1
|
Bekki S, Suetsugu K, Kobayashi K. Chlorophyll fluorescence responses to CO 2 availability reveal crassulacean acid metabolism in epiphytic orchids. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01608-2. [PMID: 39718758 DOI: 10.1007/s10265-024-01608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO2 and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO2 elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids. In CAM-performing Kalanchoe species, the effective quantum yield of photosystem II showed no change in response to CO2 elimination during the daytime but decreased with CO2 elimination at dusk. We applied this method to reveal the photosynthetic mode of epiphytic orchids and found that Gastrochilus japonicus, Oberonia japonica, and Bulbophyllum inconspicuum, but not B. drymoglossum, are constitutive CAM plants, which were also confirmed by malate determination. Our data propose a novel approach to identify and characterize CAM plants without labor-intensive experimental procedures. Although B. drymoglossum leaves had relatively high malate content, they did not depend on it to perform photosynthesis even under water-deficient or increased light conditions. Anatomical comparisons revealed a notable difference in leaf structure between B. drymoglossum and B. inconspicuum; B. drymoglossum leaves possess large water storage tissue internally, unlike B. inconspicuum leaves, which develop pseudobulbs. Our findings suggest different evolutionary adaptations to water deficit between closely related B. drymoglossum and B. inconspicuum.
Collapse
Affiliation(s)
- Sae Bekki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- The Institute for Advanced Research, Kobe University, 1-1Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
2
|
Ueno O. Cell wall thickness spectrum of photosynthetic cells in herbaceous C 3, C 4, and crassulacean acid metabolism plants. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01603-7. [PMID: 39658745 DOI: 10.1007/s10265-024-01603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Higher plants are divided into three major photosynthetic groups known as C3, C4, and crassulacean acid metabolism (CAM) plants. It is considered that cell wall thickness (TCW) affects diffusion and leakiness of CO2 within leaves, but it is unclear whether TCW of photosynthetic cells differs among these groups. This study investigated TCW of photosynthetic cells in herbaceous C3, C4, and CAM species under an electron microscope. Among 75 species of monocots and eudicots grown in a growth chamber in the same environment, the TCW of mesophyll cells (MCs) was much higher in CAM species than in C3 and C4 species. However, when TCW was compared between C3 and C4 species of grasses and eudicots, TCW of MCs tended to be lower in C4 species than in C3 species; the opposite trend was observed for TCW of bundle sheath cells (BSCs). TCW of MCs and BSCs almost did not differ among the C4 decarboxylation types (NADP-ME, NAD-ME, and PCK). In plants grown outdoors (51 species), similar trends of TCW were also found among photosynthetic groups, but their TCW was generally higher than that of growth-chamber plants. This study provides the TCW spectrum of photosynthetic cells in herbaceous C3, C4, and CAM species. The results obtained would be valuable for our understanding of the diffusion and leakage of CO2 in the leaves of different photosynthetic groups.
Collapse
Affiliation(s)
- Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Wang H, Wu Z, Li T, Zhao J. Phylogenomics resolves the backbone of Poales and identifies signals of hybridization and polyploidy. Mol Phylogenet Evol 2024; 200:108184. [PMID: 39209045 DOI: 10.1016/j.ympev.2024.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.
Collapse
Affiliation(s)
- Huijun Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Groot Crego C, Hess J, Yardeni G, de La Harpe M, Priemer C, Beclin F, Saadain S, Cauz-Santos LA, Temsch EM, Weiss-Schneeweiss H, Barfuss MHJ, Till W, Weckwerth W, Heyduk K, Lexer C, Paun O, Leroy T. CAM evolution is associated with gene family expansion in an explosive bromeliad radiation. THE PLANT CELL 2024; 36:4109-4131. [PMID: 38686825 PMCID: PMC11449062 DOI: 10.1093/plcell/koae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterized by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution, and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the 2 genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-h cycle between the 2 species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.
