1
|
Gupta S, Kaur R, Sohal JS, Singh SV, Das K, Sharma MK, Singh J, Sharma S, Dhama K. Countering Zoonotic Diseases: Current Scenario and Advances in Diagnostics, Monitoring, Prophylaxis and Therapeutic Strategies. Arch Med Res 2024; 55:103037. [PMID: 38981342 DOI: 10.1016/j.arcmed.2024.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Human life and health have interacted reciprocally with the surrounding environment and animal fauna for ages. This relationship is evident in developing nations, where human life depends more on the animal population for food, transportation, clothing, draft power, and fuel sources, among others. This inseparable link is a potent source of public health issues, especially in outbreaks of zoonotic diseases transmitted from animals to humans. Zoonotic diseases are referred to as diseases that are naturally transmitted between vertebrate animals and humans. Among the globally emerging diseases in the last decade, 75% are of animal origin, most of which are life-threatening. Since most of them are caused by potent new pathogens capable of long-distance transmission, the impact is widespread and has serious public health and economic consequences. Various other factors also contribute to the transmission, spread, and outbreak of zoonotic diseases, among which industrialization-led globalization followed by ecological disruption and climate change play a critical role. In this regard, all the possible strategies, including advances in rapid and confirmatory disease diagnosis and surveillance/monitoring, immunization/vaccination, therapeutic approaches, appropriate prevention and control measures to be adapted, and awareness programs, need to be adopted collaboratively among different health sectors in medical, veterinary, and concerned departments to implement the necessary interventions for the effective restriction, minimization, and timely control of zoonotic threats. The present review focuses on the current scenario of zoonotic diseases and their counteracting approaches to safeguard their health impact on humans.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India.
| | - Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Jagdip Singh Sohal
- Centre for Vaccine and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, West Bengal, India
| | - Manish Kumar Sharma
- Department of Biotechnology, Dr. Rammanohar Lohia Avadh University, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Saket Nagar, Madhya Pradesh, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, LUVAS, Hisar, Haryana, India; Division of Veterinary Physiology and Biochemistry, SKUAST-J, Jammu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
2
|
Shipley R, Wright E, Smith SP, Selden D, Fooks AR, Banyard AC. Taiwan Bat Lyssavirus: In Vitro and In Vivo Assessment of the Ability of Rabies Vaccine-Derived Antibodies to Neutralise a Novel Lyssavirus. Viruses 2022; 14:v14122750. [PMID: 36560754 PMCID: PMC9781811 DOI: 10.3390/v14122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Rabies is a neglected tropical disease. The prototype virus, the rabies virus, still causes tens of thousands of human fatalities annually. Rabies is one member of the genus Lyssavirus. The burden of other lyssaviruses is unclear. The continued emergence of novel lyssaviruses means that assessment of vaccine efficacy against these viruses is critical, as standard rabies vaccines are not efficacious against all lyssaviruses. Taiwan bat lyssavirus (TWBLV) was first reported in 2018 following isolation from Japanese house bats. Since the initial detection and genetic characterisation, no attempts have been made to antigenically define this virus. Due to the inaccessibility of the wildtype isolate, the successful generation of a live recombinant virus, cSN-TWBLV, is described, where the full-length genome clone of the RABV vaccine strain, SAD-B19, was constructed with the glycoprotein of TWBLV. In vitro and in vivo characterization of cSN-TWBLV was undertaken and demonstrated evidence for cross-neutralisation of cSN-TWBLV with phylogroup I -specific sera and rabies virus standard sera. For neutralisation equivalent to 0.5 IU/mL of WHO and World Organisation of Animal Health (WOAH) sera against CVS, 0.5 IU/mL of WOAH sera and 2.5 IU/mL of WHO sera were required to neutralise cSN-TWBLV. In addition, specific sera for ARAV and EBLV-1 exhibited the highest neutralising antibody titres against cSN-TWBLV, compared to other phylogroup I-specific sera.
