1
|
Estrada F, Flexas J, Araus JL, Mora-Poblete F, Gonzalez-Talice J, Castillo D, Matus IA, Méndez-Espinoza AM, Garriga M, Araya-Riquelme C, Douthe C, Castillo B, del Pozo A, Lobos GA. Exploring plant responses to abiotic stress by contrasting spectral signature changes. FRONTIERS IN PLANT SCIENCE 2023; 13:1026323. [PMID: 36777544 PMCID: PMC9910286 DOI: 10.3389/fpls.2022.1026323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
In this study, daily changes over a short period and diurnal progression of spectral reflectance at the leaf level were used to identify spring wheat genotypes (Triticum aestivum L.) susceptible to adverse conditions. Four genotypes were grown in pots experiments under semi-controlled conditions in Chile and Spain. Three treatments were applied: i) control (C), ii) water stress (WS), and iii) combined water and heat shock (WS+T). Spectral reflectance, gas exchange and chlorophyll fluorescence measurements were performed on flag leaves for three consecutive days at anthesis. High canopy temperature ( H CT ) genotypes showed less variability in their mean spectral reflectance signature and chlorophyll fluorescence, which was related to weaker responses to environmental fluctuations. While low canopy temperature ( L CT ) genotypes showed greater variability. The genotypes spectral signature changes, in accordance with environmental fluctuation, were associated with variations in their stomatal conductance under both stress conditions (WS and WS+T); L CT genotypes showed an anisohydric response compared that of H CT , which was isohydric. This approach could be used in breeding programs for screening a large number of genotypes through proximal or remote sensing tools and be a novel but simple way to identify groups of genotypes with contrasting performances.
Collapse
Affiliation(s)
- Félix Estrada
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
- Instituto de Investigaciones Agropecuarias INIA-Quilamapu, Chillán, Chile
| | - Jaume Flexas
- Instituto de Investigaciones Agropecuarias INIA-Remehue, Osorno, Chile
| | - Jose Luis Araus
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Freddy Mora-Poblete
- Department of Evolutive Biology Ecology, and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | | | - Dalma Castillo
- Departamento de Producción Forestal y Tecnología de la Madera, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Ivan A. Matus
- Instituto de Investigaciones Agropecuarias INIA-Quilamapu, Chillán, Chile
| | | | - Miguel Garriga
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Carlos Araya-Riquelme
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Benjamin Castillo
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Alejandro del Pozo
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Gustavo A. Lobos
- Plant Breeding and Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| |
Collapse
|
2
|
Khodadadi Z, Omidi M, Etminan A, Ebrahimi A, Pour-Aboughadareh A. Molecular and Physiological Variability in Bread Wheat and Its Wild Relative ( Aegilops tauschii Coss.) Species under Water-Deficit Stress Conditions. BIOTECH 2022; 12:3. [PMID: 36648829 PMCID: PMC9844422 DOI: 10.3390/biotech12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Aegilops and Triticum spp. are two ideal gene pools for the breeding purposes of wheat. In this study, a set of Iranian accessions of Aegilops tauschii Coss. and Triticum aestivum L. species were evaluated in terms of some physiological and biochemical features under control and water-deficit stress conditions. Moreover, several simple sequence repeat (SSR) markers were employed to identify marker loci associated with the measured traits. The results indicated that water-deficit stress significantly affected all measured traits and the highest reductions due to water-deficit were recorded for shoot fresh and dry biomasses (SFB and SDB), stomatal conductance (Gs), leaf relative water content (RWC), and chlorophyll b content (Chl b). In molecular analysis, 25 SSR markers generated 50 fragments, out of which 49 fragments (98%) were polymorphic. Furthermore, the genetic variation observed within species is more than between species. The results of cluster and Bayesian model analysis classified all evaluated accessions into three main clusters. Under control and water-deficit stress conditions, 28 and 27 significant marker-trait associations (MTAs) were identified, respectively. Furthermore, 10 MTAs showed sufficiently stable expression across both growth conditions. Of these, the markers Xgwm-111, Xgwm-44, Xgwm-455, Xgwm-272, and Xgwm-292 were associated with multiple traits. Hence, these markers could serve as useful molecular tools for population characterization, gene tagging, and other molecular breeding studies.
Collapse
Affiliation(s)
- Zahra Khodadadi
- Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran P.O. Box 14515-775, Iran
| | - Mansoor Omidi
- Department of Agronomy and Plant Breeding, Agricultural College, University of Tehran, Karaj P.O. Box 31587-77871, Iran
| | - Alireza Etminan
- Department of Genetic and Plant Breeding, Kermanshah Brunch, Islamic Azad University, Kermanshah P.O. Box 67146, Iran
| | - Asa Ebrahimi
- Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran P.O. Box 14515-775, Iran
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education, and Extension (AREEO), Karaj P.O. Box 31587-77871, Iran
| |
Collapse
|
3
|
Kavi Kishor PB, Tiozon RN, Fernie AR, Sreenivasulu N. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. TRENDS IN PLANT SCIENCE 2022; 27:1283-1295. [PMID: 36100537 DOI: 10.1016/j.tplants.2022.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA) is known to confer stress tolerance; however, at elevated levels it impairs plant growth under prolonged stress. Paradoxically, at its basal level, ABA plays many vital roles in promoting plant growth and development, including modulation of tillering, flowering, and seed development, as well as seed maturation. In this review, we provide insight into novel discoveries of ABA fluxes, ABA signaling responses, and their impact on yield stability. We discuss ABA homeostasis implicated under pre- and postanthesis drought and its impact on productive tillers, grain number determination, and seed development to address yield stability in cereal crops while considering the new knowledge that emerged from the model plant systems.
Collapse
Affiliation(s)
- Polavarapu B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Rhowell N Tiozon
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany; International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
4
|
Liu H, Song S, Zhang H, Li Y, Niu L, Zhang J, Wang W. Signaling Transduction of ABA, ROS, and Ca 2+ in Plant Stomatal Closure in Response to Drought. Int J Mol Sci 2022; 23:ijms232314824. [PMID: 36499153 PMCID: PMC9736234 DOI: 10.3390/ijms232314824] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Drought is a global threat that affects agricultural production. Plants have evolved several adaptive strategies to cope with drought. Stomata are essential structures for plants to control water status and photosynthesis rate. Stomatal closure is an efficient way for plants to reduce water loss and improve survivability under drought conditions. The opening and closure of stomata depend on the turgor pressure in guard cells. Three key signaling molecules, including abscisic acid (ABA), reactive oxygen species (ROS), and calcium ion (Ca2+), play pivotal roles in controlling stomatal closure. Plants sense the water-deficit signal mainly via leaves and roots. On the one hand, ABA is actively synthesized in root and leaf vascular tissues and transported to guard cells. On the other hand, the roots sense the water-deficit signal and synthesize CLAVATA3/EMBRYO-SURROUNDING REGION RELATED 25 (CLE25) peptide, which is transported to the guard cells to promote ABA synthesis. ABA is perceived by pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) receptors, which inactivate PP2C, resulting in activating the protein kinases SnRK2s. Many proteins regulating stomatal closure are activated by SnRK2s via protein phosphorylation. ABA-activated SnRK2s promote apoplastic ROS production outside of guard cells and transportation into the guard cells. The apoplastic H2O2 can be directly sensed by a receptor kinase, HYDROGEN PEROXIDE-INDUCED CA2+ INCREASES1 (HPCA1), which induces activation of Ca2+ channels in the cytomembrane of guard cells, and triggers an increase in Ca2+ in the cytoplasm of guard cells, resulting in stomatal closure. In this review, we focused on discussing the signaling transduction of ABA, ROS, and Ca2+ in controlling stomatal closure in response to drought. Many critical genes are identified to have a function in stomatal closure under drought conditions. The identified genes in the process can serve as candidate genes for genetic engineering to improve drought resistance in crops. The review summarizes the recent advances and provides new insights into the signaling regulation of stomatal closure in response to water-deficit stress and new clues on the improvement of drought resistance in crops.
