1
|
Ichikawa R, Kimura K, Nakamura S, Ohkura S, Matsuyama S. Effects of intrauterine extracellular vesicle microRNAs on embryonic gene expression in low-fertility cows. FASEB J 2024; 38:e70116. [PMID: 39425543 DOI: 10.1096/fj.202401728r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Embryo survival and pre-implantation development depend on uterine luminal fluid, which is believed to play a role in early embryonic death and infertility in cows. Extracellular vesicles (EVs) in the uterine luminal fluid contain microRNAs (miRNAs), crucial mediators of intercellular communication. miRNAs regulate conceptus-maternal interactions and participate in embryonic development by suppressing gene expression. Therefore, we hypothesized that miRNAs in the intrauterine EVs of low-fertility cows would hinder embryonic survival and development. EVs were collected from the bovine uterine luminal fluid of both normal- and low-fertility cows 7 days post-estrus. Small RNA-sequencing analysis of miRNAs isolated from these EVs identified eight miRNAs that were highly expressed in normal-fertility cows (normal-fertility miRNAs) and eight with elevated expression in low-fertility cows (low-fertility miRNAs). These two sets of miRNAs were transfected into hatched blastocysts via lipofection. RNA-seq following lipofection with low-fertility miRNAs identified 424 differentially expressed genes (DEGs) relative to the control; in contrast, following lipofection with normal-fertility miRNAs, seven DEGs were identified. Pathway analysis of the DEGs identified following lipofection with low-fertility miRNAs revealed substantial enrichment of mitogen-activated protein kinase (MAPK) signaling. Expression of activator protein 1 (AP1) and interferon-tau (IFNT) mRNA was significantly lower in the low-fertility miRNA transfection group than in the control. IFNT is essential for maternal pregnancy recognition. Therefore, miRNAs in intrauterine EVs from low-fertility cows at 7 days post-estrus may inhibit embryo development and suppress IFNT expression by altering MAPK signaling.
Collapse
Affiliation(s)
- Rei Ichikawa
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Sho Nakamura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Shuichi Matsuyama
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Juli MSB, Boe-Hansen GB, Raza A, Forutan M, Ong CT, Siddle HV, Tabor AE. A systematic review of predictive, diagnostic, and prognostic biomarkers for detecting reproductive diseases in cattle using traditional and omics approaches. J Reprod Immunol 2024; 165:104315. [PMID: 39154625 DOI: 10.1016/j.jri.2024.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Reproductive diseases and illnesses pose significant challenges in cattle farming, affecting fertility, milk production, and overall herd health. In recent years, the integration of various omics approaches, including transcriptomics, proteomics, metagenomics, miRNAomics, and metabolomics, has revolutionized the study of these conditions. This systematic review summarised the findings from studies that investigated reproductive disease biomarkers in both male and female cattle. After extracting 6137 studies according to exclusion and inclusion criteria, a total of 60 studies were included in this review. All studies identified were associated with female cattle and none were related to reproductive diseases in bulls. The analysis highlights specific biomarkers, metabolic pathways, and microbial compositions associated with bovine reproductive disease conditions, providing valuable insights into the underlying molecular mechanisms of disease. Pro-inflammatory cytokines such as IL-1β, IL-8, IL-4, IL-6, TNFα and acute-phase response proteins such as SAA and HP have been identified as promising biomarkers for bovine reproductive diseases. However, further research is needed to validate these markers clinically and to explore potential strategies for improving cow reproductive health. The role of bulls as carriers of venereal diseases has been underestimated in the current literature and therefore needs more attention to understand their impact on infectious reproductive diseases of female cattle.
Collapse
Affiliation(s)
- Mst Sogra Banu Juli
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Gry B Boe-Hansen
- The University of Queensland, School of Veterinary Science, Gatton, Queensland 4343, Australia.