Collapse
Affiliation(s)
- Rebecca Shipley
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Samuel P. Smith
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - David Selden
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
- Correspondence:
| |
Collapse
|
3
|
Assessing Rabies Vaccine Protection against a Novel Lyssavirus, Kotalahti Bat Lyssavirus. Viruses 2021; 13:v13050947. [PMID: 34065574 PMCID: PMC8161192 DOI: 10.3390/v13050947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Rabies is a fatal encephalitis caused by an important group of viruses within the Lyssavirus genus. The prototype virus, rabies virus, is still the most commonly reported lyssavirus and causes approximately 59,000 human fatalities annually. The human and animal burden of the other lyssavirus species is undefined. The original reports for the novel lyssavirus, Kotalahti bat lyssavirus (KBLV), were based on the detection of viral RNA alone. In this report we describe the successful generation of a live recombinant virus, cSN-KBLV; where the full-length genome clone of RABV vaccine strain, SAD-B19, was constructed with the glycoprotein of KBLV. Subsequent in vitro characterisation of cSN-KBLV is described here. In addition, the ability of a human rabies vaccine to confer protective immunity in vivo following challenge with this recombinant virus was assessed. Naïve or vaccinated mice were infected intracerebrally with a dose of 100 focus-forming units/30 µL of cSN-KBLV; all naïve mice and 8% (n = 1/12) of the vaccinated mice succumbed to the challenge, whilst 92% (n = 11/12) of the vaccinated mice survived to the end of the experiment. This report provides strong evidence for cross-neutralisation and cross-protection of cSN-KBLV using purified Vero cell rabies vaccine.
Collapse
|
4
|
Grobbelaar AA, Blumberg LH, Dermaux-Msimang V, Le Roux CA, Moolla N, Paweska JT, Weyer J. Human rabies associated with domestic cat exposures in South Africa, 1983-2018. J S Afr Vet Assoc 2020; 91:e1-e4. [PMID: 32633988 PMCID: PMC7433215 DOI: 10.4102/jsava.v91i0.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 11/11/2022] Open
Abstract
No abstract available.
Collapse
Affiliation(s)
- Antoinette A Grobbelaar
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg.
| | | | | | | | | | | | | |
Collapse
|
5
|
Markotter W, Coertse J, De Vries L, Geldenhuys M, Mortlock M. Bat-borne viruses in Africa: a critical review. J Zool (1987) 2020; 311:77-98. [PMID: 32427175 PMCID: PMC7228346 DOI: 10.1111/jzo.12769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
In Africa, bat-borne zoonoses emerged in the past few decades resulting in large outbreaks or just sporadic spillovers. In addition, hundreds of more viruses are described without any information on zoonotic potential. We discuss important characteristics of bats including bat biology, evolution, distribution and ecology that not only make them unique among most mammals but also contribute to their potential as viral reservoirs. The detection of a virus in bats does not imply that spillover will occur and several biological, ecological and anthropogenic factors play a role in such an event. We summarize and critically analyse the current knowledge on African bats as reservoirs for corona-, filo-, paramyxo- and lyssaviruses. We highlight that important information on epidemiology, bat biology and ecology is often not available to make informed decisions on zoonotic spillover potential. Even if knowledge gaps exist, it is still important to recognize the role of bats in zoonotic disease outbreaks and implement mitigation strategies to prevent exposure to infectious agents including working safely with bats. Equally important is the crucial role of bats in various ecosystem services. This necessitates a multidisciplinary One Health approach to close knowledge gaps and ensure the development of responsible mitigation strategies to not only minimize risk of infection but also ensure conservation of the species.