Collapse
Affiliation(s)
- Clara Groot Crego
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Cambrium GmbH, Max-Urich-Str. 3, 13055 Berlin, Germany
| | - Gil Yardeni
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Department of Biotechnology, Institute of Computational Biology, University of Life Sciences and Natural Resources (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Office for Nature and Environment, Department of Education, Culture and Environmental protection, Canton of Grisons, 7001 Chur, Switzerland
| | - Clara Priemer
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
| | - Francesca Beclin
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Sarah Saadain
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | | | - Michael H J Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| |
Collapse
|
5
|
Gilman IS, Heyduk K, Maya-Lastra C, Hancock LP, Edwards EJ. Predicting photosynthetic pathway from anatomy using machine learning. THE NEW PHYTOLOGIST 2024; 242:1029-1042. [PMID: 38173400 DOI: 10.1111/nph.19488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Plants with Crassulacean acid metabolism (CAM) have long been associated with a specialized anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative boundaries between non-CAM and CAM plants have yet to be established - if they indeed exist. Using novel computer vision software to measure anatomy, we combined new measurements with published data across flowering plants. We then used machine learning and phylogenetic comparative methods to investigate relationships between CAM and anatomy. We found significant differences in photosynthetic tissue anatomy between plants with differing CAM phenotypes. Machine learning-based classification was over 95% accurate in differentiating CAM from non-CAM anatomy, and had over 70% recall of distinct CAM phenotypes. Phylogenetic least squares regression and threshold analyses revealed that CAM evolution was significantly correlated with increased mesophyll cell size, thicker leaves, and decreased intercellular airspace. Our findings suggest that machine learning may be used to aid the discovery of new CAM species and that the evolutionary trajectory from non-CAM to strong, obligate CAM requires continual anatomical specialization.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, CT, 06269, USA
| | - Carlos Maya-Lastra
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Biology, Angelo State University, San Angelo, TX, 76909, USA
| | - Lillian P Hancock
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
6
|
Yamaga-Hatakeyama Y, Okutani M, Hatakeyama Y, Yabiku T, Yukawa T, Ueno O. Photosynthesis and leaf structure of F1 hybrids between Cymbidium ensifolium (C3) and C. bicolor subsp. pubescens (CAM). ANNALS OF BOTANY 2023; 132:895-907. [PMID: 36579478 PMCID: PMC10799985 DOI: 10.1093/aob/mcac157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The introduction of crassulacean acid metabolism (CAM) into C3 crops has been considered as a means of improving water-use efficiency. In this study, we investigated photosynthetic and leaf structural traits in F1 hybrids between Cymbidium ensifolium (female C3 parent) and C. bicolor subsp. pubescens (male CAM parent) of the Orchidaceae. METHODS Seven F1 hybrids produced through artificial pollination and in vitro culture were grown in a greenhouse with the parent plants. Structural, biochemical and physiological traits involved in CAM in their leaves were investigated. KEY RESULTS Cymbidium ensifolium accumulated very low levels of malate without diel fluctuation, whereas C. bicolor subsp. pubescens showed nocturnal accumulation and diurnal consumption of malate. The F1s also accumulated malate at night, but much less than C. bicolor subsp. pubescens. This feature was consistent with low nocturnal fixation of atmospheric CO2 in the F1s. The δ13C values of the F1s were intermediate between those of the parents. Leaf thickness was thicker in C. bicolor subsp. pubescens than in C. ensifolium, and those of the F1s were more similar to that of C. ensifolium. This was due to the difference in mesophyll cell size. The chloroplast coverage of mesophyll cell perimeter adjacent to intercellular air spaces of C. bicolor subsp. pubescens was lower than that of C. ensifolium, and that of the F1s was intermediate between them. Interestingly, one F1 had structural and physiological traits more similar to those of C. bicolor subsp. pubescens than the other F1s. Nevertheless, all F1s contained intermediate levels of phosphoenolpyruvate carboxylase but as much pyruvate, Pi dikinase as C. bicolor subsp. pubescens. CONCLUSIONS CAM traits were intricately inherited in the F1 hybrids, the level of CAM expression varied widely among F1 plants, and the CAM traits examined were not necessarily co-ordinately transmitted to the F1s.