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Mehrnush Forutan
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Chian Teng Ong
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Hannah V Siddle
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia; The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Pereira G, Charpigny G, Guo Y, Silva E, Silva MF, Ye T, Lopes-da-Costa L, Humblot P. Characterization of circulating microRNA profiles of postpartum dairy cows with persistent subclinical endometritis. J Dairy Sci 2023; 106:9704-9717. [PMID: 37641364 DOI: 10.3168/jds.2023-23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 08/31/2023]
Abstract
Subclinical endometritis (SCE) is an unresolved inflammation of the endometrium of postpartum dairy cows, seriously affecting fertility. Current diagnosis, which relies on uterine cytology or even more invasive biopsy sampling, would benefit from the identification of blood-based diagnostic biomarkers. Due to the known role of microRNAs (miRNAs) in other diseases, this case-control study evaluated the cell-free circulating miRNA profiles of SCE cows, and the network of transcripts predicted to interact with those miRNAs, previously identified as differentially expressed genes (DEG) in the endometrium of the same cows. Healthy (H, n = 6) and persistent SCE (n = 11) cows characterized by endometrial cytology and biopsy were blood sampled at 21 and 44 d postpartum (DPP). Following extraction of cell-free plasma miRNAs and RNA-seq analysis, differential abundance analysis of miRNAs was performed with the DESeq2 R package (adjusted p-value of 0.05), and in silico prediction of miRNA-interacting genes on a sequence complementary basis was conducted using the miRWalk database. The principal component analysis showed a clear clustering between groups of uterine health phenotypes (H vs. SCE), although the clustering between groups was less pronounced at 44 DPP than at 21 DPP. No effect of the stage (21 vs. 44 DPP) was observed. A total of 799 known circulating miRNAs were identified, from which 34 demonstrated differential abundance between H and SCE cows (12 less abundant and 22 more abundant in SCE than in H cows). These 34 miRNAs are predicted to interact with 10,104 transcripts, among which 43, 81, and 147 were previously identified as differentially expressed in, respectively, endometrial luminal epithelial, glandular epithelial, and stromal cells of the same cows. This accounts for approximately half of the DEG identified between those H and SCE cows, including genes involved in endometrial cell proliferation, angiogenesis and immune response, whose dysregulation in SCE cows may impair pregnancy establishment. From 219 miRNAs with mean normalized read counts above 100, the presence and abundance of miR-425-3p and miR-2285z had the highest discriminatory level to differentiate SCE from H cows. In conclusion, despite apparent confinement to the endometrium, SCE is associated with a distinct circulating miRNA profile, which may represent a link between the systemic changes associated with disease and the endometrial immune response. The validation of a miRNA panel consisting of circulating cell-free miR-425-3p and miR-2285z may prove a relevant advancement for the noninvasive diagnosis of persistent SCE.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gilles Charpigny
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO, 750 07 Uppsala, Sweden
| | - Elisabete Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Marta Filipa Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal; Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Centre National de Recherche Scientifique (CNRS) UMR7104, Université de Strasbourg,1 rue Laurent Fries, 67404 Illkirch, France
| | - Luís Lopes-da-Costa
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO, 750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Kim EP, Kim CY, Heo MY, Kim SW, Kim GA. MicroRNA Expression Variation in Female Dog ( Canis familiaris) Reproductive Organs with Age and Presence of Uteropathy. Animals (Basel) 2022; 12:ani12233352. [PMID: 36496873 PMCID: PMC9740207 DOI: 10.3390/ani12233352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
While aging is associated with microRNA (miRNA) expression, little is known about its role in the aging of dog reproductive organs. We examined miRNA expression in ovaries, oviducts, and uteri from young and old dogs and dogs with uteropathy to elucidate miRNA's role in aging. The ovaries, oviducts, and uteri of 18 dogs (Canis familiaris)-young (8.5 ± 1.9 months old), old (78.2 ± 29.0 months old), and those with uteropathy (104.4 ± 15.1 months old)-were collected for miRNA expression examination. Total RNA samples were extracted, reverse-transcribed to cDNA, and real-time PCR analysis was also performed. In ovaries, miR-708 and miR-151 levels were significantly higher in old dogs than in young dogs, and only let-7a, let-7b, let-7c, miR125b, and miR26a were significantly upregulated in dogs with uteropathy. In the oviducts and uteri of old dogs, miR-140, miR-30d, miR-23a, miR-10a, miR-125a, miR-221, and miR-29a were upregulated. Realtime quantitative PCR revealed that targeted mRNA was similarly regulated to miRNA. These results suggest that miRNAs of reproductive organs in dogs may be biological markers for aging and reproductive diseases and could be used for mediating aging.