Collapse
|
5
|
Borrajo CI, Sánchez-Moreiras AM, Reigosa MJ. Ecophysiological Responses of Tall Wheatgrass Germplasm to Drought and Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:1548. [PMID: 35736699 PMCID: PMC9227858 DOI: 10.3390/plants11121548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Tall wheatgrass (Thinopyrum ponticum (Podp.) Barkworth and D.R. Dewey) is an important, highly salt-tolerant C3 forage grass. The objective of this work was to learn about the ecophysiological responses of accessions from different environmental origins under drought and salinity conditions, to provide information for selecting superior germplasm under combined stress in tall wheatgrass. Four accessions (P3, P4, P5, P9) were irrigated using combinations of three salinity levels (0, 0.1, 0.3 M NaCl) and three drought levels (100%, 50%, 30% water capacity) over 90 days in a greenhouse. The control treatment showed the highest total biomass, but water-use efficiency (WUE), δ13C, proline, N concentration, leaf length, and tiller density were higher under moderate drought or/and salinity stress than under control conditions. In tall wheatgrass, K+ functions as an osmoregulator under drought, attenuated by salinity, and Na+ and Cl- function as osmoregulators under salinity and drought, while proline is an osmoprotector under both stresses. P3 and P9, from environments with mild/moderate stress, prioritized reproductive development, with high evapotranspiration and the lowest WUE and δ13C values. P4 and P5, from more stressful environments, prioritized vegetative development through tillering, showing the lowest evapotranspiration, the highest δ13C values, and different mechanisms for limiting transpiration. The δ13C value, leaf biomass, tiller density, and leaf length had high broad-sense heritability (H2), while the Na+/K+ ratio had medium H2. In conclusion, the combined use of the δ13C value, Na+/K+ ratio, and canopy structural variables can help identify accessions that are well-adapted to drought and salinity, also considering the desirable plant characteristics. Tall wheatgrass stress tolerance could be used to expand forage production under a changing climate.
Collapse
Affiliation(s)
- Celina I. Borrajo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain; (A.M.S.-M.); (M.J.R.)
- Agricultural Experimental Station Cuenca del Salado of INTA (National Institute of Agricultural Technology), Av. Belgrano 416, Rauch 7203, Argentina
| | - Adela M. Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain; (A.M.S.-M.); (M.J.R.)
| | - Manuel J. Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain; (A.M.S.-M.); (M.J.R.)
| |
Collapse
|
6
|
Pan L, George-Jaeggli B, Borrell A, Jordan D, Koller F, Al-Salman Y, Ghannoum O, Cano FJ. Coordination of stomata and vein patterns with leaf width underpins water-use efficiency in a C 4 crop. PLANT, CELL & ENVIRONMENT 2022; 45:1612-1630. [PMID: 34773276 DOI: 10.1111/pce.14225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Despite its importance for crop water use and productivity, especially in drought-affected environments, the underlying mechanisms of variation in intrinsic water-use efficiency (iWUE = net photosynthesis/stomatal conductance for water vapour, gsw ) are not well understood, especially in C4 plants. Recently, we discovered that leaf width (LW) correlated negatively with iWUE and positively with gsw across several C4 grasses. Here, we confirmed these relationships within 48 field-grown genotypes differing in LW in Sorghum bicolor, a C4 crop adapted to dry and hot conditions. We measured leaf gas exchange and modelled leaf energy balance three times a day, alongside anatomical traits as potential predictors of iWUE. LW correlated negatively with iWUE and stomatal density, but positively with gsw , interveinal distance of longitudinal veins, and the percentage of stomatal aperture relative to maximum. Energy balance modelling showed that wider leaves needed to open their stomata more to generate a more negative leaf-to-air temperature difference, especially at midday when air temperatures exceeded 40°C. These results highlight the important role that LW plays in shaping iWUE through coordination of vein and stomatal traits and by affecting stomatal aperture. Therefore, LW could be used as a predictor of higher iWUE among sorghum genotypes.
Collapse
Affiliation(s)
- Ling Pan
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Forestry, Hainan University, Haikou, Hainan, China
| | - Barbara George-Jaeggli
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
- Department of Agriculture and Fisheries, Agri-Science Queensland, Hermitage Research Facility, Warwick, Queensland, Australia
| | - Andrew Borrell
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
| | - David Jordan
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
| | - Fiona Koller
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Francisco J Cano
- ARC Centre of Excellence for Translational Photosynthesis, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Bandurska H. Drought Stress Responses: Coping Strategy and Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070922. [PMID: 35406902 PMCID: PMC9002871 DOI: 10.3390/plants11070922] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 05/10/2023]
Abstract
Plants' resistance to stress factors is a complex trait that is a result of changes at the molecular, metabolic, and physiological levels. The plant resistance strategy means the ability to survive, recover, and reproduce under adverse conditions. Harmful environmental factors affect the state of stress in plant tissues, which creates a signal triggering metabolic events responsible for resistance, including avoidance and/or tolerance mechanisms. Unfortunately, the term 'stress resistance' is often used in the literature interchangeably with 'stress tolerance'. This paper highlights the differences between the terms 'stress tolerance' and 'stress resistance', based on the results of experiments focused on plants' responses to drought. The ability to avoid or tolerate dehydration is crucial in the resistance to drought at cellular and tissue levels (biological resistance). However, it is not necessarily crucial in crop resistance to drought if we take into account agronomic criteria (agricultural resistance). For the plant user (farmer, grower), resistance to stress means not only the ability to cope with a stress factor, but also the achievement of a stable yield and good quality. Therefore, it is important to recognize both particular plant coping strategies (stress avoidance, stress tolerance) and their influence on the resistance, assessed using well-defined criteria.
Collapse
Affiliation(s)
- Hanna Bandurska
- Department of Plant Physiology, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| |
Collapse
|
8
|
Nunes C, Moreira R, Pais I, Semedo J, Simões F, Veloso MM, Scotti-Campos P. Cowpea Physiological Responses to Terminal Drought-Comparison between Four Landraces and a Commercial Variety. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050593. [PMID: 35270063 PMCID: PMC8912480 DOI: 10.3390/plants11050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 05/23/2023]
Abstract
Cowpea (Vigna unguiculata) is a robust legume; nevertheless, yield is always affected by drought, especially when it occurs during reproductive growth and seed filling. Considered a key crop in the effort to attain food security, and a suitable crop for a scenario of climate change, modern disregard for cowpea landraces is particularly detrimental as it causes genetic variability loss, compromising breeding efforts. To contribute to the evaluation of the cowpea germplasm, four Portuguese landraces (L1, L2, L3, L4) were compared with a commercial variety (CV) to evaluate their physiological responses to terminal drought and their inter-variation on productivity, under semi-controlled conditions. Despite no differences in relative water content (RWC) between the CV and the landraces under water deficit (WD), differences in leaf water potential (Ψ) defined the CV as having an isohydric control of stomata in contrast with anisohydric control for landraces. There was an identical decrease in the photosynthetic rate for all plants under stress, caused by both stomatal and non-stomatal limitations, namely, damages at the level of photosystem II as indicated by fluorescence measurements. Instantaneous water use efficiency (iWUE) was improved with stress in L1 and L3. Maintenance of higher relative chlorophyll content for longer periods in the CV revealed a stay-green phenotype. The slim differences observed in terms of stomatal control, iWUE and progression of senescence between the CV and the landraces under WD led to quite important differences in terms of productivity, as inferred from improved yield (number of pods and number of grains per plant). This is a clear result of pragmatic on-farm selection. On one hand it shows that small differences in stomatal responses or water saving strategies under WD may lead to desirable outcomes and should therefore be considered during breeding. On the other hand, it suggests that other traits could be explored in view of drought adaptation. These results highlight the need to preserve and characterize as many genetic pools as possible within a species.
