1
|
Ma Q, Zhao C, Hu S, Zuo K. Arabidopsis calcium-dependent protein kinase CPK6 regulates drought tolerance under high nitrogen by the phosphorylation of NRT1.1. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5682-5693. [PMID: 37463320 DOI: 10.1093/jxb/erad277] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plant growth and development, and its availability is regulated to some extent by drought stress. Calcium-dependent protein kinases (CPKs) are a unique family of Ca2+ sensors with diverse functions in N uptake and drought-tolerance signaling pathways; however, how CPKs are involved in the crosstalk between drought stress and N transportation remains largely unknown. Here, we identify the drought-tolerance function of Arabidopsis CPK6 under high N conditions. CPK6 expression was induced by ABA and drought treatments. The mutant cpk6 was insensitive to ABA treatment and low N, but was sensitive to drought only under high N conditions. CPK6 interacted with the NRT1.1 (CHL1) protein and phosphorylated the Thr447 residue, which then repressed the NO3- transporting activity of Arabidopsis under high N and drought stress. Taken together, our results show that CPK6 regulates Arabidopsis drought tolerance through changing the phosphorylation state of NRT1.1, and improve our knowledge of N uptake in plants during drought stress.
Collapse
Affiliation(s)
- Qijun Ma
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyan Zhao
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Hu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Mishra D, Chitara MK, Upadhayay VK, Singh JP, Chaturvedi P. Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet ( Eleusine coracana (L.) Gaertn.) under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137002. [PMID: 37255562 PMCID: PMC10225717 DOI: 10.3389/fpls.2023.1137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Drought is a leading threat that impinges on plant growth and productivity. Nanotechnology is considered an adequate tool for resolving various environmental issues by offering avant-garde and pragmatic solutions. Using nutrients in the nano-scale including CaP-U NPs is a novel fertilization strategy for crops. The present study was conducted to develop and utilize environment-friendly urea nanoparticles (NPs) based nano-fertilizers as a crop nutrient. The high solubility of urea molecules was controlled by integrating them with a matrix of calcium phosphate nanoparticles (CaP NPs). CaP NPs contain high phosphorous and outstanding biocompatibility. Scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) were used to characterize the fabricated NPs. FE-SEM determined no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. TEM examination confirmed a fiber-like structure of CaP-U NPs with 15 to 50 nm diameter and 100 to 200 nm length. The synthesized CaP-U NPs and bulk urea (0.0, 0.1% and 0.5%) were applied by foliar sprays at an interval of 15 days on pre-sowed VL-379 variety of finger millet (Eleusine coracana (L.) Gaertn.), under irrigated and drought conditions. The application of the CaP-U NPs significantly enhanced different plant growth attributes such as shoot length (29.4 & 41%), root length (46.4 & 51%), shoot fresh (33.6 & 55.8%) and dry weight (63 & 59.1%), and root fresh (57 & 61%) and dry weight (78 & 80.7%), improved pigment system (chlorophyll) and activated plant defense enzymes such as proline (35.4%), superoxide dismutase (47.7%), guaiacol peroxidase (30.2%), ascorbate peroxidase (70%) under both irrigated and drought conditions. Superimposition of five treatment combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Overall, our findings suggested that synthesized CaP-U NPs treatment of finger millet seeds improved plant growth and enzymatic regulation, particularly more in drought conditions providing insight into the strategy for not only finger millet but probably for other commercial cereals crops which suffer from fluctuating environmental conditions.
Collapse
Affiliation(s)
- Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Jagat Pal Singh
- Department of Physics, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| |
Collapse
|
3
|
Ma B, Ma T, Xian W, Hu B, Chu C. Interplay between ethylene and nitrogen nutrition: How ethylene orchestrates nitrogen responses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:399-407. [PMID: 36053148 DOI: 10.1111/jipb.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The stress hormone ethylene plays a key role in plant adaptation to adverse environmental conditions. Nitrogen (N) is the most quantitatively required mineral nutrient for plants, and its availability is a major determinant for crop production. Changes in N availability or N forms can alter ethylene biosynthesis and/or signaling. Ethylene serves as an important cellular signal to mediate root system architecture adaptation, N uptake and translocation, ammonium toxicity, anthocyanin accumulation, and premature senescence, thereby adapting plant growth and development to external N status. Here, we review the ethylene-mediated morphological and physiological responses and highlight how ethylene transduces the N signals to the adaptive responses. We specifically discuss the N-ethylene relations in rice, an important cereal crop in which ethylene is essential for its hypoxia survival.