Collapse
Affiliation(s)
| | - Masamitsu Okutani
- School of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Leverett A, Borland AM, Inge EJ, Hartzell S. Low internal air space in plants with crassulacean acid metabolism may be an anatomical spandrel. ANNALS OF BOTANY 2023; 132:811-817. [PMID: 37622678 PMCID: PMC10799988 DOI: 10.1093/aob/mcad109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Crassulacean acid metabolism (CAM) is a photosynthetic adaptation found in at least 38 plant families. Typically, the anatomy of CAM plants is characterized by large photosynthetic cells and a low percentage of leaf volume consisting of internal air space (% IAS). It has been suggested that reduced mesophyll conductance (gm) arising from low % IAS benefits CAM plants by preventing the movement of CO2 out of cells and ultimately minimizing leakage of CO2 from leaves into the atmosphere during day-time decarboxylation. Here, we propose that low % IAS does not provide any adaptive benefit to CAM plants, because stomatal closure during phase III of CAM will result in internal concentrations of CO2 becoming saturated, meaning low gm will not have any meaningful impact on the flux of gases within leaves. We suggest that low % IAS is more likely an indirect consequence of maximizing the cellular volume within a leaf, to provide space for the overnight storage of malic acid during the CAM cycle.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Life Sciences, University of Essex, Wivenhoe Campus, Essex, CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Emma J Inge
- School of Life Sciences, University of Essex, Wivenhoe Campus, Essex, CO4 3SQ, UK
| | - Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, 1930 SW 124 Ave., Portland, OR, USA
| |
Collapse
|
8
|
Luján M, Leverett A, Winter K. Forty years of research into crassulacean acid metabolism in the genus Clusia: anatomy, ecophysiology and evolution. ANNALS OF BOTANY 2023; 132:739-752. [PMID: 36891814 PMCID: PMC10799992 DOI: 10.1093/aob/mcad039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Clusia is the only genus containing dicotyledonous trees with a capacity to perform crassulacean acid metabolism (CAM). Since the discovery of CAM in Clusia 40 years ago, several studies have highlighted the extraordinary plasticity and diversity of life forms, morphology and photosynthetic physiology of this genus. In this review, we revisit aspects of CAM photosynthesis in Clusia and hypothesize about the timing, the environmental conditions and potential anatomical characteristics that led to the evolution of CAM in the group. We discuss the role of physiological plasticity in influencing species distribution and ecological amplitude in the group. We also explore patterns of allometry of leaf anatomical traits and their correlations with CAM activity. Finally, we identify opportunities for further research on CAM in Clusia, such as the role of elevated nocturnal accumulation of citric acid, and gene expression in C3-CAM intermediate phenotypes.
Collapse
Affiliation(s)
- Manuel Luján
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Alistair Leverett
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
9
|
Leverett A, Borland AM. Elevated nocturnal respiratory rates in the mitochondria of CAM plants: current knowledge and unanswered questions. ANNALS OF BOTANY 2023; 132:855-867. [PMID: 37638861 PMCID: PMC10799998 DOI: 10.1093/aob/mcad119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Crassulacean acid metabolism (CAM) is a metabolic adaptation that has evolved convergently in 38 plant families to aid survival in water-limited niches. Whilst primarily considered a photosynthetic adaptation, CAM also has substantial consequences for nocturnal respiratory metabolism. Here, we outline the history, current state and future of nocturnal respiration research in CAM plants, with a particular focus on the energetics of nocturnal respiratory oxygen consumption. Throughout the 20th century, research interest in nocturnal respiration occurred alongside initial discoveries of CAM, although the energetic and mechanistic implications of nocturnal oxygen consumption and links to the operation of the CAM cycle were not fully understood. Recent flux balance analysis (FBA) models have provided new insights into the role that mitochondria play in the CAM cycle. Several FBA models have predicted that CAM requires elevated nocturnal respiratory rates, compared to C3 species, to power vacuolar malic acid accumulation. We provide physiological data, from the genus Clusia, to corroborate these modelling predictions, thereby reinforcing the importance of elevated nocturnal respiratory rates for CAM. Finally, we outline five unanswered questions pertaining to nocturnal respiration which must be addressed if we are to fully understand and utilize CAM plants in a hotter, drier world.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
10
|