Collapse
Affiliation(s)
- Cátia Nunes
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Rita Moreira
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Isabel Pais
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| | - José Semedo
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| | - Fernanda Simões
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Maria Manuela Veloso
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Paula Scotti-Campos
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
9
|
Farahat E, Cherubini P, Saurer M, Gärtner H. Wood anatomy and tree-ring stable isotopes indicate a recent decline in water-use efficiency in the desert tree Moringa peregrina. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:127-137. [PMID: 34633523 DOI: 10.1007/s00484-021-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The ability of desert plants to adapt to future climate changes and maximize their water-use efficiency will determine their survival. This study uses wood anatomy and δ13C and δ18O isotope analyses to investigate how Moringa peregrina trees in the Egyptian desert have responded to the environment over the last 10 years. Our results show that M. peregrina tree-ring widths (TRWs) have generally declined over the last decade, although individual series are characterized by high variability and low Rbars. Vessel lumen area percentages (VLA%) are low in wet years but increase significantly in dry years, such as the period 2017-2020. Stable δ13C isotope values decrease between 2010 (- 23.4‰) and 2020 (- 24.9‰), reflecting an unexpected response to an increase in drought conditions. The mean δ18O value (± standard error, SE) for the first ten rings of each tree from bark to pith (2020-2010) is 33.0 ‰ ± 0.85 with a range of 29.2-36.3‰, which indicates a common drought signal. The intrinsic water-use efficiency (iWUE) declines gradually with time, from 130.0 µmol mol-1 in 2010 to 119.4 µmol mol-1 in 2020. The intercellular carbon concentration (Ci) and Ci/Ca ratio increase over the same period, likely as a result of decreasing iWUE. The results show that M. peregrina trees seem to cool their leaves and the boundary air at the cost of saving water.
Collapse
Affiliation(s)
- Emad Farahat
- Botany and Microbiology Department, Faculty of Science, Helwan University, P.O. 11790, Cairo, Egypt.
| | - Paolo Cherubini
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Holger Gärtner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
10
|
Suárez JC, Urban MO, Contreras AT, Noriega JE, Deva C, Beebe SE, Polanía JA, Casanoves F, Rao IM. Water Use, Leaf Cooling and Carbon Assimilation Efficiency of Heat Resistant Common Beans Evaluated in Western Amazonia. FRONTIERS IN PLANT SCIENCE 2021; 12:644010. [PMID: 34912351 PMCID: PMC8667034 DOI: 10.3389/fpls.2021.644010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
In our study, we analyzed 30years of climatological data revealing the bean production risks for Western Amazonia. Climatological profiling showed high daytime and nighttime temperatures combined with high relative humidity and low vapor pressure deficit. Our understanding of the target environment allows us to select trait combinations for reaching higher yields in Amazonian acid soils. Our research was conducted using 64 bean lines with different genetic backgrounds. In high temperatures, we identified three water use efficiency typologies in beans based on detailed data analysis on gasometric exchange. Profligate water spenders and not water conservative accessions showed leaf cooling, and effective photosynthate partitioning to seeds, and these attributes were found to be related to higher photosynthetic efficiency. Thus, water spenders and not savers were recognized as heat resistant in acid soil conditions in Western Amazonia. Genotypes such as BFS 10, SEN 52, SER 323, different SEFs (SEF 73, SEF 10, SEF 40, SEF 70), SCR 56, SMR 173, and SMN 99 presented less negative effects of heat stress on yield. These genotypes could be suitable as parental lines for improving dry seed production. The improved knowledge on water-use efficiency typologies can be used for bean crop improvement efforts as well as further studies aimed at a better understanding of the intrinsic mechanisms of heat resistance in legumes.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia, Colombia
| | - Milan O Urban
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Amara Tatiana Contreras
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
| | - Jhon Eduar Noriega
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
| | - Chetan Deva
- Climate Impacts Group, School of Earth and Environment, Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
| | - Stephen E Beebe
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - José A Polanía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fernando Casanoves
- CATIE - Centro Agronómico de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Idupulapati M Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
11
|
Reproductive Stage Drought Tolerance in Wheat: Importance of Stomatal Conductance and Plant Growth Regulators. Genes (Basel) 2021; 12:genes12111742. [PMID: 34828346 PMCID: PMC8623834 DOI: 10.3390/genes12111742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Drought stress requires plants to adjust their water balance to maintain tissue water levels. Isohydric plants (‘water-savers’) typically achieve this through stomatal closure, while anisohydric plants (‘water-wasters’) use osmotic adjustment and maintain stomatal conductance. Isohydry or anisohydry allows plant species to adapt to different environments. In this paper we show that both mechanisms occur in bread wheat (Triticum aestivum L.). Wheat lines with reproductive drought-tolerance delay stomatal closure and are temporarily anisohydric, before closing stomata and become isohydric at higher threshold levels of drought stress. Drought-sensitive wheat is isohydric from the start of the drought treatment. The capacity of the drought-tolerant line to maintain stomatal conductance correlates with repression of ABA synthesis in spikes and flag leaves. Gene expression profiling revealed major differences in the drought response in spikes and flag leaves of both wheat lines. While the isohydric drought-sensitive line enters a passive growth mode (arrest of photosynthesis, protein translation), the tolerant line mounts a stronger stress defence response (ROS protection, LEA proteins, cuticle synthesis). The drought response of the tolerant line is characterised by a strong response in the spike, displaying enrichment of genes involved in auxin, cytokinin and ethylene metabolism/signalling. While isohydry may offer advantages for longer term drought stress, anisohydry may be more beneficial when drought stress occurs during the critical stages of wheat spike development, ultimately improving grain yield.
Collapse
|
12
|
Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA Signaling in Different Developmental Stages in Plants. Cells 2021; 10:cells10081996. [PMID: 34440762 PMCID: PMC8394461 DOI: 10.3390/cells10081996] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
The core abscisic acid (ABA) signaling pathway consists of receptors, phosphatases, kinases and transcription factors, among them ABA INSENSITIVE 5 (ABI5) and ABRE BINDING FACTORs/ABRE-BINDING PROTEINs (ABFs/AREBs), which belong to the BASIC LEUCINE ZIPPER (bZIP) family and control expression of stress-responsive genes. ABI5 is mostly active in seeds and prevents germination and post-germinative growth under unfavorable conditions. The activity of ABI5 is controlled at transcriptional and protein levels, depending on numerous regulators, including components of other phytohormonal pathways. ABFs/AREBs act redundantly in regulating genes that control physiological processes in response to stress during vegetative growth. In this review, we focus on recent reports regarding ABI5 and ABFs/AREBs functions during abiotic stress responses, which seem to be partially overlapping and not restricted to one developmental stage in Arabidopsis and other species. Moreover, we point out that ABI5 and ABFs/AREBs play a crucial role in the core ABA pathway’s feedback regulation. In this review, we also discuss increased stress tolerance of transgenic plants overexpressing genes encoding ABA-dependent bZIPs. Taken together, we show that ABI5 and ABFs/AREBs are crucial ABA-dependent transcription factors regulating processes essential for plant adaptation to stress at different developmental stages.
