1
|
Zhang Q, Jin YH, Zou JX, Zheng YS, Li DD. Characterization and functional analysis of the MADS-box EgAGL9 transcription factor from the mesocarp of oil palm (Elaeis guineensis Jacq.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111317. [PMID: 35696917 DOI: 10.1016/j.plantsci.2022.111317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is one of the most important oil crops in the world, and compared to all oil crops, it has the highest productive efficiency. In the present study, a MADS-box transcription factor of the AGAMOUS class, named EgAGL9, was identified by expression profile analysis in the different developmental stages of oil palm mesocarp. Real-time quantitative PCR results confirmed that the expression of EgAGL9 increased rapidly during the last stages of oil palm mesocarp development. Then, three downstream genes, including EgSAD (Stearoyl-ACP desaturase), EgTSA (Tryptophan synthase) and EgSDH (Succinate dehydrogenase), were screened by ChIP-Seq and data analysis. EMSA analysis verified that EgAGL9 interacted with the promoter regions of EgSAD, EgTSA and EgSDH. Moreover, the expression levels of EgSAD, EgTSA and EgSDH were downregulated in EgAGL9-overexpressing protoplasts and calli of oil palm. Compared to WT, the total lipid content and ratio of unsaturated fatty acids in transgenic calli (including oleic acid, linoleic acid and linolenic acid) were significantly decreased. Together, these results revealed that these three EgAGL9-regulated genes are involved in regulatory pathways in the oil palm mesocarp. Compared with previous studies, the present study provides a new research strategy for understanding of the molecular regulatory pathways of lipid metabolism in mesocarp of oil palm. The obtained results will bring a new perspective for a comprehensive understanding of the regulation of the metabolic accumulation in the oil palm mesocarp.
Collapse
Affiliation(s)
- Qing Zhang
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China
| | - Yuan-Hang Jin
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China
| | - Ji-Xin Zou
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China; Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences (CATAS), China
| | - Yu-Sheng Zheng
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China
| | - Dong-Dong Li
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China.
| |
Collapse
|
2
|
Li SY, Zhang Q, Jin YH, Zou JX, Zheng YS, Li DD. A MADS-box gene, EgMADS21, negatively regulates EgDGAT2 expression and decreases polyunsaturated fatty acid accumulation in oil palm (Elaeis guineensis Jacq.). PLANT CELL REPORTS 2020; 39:1505-1516. [PMID: 32804247 DOI: 10.1007/s00299-020-02579-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 05/13/2023]
Abstract
EgMADS21 regulates PUFA accumulation in oil palm. Oil palm (Elaeis guineensis Jacq.) is the most productive world oil crop, accounting for 36% of world plant oil production. However, the molecular mechanism of the transcriptional regulation of fatty acid accumulation and lipid synthesis in the mesocarp of oil palm by up- or downregulating the expression of genes involved in related pathways remains largely unknown. Here, an oil palm MADS-box gene, EgMADS21, was screened in a yeast one-hybrid assay using the EgDGAT2 promoter sequence as bait. EgMADS21 is preferentially expressed in early mesocarp developmental stages in oil palm fruit and presents a negative correlation with EgDGAT2 expression. The direct binding of EgMADS21 to the EgDGAT2 promoter was confirmed by electrophoretic mobility shift assay. Subsequently, transient expression of EgMADS21 in oil palm protoplasts revealed that EgMADS21 not only binds to the EgDGAT2 promoter but also negatively regulates the expression of EgDGAT2. Furthermore, EgMADS21 was stably overexpressed in transgenic oil palm embryoids by Agrobacterium-mediated transformation. In three independent transgenic lines, EgDGAT2 expression was significantly suppressed by the expression of EgMADS21. The content of linoleic acid (C18:2) in the three transgenic embryoids was significantly decreased, while that of oleic acid (C18:1) was significantly increased. Combined with the substrate preference of EgDGAT2 identified in previous research, the results demonstrate the molecular mechanism by which EgMADS21 regulates EgDGAT2 expression and ultimately affects fatty acid accumulation in the mesocarp of oil palm.