Collapse
Affiliation(s)
- W. Markotter
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - J. Coertse
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - L. De Vries
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - M. Geldenhuys
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - M. Mortlock
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
6
|
Echevarría JE, Banyard AC, McElhinney LM, Fooks AR. Current Rabies Vaccines Do Not Confer Protective Immunity against Divergent Lyssaviruses Circulating in Europe. Viruses 2019; 11:v11100892. [PMID: 31554170 PMCID: PMC6832729 DOI: 10.3390/v11100892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023] Open
Abstract
The use of the rabies vaccine for post-exposure prophylaxis started as early as 1885, revealing a safe and efficient tool to prevent human rabies cases. Preventive vaccination is the basis for the control of canine-mediated rabies, which has already been eliminated from extensive parts of the world, including Europe. Plans to eliminate canine-mediated human rabies by 2030 have been agreed upon by international organisations. However, rabies vaccines are not efficacious against some divergent lyssaviruses. The presence in European indigenous bats of recently described lyssaviruses, which are not neutralised by antibody responses to existing vaccines, as well as the declaration of an imported case of an African lyssavirus, which also escapes vaccine-derived protection, leaves the European health authorities unable to provide efficacious protective vaccines to some potential situations of human exposure. All these circumstances highlight the need for a universal pan-lyssavirus rabies vaccine, able to prevent human rabies in all circumstances.
Collapse
Affiliation(s)
- Juan E Echevarría
- Instituto de Salud Carlos III, 28220 Madrid, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
| | - Ashley C Banyard
- Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK.
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London SW17 0RE, UK.
- School of Life Sciences, University of West Sussex, Falmer, West Sussex BN1 9QG, UK.
| | - Lorraine M McElhinney
- Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK.
| | - Anthony R Fooks
- Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK.
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London SW17 0RE, UK.
- Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK.
| |
Collapse
|
7
|
Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Trop Med Infect Dis 2019; 4:tropicalmed4010031. [PMID: 30736432 PMCID: PMC6473451 DOI: 10.3390/tropicalmed4010031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Bats in the EU have been associated with several zoonotic viral pathogens of significance to both human and animal health. Virus discovery continues to expand the existing understating of virus classification, and the increased interest in bats globally as reservoirs or carriers of zoonotic agents has fuelled the continued detection and characterisation of new lyssaviruses and other viral zoonoses. Although the transmission of lyssaviruses from bat species to humans or terrestrial species appears rare, interest in these viruses remains, through their ability to cause the invariably fatal encephalitis—rabies. The association of bats with other viral zoonoses is also of great interest. Much of the EU is free of terrestrial rabies, but several bat species harbor lyssaviruses that remain a risk to human and animal health. Whilst the rabies virus is the main cause of rabies globally, novel related viruses continue to be discovered, predominantly in bat populations, that are of interest purely through their classification within the lyssavirus genus alongside the rabies virus. Although the rabies virus is principally transmitted from the bite of infected dogs, these related lyssaviruses are primarily transmitted to humans and terrestrial carnivores by bats. Even though reports of zoonotic viruses from bats within the EU are rare, to protect human and animal health, it is important characterise novel bat viruses for several reasons, namely: (i) to investigate the mechanisms for the maintenance, potential routes of transmission, and resulting clinical signs, if any, in their natural hosts; (ii) to investigate the ability of existing vaccines, where available, to protect against these viruses; (iii) to evaluate the potential for spill over and onward transmission of viral pathogens in novel terrestrial hosts. This review is an update on the current situation regarding zoonotic virus discovery within bats in the EU, and provides details of potential future mechanisms to control the threat from these deadly pathogens.
Collapse
Affiliation(s)
- Rebecca Shipley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - Edward Wright
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - James Aegerter
- APHA - National Wildlife Management Centre, Wildlife Epidemiology and Modelling, Sand Hutton, YO41 1LZ York, UK.
| | - Anthony R Fooks
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
| |
Collapse
|
8
|
Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: insights from a modeling study. Sci Rep 2019; 9:537. [PMID: 30679459 PMCID: PMC6345892 DOI: 10.1038/s41598-018-36485-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Bats are natural reservoirs of the largest proportion of viral zoonoses among mammals, thus understanding the conditions for pathogen persistence in bats is essential to reduce human risk. Focusing on the European Bat Lyssavirus subtype 1 (EBLV-1), causing rabies disease, we develop a data-driven spatially explicit metapopulation model to investigate EBLV-1 persistence in Myotis myotis and Miniopterus schreibersii bat species in Catalonia. We find that persistence relies on host spatial structure through the migratory nature of M. schreibersii, on cross-species mixing with M. myotis, and on survival of infected animals followed by temporary immunity. The virus would not persist in the single colony of M. myotis. Our study provides for the first time epidemiological estimates for EBLV-1 progression in M. schreibersii. Our approach can be readily adapted to other zoonoses of public health concern where long-range migration and habitat sharing may play an important role.