Collapse
|
13
|
Boanares D, Lemos-Filho JP, Isaias RMS, França MGC. Photosynthetic heat tolerance in plants with different foliar water -uptake strategies. AMERICAN JOURNAL OF BOTANY 2021; 108:811-819. [PMID: 33891308 DOI: 10.1002/ajb2.1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
PREMISE The distribution and even the survival of plant species are influenced by temperature. In an old climatically buffered infertile landscape (OCBIL) in Brazil, we previously characterized different strategies for foliar water uptake (FWU). It is possible that photosystem II tolerance to heat and excessive light intensity varies among species with different FWU capacities. METHODS The relationship between FWU, photoinhibition, and thermotolerance was investigated in seven species from this ecosystem. RESULTS The species with slow water absorption and high water absorption are those that presented less photoinhibition. Contrastingly, the species that have fast and low water absorption presented greater thermotolerance when their leaves are totally hydrated. However, when there is greater leaf dehydration, the most thermotolerant species were those with slow but high water absorption. CONCLUSIONS Foliar water uptake is an important trait for plants to tolerate excessive light intensity and higher temperatures. Plants in this OCBIL may be differentially affected by future global warming, and the best strategy to deal with this expected climate change is with slow and high absorption of water.
Collapse
Affiliation(s)
- Daniela Boanares
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| | - José P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| | - Rosy M S Isaias
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| | - Marcel G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| |
Collapse
|
14
|
Ogawa D, Suzuki Y, Yokoo T, Katoh E, Teruya M, Muramatsu M, Ma JF, Yoshida Y, Isaji S, Ogo Y, Miyao M, Kim JM, Kojima M, Takebayashi Y, Sakakibara H, Takeda S, Okada K, Mori N, Seki M, Habu Y. Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Sci Rep 2021; 11:6280. [PMID: 33737547 PMCID: PMC7973560 DOI: 10.1038/s41598-021-85355-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/18/2021] [Indexed: 01/18/2023] Open
Abstract
Conferring drought resistant traits to crops is one of the major aims of current breeding programs in response to global climate changes. We previously showed that exogenous application of acetic acid to roots of various plants could induce increased survivability under subsequent drought stress conditions, but details of the metabolism of exogenously applied acetic acid, and the nature of signals induced by its application, have not been unveiled. In this study, we show that rice rapidly induces jasmonate signaling upon application of acetic acid, resulting in physiological changes similar to those seen under drought. The major metabolite of the exogenously applied acetic acid in xylem sap was determined as glutamine-a common and abundant component of xylem sap-indicating that acetic acid is not the direct agent inducing the observed physiological responses in shoots. Expression of drought-responsive genes in shoot under subsequent drought conditions was attenuated by acetic acid treatment. These data suggest that acetic acid activates root-to-shoot jasmonate signals that partially overlap with those induced by drought, thereby conferring an acclimated state on shoots prior to subsequent drought.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan.,Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8517, Japan
| | - Yuya Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Takayuki Yokoo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Etsuko Katoh
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, 305-8517, Japan
| | - Miyu Teruya
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Masayuki Muramatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuri Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Shunsaku Isaji
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuko Ogo
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8517, Japan
| | - Mitsue Miyao
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Mikiko Kojima
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yumiko Takebayashi
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Hitoshi Sakakibara
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Yoshiki Habu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan.
| |
Collapse
|
15
|
Hageman A, Van Volkenburgh E. Sink Strength Maintenance Underlies Drought Tolerance in Common Bean. PLANTS 2021; 10:plants10030489. [PMID: 33807580 PMCID: PMC8001466 DOI: 10.3390/plants10030489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Drought is a major limiter of yield in common bean, decreasing food security for those who rely on it as an important source of protein. While drought can have large impacts on yield by reducing photosynthesis and therefore resources availability, source strength is not a reliable indicator of yield. One reason resource availability does not always translate to yield in common bean is because of a trait inherited from wild ancestors. Wild common bean halts growth and seed filling under drought and awaits better conditions to resume its developmental program. This trait has been carried into domesticated lines, where it can result in strong losses of yield in plants already producing pods and seeds, especially since many domesticated lines were bred to have a determinate growth habit. This limits the plants ability to produce another flush of flowers, even if the first set is aborted. However, some bred lines are able to maintain higher yields under drought through maintaining growth and seed filling rates even under water limitations, unlike their wild predecessors. We believe that maintenance of sink strength underlies this ability, since plants which fill seeds under drought maintain growth of sinks generally, and growth of sinks correlates strongly with yield. Sink strength is determined by a tissue’s ability to acquire resources, which in turn relies on resource uptake and metabolism in that tissue. Lines which achieve higher yields maintain higher resource uptake rates into seeds and overall higher partitioning efficiencies of total biomass to yield. Drought limits metabolism and resource uptake through the signaling molecule abscisic acid (ABA) and its downstream affects. Perhaps lines which maintain higher sink strength and therefore higher yields do so through decreased sensitivity to or production of ABA.
Collapse
|
16
|
Xie Y, Bao C, Chen P, Cao F, Liu X, Geng D, Li Z, Li X, Hou N, Zhi F, Niu C, Zhou S, Zhan X, Ma F, Guan Q. Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:592-607. [PMID: 32995885 DOI: 10.1093/jxb/eraa449] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The phytohormone abscisic acid (ABA) is involved in various plant processes. In response to drought stress, plants quickly accumulate ABA, but the regulatory mechanism of ABA accumulation is largely unknown, especially in woody plants. In this study, we report that MdMYB88 and MdMYB124 are myeloblastosis (MYB) transcription factors critical for ABA accumulation in apple trees (Malus x domestica) following drought, and this regulation is negatively controlled by ABA. MdMYB88 and MdMYB124 positively regulate leaf water transpiration, photosynthetic capacity, and stress endurance in apple trees under drought conditions. MdMYB88 and MdMYB124 regulate the expression of biosynthetic and catabolic genes of ABA, as well as drought- and ABA- responsive genes. MdMYB88 associates with promoter regions of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase 3 (NCED3). Finally, expression of MdMYB88 and MdMYB124 is repressed by ABA. Our results identify a feedback regulation of MdMYB88 and MdMYB124 in modulating ABA homeostasis in apple trees.
Collapse
Affiliation(s)
- Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Institute for Advanced Studies, Wuhan University, Wuhan, P.R. China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaofang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd., Hawke's Bay, New Zealand
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
17
|
Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186322] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The observation of a much-improved fitness of wild-type plants over abscisic acid (ABA)-deficient mutants during drought has led researchers from all over to world to perform experiments aiming at a better understanding of how this hormone modulates the physiology of plants under water-limited conditions. More recently, several promising approaches manipulating ABA biosynthesis and signaling have been explored to improve water use efficiency and confer drought tolerance to major crop species. Here, we review recent progress made in the last decade on (i) ABA biosynthesis, (ii) the roles of ABA on plant-water relations and on primary and secondary metabolisms during drought, and (iii) the regulation of ABA levels and perception to improve water use efficiency and drought tolerance in crop species.