Collapse
Affiliation(s)
- Si-Yu Li
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Qing Zhang
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Yuan-Hang Jin
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Ji-Xin Zou
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Yu-Sheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Dong-Dong Li
- College of Tropical Crops, Hainan University, Hainan, 570228, China.
| |
Collapse
|
3
|
Zheng Y, Chen L, Zhu Z, Li D, Zhou P. Multigene engineering of medium-chain fatty acid biosynthesis in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. 3 Biotech 2020; 10:340. [PMID: 32714735 DOI: 10.1007/s13205-020-02340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) are an ideal feedstock for biodiesel and a range of oleochemical products. In this study, different combinations of CnFATB3, CnLPAAT-B and CnKASI from coconut (Cocos nucifera L.) were coexpressed in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. Transgenic lines expressing different combinations of these genes were designated FL (FatB3 + LPAAT-B), FK (FatB3 + KASI) and FLK (FatB3 + LPAAT-B + KASI). The homozygous seeds of transgenic Arabidopsis thaliana expressing high levels of these genes were screened, and their fatty acid composition and lipid contents were determined. Compared with its content in wild-type A. thaliana, the lauric acid (C12:0) content was significantly increased by at least 395%, 134% and 124% in FLK, FL and FK seeds, respectively. Meanwhile, the myristic acid (C14:0) content was significantly increased by at least 383%, 106% and 102% in FL, FLK and FK seeds, respectively, compared to its level in wild-type seeds. Therefore, the FLK plants exhibited the best effects to increase the level of C12:0, and FL expressed the optimal combination of genes to increase the level of 14:0 MCFA.
Collapse
Affiliation(s)
- Yusheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Lizhi Chen
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Zhiyong Zhu
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Dongdong Li
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Peng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
4
|
Reynolds KB, Cullerne DP, El Tahchy A, Rolland V, Blanchard CL, Wood CC, Singh SP, Petrie JR. Identification of Genes Involved in Lipid Biosynthesis through de novo Transcriptome Assembly from Cocos nucifera Developing Endosperm. PLANT & CELL PHYSIOLOGY 2019; 60:945-960. [PMID: 30608545 PMCID: PMC6498750 DOI: 10.1093/pcp/pcy247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/19/2018] [Indexed: 05/07/2023]
Abstract
Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm that is widely grown in tropical and subtropical regions. The coconut palm is well known for its ability to accumulate large amounts of oil, approximately 63% of the seed weight. Coconut oil varies significantly from other vegetable oils as it contains a high proportion of medium-chain fatty acids (MCFA; 85%). The unique composition of coconut oil raises interest in understanding how the coconut palm produces oil of a high saturated MCFA content, and if such an oil profile could be replicated via biotechnology interventions. Although some gene discovery work has been performed there is still a significant gap in the knowledge associated with coconut's oil production pathways. In this study, a de novo transcriptome was assembled for developing coconut endosperm to identify genes involved in the synthesis of lipids, particularly triacylglycerol. Of particular interest were thioesterases, acyltransferases and oleosins because of their involvement in the processes of releasing fatty acids for assembly, esterification of fatty acids into glycerolipids and protecting oils from degradation, respectively. It is hypothesized that some of these genes may exhibit a strong substrate preference for MCFA and hence may assist the future development of vegetable oils with an enriched MCFA composition. In this study, we identified and confirmed functionality of five candidate genes from the gene families of interest. This study will benefit future work in areas of increasing vegetable oil production and the tailoring of oil fatty acid compositions.
Collapse
Affiliation(s)
- Kyle B Reynolds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
- Department of Primary Industries, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Darren P Cullerne
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Anna El Tahchy
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Vivien Rolland
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Christopher L Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Craig C Wood
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Surinder P Singh
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - James R Petrie
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
5
|
Roopan SM. An Overview of Phytoconstituents, Biotechnological Applications, and Nutritive Aspects of Coconut (Cocos nucifera). Appl Biochem Biotechnol 2016; 179:1309-24. [PMID: 27052209 DOI: 10.1007/s12010-016-2067-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 01/25/2023]
Abstract
Cocos nucifera is one of the highest nutritional and medicinal value plants with various fractions of proteins which play a major role in several biological applications such as anti-microbial, anti-inflammatory, anti-diabetic, anti-neoplastic, anti-parasitic, insecticidal, and leishmanicidal activities. This review is focused on several biotechnological, biomedical aspects of various solvent extracts collected from different parts of coconut and the phytochemical constituents which are present in it. The results obtained from this source will facilitate most of the researchers to focus their work toward the process of diagnosing diseases in future.