Collapse
Affiliation(s)
- Eun Pyo Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Chae Young Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Young Heo
- Department of Biomedical Laboratory Science, School of Healthcare Science, Eulji University, Uijeongbu 34824, Republic of Korea
| | - Sang Wha Kim
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Geon A. Kim
- Department of Biomedical Laboratory Science, School of Healthcare Science, Eulji University, Uijeongbu 34824, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Chen N, Ma B, Guo S, Yin B, Zhang J, Deng G. microRNA-196b alleviates lipopolysaccharide-induced inflammatory injury by targeting NRAS. Mol Immunol 2022; 147:10-20. [PMID: 35489290 DOI: 10.1016/j.molimm.2022.03.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
Bovine endometritis is a serious hazard to husbandry, so it is necessary to know the mechanism of endometritis. In past research, we found microRNAs (miRNAs) might be regulators in inflammation, including miR-196b, but the mechanism of miR-196b in bovine endometritis was unknown. Therefore, we tended to find out what role miR-196b would play in bovine endometritis. As a result, we found miR-196b up-regulated in the endometritis tissue and the high concentration lipopolysaccharide (LPS)-stimulated bovine endometrial epithelial (BEND) cell line, but down-regulated in the low concentration. And, over-expression of miR-196b inhibited the expressions of some inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and neuroblastoma RAS (NRAS)/nuclear factor (NF)-κB pathway proteins. Furthermore, the dual-luciferase reporter assay and NRAS knockdown confirmed that miR-196b inhibited activation of the downstream pathway by directly targeting NRAS. In conclusion, we provide evidence that miR-196b alleviates LPS-induced inflammatory injury by targeting NRAS.
Collapse
Affiliation(s)
- Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bin Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
6
|
Oladejo AO, Li Y, Imam BH, Ma X, Shen W, Wu X, Jiang W, Yang J, Lv Y, Ding X, Wang S, Yan Z. MicroRNA miR-24-3p Mediates the Negative Regulation of Lipopolysaccharide-Induced Endometrial Inflammatory Response by Targeting TNF Receptor-Associated Factor 6 (TRAF6). J Inflamm Res 2022; 15:807-825. [PMID: 35173455 PMCID: PMC8831117 DOI: 10.2147/jir.s347293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose Endometritis is a female reproductive disease that affects the cattle industries development and microRNAs (miRNAs) play a pivotal role and critical regulators of the innate immune response in varieties of diseases. The present study intends to investigate the regulatory role of miR‐24-3p in the innate immune response involved in endometritis and evaluate its therapeutic potential. Methods Whole mice uteri and bovine endometrial epithelial cells (BEECs) were separately stimulated with LPS. The BEECs were also transfected with miR-24-3p mimic and negative control; siTRAF6 and siNC; pcDNA3.1 empty and pcDNA3.1(+)TRAF6 separately with LPS stimulation. The expression levels of miR‐24-3p and TRAF6 were measured via quantitative real‐time polymerase chain reaction (qRT-PCR) and Western blot, respectively. LPS‐induced inflammatory response assessed by inflammatory cytokines secretion and expression via ELISA and qRT-PCR. Bioinformatics analysis and luciferase reporter assay validated the interaction between miR‐24-3p and TRAF6. The activation of the NF‐ĸB/MAPK pathway and p65 phosphorylation was investigated by Western blot and immunofluorescence assay, respectively. Results The expression of miR‐24-3p was decreased, and TRAF6 was elevated with an increased level of pro-inflammatory cytokines in LPS‐treated BEECs and mice uterus. The overexpression of miR‐24-3p suppressed LPS‐induced secretion of inflammatory cytokines (IL‐1β, IL‐6, IL-8 and TNF-α) and deactivation of NF‐ĸB/MAPK pathways. The downregulation of TRAF6 inhibited LPS‐induced inflammatory response in BEECs. TRAF6 is validated as a target of miR‐24-3p, and miR‐24-3p reversed the overexpression of cloned TRAF6 on inflammation response in BEECs. Conclusion Our findings demonstrate that the overexpression of miR‐24-3p attenuates endometrial inflammation and the expression of pro-inflammatory mediators via suppressing TRAF6. Therefore, modulating the pathogenesis of endometritis and possibly, a therapeutic potential against endometritis.
