultaneous measurements of water status and xylem efficiency of both plant regions at different hours of the day.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze della Vita "M. Malpighi", Università di Messina, Italy.
| | | | | | | | | |
Collapse
|
13
|
Zwieniecki MA, Holbrook NM. Confronting Maxwell's demon: biophysics of xylem embolism repair. TRENDS IN PLANT SCIENCE 2009; 14:530-4. [PMID: 19726217 DOI: 10.1016/j.tplants.2009.07.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 05/02/2023]
Abstract
Embolism results in a dramatic loss of xylem hydraulic transport capacity that can lead to decreased plant productivity and even death. The ability to refill embolized conduits despite the presence of tension in the xylem seems to be widespread, but how this occurs is not known. To promote discussion and future research on this topic, we describe how we believe refilling under tension might take place. Our scenario includes: (i) an osmotic role for low-molecular weight sugars; (ii) an apoplastic sugar-sensing mechanism to activate refilling; (iii) the contribution of vapor transport in both the influx of water and removal of entrapped gases; and (iv) the need for a mechanism that can synchronize reconnection to the transpiration stream through multiple bordered pits.
Collapse
|
14
|
Salleo S, Trifilò P, Esposito S, Nardini A, Lo Gullo MA. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:815-825. [PMID: 32688691 DOI: 10.1071/fp09103] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/19/2009] [Indexed: 06/11/2023]
Abstract
The ability of stems of Laurus nobilis (L.) to refill embolised xylem conduits was studied in plants both at optimal water supply (W) and under conditions of soil drought inducing xylem pressures (Px) of -1.54 (S1) and -2.35 MPa (S2). Starch depolymerisation in wood parenchyma was measured as percentage of cells 'with high starch content' (HSC-cells) counted under a microscope. HSC-cells decreased during embolism and increased again in refilled stems. A direct relationship was found between percentage of HSC-cells and Px, with HSC-cells between 65 and 75% of the total at Px ≥ -0.6 MPa, at which recovery from PLC was recorded. At low transpiration, starch re-appeared in wood parenchyma cells but only in plants that showed diurnal stomatal opening (W- and S1-plants). In S2-plants showing diurnal stomatal closure and nocturnal opening with Px between -1.2 to -2.4 MPa, HSC-cells were only 25% and plants did not recover from PLC. This finding suggests that (i) the Px threshold for embolism repair was ≥ -0.6 MPa, and (ii) impeded phloem loading limits starch content in wood parenchyma and embolism repair. We conclude that starch depolymerisation acts as a signal to phloem unloading sugars to embolised conduits thus generating the necessary osmotic gradients driving refilling.
Collapse
Affiliation(s)
- Sebastiano Salleo
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Patrizia Trifilò
- Dipartimento di Scienze della Vita, 'M. Malpighi' sezione Botanica, Università di Messina, Salita Sperone 31, 98166 Messina, S. Agata, Italia
| | - Sara Esposito
- Dipartimento di Scienze della Vita, 'M. Malpighi' sezione Botanica, Università di Messina, Salita Sperone 31, 98166 Messina, S. Agata, Italia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Maria A Lo Gullo
- Dipartimento di Scienze della Vita, 'M. Malpighi' sezione Botanica, Università di Messina, Salita Sperone 31, 98166 Messina, S. Agata, Italia
| |
Collapse
|