Collapse
|
18
|
Lamarque LJ, Delzon S, Toups H, Gravel AI, Corso D, Badel E, Burlett R, Charrier G, Cochard H, Jansen S, King A, Torres-Ruiz JM, Pouzoulet J, Cramer GR, Thompson AJ, Gambetta GA. Over-accumulation of abscisic acid in transgenic tomato plants increases the risk of hydraulic failure. PLANT, CELL & ENVIRONMENT 2020; 43:548-562. [PMID: 31850535 DOI: 10.1111/pce.13703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 05/27/2023]
Abstract
Climate change threatens food security, and plant science researchers have investigated methods of sustaining crop yield under drought. One approach has been to overproduce abscisic acid (ABA) to enhance water use efficiency. However, the concomitant effects of ABA overproduction on plant vascular system functioning are critical as it influences vulnerability to xylem hydraulic failure. We investigated these effects by comparing physiological and hydraulic responses to water deficit between a tomato (Solanum lycopersicum) wild type control (WT) and a transgenic line overproducing ABA (sp12). Under well-watered conditions, the sp12 line displayed similar growth rate and greater water use efficiency by operating at lower maximum stomatal conductance. X-ray microtomography revealed that sp12 was significantly more vulnerable to xylem embolism, resulting in a reduced hydraulic safety margin. We also observed a significant ontogenic effect on vulnerability to xylem embolism for both WT and sp12. This study demonstrates that the greater water use efficiency in the tomato ABA overproducing line is associated with higher vulnerability of the vascular system to embolism and a higher risk of hydraulic failure. Integrating hydraulic traits into breeding programmes represents a critical step for effectively managing a crop's ability to maintain hydraulic conductivity and productivity under water deficit.
Collapse
Affiliation(s)
- Laurent J Lamarque
- BIOGECO, INRA, Univ. Bordeaux, Pessac, France
- EGFV, Bordeaux-Sciences Agro, INRA, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| | | | - Haley Toups
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | | | | | - Eric Badel
- INRA, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | | | | | - Hervé Cochard
- INRA, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Andrew King
- Synchrotron SOLEIL, Gif-sur-Yvette Cedex, France
| | | | - Jérôme Pouzoulet
- EGFV, Bordeaux-Sciences Agro, INRA, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Andrew J Thompson
- Cranfield Soil an Agrifood Institute, Cranfield University, Bedfordshire, UK
| | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRA, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| |
Collapse
|
19
|
Merlaen B, De Keyser E, Ding L, Leroux O, Chaumont F, Van Labeke MC. Physiological responses and aquaporin expression upon drought and osmotic stress in a conservative vs prodigal Fragaria x ananassa cultivar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:95-106. [PMID: 31675527 DOI: 10.1016/j.plaphy.2019.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
In order to improve the understanding of plant water relations under drought stress, the water use behavior of two Fragaria x ananassa Duch. cultivars, contrasting in their drought stress phenotype, is identified. Under drought, stomatal closure is gradual in Figaro. Based on this, we associate Figaro with conservative water use behavior. Contrarily, drought stress causes a sudden and steep decrease in stomatal conductance in Flair, leading to the identification of Flair as a prodigal water use behavior cultivar. Responses to progressive drought on the one hand and an osmotic shock on the other hand are compared between these two cultivars. Tonoplast intrinsic protein mRNA levels are shown to be upregulated under progressive drought in the roots of Figaro only. Otherwise, aquaporin expression upon drought or osmotic stress is similar between both cultivars, i.e. plasma membrane intrinsic proteins are downregulated under progressive drought in leaves and under short term osmotic shock in roots. In response to osmotic shock, root hydraulic conductivity did not change significantly and stomatal closure is equal in both cultivars. De novo abscisic acid biosynthesis is upregulated in the roots of both cultivars under progressive drought.
Collapse
Affiliation(s)
- Britt Merlaen
- Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090, Melle, Belgium.
| | - Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 5, 1348, Louvain-La-Neuve, Belgium.
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, K L Ledeganckstraat 35, 9000, Gent, Belgium.
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 5, 1348, Louvain-La-Neuve, Belgium.
| | - Marie-Christine Van Labeke
- Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.
| |
Collapse
|
20
|
Smith MR, Fuentes D, Merchant A. Chemical and isotopic markers detect water deficit and its influence on nutrient allocation in Phaseolus vulgaris. PHYSIOLOGIA PLANTARUM 2019; 167:391-403. [PMID: 30548265 DOI: 10.1111/ppl.12899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The impact of drought on plant growth and yield has been widely studied and is considered a major limitation to crops reaching yield potential. Less known is the impact of water deficit on the nutritional quality of the resulting yield. This study characterised the impact of water deficit on carbon assimilation, modelled water use efficiency from carbon isotope discrimination and analysed the concentration of mineral nutrients, amino acids and sugars in leaf, phloem and pod pools collected from Phaseolus vulgaris L. (common bean) grown in a controlled environment. Water deficit led to an isohydric response, impacting on carbon isotope abundance in all tissues though not translating to any significant treatment differences in water use efficiency or nutrient content in tissues over the course of plant development. The results obtained in this study demonstrate that nutrient content of P. vulgaris yield was not impacted by the availability of water. The absence of significant changes in the nutrient content of individual seeds highlights the plasticity of developing reproductive tissue to changes in whole plant water availability.
Collapse
Affiliation(s)
- Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - David Fuentes
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Merchant
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Belachew KY, Nagel KA, Poorter H, Stoddard FL. Association of Shoot and Root Responses to Water Deficit in Young Faba Bean ( Vicia faba L.) Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1063. [PMID: 31552067 PMCID: PMC6738164 DOI: 10.3389/fpls.2019.01063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/06/2019] [Indexed: 05/06/2023]
Abstract
Water deficit may occur at any stage of plant growth, with any intensity and duration. Phenotypic acclimation and the mechanism of adaptation vary with the evolutionary background of germplasm accessions and their stage of growth. Faba bean is considered sensitive to various kinds of drought. Hence, we conducted a greenhouse experiment in rhizotrons under contrasting watering regimes to explore shoot and root traits and drought avoidance mechanisms in young faba bean plants. Eight accessions were investigated for shoot and root morphological and physiological responses in two watering conditions with four replications. Pre-germinated seedlings were transplanted into rhizotron boxes filled with either air-dried or moist peat. The water-limited plants received 50-ml water at transplanting and another 50-ml water 4 days later, then no water was given until the end of the experimental period, 24 days after transplanting. The well-watered plants received 100 ml of water every 12 h throughout the experimental period. Root, stem, and leaf dry mass, their mass fractions, their dry matter contents, apparent specific root length and density, stomatal conductance, SPAD value, and Fv/Fm were recorded. Water deficit resulted in 3-4-fold reductions in shoot biomass, root biomass, and stomatal conductance along with 1.2-1.4-fold increases in leaf and stem dry matter content and SPAD values. Total dry mass and apparent root length density showed accession by treatment interactions. Accessions DS70622, DS11320, and ILB938/2 shared relatively high values of total dry mass and low values of stomatal conductance under water deficit but differed in root distribution parameters. In both treatments, DS70622 was characterized by finer roots that were distributed in both depth and width, whereas DS11320 and ILB938/2 produced less densely growing, thicker roots. French accession Mélodie/2 was susceptible to drought in the vegetative phase, in contrast to previous results from the flowering phase, showing the importance of timing of drought stress on the measured response. Syrian accession DS70622 explored the maximum root volume and maintained its dry matter production, with the difference from the other accessions being particularly large in the water-limited treatment, so it is a valuable source of traits for avoiding transient drought.