Leverett A, Ferguson K, Winter K, Borland AM. Leaf vein density correlates with crassulacean acid metabolism, but not hydraulic capacitance, in the genus Clusia. ANNALS OF BOTANY 2023; 132:801-810. [PMID: 36821473 PMCID: PMC10799986 DOI: 10.1093/aob/mcad035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Many succulent species are characterized by the presence of Crassulacean acid metabolism (CAM) and/or elevated bulk hydraulic capacitance (CFT). Both CAM and elevated CFT substantially reduce the rate at which water moves through transpiring leaves. However, little is known about how these physiological adaptations are coordinated with leaf vascular architecture. METHODS The genus Clusia contains species spanning the entire C3-CAM continuum, and also is known to have >5-fold interspecific variation in CFT. We used this highly diverse genus to explore how interspecific variation in leaf vein density is coordinated with CAM and CFT. KEY RESULTS We found that constitutive CAM phenotypes were associated with lower vein length per leaf area (VLA) and vein termini density (VTD), compared to C3 or facultative CAM species. However, when vein densities were standardized by leaf thickness, this value was higher in CAM than C3 species, which is probably an adaptation to overcome apoplastic hydraulic resistance in deep chlorenchyma tissue. In contrast, CFT did not correlate with any xylem anatomical trait measured, suggesting CAM has a greater impact on leaf transpiration rates than CFT. CONCLUSIONS Our findings strongly suggest that CAM photosynthesis is coordinated with leaf vein densities. The link between CAM and vascular anatomy will be important to consider when attempting to bioengineer CAM into C3 crops.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
- School of Life Sciences, University of Essex, Colchester Campus, Colchester, CO4 3SQ, UK
| | - Kate Ferguson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
11
|
Edwards EJ. Reconciling continuous and discrete models of C4 and CAM evolution. ANNALS OF BOTANY 2023; 132:717-725. [PMID: 37675944 PMCID: PMC10799980 DOI: 10.1093/aob/mcad125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND A current argument in the CAM biology literature has focused on the nature of the CAM evolutionary trajectory: whether there is a smooth continuum of phenotypes between plants with C3 and CAM photosynthesis or whether there are discrete steps of phenotypic evolutionary change such as has been modelled for the evolution of C4 photosynthesis. A further implication is that a smooth continuum would increase the evolvability of CAM, whereas discrete changes would make the evolutionary transition from C3 to CAM more difficult. SCOPE In this essay, I attempt to reconcile these two viewpoints, because I think in many ways this is a false dichotomy that is constraining progress in understanding how both CAM and C4 evolved. In reality, the phenotypic space connecting C3 species and strong CAM/C4 species is both a continuum of variably expressed quantitative traits and yet also contains certain combinations of traits that we are able to identify as discrete, recognizable phenotypes. In this sense, the evolutionary mechanics of CAM origination are no different from those of C4 photosynthesis, nor from the evolution of any other complex trait assemblage. CONCLUSIONS To make progress, we must embrace the concept of discrete phenotypic phases of CAM evolution, because their delineation will force us to articulate what aspects of phenotypic variation we think are significant. There are some current phenotypic gaps that are limiting our ability to build a complete CAM evolutionary model: the first is how a rudimentary CAM biochemical cycle becomes established, and the second is how the 'accessory' CAM cycle in C3+CAM plants is recruited into a primary metabolism. The connections to the C3 phenotype we are looking for are potentially found in the behaviour of C3 plants when undergoing physiological stress - behaviour that, strangely enough, remains essentially unexplored in this context.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Niechayev NA, Mayer JA, Cushman JC. Developmental dynamics of crassulacean acid metabolism (CAM) in Opuntia ficus-indica. ANNALS OF BOTANY 2023; 132:869-879. [PMID: 37256773 PMCID: PMC10799983 DOI: 10.1093/aob/mcad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS The relative contributions of C3 photosynthesis and crassulacean acid metabolism (CAM) during the earliest stages of development were investigated to assess how much each might contribute to cactus pear (Opuntia ficus-indica) productivity. METHODS The developmental progression of C3 photosynthesis and CAM was assessed in seedlings and daughter cladodes of mature plants by titratable acidity, δ13C isotopic values and diel gas exchange measurements. KEY RESULTS Nocturnal acidification was observed in seedling cladodes and cotyledons at the earliest stages of development and became highly significant by 75 days of development. Seedling cotyledons showed mean δ13C values of -21.4 and -17.1 ‰ at 30 and 100 days of age, respectively. Seedling cladodes showed mean δ13C values of -19.4 and -14.5 ‰ at 30 and 100 days of age, respectively. These values are typical of CAM plants. Net CO2 assimilation was negative, then occurred in both the day and the night, with nighttime fixation becoming predominant once the primary cladode reached 5 cm in size. Emergent daughter cladodes growing on mature plants showed nocturnal titratable acidity at the earliest stages of development, which became significant when daughter cladodes were >2.5-5 cm in height. Emergent daughter cladodes showed mean δ13C values of -14.5 to -15.6 ‰, typical of CAM plants. CO2 assimilation studies revealed that net CO2 uptake was negative in daughter cladodes <12 cm in length, but then exhibited net positive CO2 assimilation in both the day and the night, with net nocturnal CO2 assimilation predominating once the daughter cladode grew larger. CONCLUSIONS Developing O. ficus-indica primary and daughter cladodes begin as respiring sink tissues that transition directly to performing CAM once net positive CO2 fixation is observed. Overall, these results demonstrate that CAM is the primary form of photosynthetic carbon assimilation for O. ficus-indica even at the earliest stages of seedling or daughter cladode development.