Collapse
Affiliation(s)
- Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tian Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
4
|
Hessini K. Nitrogen form differently modulates growth, metabolite profile, and antioxidant and nitrogen metabolism activities in roots of Spartina alterniflora in response to increasing salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:35-42. [PMID: 35121483 DOI: 10.1016/j.plaphy.2022.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Sodium tolerance and nitrogen-source preferences are two of the most fascinating and ecologically important areas in plant physiology. Spartina alterniflora is a highly salt-tolerant species and appears to prefer ammonium (NH4+) over nitrate (NO3-) as an inorganic N source, presenting a suite of aboveground physiological and biochemical mechanisms that allows growth in saline environments. Here, we tested the interactive effects of salinity (0, 200, 500 mM NaCl) and nitrogen source (NO3-, NH4+, NH4NO3) on some physiological and biochemical parameters of S. alterniflora at the root level. After three months of treatments, plants were harvested to determine root growth parameters and total amino acids, proline, total soluble sugars, sucrose, and root enzyme activity. The control (0 mM NaCl) had the highest root growth rate in the medium containing only ammonium and the lowest in the medium containing only nitrate. Except for NO3--fed plants, the 200 mM NaCl treatment generally had less root growth than the control. Under high salinity, NH4+-fed plants had better root growth than NO3--fed plants. In the absence of salinity, NH4+-fed plants had higher superoxide dismutase, ascorbate peroxidase, glutathione reductase, and guaiacol peroxidase activities than NO3--fed plants. Salinity generally promoted the activity of the principal antioxidant enzymes, more so in NH4+-fed plants. Nitrogen metabolism was characterized by higher constitutive levels of glutamate dehydrogenase (GDH) activity under ammonia nutrition, accompanied by elevated total amino acids levels in roots. The advantage of ammonium nutrition for S. alterniflora under salinity was connected to high amino acid accumulation and antioxidant enzyme activities, together with low H2O2 concentration and increased GDH activity. Ammonium improved root performance of S. alterniflora, especially under saline conditions, and may improve root antioxidant capacity and N-assimilating enzyme activities, and adjust osmotically to salinity by accumulating amino acids.
Collapse
Affiliation(s)
- Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
5
|
Lyu J, Wu Y, Jin X, Tang Z, Liao W, Dawuda MM, Hu L, Xie J, Yu J, Calderón-Urrea A. Proteomic analysis reveals key proteins involved in ethylene-induced adventitious root development in cucumber ( Cucumis sativus L.). PeerJ 2021; 9:e10887. [PMID: 33868797 PMCID: PMC8034359 DOI: 10.7717/peerj.10887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
The mechanisms involved in adventitious root formation reflect the adaptability of plants to the environment. Moreover, the rooting process is regulated by endogenous hormone signals. Ethylene, a signaling hormone molecule, has been shown to play an essential role in the process of root development. In the present study, in order to explore the relationship between the ethylene-induced adventitious rooting process and photosynthesis and energy metabolism, the iTRAQ technique and proteomic analysis were employed to ascertain the expression of different proteins that occur during adventitious rooting in cucumber (Cucumis sativus L.) seedlings. Out of the 5,014 differentially expressed proteins (DEPs), there were 115 identified DEPs, among which 24 were considered related to adventitious root development. Most of the identified proteins were related to carbon and energy metabolism, photosynthesis, transcription, translation and amino acid metabolism. Subsequently, we focused on S-adenosylmethionine synthase (SAMS) and ATP synthase subunit a (AtpA). Our findings suggest that the key enzyme, SAMS, upstream of ethylene synthesis, is directly involved in adventitious root development in cucumber. Meanwhile, AtpA may be positively correlated with photosynthetic capacity during adventitious root development. Moreover, endogenous ethylene synthesis, photosynthesis, carbon assimilation capacity, and energy material metabolism were enhanced by exogenous ethylene application during adventitious rooting. In conclusion, endogenous ethylene synthesis can be improved by exogenous ethylene additions to stimulate the induction and formation of adventitious roots. Moreover, photosynthesis and starch degradation were enhanced by ethylene treatment to provide more energy and carbon sources for the rooting process.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xin Jin
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, China.,Department of Horticulture, University for Development Studies, Tamale, Ghana
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China.,Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, CA, USA.,College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Gao C, Wang M, Ding L, Chen Y, Lu Z, Hu J, Guo S. High water uptake ability was associated with root aerenchyma formation in rice: Evidence from local ammonium supply under osmotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:171-179. [PMID: 32146281 DOI: 10.1016/j.plaphy.2020.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Root water uptake is strongly influenced by the morphology and anatomical structure of roots, which are regulated by nitrogen forms and environmental stimuli. To further illustrate the roles of different nitrogen forms on root water uptake under osmotic stress, a split-root system was supplied with different nitrogen forms and osmotic stress simulated by adding 10% (w/v) polyethylene glycol (PEG, 6000). The local effects of nitrogen form and osmotic stress on root morphology, anatomical structure, root lignin content, and water uptake rate were investigated. Under osmotic stress conditions, ammonium markedly promoted the formation and elongation of the lateral root, whereas a significant decrease in numbers of lateral roots was observed under local nitrate supply. Under nitrate supply in split-root systems, osmotic stress significantly promoted root cell death and more aerenchyma formation, as well as accelerated the lignification of the root. However, osmotic stress had no negative effect on the root anatomical structure under ammonium supply. The root water uptake rate was significantly higher in split-root supplied with ammonium than nitrate under osmotic stress conditions. In conclusion, the high water uptake ability in local ammonium supply was associated with the more lateral roots development and the lower cell death, aerenchyma formation and lignification under osmotic stress.