Collapse
Affiliation(s)
- Ayodele Olaolu Oladejo
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora, 201103, Nigeria
| | - Yajuan Li
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Bereket Habte Imam
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
- Department of Veterinary Science, Hamelmalo Agricultural College, Keren, 397, Eritrea
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Xiaohu Wu
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Wei Jiang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Jie Yang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Yanan Lv
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China
- Correspondence: Zuoting Yan, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, People’s Republic of China, Tel +8613919067215, Email
| |
Collapse
|
7
|
Umar T, Ma X, Yin B, Umer S, Zahoor A, Akhtar M, Umar Z, Shaukat A, Deng G. miR-424-5p overexpression inhibits LPS-stimulated inflammatory response in bovine endometrial epithelial cells by targeting IRAK2. J Reprod Immunol 2021; 150:103471. [PMID: 35032930 DOI: 10.1016/j.jri.2021.103471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
Endometritis is inflammation of endometrium due to various factors and is a common cause of infertility. Several remedies used for endometritis like antibiotics, hormones, and herbs. Studies confirm that microRNAs play a significant role in various inflammatory diseases. However, the role of miR-424-5p in endometritis is not clear. In our study, histopathology, real-time quantitative polymerase chain reaction, Western blot analysis, immunofluorescence, ELISA, and dual-luciferase reporter assay were used to elucidate the effect of miR-424-5p in lipopolysaccharide (LPS)-primed inflammatory response in bovine endometrial epithelial cells (BEECs) and clarify the potential mechanism. Our results revealed that miR-424-5p mimics noticeably decrease the production of proinflammatory cytokines (IL-1β, IL-6, and TNF-α), while miR-424-5p inhibitors have inverse effects in BEECs. Moreover, overexpression of miR-424-5p on BEECs cells also suppressed NF-κB p65 activation. Afterwards, we verified that miR-424-5p inhibited Interleukin 1 Receptor Associated Kinase 2 (IRAK2) expression by binding to the 3'-UTR of IRAK2 mRNA. Further, co-transfection of miR-424-5p inhibitors and siRNA-IRAK2 revealed that negative regulation of miR-424-5p on LPS-induced inflammatory response in BEECs was mediated by IRAK2.Mutually, miR-424-5p pharmacologic stabilization represents an entirely unique medical aid for cow endometritis and other inflammation-related diseases.