Collapse
|
9
|
Serra-Cobo J, López-Roig M, Lavenir R, Abdelatif E, Boucekkine W, Elharrak M, Harif B, El Ayachi S, Salama AA, Nayel MA, Elsify A, El Rashedy SG, De Benedictis P, Mutinelli F, Zecchin B, Scaravelli D, Balhoul C, Zaghawa A, Hassan HY, Zaghloul AH, Bourhy H. Active sero-survey for European bat lyssavirus type-1 circulation in North African insectivorous bats. Emerg Microbes Infect 2018; 7:213. [PMID: 30546083 PMCID: PMC6292898 DOI: 10.1038/s41426-018-0214-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/04/2022]
Affiliation(s)
- Jordi Serra-Cobo
- IRBIO and Departement de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain. .,Centre de Recerca en Infeccions Víriques, Illes Balears (CRIVIB), Fundació d'Investigació Sanitària de les Illes Balears, Conselleria de Salut i Consum, Govern de les Illes Balears, Hospital General de Palma, 07012, Palma de Mallorca, Illes Balears, Spain.
| | - Marc López-Roig
- IRBIO and Departement de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.,Centre de Recerca en Infeccions Víriques, Illes Balears (CRIVIB), Fundació d'Investigació Sanitària de les Illes Balears, Conselleria de Salut i Consum, Govern de les Illes Balears, Hospital General de Palma, 07012, Palma de Mallorca, Illes Balears, Spain
| | - Rachel Lavenir
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, WHO Collaborating Centre for Reference and Research on Rabies, Paris Cedex 15, 75724, Paris, France
| | - Elbia Abdelatif
- Institut Pasteur d'Alger, 16047, Dély Ibrahim, Alger, Algeria
| | - Wahida Boucekkine
- Direction Générale des Forêts, Chemin Doudou Mokhtar Ben-Aknoun, B.P.232, 16306, Alger, Algeria
| | - Mehdi Elharrak
- Société de Produits biologiques et pharmaceutiques et vétérinaires (Biopharma), Km 2, Road of Casablanca, B.P, 4569, Rabat-Akkari, Morocco
| | - Bachir Harif
- Société de Produits biologiques et pharmaceutiques et vétérinaires (Biopharma), Km 2, Road of Casablanca, B.P, 4569, Rabat-Akkari, Morocco
| | - Sehhar El Ayachi
- Département Ressources Naturelles et Environnement Institut Agronomique et Vétérinaire Hassan II, Madinat Al Irfane, B.P, 6202, Rabat, Morocco
| | - Akram Ahmed Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, 32897, Sadat City, Minoufiya, Egypt
| | - Mohamed A Nayel
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, 32897, Sadat City, Minoufiya, Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, 32897, Sadat City, Minoufiya, Egypt
| | - Sameh G El Rashedy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, University of Sadat City, 32897, Sadat City, Minoufiya, Egypt
| | - Paola De Benedictis
- FAO and National Reference Centre for rabies & OIE Collaborating Centre for diseases at the animal-human interface, Division of Biomedical Science, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Franco Mutinelli
- FAO and National Reference Centre for rabies & OIE Collaborating Centre for diseases at the animal-human interface, Division of Biomedical Science, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Barbara Zecchin
- FAO and National Reference Centre for rabies & OIE Collaborating Centre for diseases at the animal-human interface, Division of Biomedical Science, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Dino Scaravelli
- S.T.E.R.N.A. & Museo Ornitologico "F. Foschi", 47121, Forlì, Italy.,Laboratory of Pathogens' Ecology, Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia (Bo), Italy
| | - Chokri Balhoul
- Institut Pasteur Tunis, Place Pasteur B.P. 74, 1002, Tunis, Belvédère, Tunisia
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, 32897, Sadat City, Minoufiya, Egypt
| | - Hany Youssef Hassan
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, 32897, Sadat City, Minoufiya, Egypt
| | - Ahmed Hamed Zaghloul
- Department of Theriogenology and Artificial Insemination, Faculty of Veterinary Medicine, University of Sadat City, 32897, Sadat City, Minoufiya, Egypt
| | - Hervé Bourhy
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, WHO Collaborating Centre for Reference and Research on Rabies, Paris Cedex 15, 75724, Paris, France
| |
Collapse
|
10
|