Collapse
Affiliation(s)
- Cuimin Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Plant Nutrition, Agricultural Resources and Environmental Sciences, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Yuanyang Experimental Station of Crop Water Use, Ministry of Agriculture, Yuanyang, 453514, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Yupei Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jun Hu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
7
|
Sun X, Chen F, Yuan L, Mi G. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. PLANTA 2020; 251:84. [PMID: 32189077 DOI: 10.1007/s00425-020-03376-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
In response to low nitrogen stress, multiple hormones together with nitric oxide signaling pathways work synergistically and antagonistically in crop root elongation. Changing root morphology allows plants to adapt to soil nutrient availability. Nitrogen is the most important essential nutrient for plant growth. An important adaptive strategy for crops responding to nitrogen deficiency is root elongation, thereby accessing increased soil space and nitrogen resources. Multiple signaling pathways are involved in this regulatory network, working together to fine-tune root elongation in response to soil nitrogen availability. Based on existing research, we propose a model to explain how different signaling pathways interact to regulate root elongation in response to low nitrogen stress. In response to a low shoot nitrogen status signal, auxin transport from the shoot to the root increases. High auxin levels in the root tip stimulate the production of nitric oxide, which promotes the synthesis of strigolactones to accelerate cell division. In this process, cytokinin, ethylene, and abscisic acid play an antagonistic role, while brassinosteroids and auxin play a synergistic role in regulating root elongation. Further study is required to identify the QTLs, genes, and favorable alleles which control the root elongation response to low nitrogen stress in crops.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Zhang X, Liu H, Zhang S, Wang J, Wei C. NH 4+-N alleviates iron deficiency in rice seedlings under calcareous conditions. Sci Rep 2019; 9:12712. [PMID: 31481724 PMCID: PMC6722072 DOI: 10.1038/s41598-019-49207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/20/2019] [Indexed: 11/09/2022] Open
Abstract
Drip-irrigated rice (Oryza sativa L.) in calcareous soil exhibits signs of iron (Fe) deficiency. This study aimed to explore whether NH4+ alleviates Fe deficiency in rice seedlings grown under calcareous conditions. Two rice varieties (cv. 'T43' Fe deficiency-tolerant variety and cv. 'T04' Fe deficiency-sensitive variety) were used to carry out two independent experiments with exposure to different nitrogen (N) forms (nitrate (NO3-) or NH4+) under calcareous conditions. In experiment 1, plants were precultured in a nutrient solution with excess Fe (40 µM Fe(II)-EDTA) for 14 d and then supplied NO3--N (AN) or NH4--N (NN) without Fe for 3, 6, or 12 d. In experiment 2, plants were fed AN or NN with 10 µM Fe(II)-EDTA for 18 d. Compared to plants exposed to AN, leaves of plants exposed to NN showed severe chlorosis and significantly decreased chlorophyll content during Fe starvation. The xylem sap pH and cell wall Fe fraction in both shoots and roots of rice fed NN were significantly higher than those fed AN. However, the Fe concentration in xylem sap, soluble and organelle Fe fractions in both shoots and roots, and the shoot/root Fe content ratio in rice exposed to AN were significantly higher than those in plants exposed to NN. AN reduced the root aerenchyma fraction and root porosity compared to NN, which induced greater water uptake and hydraulic conductance by roots, hence the stronger xylem sap flow rate with AN. The results indicated that NH4+-N alleviated Fe deficiency in rice under calcareous conditions by promoting Fe re-allocation in rice tissues and Fe transportation from roots to shoots.