Collapse
Affiliation(s)
- Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Saqib Umer
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000 Punjab, Pakistan
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Akhtar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zaima Umar
- Department of Anatomy and Histology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000 Punjab, Pakistan
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
8
|
MicroRNA Bta-miR-24-3p Suppressed Galectin-9 Expression through TLR4/NF-ĸB Signaling Pathway in LPS-Stimulated Bovine Endometrial Epithelial Cells. Cells 2021; 10:cells10123299. [PMID: 34943807 PMCID: PMC8699331 DOI: 10.3390/cells10123299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Endometritis is a major infectious disease affecting dairy development. MicroRNAs are recognized as critical regulators of the innate immune response. However, the role and mechanism of Bta-miR-24-3p in the development of endometritis are still unclear. This study aimed to investigate the effect of Bta-miR-24-3p on the inflammatory response triggered by lipopolysaccharide (LPS) and to clarify the possible mechanism. LPS-treated bovine endometrial epithelial cells (BEECs) were cultured to investigate the role of Bta-miR-24-3p. The expression levels of Bta-miR-24-3p were downregulated, and galectin-9 (LGALS9) were measured by quantitative real-time polymerase chain reaction. The LPS-induced inflammatory response was assessed by the elevated secretion of inflammatory cytokines measured by using enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Activation of nuclear factor-κB (NF-κB) and TLR4 pathway was assessed by Western blot. The interaction between Bta-miR-24-3p and LGALS9 was validated by bioinformatics analysis and a luciferase reporter assay. LPS-induction in BEECs with Bta-miR-24-3p was overexpressed leads inhibition of pro-inflammatory cytokines, LGALS9 expression, and TLR4/NF-ĸB pathway deactivation. Knockdown of LGALS9 inhibited the LPS-induced inflammatory response in BEECs. LGALS9 was validated as a target of Bta-miR-24-3p. Cloned overexpression of LGALS9 failed to alter the effect of Bta-miR-24-3p on the inflammatory response in BEECs. Overall, Bta-miR-24-3p attenuated the LPS-induced inflammatory response via targeting LGALS9. The immunotherapeutic stabilisation of Bta-miR-24-3p could give a therapeutic option for endometritis and other disorders commonly associated with endometritis, suggesting a novel avenue for endometritis treatment.
Collapse
|
9
|
Sheybani N, Bakhtiarizadeh MR, Salehi A. An integrated analysis of mRNAs, lncRNAs, and miRNAs based on weighted gene co-expression network analysis involved in bovine endometritis. Sci Rep 2021; 11:18050. [PMID: 34508138 PMCID: PMC8433134 DOI: 10.1038/s41598-021-97319-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
In dairy cattle, endometritis is a severe infectious disease that occurs following parturition. It is clear that genetic factors are involved in the etiology of endometritis, however, the molecular pathogenesis of endometritis is not entirely understood. In this study, a system biology approach was used to better understand the molecular mechanisms underlying the development of endometritis. Forty transcriptomic datasets comprising of 20 RNA-Seq (GSE66825) and 20 miRNA-Seq (GSE66826) were obtained from the GEO database. Next, the co-expressed modules were constructed based on RNA-Seq (Rb-modules) and miRNA-Seq (mb-modules) data, separately, using a weighted gene co-expression network analysis (WGCNA) approach. Preservation analysis was used to find the non-preserved Rb-modules in endometritis samples. Afterward, the non-preserved Rb-modules were assigned to the mb-modules to construct the integrated regulatory networks. Just highly connected genes (hubs) in the networks were considered and functional enrichment analysis was used to identify the biological pathways associated with the development of the disease. Furthermore, additional bioinformatic analysis including protein-protein interactions network and miRNA target prediction were applied to enhance the reliability of the results. Thirty-five Rb-modules and 10 mb-modules were identified and 19 and 10 modules were non-preserved, respectively, which were enriched in biological pathways related to endometritis like inflammation and ciliogenesis. Two non-preserved Rb-modules were significantly assigned to three mb-modules and three and two important sub-networks in the Rb-modules were identified, respectively, including important mRNAs, lncRNAs and miRNAs genes like IRAK1, CASP3, CCDC40, CCDC39, ZMYND10, FOXJ1, TLR4, IL10, STAT3, FN1, AKT1, CD68, ENSBTAG00000049936, ENSBTAG00000050527, ENSBTAG00000051242, ENSBTAG00000049287, bta-miR-449, bta-miR-484, bta-miR-149, bta-miR-30b and bta-miR-423. The potential roles of these genes have been previously demonstrated in endometritis or related pathways, which reinforced putative functions of the suggested integrated regulatory networks in the endometritis pathogenesis. These findings may help further elucidate the underlying mechanisms of bovine endometritis.