Collapse
Affiliation(s)
- Kiflemariam Y. Belachew
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Plant Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Kerstin A. Nagel
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hendrik Poorter
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Frederick L. Stoddard
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Dolferus R, Thavamanikumar S, Sangma H, Kleven S, Wallace X, Forrest K, Rebetzke G, Hayden M, Borg L, Smith A, Cullis B. Determining the Genetic Architecture of Reproductive Stage Drought Tolerance in Wheat Using a Correlated Trait and Correlated Marker Effect Model. G3 (BETHESDA, MD.) 2019; 9:473-489. [PMID: 30541928 PMCID: PMC6385972 DOI: 10.1534/g3.118.200835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
Water stress during reproductive growth is a major yield constraint for wheat (Triticum aestivum L). We previously established a controlled environment drought tolerance phenotyping method targeting the young microspore stage of pollen development. This method eliminates stress avoidance based on flowering time. We substituted soil drought treatments by a reproducible osmotic stress treatment using hydroponics and NaCl as osmolyte. Salt exclusion in hexaploid wheat avoids salt toxicity, causing osmotic stress. A Cranbrook x Halberd doubled haploid (DH) population was phenotyped by scoring spike grain numbers of unstressed (SGNCon) and osmotically stressed (SGNTrt) plants. Grain number data were analyzed using a linear mixed model (LMM) that included genetic correlations between the SGNCon and SGNTrt traits. Viewing this as a genetic regression of SGNTrt on SGNCon allowed derivation of a stress tolerance trait (SGNTol). Importantly, and by definition of the trait, the genetic effects for SGNTol are statistically independent of those for SGNCon. Thus they represent non-pleiotropic effects associated with the stress treatment that are independent of the control treatment. QTL mapping was conducted using a whole genome approach in which the LMM included all traits and all markers simultaneously. The marker effects within chromosomes were assumed to follow a spatial correlation model. This resulted in smooth marker profiles that could be used to identify positions of putative QTL. The most influential QTL were located on chromosome 5A for SGNTol (126cM; contributed by Halberd), 5A for SGNCon (141cM; Cranbrook) and 2A for SGNTrt (116cM; Cranbrook). Sensitive and tolerant population tail lines all showed matching soil drought tolerance phenotypes, confirming that osmotic stress is a valid surrogate screening method.
Collapse
Affiliation(s)
- Rudy Dolferus
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | | | - Harriet Sangma
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Sue Kleven
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Xiaomei Wallace
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Kerrie Forrest
- Department of Environment and Primary Industry, AgriBioSciences, La Trobe R&D Park, Bundoora, VIC 3083, Australia
| | - Gregory Rebetzke
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Matthew Hayden
- Department of Environment and Primary Industry, AgriBioSciences, La Trobe R&D Park, Bundoora, VIC 3083, Australia
| | - Lauren Borg
- National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics & Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong NSW 2522, Australia
| | - Alison Smith
- National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics & Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong NSW 2522, Australia
| | - Brian Cullis
- National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics & Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong NSW 2522, Australia
| |
Collapse
|
23
|
Smith MR, Rao IM, Merchant A. Source-Sink Relationships in Crop Plants and Their Influence on Yield Development and Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2018; 9:1889. [PMID: 30619435 PMCID: PMC6306447 DOI: 10.3389/fpls.2018.01889] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/06/2018] [Indexed: 05/02/2023]
Abstract
For seed crops, yield is the cumulative result of both source and sink strength for photoassimilates and nutrients over the course of seed development. Source strength for photoassimilates is dictated by both net photosynthetic rate and the rate of photoassimilate remobilisation from source tissues. This review focuses on the current understanding of how the source-sink relationship in crop plants influences rates of yield development and the resilience of yield and nutritional quality. We present the limitations of current approaches to accurately measure sink strength and emphasize differences in coordination between photosynthesis and yield under varying environmental conditions. We highlight the potential to exploit source-sink dynamics, in order to improve yields and emphasize the importance of resilience in yield and nutritional quality with implications for plant breeding strategies.
Collapse
Affiliation(s)
- Millicent R. Smith
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | | | - Andrew Merchant
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci U S A 2018; 115:6058-6063. [PMID: 29784797 PMCID: PMC6003368 DOI: 10.1073/pnas.1804774115] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abscisic acid (ABA) is a key phytohormone that controls plant growth and stress responses. It is sensed by the pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory components of the ABA receptor (RCAR) family of proteins. Here, we utilized CRISPR/Cas9 technology to edit group I (PYL1-PYL6 and PYL12) and group II (PYL7-PYL11 and PYL13) PYL genes in rice. Characterization of the combinatorial mutants suggested that genes in group I have more important roles in stomatal movement, seed dormancy, and growth regulation than those in group II. Among all of the single pyl mutants, only pyl1 and pyl12 exhibited significant defects in seed dormancy. Interestingly, high-order group I mutants, but not any group II mutants, displayed enhanced growth. Among group I mutants, pyl1/4/6 exhibited the best growth and improved grain productivity in natural paddy field conditions, while maintaining nearly normal seed dormancy. Our results suggest that a subfamily of rice PYLs has evolved to have particularly important roles in regulating plant growth and reveal a genetic strategy to improve rice productivity.
Collapse
Affiliation(s)
- Chunbo Miao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Lihong Xiao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Kai Hua
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Changsong Zou
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China;
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
25
|
Miret JA, Munné‐Bosch S, Dijkwel PP. ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:530-544. [PMID: 28703416 PMCID: PMC5787841 DOI: 10.1111/pbi.12793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 05/16/2023]
Abstract
Postharvest senescence and associated stresses limit the shelf life and nutritional value of vegetables. Improved understanding of these processes creates options for better management. After harvest, controlled exposure to abiotic stresses and/or exogenous phytohormones can enhance nutraceutical, organoleptic and commercial longevity traits. With leaf senescence, abscisic acid (ABA) contents progressively rise, but the actual biological functions of this hormone through senescence still need to be clarified. Postharvest senescence of detached green cabbage leaves (Brassica oleracea var. capitata) was characterized under cold (4 °C) and room temperature (25 °C) storage conditions. Hormonal profiling of regions of the leaf blade (apical, medial, basal) revealed a decrease in cytokinins contents during the first days under both conditions, while ABA only increased at 25 °C. Treatments with ABA and a partial agonist of ABA (pyrabactin) for 8 days did not lead to significant effects on water and pigment contents, but increased cell integrity and altered 1-aminocyclopropane-1-carboxylic acid (ACC) and cytokinins contents. Transcriptome analysis showed transcriptional regulation of ABA, cytokinin and ethylene metabolism and signalling; proteasome components; senescence regulation; protection of chloroplast functionality and cell homeostasis; and suppression of defence responses (including glucosinolates and phenylpropanoids metabolism). It is concluded that increasing the concentration of ABA (or its partial agonist pyrabactin) from the start of postharvest suppresses senescence of stored leaves, changes the transcriptional regulation of glucosinolates metabolism and down-regulates biotic stress defence mechanisms. These results suggest a potential for manipulating ABA signalling for improving postharvest quality of leafy vegetables stored at ambient temperature.
Collapse
Affiliation(s)
- Javier A. Miret
- Department of Evolutionary BiologyEcology and Environmental SciencesPlant Physiology Section, Faculty of BiologyBarcelona UniversityBarcelonaSpain
| | - Sergi Munné‐Bosch
- Department of Evolutionary BiologyEcology and Environmental SciencesPlant Physiology Section, Faculty of BiologyBarcelona UniversityBarcelonaSpain
| | - Paul P. Dijkwel
- Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
26
|
Veselov DS, Sharipova GV, Veselov SY, Dodd IC, Ivanov I, Kudoyarova GR. Rapid changes in root HvPIP2;2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:143-149. [PMID: 32291028 DOI: 10.1071/fp16242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 05/13/2023]
Abstract
To address the involvement of abscisic acid (ABA) in regulating transpiration and root hydraulic conductivity (LpRoot) and their relative importance for maintaining leaf hydration, the ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) imposed by air warming. WT plants were capable of maintaining leaf water potential (ψL) that was likely due to increased LpRoot enabling higher water flow from the roots, which increased in response to air warming. The increased LpRoot and immunostaining for HvPIP2;2 aquaporins (AQPs) correlated with increased root ABA content of WT plants when exposed to increased air temperature. The failure of Az34 to maintain ψL during air warming may be due to lower LpRoot than WT plants, and an inability to respond to changes in air temperature. The correlation between root ABA content and LpRoot was further supported by increased root hydraulic conductivity in both genotypes when treated with exogenous ABA (10-5 M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic conductivity) seems important to maintain leaf hydration.