Banyard AC, Selden D, Wu G, Thorne L, Jennings D, Marston D, Finke S, Freuling CM, Müller T, Echevarría JE, Fooks AR. Isolation, antigenicity and immunogenicity of Lleida bat lyssavirus. J Gen Virol 2018; 99:1590-1599. [PMID: 29745870 DOI: 10.1099/jgv.0.001068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The lyssaviruses are an important group of viruses that cause a fatal encephalitis termed rabies. The prototypic lyssavirus, rabies virus, is predicted to cause more than 60 000 human fatalities annually. The burden of disease for the other lyssaviruses is undefined. The original reports for the recently described highly divergent Lleida bat lyssavirus were based on the detection of virus sequence alone. The successful isolation of live Lleida bat lyssavirus from the carcass of the original bat and in vitro characterization of this novel lyssavirus are described here. In addition, the ability of a human rabies vaccine to confer protective immunity following challenge with this divergent lyssavirus was assessed. Two different doses of Lleida bat lyssavirus were used to challenge vaccinated or naïve mice: a high dose of 100 focus-forming units (f.f.u.) 30 µl-1 and a 100-fold dilution of this dose, 1 f.f.u. 30 µl-1. Although all naïve control mice succumbed to the 100 f.f.u. 30 µl-1 challenge, 42 % (n=5/12) of those infected intracerebrally with 1 f.f.u. 30 µl-1 survived the challenge. In the high-challenge-dose group, 42 % of the vaccinated mice survived the challenge (n=5/12), whilst at the lower challenge dose, 33 % (n=4/12) survived to the end of the experiment. Interestingly, a high proportion of mice demonstrated a measurable virus-neutralizing antibody response, demonstrating that neutralizing antibody titres do not necessarily correlate with the outcome of infection via the intracerebral route. Assessing the ability of existing rabies vaccines to protect against novel divergent lyssaviruses is important for the development of future public health strategies.
Collapse
Affiliation(s)
- Ashley C Banyard
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - David Selden
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Guanghui Wu
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Leigh Thorne
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Daisy Jennings
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Denise Marston
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Stefan Finke
- 2Friedrich-Loeffler-Institute (FLI), (WHO Collaborating Centre, OIE Reference Laboratory for Rabies), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Conrad M Freuling
- 2Friedrich-Loeffler-Institute (FLI), (WHO Collaborating Centre, OIE Reference Laboratory for Rabies), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- 2Friedrich-Loeffler-Institute (FLI), (WHO Collaborating Centre, OIE Reference Laboratory for Rabies), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | | | - Anthony R Fooks
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK.,4University of Liverpool, Institute of Infection & Global Health, Liverpool, UK.,5University of London, St George's Hospital Medical School, Institute for Infection and Immunity, London, UK
| |
Collapse
|
11
|
Utilisation of Chimeric Lyssaviruses to Assess Vaccine Protection against Highly Divergent Lyssaviruses. Viruses 2018; 10:v10030130. [PMID: 29543715 PMCID: PMC5869523 DOI: 10.3390/v10030130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Lyssaviruses constitute a diverse range of viruses with the ability to cause fatal encephalitis known as rabies. Existing human rabies vaccines and post exposure prophylaxes (PEP) are based on inactivated preparations of, and neutralising antibody preparations directed against, classical rabies viruses, respectively. Whilst these prophylaxes are highly efficient at neutralising and preventing a productive infection with rabies virus, their ability to neutralise other lyssaviruses is thought to be limited. The remaining 15 virus species within the lyssavirus genus have been divided into at least three phylogroups that generally predict vaccine protection. Existing rabies vaccines afford protection against phylogroup I viruses but offer little to no protection against phylogroup II and III viruses. As such, work involving sharps with phylogroup II and III must be considered of high risk as no PEP is thought to have any effect on the prevention of a productive infection with these lyssaviruses. Whilst rabies virus itself has been characterised in a number of different animal models, data on the remaining lyssaviruses are scarce. As the lyssavirus glycoprotein is considered to be the sole target of neutralising antibodies we generated a vaccine strain of rabies using reverse genetics expressing highly divergent glycoproteins of West Caucasian Bat lyssavirus and Ikoma lyssavirus. Using these recombinants, we propose that recombinant vaccine strain derived lyssaviruses containing heterologous glycoproteins may be a suitable surrogate for wildtype viruses when assessing vaccine protection for the lyssaviruses.