Collapse
Affiliation(s)
- Nicholas A Niechayev
- Department of Seed Research, D’Arrigo California, 21777 Harris Road, Salinas, CA 93908, USA
| | - Jesse A Mayer
- Biosero Inc., 9560 Waples Street, San Diego, CA 92121, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA
| |
Collapse
|
13
|
Eskov AK, Elumeeva TG, Leonov VD, Tsurikov SM, Viktorova VA, Prilepsky NG, Abakumov EV. The Carbon Isotope Composition of Epiphytes Depends Not Only on Their Layers, Life Forms, and Taxonomical Groups but Also on the Carbon and Nitrogen Indicators of Host Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:3500. [PMID: 37836240 PMCID: PMC10575002 DOI: 10.3390/plants12193500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The carbon isotopic composition of plant tissues is a diagnostic feature of a number of physiological and ecological processes. The most important of which is the type of photosynthesis. In epiphytes, two peaks of δ13C values are known to correspond to C3 and CAM photosynthesis and some variants of transitional forms between them. But the diagnosis of δ13C may not be limited to the type of photosynthesis. This makes it necessary to study trends in the distribution of δ13C in a broader ecological context. In this study, we present trends in the distribution of δ13C epiphytes and other structurally dependent plants and their relationship with other isotopic and elemental parameters (δ15N, C%, N%, and C/N) and with life forms of epiphytes, taxonomic or vertical groups in crowns (synusia), and the parameters of the trees themselves. In all communities except for the moss forest, δ13C in epiphyte leaves was significantly higher (less negative) than in phorophyte leaves. In general, δ13C in epiphytes in mountain communities (pine forest and moss forest) was more negative than in other communities due to the absence of succulents with CAM. δ13C in the leaves of all epiphytes was negatively related to the percentage of carbon and δ15N in the leaves of the phorophyte. When considering the Gaussian distributions of δ13C with the method of modeling mixtures, we observe the unimodal, bimodal, and trimodal nature of the distribution.
Collapse
Affiliation(s)
- Alen K. Eskov
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Tatiana G. Elumeeva
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Vlad. D. Leonov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij Prosp., 119071 Moscow, Russia
| | - Sergey M. Tsurikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij Prosp., 119071 Moscow, Russia
| | | | - Nikolay G. Prilepsky
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Evgeny V. Abakumov
- Department of Applied Ecology, Saint-Petersburg State University, 16 Line of VO 29, 199178 St. Petersburg, Russia;
| |
Collapse
|
14
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
15
|
Leverett A, Hartzell S, Winter K, Garcia M, Aranda J, Virgo A, Smith A, Focht P, Rasmussen-Arda A, Willats WGT, Cowan-Turner D, Borland AM. Dissecting succulence: Crassulacean acid metabolism and hydraulic capacitance are independent adaptations in Clusia leaves. PLANT, CELL & ENVIRONMENT 2023; 46:1472-1488. [PMID: 36624682 DOI: 10.1111/pce.14539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Succulence is found across the world as an adaptation to water-limited niches. The fleshy organs of succulent plants develop via enlarged photosynthetic chlorenchyma and/or achlorophyllous water storage hydrenchyma cells. The precise mechanism by which anatomical traits contribute to drought tolerance is unclear, as the effect of succulence is multifaceted. Large cells are believed to provide space for nocturnal storage of malic acid fixed by crassulacean acid metabolism (CAM), whilst also buffering water potentials by elevating hydraulic capacitance (CFT ). The effect of CAM and elevated CFT on growth and water conservation have not been compared, despite the assumption that these adaptations often occur together. We assessed the relationship between succulent anatomical adaptations, CAM, and CFT , across the genus Clusia. We also simulated the effects of CAM and CFT on growth and water conservation during drought using the Photo3 model. Within Clusia leaves, CAM and CFT are independent traits: CAM requires large palisade chlorenchyma cells, whereas hydrenchyma tissue governs interspecific differences in CFT . In addition, our model suggests that CAM supersedes CFT as a means to maximise CO2 assimilation and minimise transpiration during drought. Our study challenges the assumption that CAM and CFT are mutually dependent traits within succulent leaves.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Milton Garcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Abigail Smith
