1
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
2
|
Kiiskila JD, Sarkar D, Datta R. Differential protein abundance of vetiver grass in response to acid mine drainage. PHYSIOLOGIA PLANTARUM 2021; 173:829-842. [PMID: 34109636 DOI: 10.1111/ppl.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Acid mine drainage (AMD) is an acidic and metalliferous discharge that imposes oxidative stress on living things through bioaccumulation and physical exposure. The abandoned Tab-Simco mining site of Southern Illinois generates highly acidic AMD with elevated sulfate (SO4 2- ) and various metals. Vetiver grass (Chrysopogon zizanioides) is effective for the remediation of Tab-Simco AMD at both mesocosm and microcosm levels over extended periods. In this study, we conducted a proteomic investigation of vetiver shoots under short and long-term exposure to AMD. Our objective was to decipher the physiological responses of vetiver to the combined abiotic stresses of AMD (metal and low pH). Differential regulation was observed for longer-term (56 days) exposure to AMD, which resulted in 17 upregulated and nine downregulated proteins, whereas shorter-term (7 days) exposure led to 14 upregulated and 14 downregulated proteins. There were significant changes to photosynthesis, including upregulation of electron transport chain proteins for light-dependent reactions after 56 days, whereas differential regulation of enzymes relating to C4 carbon fixation was observed after 7 days. Significant changes in amino acid and nitrogen metabolism, including upregulation of ethylene and flavonoid biosynthesis, along with plant response to nitrogen starvation, were observed. Short-term changes also included upregulation of glutathione reductase and methionine sulfoxide reductase, whereas longer-term changes included changes in protein misfolding and ER-associated protein degradation for stress management and acclimation.
Collapse
Affiliation(s)
- Jeffrey D Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
- Department of Natural Sciences, Chadron State College, Chadron, Nebraska, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
3
|
Harbaoui M, Ben Romdhane W, Ben Hsouna A, Brini F, Ben Saad R. The durum wheat annexin, TdAnn6, improves salt and osmotic stress tolerance in Arabidopsis via modulation of antioxidant machinery. PROTOPLASMA 2021; 258:1047-1059. [PMID: 33594480 DOI: 10.1007/s00709-021-01622-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
TdAnn6 is a gene encoding an annexin protein in durum wheat (Triticum durum). The function of TdAnn6 in plant response to stress is not yet clearly understood. Here, we isolated TdAnn6 and characterized it in genetically modified Arabidopsis thaliana. Expressing TdAnn6 in Arabidopsis coincided with an improvement in stress tolerance at germination and seedling stages. In addition, TdAnn6-expressing seedling antioxidant activities were improved with lower level of malondialdehyde, and enhanced transcript levels of six stress-related genes during salt/osmotic stresses. Under greenhouse conditions, the TdAnn6 plants exhibited increased tolerance to salt or drought stress. To deepen our understanding of TdAnn6 function, we isolated a 1515-bp genomic fragment upstream of its coding sequence, designated as PrTdAnn6. The PrTdAnn6 promoter was fused to the β-glucuronidase reporter gene and transferred to Arabidopsis. By histochemical GUS staining, GUS activity was detected in the roots, leaves, and floral organs, but no activity was detected in the seeds. Furthermore, we noticed a high stimulation of promoter activity when A. thaliana seedlings were exposed to NaCl, mannitol, ABA, GA, and cold conditions. This cross-talk between tissue-specific expression and exogenous stress stimulation may provide additional layers of regulation for salt and osmotic stress responses in crops.
Collapse
Affiliation(s)
- Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
4
|
Overexpression of Cassava MeAnn2 Enhances the Salt and IAA Tolerance of Transgenic Arabidopsis. PLANTS 2021; 10:plants10050941. [PMID: 34066809 PMCID: PMC8150822 DOI: 10.3390/plants10050941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Annexins are a superfamily of soluble calcium-dependent phospholipid-binding proteins that have considerable regulatory effects in plants, especially in response to adversity and stress. The Arabidopsis thaliana AtAnn1 gene has been reported to play a significant role in various abiotic stress responses. In our study, the cDNA of an annexin gene highly similar to AtAnn1 was isolated from the cassava genome and named MeAnn2. It contains domains specific to annexins, including four annexin repeat sequences (I–IV), a Ca2+-binding sequence, Ca2+-independent membrane-binding-related tryptophan residues, and a salt bridge-related domain. MeAnn2 is localized in the cell membrane and cytoplasm, and it was found to be preferentially expressed in the storage roots of cassava. The overexpression of MeAnn2 reduced the sensitivity of transgenic Arabidopsis to various Ca2+, NaCl, and indole-3-acetic acid (IAA) concentrations. The expression of the stress resistance-related gene AtRD29B and auxin signaling pathway-related genes AtIAA4 and AtLBD18 in transgenic Arabidopsis was significantly increased under salt stress, while the Malondialdehyde (MDA) content was significantly lower than that of the control. These results indicate that the MeAnn2 gene may increase the salt tolerance of transgenic Arabidopsis via the IAA signaling pathway.
Collapse
|
5
|
A novel Triticum durum Annexin 12 protein: Expression, purification and biological activities against Listeria monocytogenes growth in meat under refrigeration. Microb Pathog 2020; 143:104143. [DOI: 10.1016/j.micpath.2020.104143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
|
6
|
Ben Saad R, Harbaoui M, Ben Romdhane W, Zouari N, Giang KN, Ben Hsouna A, Brini F. Overexpression of Triticum durum TdAnn12 gene confers stress tolerance through scavenging reactive oxygen species in transgenic tobacco. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:885-895. [PMID: 31196377 DOI: 10.1071/fp18316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Plant annexins are proteins with multiple functions and roles in plant development and responses to abiotic stresses. We report here the functional analysis of the TdAnn12 annexin protein isolated from Triticum durum Desf. We have previously shown that TdAnn12 expression is highly induced by different abiotic stresses. In the present study, to investigate the physiological and biochemical stress-induced responses, we overexpressed TdAnn12 in tobacco. We demonstrate that transgenic tobacco plants expressing TdAnn12 exhibited enhanced tolerance to salt, osmotic stress and H2O2 at the seedling stage. Under greenhouse conditions, these plants showed tolerance to drought and salt stresses. Moreover, scavenging reactive oxygen species (ROS), higher chlorophyll content, lower lipid peroxidation levels and increased antioxidant activities (peroxidase, catalase and superoxide dismutase) were observed. Finally, accumulation of TdAnn12 in tobacco positively affects the regulation of some stress-related genes (MnSOD, APX1, CAT1, P5CS, NHX1, SOS1 and DREB1A). TdAnn12 interacts directly or indirectly with stress-related genes that could stimulate an adaptive potential to gain tolerance which is not present in non-transgenic (NT) plants. Our results clearly show that overexpression of TdAnn12 in transgenic tobacco improves stress tolerance through the removal of ROS.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia; and Corresponding author.
| | - Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia; and Plant Production Department, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, 11451 Riyadh, Saudi Arabia
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia
| | - Khong N Giang
- International Joint Laboratory (LMI-RICE2), National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute (AGI), Vietnam Academy of Agriculture Sciences (VAAS), Km2 Pham Van Dong Road, Co Nhue, Tu Liem District, Hanoi 10000, Vietnam
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia; and Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug 2112, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P. '1177' 3018, Sfax, Tunisia
| |
Collapse
|