Collapse
Affiliation(s)
- Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632 014, India.
| |
Collapse
|
6
|
Gao L, Sun R, Liang Y, Zhang M, Zheng Y, Li D. Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.). Gene 2014; 549:70-6. [PMID: 25038276 DOI: 10.1016/j.gene.2014.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/30/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Coconut (Cocos nucifera L.) is an economically tropical fruit tree with special fatty acid compositions. The stearoyl-acyl carrier protein (ACP) desaturase (SAD) plays a key role in the properties of the majority of cellular glycerolipids. In this paper, a full-length cDNA of a stearoyl-acyl carrier protein desaturase, designated CocoFAD, was isolated from cDNA library prepared from the endosperm of coconut (C. nucifera L.). An 1176 bp cDNA from overlapped PCR products containing ORF encoding a 391-amino acid (aa) protein was obtained. The coded protein was virtually identical and shared the homology to other Δ9-desaturase plant sequences (greater than 80% as similarity to that of Elaeis guineensis Jacq). The real-time fluorescent quantitative PCR result indicated that the yield of CocoFAD was the highest in the endosperm of 8-month-old coconut and leaf, and the yield was reduced to 50% of the highest level in the endosperm of 15-month-old coconut. The coding region showed heterologous expression in strain INVSc1 of yeast (Saccharomyces cerevisiae). GC-MS analysis showed that the levels of palmitoleic acid (16:1) and oleic acid (18:1) were improved significantly; meanwhile stearic acid (18:0) was reduced. These results indicated that the plastidial Δ9 desaturase from the endosperm of coconut was involved in the biosynthesis of hexadecenoic acid and octadecenoic acid, which was similar with other plants. These results may be valuable for understanding the mechanism of fatty acid metabolism and the genetic improvement of CocoFAD gene in palm plants in the future.
Collapse
Affiliation(s)
- Lingchao Gao
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Ruhao Sun
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanxue Liang
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Mengdan Zhang
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China
| | - Yusheng Zheng
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China.
| | - Dongdong Li
- Department of Biotechnology, Hainan University, Haikou, Hainan 570228, China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
7
|
Liang Y, Yuan Y, Liu T, Mao W, Zheng Y, Li D. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC PLANT BIOLOGY 2014; 14:205. [PMID: 25084812 PMCID: PMC4236756 DOI: 10.1186/s12870-014-0205-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/22/2014] [Indexed: 05/16/2023]
Abstract
BACKGROUND Coconut (Cocos nucifera L.) is one of the world's most versatile, economically important tropical crops. Little is known about the physiological and molecular basis of coconut pulp (endosperm) development and only a few coconut genes and gene product sequences are available in public databases. This study identified genes that were differentially expressed during development of coconut pulp and functionally annotated these identified genes using bioinformatics analysis. RESULTS Pulp from three different coconut developmental stages was collected. Four suppression subtractive hybridization (SSH) libraries were constructed (forward and reverse libraries A and B between stages 1 and 2, and C and D between stages 2 and 3), and identified sequences were computationally annotated using Blast2GO software. A total of 1272 clones were obtained for analysis from four SSH libraries with 63% showing similarity to known proteins. Pairwise comparing of stage-specific gene ontology ids from libraries B-D, A-C, B-C and A-D showed that 32 genes were continuously upregulated and seven downregulated; 28 were transiently upregulated and 23 downregulated. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT), phospholipase D, acetyl-CoA carboxylase carboxyltransferase beta subunit, 3-hydroxyisobutyryl-CoA hydrolase-like and pyruvate dehydrogenase E1 β subunit were associated with fatty acid biosynthesis or metabolism. Triose phosphate isomerase, cellulose synthase and glucan 1,3-β-glucosidase were related to carbohydrate metabolism, and phosphoenolpyruvate carboxylase was related to both fatty acid and carbohydrate metabolism. Of 737 unigenes, 103 encoded enzymes were involved in fatty acid and carbohydrate biosynthesis and metabolism, and a number of transcription factors and other interesting genes with stage-specific expression were confirmed by real-time PCR, with validation of the SSH results as high as 66.6%. Based on determination of coconut endosperm fatty acids content by gas chromatography-mass spectrometry, a number of candidate genes in fatty acid anabolism were selected for further study. CONCLUSION Functional annotation of genes differentially expressed in coconut pulp development helped determine the molecular basis of coconut endosperm development. The SSH method identified genes related to fatty acids, carbohydrate and secondary metabolites. The results will be important for understanding gene functions and regulatory networks in coconut fruit.
Collapse
Affiliation(s)
- Yuanxue Liang
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yijun Yuan
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Tao Liu
- Annoroad Gene Technology Co. Ltd, Beijing 100176, PR China
| | - Wei Mao
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yusheng Zheng
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Dongdong Li
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, Hainan, PR China
| |
Collapse
|