Collapse
Affiliation(s)
- Xinjiang Zhang
- Key Lab of Oasis Ecology Agriculture of Xinjiang Production and Construction Group, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China
| | - Hui Liu
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China
| | - Shujie Zhang
- Xinjiang Academy of Agriculture and Reclamation, Wuyi Road No. 221, Shihezi, 832000, P.R. China
| | - Juan Wang
- Key Lab of Oasis Ecology Agriculture of Xinjiang Production and Construction Group, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China
| | - Changzhou Wei
- Key Lab of Oasis Ecology Agriculture of Xinjiang Production and Construction Group, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China.
| |
Collapse
|
9
|
Guo J, Jia Y, Chen H, Zhang L, Yang J, Zhang J, Hu X, Ye X, Li Y, Zhou Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci Rep 2019; 9:1248. [PMID: 30718692 PMCID: PMC6362105 DOI: 10.1038/s41598-018-37838-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants growth; however, the mechanism by which K mediates negative effects on ammonium-sensitive plants is still poorly understood. We hypothesized that K supplies may enhance antagonistic ammonium stress while improving nitrate nutrition function, which wheat seedlings were grown in sand culture in the presence of two N forms (ammonium; nitrate) supplied at two rates (2, 10 mmol L-1) and three K levels (0.5, 5, 15 mmol L-1). We found that a high N rate increased plant biomass under nitrate nutrition, while it had a negative effect under ammonium nutrition. Compared with nitrate, biomass was depressed by 54% or 85% for low or high N rate under ammonium. This resulted in a reduction in gas exchange parameters and a subsequent decrease in growth variables and nutrient uptake, whereas these parameters increased significantly with increasing K levels. Moreover, in principal components analysis, these variations were highly clustered under nitrate nutrition and highly separated under ammonium nutrition. Our study shows a clear positive interaction between K and N, suggesting that high K supply relieves ammonium stress while improving growth vigor under nitrate nutrition by enhancing nutrient uptake and assimilate production in wheat plants.
Collapse
Affiliation(s)
- Jiuxin Guo
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yamin Jia
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huanhuan Chen
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lijun Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinchang Yang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Zhang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangyu Hu
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xin Ye
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, College of Resource and Environment, Anhui Science and Technology University, Bengbu, 233100, China.
| |
Collapse
|
10
|
Hu LY, Li D, Sun K, Cao W, Fu WQ, Zhang W, Dai CC. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:367-376. [PMID: 30055345 DOI: 10.1016/j.plaphy.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The fungal endophyte Phomopsis liquidambari can improve nitrification rates and alter the abundance and composition of ammonia-oxidizers in the soil rhizosphere of rice. Aerenchyma is related to oxygen transport efficiency and contributes to the enhanced rhizospheric nitrification under flooding conditions. However, whether and how P. liquidambari affects aerenchyma formation is largely unknown. We therefore conducted pot and hydroponic experiments to investigate the changes of aerenchyma area, ethylene and indole-3-acetic acid (IAA) levels in rice with or without P. liquidambari infection. Our results showed that the larger aerenchyma area in rice roots with P. liquidambari inoculation was associated with markedly up-regulated expression of genes related to aerenchyma formation. Meanwhile, P. liquidambari inoculation substantially elevated root porosity (POR) and radial oxygen loss (ROL), leading to the enhancement of oxidation-reduction potential (ORP) under pot condition. Besides, P. liquidambari significantly increased IAA and ethylene levels in rice by stimulating the expression of genes involved in auxin and ethylene biosyntheses. Furthermore, auxin that partly acting upstream of ethylene signalling played an essential role in P. liquidambari-promoted aerenchyma formation. These results verified the direct contribution of P. liquidambari in promoting aerenchyma formation via the accumulation of IAA and ethylene in rice roots, which provides a constructive suggestion for improving hypoxia tolerance through plant-endophyte interactions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Dan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Cao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wan-Qiu Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
11
|
Ding L, Lu Z, Gao L, Guo S, Shen Q. Is Nitrogen a Key Determinant of Water Transport and Photosynthesis in Higher Plants Upon Drought Stress? FRONTIERS IN PLANT SCIENCE 2018; 9:1143. [PMID: 30186291 PMCID: PMC6113670 DOI: 10.3389/fpls.2018.01143] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/17/2018] [Indexed: 05/19/2023]
Abstract
Drought stress is a major global issue limiting agricultural productivity. Plants respond to drought stress through a series of physiological, cellular, and molecular changes for survival. The regulation of water transport and photosynthesis play crucial roles in improving plants' drought tolerance. Nitrogen (N, ammonium and nitrate) is an essential macronutrient for plants, and it can affect many aspects of plant growth and metabolic pathways, including water relations and photosynthesis. This review focuses on how drought stress affects water transport and photosynthesis, including the regulation of hydraulic conductance, aquaporin expression, and photosynthesis. It also discusses the cross talk between N, water transport, and drought stress in higher plants.
Collapse
Affiliation(s)
- Lei Ding
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|