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Paulina Focht
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Adam Rasmussen-Arda
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Cowan-Turner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
16
|
Heyduk K. Evolution of Crassulacean acid metabolism in response to the environment: past, present, and future. PLANT PHYSIOLOGY 2022; 190:19-30. [PMID: 35748752 PMCID: PMC9434201 DOI: 10.1093/plphys/kiac303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) is a mode of photosynthesis that evolved in response to decreasing CO2 levels in the atmosphere some 20 million years ago. An elevated ratio of O2 relative to CO2 caused many plants to face increasing stress from photorespiration, a process exacerbated for plants living under high temperatures or in water-limited environments. Today, our climate is again rapidly changing and plants' ability to cope with and adapt to these novel environments is critical for their success. This review focuses on CAM plant responses to abiotic stressors likely to dominate in our changing climate: increasing CO2 levels, increasing temperatures, and greater variability in drought. Empirical studies that have assessed CAM responses are reviewed, though notably these are concentrated in relatively few CAM lineages. Other aspects of CAM biology, including the effects of abiotic stress on the light reactions and the role of leaf succulence, are also considered in the context of climate change. Finally, more recent studies using genomic techniques are discussed to link physiological changes in CAM plants with the underlying molecular mechanism. Together, the body of work reviewed suggests that CAM plants will continue to thrive in certain environments under elevated CO2. However, how CO2 interacts with other environmental factors, how those interactions affect CAM plants, and whether all CAM plants will be equally affected remain outstanding questions regarding the evolution of CAM on a changing planet.
Collapse
|
17
|
Supplementary Light with Increased Blue Fraction Accelerates Emergence and Improves Development of the Inflorescence in Aechmea, Guzmania and Vriesea. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In protected cultivation, increasing the light level via supplementary lighting (SL) is critical to improve external quality, especially in periods with low light availability. Despite wide applications, the effect of light quality remains understated. In this study, the effect of SL quality and nutrient solution electrical conductivity (EC) on growth and flowering of three bromeliad species was investigated. Treatments included solar light, and this supplemented with R90B10 [90% red (R) and 10% blue (B)], R80B20 (80% R and 20% B), and R70B30 (70% R and 30% B). These were combined with an EC of 1 and 2 dS m-l. Irrespective of the light treatment, the higher EC promoted growth, inflorescence emergence, and development in Aechmea fasciata (Lindl.) Baker, whereas adverse effects were noted in Guzmania and Vriesea. The higher EC-induced negative effect in Guzmania and Vriesea was slightly alleviated by SL. With few notable exceptions, SL exerted limited effects on photosynthetic functionality. Depending on the species, SL improved external quality traits. In all species, SL increased root and inflorescence weight and stimulated biomass allocation to generative organs. It also accelerated inflorescence emergence and promoted inflorescence development. In this way, the time to commercial development stage was considerably shortened. These effects were more prominent at R80B20 and R70B30. Under those conditions, for instance, inflorescence emergence occurred 3–5 weeks earlier than in the control, depending on the species. In conclusion, SL with increased B proportion leads to shorter production period owing to faster emergence and improved development of the inflorescence and is recommended for commercial use.
Collapse
|
18
|
Abstract
Crassulacean acid metabolism (CAM) has evolved from a C3 ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C3 genes and their regulators to enable the trait. The circadian pattern of CO2 fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C3 plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C3 plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible.