Collapse
|
12
|
Deviatkin AA, Lukashev AN. Recombination in the rabies virus and other lyssaviruses. INFECTION GENETICS AND EVOLUTION 2018; 60:97-102. [PMID: 29477551 DOI: 10.1016/j.meegid.2018.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/06/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022]
Abstract
Recombination is a common event in RNA viruses; however, in the rabies virus there have been only a few reports of isolated recombination events. Comprehensive analysis found traces of recent recombination events within Arctic, Arctic-like and Africa 1b rabies virus groups, as well as recombination between distinct lyssaviruses. Recombination breakpoints were not linked to gene boundaries and could be detected all over the genome. However, there was no evidence that recombination is an important factor in the genetic variability of the rabies virus. It is therefore likely that recombination in the rabies virus is limited by ecological factors (e.g., rare co-circulation of distinguishable lineages and a narrow window for productive coinfection in most carnivore hosts), rather than molecular barriers (e.g., incompatibility of genome fragments).
Collapse
Affiliation(s)
- Andrei A Deviatkin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia.
| | - Alexander N Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Evans JS, Selden D, Wu G, Wright E, Horton DL, Fooks AR, Banyard AC. Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. J Gen Virol 2018; 99:169-180. [PMID: 29300155 DOI: 10.1099/jgv.0.000998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lyssavirus infection has a near 100 % case fatality rate following the onset of clinical disease, and current rabies vaccines confer protection against all reported phylogroup I lyssaviruses. However, there is little or no protection against more divergent lyssaviruses and so investigation into epitopes within the glycoprotein (G) that dictate a neutralizing response against divergent lyssaviruses is warranted. Importantly, the facilities required to work with these pathogens, including wild-type and mutated forms of different lyssaviruses, are scarcely available and, as such, this type of study is inherently difficult to perform. The relevance of proposed immunogenic antigenic sites within the lyssavirus glycoprotein was assessed by swapping sites between phylogroup-I and -II glycoproteins. Demonstrable intra- but limited inter-phylogroup cross-neutralization was observed. Pseudotype viruses (PTVs) presenting a phylogroup-I glycoprotein containing phylogroup-II antigenic sites (I, II III or IV) were neutralized by antibodies raised against phylogroup-II PTV with the site II (IIb, aa 34-42 and IIa, aa 198-200)-swapped PTVs being efficiently neutralized, whilst site IV-swapped PTV was poorly neutralized. Specific antibodies raised against PTV-containing antigenic site swaps between phylogroup-I and -II glycoproteins neutralized phylogroup-I PTVs efficiently, indicating an immunodominance of antigenic site II. Live lyssaviruses containing antigenic site-swapped glycoproteins were generated and indicated that specific residues within the lyssavirus glycoprotein dictate functionality and enable differential neutralizing antibody responses to lyssaviruses.