Collapse
Affiliation(s)
- Dmitry S Veselov
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| | - Guzel V Sharipova
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| | | | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancashire LA1 4YQ, UK
| | - Igor Ivanov
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| | - Guzel R Kudoyarova
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| |
Collapse
|
27
|
Humplík JF, Bergougnoux V, Van Volkenburgh E. To Stimulate or Inhibit? That Is the Question for the Function of Abscisic Acid. TRENDS IN PLANT SCIENCE 2017; 22:830-841. [PMID: 28843765 DOI: 10.1016/j.tplants.2017.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/12/2017] [Accepted: 07/26/2017] [Indexed: 05/18/2023]
Abstract
Physiologically, abscisic acid (ABA) is believed to be a general inhibitor of plant growth, including during the crucial early development of seedlings. However, this view contradicts many reports of stimulatory effects of ABA that, so far, have not been considered in the debate concerning ABA's function in plant development. To address this apparent contradiction, we propose a hypothetical mechanism to explain how ABA might contribute to the promotion of cell expansion. We wish to overturn conventional views on ABA's role during juvenile plant development and put forward the idea that, as for other phytohormones, the role of ABA is determined by dose and sensitivity and ranges from stimulatory to inhibitory effects.
Collapse
Affiliation(s)
- Jan F Humplík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Czech Academy of Sciences and Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; These authors contributed equally to the work.
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; These authors contributed equally to the work
| | | |
Collapse
|
28
|
Saradadevi R, Palta JA, Siddique KHM. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:1251. [PMID: 28769957 PMCID: PMC5513975 DOI: 10.3389/fpls.2017.01251] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/03/2017] [Indexed: 05/19/2023]
Abstract
End-of-season drought or "terminal drought," which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE). When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA) is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under terminal drought. Ease of collecting leaf samples to quantify ABA compared to extracting xylem sap will facilitate rapid screening of a large number of germplasm for drought tolerance.
Collapse
Affiliation(s)
- Renu Saradadevi
- School of Agriculture and Environment, The University of Western Australia, PerthWA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, PerthWA, Australia
| | - Jairo A. Palta
- School of Agriculture and Environment, The University of Western Australia, PerthWA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, PerthWA, Australia
- CSIRO Agriculture and Food, WembleyWA, Australia
| | - Kadambot H. M. Siddique
- School of Agriculture and Environment, The University of Western Australia, PerthWA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, PerthWA, Australia
| |
Collapse
|
29
|
Hasanuzzaman M, Davies NW, Shabala L, Zhou M, Brodribb TJ, Shabala S. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC PLANT BIOLOGY 2017; 17:107. [PMID: 28629324 PMCID: PMC5477354 DOI: 10.1186/s12870-017-1054-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/06/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. RESULTS Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. CONCLUSIONS Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, -1207 Bangladesh
| | - Noel W. Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tas 7001 Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
| | - Tim J. Brodribb
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, Tas 7001 Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001 Australia
| |
Collapse
|
30
|
Puértolas J, Larsen EK, Davies WJ, Dodd IC. Applying 'drought' to potted plants by maintaining suboptimal soil moisture improves plant water relations. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2413-2424. [PMID: 28419363 PMCID: PMC5447888 DOI: 10.1093/jxb/erx116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pot-based phenotyping of drought response sometimes maintains suboptimal soil water content by applying high-frequency deficit irrigation (HFDI). We examined the effect of this treatment on water and abscisic acid (ABA) relations of two species (Helianthus annuus and Populus nigra). Suboptimal soil water content was maintained by frequent irrigation, and compared with the effects of withholding water and with adequate irrigation. At the same average whole-pot soil moisture, frequent irrigation resulted in larger soil water content gradients, lower root and xylem ABA concentrations ([X-ABA]), along with higher transpiration rates or stomatal conductance, compared with plants from which water was withheld. [X-ABA] was not uniquely related to transpiration rate or stomatal conductance, as frequently irrigated plants showed partial stomatal closure compared with well-watered controls, without differing in [X-ABA] and, in H. annuus, [ABA]leaf. In two P. nigra genotypes differing in leaf area, the ratio between leaf area and root weight in the upper soil layer influenced the soil water content of this layer. Maintaining suboptimal soil water content alters water relations, which might become dependent on root distribution and leaf area, which influences soil water content gradients. Thus genotypic variation in 'drought tolerance' derived from phenotyping platforms must be carefully interpreted.
Collapse
Affiliation(s)
- Jaime Puértolas
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Elisabeth K Larsen
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - William J Davies
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
31
|
Polania J, Rao IM, Cajiao C, Grajales M, Rivera M, Velasquez F, Raatz B, Beebe SE. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23-24 × SEA 5 of Common Bean. FRONTIERS IN PLANT SCIENCE 2017; 8:296. [PMID: 28316609 PMCID: PMC5334335 DOI: 10.3389/fpls.2017.00296] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/17/2017] [Indexed: 05/08/2023]
Abstract
Drought is the major abiotic stress factor limiting yield of common bean (Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23-24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean.
Collapse
Affiliation(s)
- Jose Polania
- Centro Internacional de Agricultura TropicalCali, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.
Collapse
|
33
|
Polania J, Poschenrieder C, Rao I, Beebe S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2017; 29:143-154. [PMID: 33552846 PMCID: PMC7797623 DOI: 10.1007/s40626-017-0090-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 05/18/2023]
Abstract
Drought stress limits growth and yield of crops, particularly under smallholder production systems with minimal use of inputs and edaphic limitations such as nitrogen (N) deficiency. The development of genotypes adapted to these conditions through genetic improvement is an important strategy to address this limitation. The identification of morpho-physiological traits associated with drought resistance contributes to increasing the efficiency of breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool was evaluated. A greenhouse study using soil cylinders was conducted to determine root vigor traits (total root length and fine root production) under drought stress. Two field trials were conducted to determinate grain yield, symbiotic nitrogen fixation (SNF) ability and other shoot traits under drought stress. Field data on grain yield and other shoot traits measured under drought were related with the greenhouse data on root traits under drought conditions to test the relationships between shoot traits and root traits. Response of root vigor to drought stress appeared to be related with ideotypes of water use (water savers and water spenders). The water spender ideotypes presented deeper root system, while the water saver ideotypes showed a relatively shallower root system. Increase in SNF ability under drought stress was associated with greater values of mean root diameter while greater acquisition of N from soil was associated with finer root system. We identified seven common bean lines (SEA 15, NCB 280, SCR 16, SMC 141, BFS 29, BFS 67 and SER 119) that showed greater root vigor under drought stress in the greenhouse and higher values of grain yield under drought stress in the field. These lines could serve as parents for improving drought resistance in common bean.
Collapse
Affiliation(s)
- Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
- e-mail:
| | - Charlotte Poschenrieder
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Idupulapati Rao
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Present address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Stephen Beebe
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|
34
|
Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. PLANT, CELL & ENVIRONMENT 2017; 40:4-10. [PMID: 27417527 DOI: 10.1111/pce.12800] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 05/03/2023]
Abstract
Osmotic adjustment (OA) and cellular compatible solute accumulation are widely recognized to have a role in plant adaptation to dehydration mainly through turgor maintenance and the protection of specific cellular functions by defined solutes. At the same time, there has been an ongoing trickle of skepticism in the literature about the role of OA in supporting crop yield under drought stress. Contrarian reviews argued that OA did not sustain turgor or that it served mainly for plant survival rather than productivity. This critical review examined 26 published studies where OA was compared with yield under drought stress in variable genotypes of 12 crops, namely, barley, wheat, maize, sorghum, chickpea, pea, pigeon pea, soybean, canola, mustard, castor bean and sunflower. Over all crops a positive and significant association between OA and yield under drought stress were found in 24 out of 26 cases. Considering that it is generally difficult to find a singular plant trait responsible for yield advantage of numerous crops under different drought stress conditions, this evidence is no less than remarkable as proof that OA sustains crop yield under drought stress.