Collapse
Affiliation(s)
- Katharina Schiller
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| | - Andrea Bräutigam
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| |
Collapse
|
19
|
Leverett A, Hurtado Castaño N, Ferguson K, Winter K, Borland AM. Crassulacean acid metabolism (CAM) supersedes the turgor loss point (TLP) as an important adaptation across a precipitation gradient, in the genus Clusia. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:703-716. [PMID: 33663679 DOI: 10.1071/fp20268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/30/2021] [Indexed: 05/25/2023]
Abstract
As future climates continue to change, precipitation deficits are expected to become more severe across tropical ecosystems. As a result, it is important that we identify plant physiological traits that act as adaptations to drought, and determine whether these traits act synergistically or independently of each other. In this study, we assessed the role of three leaf-level putative adaptations to drought: crassulacean acid metabolism (CAM), the turgor loss point (TLPΨ) and water storage hydrenchyma tissue. Using the genus Clusia as a model, we were able to explore the extent to which these leaf physiological traits co-vary, and also how they contribute to species' distributions across a precipitation gradient in Central and South America. We found that CAM is independent of the TLPΨ and hydrenchyma depth in Clusia. In addition, we provide evidence that constitutive CAM is an adaptation to year-long water deficits, whereas facultative CAM appears to be more important for surviving acute dry seasons. Finally, we find that the other leaf traits tested did not correlate with environmental precipitation, suggesting that the reduced transpirational rates associated with CAM obviate the need to adapt the TLPΨ and hydrenchyma depth in this genus.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; and Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; and Corresponding author.
| | - Natalia Hurtado Castaño
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; and Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Kate Ferguson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
20
|
Heyduk K, Ray JN, Leebens-Mack J. Leaf anatomy is not correlated to CAM function in a C3+CAM hybrid species, Yucca gloriosa. ANNALS OF BOTANY 2021; 127:437-449. [PMID: 32166326 PMCID: PMC7988526 DOI: 10.1093/aob/mcaa036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/05/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Crassulacean acid metabolism (CAM) is often considered to be a complex trait, requiring orchestration of leaf anatomy and physiology for optimal performance. However, the observation of trait correlations is based largely on comparisons between C3 and strong CAM species, resulting in a lack of understanding as to how such traits evolve and the level of intraspecific variability for CAM and associated traits. METHODS To understand intraspecific variation for traits underlying CAM and how these traits might assemble over evolutionary time, we conducted detailed time course physiological screens and measured aspects of leaf anatomy in 24 genotypes of a C3+CAM hybrid species, Yucca gloriosa (Asparagaceae). Comparisons were made to Y. gloriosa's progenitor species, Y. filamentosa (C3) and Y. aloifolia (CAM). KEY RESULTS Based on gas exchange and measurement of leaf acids, Y. gloriosa appears to use both C3 and CAM, and varies across genotypes in the degree to which CAM can be upregulated under drought stress. While correlations between leaf anatomy and physiology exist when testing across all three Yucca species, such correlations break down at the species level in Y. gloriosa. CONCLUSIONS The variation in CAM upregulation in Y. gloriosa is a result of its relatively recent hybrid origin. The lack of trait correlations between anatomy and physiology within Y. gloriosa indicate that the evolution of CAM, at least initially, can proceed through a wide combination of anatomical traits, and more favourable combinations are eventually selected for in strong CAM plants.
Collapse
Affiliation(s)
- Karolina Heyduk
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- For correspondence. E-mail
| | - Jeremy N Ray
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Heyduk K. The genetic control of succulent leaf development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101978. [PMID: 33454545 DOI: 10.1016/j.pbi.2020.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 05/25/2023]
Abstract
Succulent leaves have long intrigued biologists; much research has been done to define succulence, understand the evolutionary trajectory and implications of leaf succulence, and contextualize the ecological importance of water storage for plants inhabiting dry habitats, particularly those using CAM photosynthesis. Surprisingly little is understood about the molecular regulation of leaf succulence, despite advances in our understanding of the molecular foundation of leaf architecture in model systems. Moreover, leaf succulence is a drought avoidance trait, one that has yet to be fully used for crop improvement. Here, connections between disparate literatures are highlighted: research on the regulation of cell size, the determination of vascular patterning, and water transport between cells have direct implications for our understanding of leaf succulence. Connecting functional genomics of leaf patterning with knowledge of the evolution and ecology of succulent species will guide future research on the determination and maintenance of leaf succulence.