Collapse
Affiliation(s)
- J S Evans
- Wildlife Zoonoses and Vector Bourne Disease Research Group, Animal and Plant Health Agency, Woodham Lane, Weybridge, Surrey, KT15 3NB, UK.,University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - D Selden
- Wildlife Zoonoses and Vector Bourne Disease Research Group, Animal and Plant Health Agency, Woodham Lane, Weybridge, Surrey, KT15 3NB, UK
| | - G Wu
- Wildlife Zoonoses and Vector Bourne Disease Research Group, Animal and Plant Health Agency, Woodham Lane, Weybridge, Surrey, KT15 3NB, UK
| | - E Wright
- Viral Pseudotype Unit, Faculty of Science and Technology, University of Westminster, London, W1W 6UW, UK
| | - D L Horton
- School of Veterinary Medicine, University of Surrey, GU2 7AX, UK
| | - A R Fooks
- Wildlife Zoonoses and Vector Bourne Disease Research Group, Animal and Plant Health Agency, Woodham Lane, Weybridge, Surrey, KT15 3NB, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - A C Banyard
- Wildlife Zoonoses and Vector Bourne Disease Research Group, Animal and Plant Health Agency, Woodham Lane, Weybridge, Surrey, KT15 3NB, UK
| |
Collapse
|
14
|
Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. Rabies. Nat Rev Dis Primers 2017; 3:17091. [PMID: 29188797 DOI: 10.1038/nrdp.2017.91] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rabies is a life-threatening neglected tropical disease: tens of thousands of cases are reported annually in endemic countries (mainly in Africa and Asia), although the actual numbers are most likely underestimated. Rabies is a zoonotic disease that is caused by infection with viruses of the Lyssavirus genus, which are transmitted via the saliva of an infected animal. Dogs are the most important reservoir for rabies viruses, and dog bites account for >99% of human cases. The virus first infects peripheral motor neurons, and symptoms occur after the virus reaches the central nervous system. Once clinical disease develops, it is almost certainly fatal. Primary prevention involves dog vaccination campaigns to reduce the virus reservoir. If exposure occurs, timely post-exposure prophylaxis can prevent the progression to clinical disease and involves appropriate wound care, the administration of rabies immunoglobulin and vaccination. A multifaceted approach for human rabies eradication that involves government support, disease awareness, vaccination of at-risk human populations and, most importantly, dog rabies control is necessary to achieve the WHO goal of reducing the number of cases of dog-mediated human rabies to zero by 2030.
Collapse
Affiliation(s)
- Anthony R Fooks
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.,Institute of Infection &Global Health, University of Liverpool, Liverpool, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thiravat Hemachudha
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Thai Red Cross Emerging Infectious Disease-Health Science Centre, Thai Red Cross Society, Bangkok, Thailand
| | - Reeta S Mani
- Department of Neurovirology (WHO Collaborating Centre for Reference and Research in Rabies), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Susan Nadin-Davis
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency (WHO Collaborating Centre for Control, Pathogenesis and Epidemiology of Rabies in Carnivores), Ottawa, Ontario, Canada
| | - Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Henry Wilde
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
15
|
Kgaladi J, Faber M, Dietzschold B, Nel LH, Markotter W. Pathogenicity and Immunogenicity of Recombinant Rabies Viruses Expressing the Lagos Bat Virus Matrix and Glycoprotein: Perspectives for a Pan-Lyssavirus Vaccine. Trop Med Infect Dis 2017; 2:tropicalmed2030037. [PMID: 30270894 PMCID: PMC6082111 DOI: 10.3390/tropicalmed2030037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023] Open
Abstract
Lagos bat virus (LBV) is a phylogroup II lyssavirus exclusively found in Africa. Previous studies indicated that this virus is lethal to mice after intracranial and intramuscular inoculation. The antigenic composition of LBV differs substantially from that of rabies virus (RABV) and current rabies vaccines do not provide cross protection against phylogroup II lyssaviruses. To investigate the potential role of the LBV matrix protein (M) and glycoprotein (G) in pathogenesis, reverse genetics technology was used to construct recombinant viruses. The genes encoding the glycoprotein, or the matrix and glycoprotein of the attenuated RABV strain SPBN, were replaced with those of LBV resulting in SPBN-LBVG and SPBN-LBVM-LBVG, respectively. To evaluate the immunogenicity of the LBV G, the recombinant RABV SPBNGAS-LBVG-GAS was constructed with the LBV G inserted between two mutated RABV G genes (termed GAS). All the recombinant viruses were lethal to mice after intracranial (i.c.) inoculation although the pathogenicity of SPBNGAS-LBVG-GAS was lower compared to the other recombinant viruses. Following intramuscular (i.m.) inoculation, only SPBN-LBVM-LBVG was lethal to mice, indicating that both the M and G of LBV play a role in the pathogenesis. Most interestingly, serum collected from mice that were inoculated i.m. with SPBNGAS-LBVG-GAS neutralized phylogroup I and II lyssaviruses including RABV, Duvenhage virus (DUVV), LBV, and Mokola virus (MOKV), indicating that this recombinant virus has potential to be developed as a pan-lyssavirus vaccine.