Collapse
Affiliation(s)
- Abraham Blum
- Plantstress.com, PO Box 16246, Tel Aviv, 62641, Israel
| |
Collapse
|
35
|
Turner NC. Turgor maintenance by osmotic adjustment, an adaptive mechanism for coping with plant water deficits. PLANT, CELL & ENVIRONMENT 2017; 40:1-3. [PMID: 27723951 DOI: 10.1111/pce.12839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 05/03/2023]
Affiliation(s)
- Neil C Turner
- The UWA Institute of Agriculture, The University of Western Australia, M082, Locked Bag 5005, Perth, WA, 6001, Australia
| |
Collapse
|
36
|
Kalapos B, Dobrev P, Nagy T, Vítámvás P, Györgyey J, Kocsy G, Marincs F, Galiba G. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:86-97. [PMID: 27969000 DOI: 10.1016/j.plantsci.2016.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The effect of one-day cold-shock on the transcriptome and phytohormones (auxin, cytokinins, abscisic, jasmonic and salicylic acids) was characterised in freezing-sensitive (Chinese Spring), highly freezing-tolerant (Cheyenne) and moderately freezing-tolerant (Chinese Spring substituted with Cheyenne's 5A chromosome) wheat genotypes. Altogether, 636 differentially expressed genes responding to cold-shock were identified. Defence genes encoding LEA proteins, dehydrins, chaperons and other temperature-stress responsive proteins were up-regulated in a genotype-independent manner. Abscisic acid was up-regulated by cold accompanied by adherent expression of its metabolic genes. Data revealed the involvement of particular routes within ABA-dependent signalling in response to cold-shock in the examined genotypes. Cold-shock affected gene expression along carbohydrate metabolic pathways. In photosynthesis, cold-shock changed the expression of a number of genes in the same way as it was previously reported for ABA. Overrepresentation analysis of the differentially expressed genes supported the ABA-signalling and carbohydrate metabolism results, and revealed some pronounced biological process GO categories associated with the cold-shock response of the genotypes. Protein network analysis indicated differences between the genotypes in the information flow along their signal perception and transduction, suggesting different biochemical and cellular strategies in their reaction to cold-shock.
Collapse
Affiliation(s)
- Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Brunszvik u. 2, Hungary; Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360, Keszthely, Festetics u. 7, Hungary.
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic.
| | - Tibor Nagy
- Agricultural Biotechnology Institute, NAIK, 2100 Gödöllő, Szent-Györgyi Albert u. 4, Hungary.
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovska 507/73 16106 Prague 6, Czech Republic.
| | - János Györgyey
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726, Szeged, Temesvári krt. 62, Hungary.
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Brunszvik u. 2, Hungary.
| | - Ferenc Marincs
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Brunszvik u. 2, Hungary; Agricultural Biotechnology Institute, NAIK, 2100 Gödöllő, Szent-Györgyi Albert u. 4, Hungary.
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Brunszvik u. 2, Hungary; Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360, Keszthely, Festetics u. 7, Hungary.
| |
Collapse
|
37
|
Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:54-64. [PMID: 27593463 DOI: 10.1016/j.plantsci.2016.06.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 05/24/2023]
Abstract
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
Collapse
Affiliation(s)
- M M Chaves
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - J M Costa
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - O Zarrouk
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C Pinheiro
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - C M Lopes
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - J S Pereira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
38
|
de Ollas C, Dodd IC. Physiological impacts of ABA-JA interactions under water-limitation. PLANT MOLECULAR BIOLOGY 2016; 91:641-50. [PMID: 27299601 PMCID: PMC4932129 DOI: 10.1007/s11103-016-0503-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/18/2016] [Indexed: 05/03/2023]
Abstract
Plant responses to drought stress depend on highly regulated signal transduction pathways with multiple interactions. This complex crosstalk can lead to a physiological outcome of drought avoidance or tolerance/resistance. ABA is the principal mediator of these responses due to the regulation of stomatal closure that determines plant growth and survival, but also other strategies of drought resistance such as osmotic adjustment. However, other hormones such as JA seem responsible for regulating a subset of plant responses to drought by regulating ABA biosynthesis and accumulation and ABA-dependent signalling, but also by ABA independent pathways. Here, we review recent reports of ABA-JA hormonal and molecular interactions within a physiological framework of drought tolerance. Understanding the physiological significance of this complex regulation offers opportunities to find strategies of drought tolerance that avoid unwanted side effects that limit growth and yield, and may allow biotechnological crop improvement.
Collapse
Affiliation(s)
- Carlos de Ollas
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ian C. Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
39
|
Reynolds M, Langridge P. Physiological breeding. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:162-71. [PMID: 27161822 DOI: 10.1016/j.pbi.2016.04.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 05/18/2023]
Abstract
Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates.
Collapse
Affiliation(s)
- Matthew Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico, D.F., Mexico.
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
40
|
Polania JA, Poschenrieder C, Beebe S, Rao IM. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:660. [PMID: 27242861 PMCID: PMC4864351 DOI: 10.3389/fpls.2016.00660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/29/2016] [Indexed: 05/05/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two groups, water savers and water spenders. Pod harvest index could be a useful selection criterion in breeding programs to select for drought resistance in common bean.
Collapse
Affiliation(s)
- Jose A. Polania
- Centro Internacional de Agricultura TropicalSantiago de Cali, Colombia
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de BarcelonaBellaterra, Spain
| | - Charlotte Poschenrieder
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de BarcelonaBellaterra, Spain
| | - Stephen Beebe
- Centro Internacional de Agricultura TropicalSantiago de Cali, Colombia
| | | |
Collapse
|
41
|
Kissoudis C, van de Wiel C, Visser RG, van der Linden G. Future-proof crops: challenges and strategies for climate resilience improvement. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:47-56. [PMID: 26874966 DOI: 10.1016/j.pbi.2016.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 05/13/2023]
Abstract
Breeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as prolonged and/or increased stress intensities, CO2 increase and stress combinations, hierarchizing this information is key to accelerating crop improvement towards sustained or even increased productivity. We propose traits with high scalability to yield and crop performance that can be targeted for improvement and provide examples of recent discoveries with potential applicability in breeding. Critical to success is the integrated analysis of the phenotypes of genetic variants across different environmental variables using modelling approaches and high-throughput phenotyping.
Collapse
Affiliation(s)
- Christos Kissoudis
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Clemens van de Wiel
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Richard Gf Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Gerard van der Linden
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700AJ Wageningen, The Netherlands.
| |
Collapse
|
42
|
Blum A. Stress, strain, signaling, and adaptation--not just a matter of definition. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:562-565. [PMID: 26585225 DOI: 10.1093/jxb/erv497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
43
|
Aroca R, Ferrante A, Vernieri P, Chrispeels MJ. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. ANNALS OF BOTANY 2006; 130:735-745. [PMID: 28303406 DOI: 10.1007/s10265-017-0920-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/23/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.
Collapse
Affiliation(s)
- Ricardo Aroca
- Division of Biological Sciences, University of California San Diego La Jolla, CA 92093-0116, USA.
| | | | | | | |
Collapse
|