Collapse
Affiliation(s)
- Karolina Heyduk
- University of Hawai'i at Mānoa, 1800 East West Rd., Honolulu, HI 96822, USA.
| |
Collapse
|
22
|
Herrera A. Are thick leaves, large mesophyll cells and small intercellular air spaces requisites for CAM? ANNALS OF BOTANY 2020; 125:859-868. [PMID: 31970387 PMCID: PMC7218806 DOI: 10.1093/aob/mcaa008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/21/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS It is commonly accepted that the leaf of a crassulacean acid metabolism (CAM) plant is thick, with large mesophyll cells and vacuoles that can accommodate the malic acid produced during the night. The link between mesophyll characteristics and CAM mode, whether obligate or C3/CAM, was evaluated. METHODS Published values of the carbon isotopic ratio (δ 13C) as an indicator of CAM, leaf thickness, leaf micrographs and other evidence of CAM operation were used to correlate cell density, cell area, the proportion of intercellular space in the mesophyll (IAS) and the length of cell wall facing the intercellular air spaces (Lmes/A) with CAM mode. KEY RESULTS Based on 81 species and relatively unrelated families (15) belonging to nine orders, neither leaf thickness nor mesophyll traits helped explain the degree of CAM expression. A strong correlation was found between leaf thickness and δ 13C in some species of Crassulaceae and between leaf thickness and nocturnal acid accumulation in a few obligate CAM species of Bromeliaceae but, when all 81 species were pooled together, no significant changes with δ 13C were observed in cell density, cell area, IAS or Lmes/A. CONCLUSIONS An influence of phylogeny on leaf anatomy was evidenced in a few cases but this precluded generalization for widely separate taxa containing CAM species. The possible relationships between leaf anatomy and CAM mode should be interpreted cautiously.
Collapse
Affiliation(s)
- Ana Herrera
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
23
|
Edwards EJ. Evolutionary trajectories, accessibility and other metaphors: the case of C 4 and CAM photosynthesis. THE NEW PHYTOLOGIST 2019; 223:1742-1755. [PMID: 30993711 DOI: 10.1111/nph.15851] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
Are evolutionary outcomes predictable? Adaptations that show repeated evolutionary convergence across the Tree of Life provide a special opportunity to dissect the context surrounding their origins, and identify any commonalities that may predict why certain traits evolved many times in particular clades and yet never evolved in others. The remarkable convergence of C4 and Crassulacean Acid Metabolism (CAM) photosynthesis in vascular plants makes them exceptional model systems for understanding the repeated evolution of complex phenotypes. This review highlights what we have learned about the recurring assembly of C4 and CAM, focusing on the increasingly predictable stepwise evolutionary integration of anatomy and biochemistry. With the caveat that we currently understand C4 evolution better than we do CAM, I propose a general model that explains and unites C4 and CAM evolutionary trajectories. Available data suggest that anatomical modifications are the 'rate-limiting step' in each trajectory, which in large part determines the evolutionary accessibility of both syndromes. The idea that organismal structure exerts a primary influence on innovation is discussed in the context of other systems. Whether the rate-limiting step occurs early or late in the evolutionary assembly of a new phenotype may have profound implications for its distribution across the Tree of Life.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06520-8105, USA
| |
Collapse
|
24
|
Niechayev NA, Pereira PN, Cushman JC. Understanding trait diversity associated with crassulacean acid metabolism (CAM). CURRENT OPINION IN PLANT BIOLOGY 2019; 49:74-85. [PMID: 31284077 DOI: 10.1016/j.pbi.2019.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to climates with seasonal or intermittent water limitations. CAM plants display a plastic continuum in the extent to which species engage in net nocturnal CO2 uptake that ranges from 0 to 100%. CAM plants also display diverse enzyme and organic acid and carbohydrate storage systems, which likely reflect the multiple, independent evolutionary origins of CAM. CAM is often accompanied by a diverse set of anatomical traits, such as tissue succulence and water-storage and water-capture strategies to attenuate drought. Other co-adaptive traits, such as thick cuticles, epicuticular wax, low stomatal density, high stomatal responsiveness, and shallow rectifier-like roots limit water loss under conditions of water deficit. Recommendations for future research efforts to better explore and understand the diversity of traits associated with CAM and CAM Biodesign efforts are presented.
Collapse
Affiliation(s)
- Nicholas A Niechayev
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - Paula N Pereira
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States.
| |
Collapse
|
25
|
|