Collapse
Affiliation(s)
- Joe Kgaladi
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2193, South Africa.
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Bernhard Dietzschold
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| |
Collapse
|
16
|
Suu-Ire RD, Fooks AR, Banyard AC, Selden D, Amponsah-Mensah K, Riesle S, Ziekah MY, Ntiamoa-Baidu Y, Wood JLN, Cunningham AA. Lagos Bat Virus Infection Dynamics in Free-Ranging Straw-Colored Fruit Bats (Eidolon helvum). Trop Med Infect Dis 2017; 2:tropicalmed2030025. [PMID: 30270883 PMCID: PMC6082102 DOI: 10.3390/tropicalmed2030025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/25/2022] Open
Abstract
Bats are key species for ecological function, but they are also reservoirs of zoonotic agents, such as lyssaviruses that cause rabies. Little is known about the maintenance and transmission of lyssaviruses in bats, although the observation of clinically sick bats, both in experimental studies and wild bats, has at least demonstrated that lyssaviruses are capable of causing clinical disease in bat species. Despite this, extensive surveillance for diseased bats has not yielded lyssaviruses, whilst serological surveys demonstrate that bats must be exposed to lyssavirus without developing clinical disease. We hypothesize that there is endemic circulation of Lagos bat virus (LBV) in the straw-coloured fruit bat (Eidolon helvum) in Ghana, West Africa. To investigate this further, longitudinal blood sampling was undertaken quarterly between 2012 and 2014 on wild E. helvum at two sites in Ghana. Serum samples were collected and tested for LBV-neutralizing antibodies using a modified flourescent antibody virus neutralisation (FAVN) assay (n = 294) and brains from moribund or dead bats were tested for antigen and viral RNA (n = 55). Overall, 44.7% of the 304 bats sampled had LBV-neutralising antibodies. None of the brain samples from bats contained lyssavirus antigen or RNA. Together with the results of an earlier serological study, our findings demonstrate that LBV is endemic and circulates within E. helvum in Ghana even though the detection of viral infection in dead bats was unsuccessful. Confirmation that LBV infection is endemic in E. helvum in Ghana is an important finding and indicates that the potential public health threats from LBV warrant further investigation.
Collapse
Affiliation(s)
- Richard D Suu-Ire
- Department of Animal Biology and Conservation Science, University of Ghana, P.O. Box LG 571, Legon, Accra, Ghana.
- Veterinary Services Department, Ministry of Food and Agriculture, P. O. Box M 161, Accra, Ghana.
- Wildlife Division of the Forestry Commission, P.O. Box M239, Accra, Ghana.
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool LP69 7ZX, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | - David Selden
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | - Kofi Amponsah-Mensah
- Department of Animal Biology and Conservation Science, University of Ghana, P.O. Box LG 571, Legon, Accra, Ghana.
| | - Silke Riesle
- Department of Animal Biology and Conservation Science, University of Ghana, P.O. Box LG 571, Legon, Accra, Ghana.
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Madingley Road Cambridge CB3 0ES, Cambridge, UK.
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.
| | - Meyir Y Ziekah
- Veterinary Services Department, Ministry of Food and Agriculture, P. O. Box M 161, Accra, Ghana.
- Wildlife Division of the Forestry Commission, P.O. Box M239, Accra, Ghana.
| | - Yaa Ntiamoa-Baidu
- Department of Animal Biology and Conservation Science, University of Ghana, P.O. Box LG 571, Legon, Accra, Ghana.
| | - James L N Wood
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Madingley Road Cambridge CB3 0ES, Cambridge, UK.
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.
| |
Collapse
|