Collapse
Affiliation(s)
- Negin Sheybani
- grid.46072.370000 0004 0612 7950Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Mohammad Reza Bakhtiarizadeh
- grid.46072.370000 0004 0612 7950Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Abdolreza Salehi
- grid.46072.370000 0004 0612 7950Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Liang Y, Ming Q, Shen T, Jin Y, Zhao X, Luo R, Wang J, Lu J. CircRNA circFADS2 is Downregulated in Endometritis and its Overexpression Promotes miR-643 Maturation in Human Endometrial Epithelial Cells to Suppress Cell Apoptosis. Reprod Sci 2021; 28:3508-3514. [PMID: 34478121 DOI: 10.1007/s43032-021-00720-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/14/2021] [Indexed: 11/29/2022]
Abstract
CircRNA circFADS2 suppresses LPS-induced inflammation, which plays a critical role in endometritis. Our preliminary sequencing analysis revealed a positive correlation between circFADS2 and miR-643, which also play protective roles in LPS-induced inflammation. Therefore, this study was performed to explore the involvement of circFADS2 in endometritis with a focus on its interaction with miR-643. RT-qPCR was performed to analyze the levels circFADS2, mature miR-643, and premature miR-643 in plasma samples from endometritis patients (n = 66) and healthy controls (n = 66). Pearson's correlation coefficient was applied to analyze correlations between these genes. The effect of circFADS2 on miR-643 maturation was analyzed by measuring miR-643 and premature miR-643 levels in circFADS2-overexpressed human endometrial epithelial cell line HEnEpCs. The role of circFADS2 and miR-643 in HEnEpC apoptosis under LPS treatment was analyzed by cell apoptosis assay. CircFADS2 was downregulated in endometritis and was positively correlated with mature miR-643, but not premature miR-643. CircFADS2 overexpression in HEnEpCs increased the level of mature miR-643 but not premature miR-643. Cell apoptosis analysis showed that circFADS2 and miR-643 overexpression protected HEnEpCs from LPS-induced cell apoptosis, and miR-643 inhibition reduced the effect of circFADS2 overexpression. CircFADS2 is downregulated in endometritis, and it overexpression promotes miR-643 maturation in HEnEpCs to suppress cell apoptosis.
Collapse
Affiliation(s)
- Yuanjiao Liang
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Qi Ming
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Tao Shen
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Xia Zhao
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Rong Luo
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Jiahui Wang
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China
| | - Jinchun Lu
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Gulou District, Nanjing City, Jiangsu Province, 210009, People's Republic of China.
| |
Collapse
|
11
|
Yang C, Yang C, Zhang J, Guo Y, Chen N, Yin B, Zhou Q, Zhang T, Guo S, Deng G. MicroRNA-211 regulates the expression of TAB1 and inhibits the NF-κB signaling pathway in lipopolysaccharide-induced endometritis. Int Immunopharmacol 2021; 96:107668. [PMID: 33984721 DOI: 10.1016/j.intimp.2021.107668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Endometritis is a common postpartum inflammatory disease that endangers the reproductive health of humans and animals. Emerging evidence shows that microRNA is a new type of therapeutic molecule that plays a vital role in many diseases; however, its mechanism of action in lipopolysaccharide (LPS)-induced endometritis is still unclear. This study aims to investigate the regulatory role of miR-211 in the innate immune response involved in endometritis, and to evaluate its potential therapeutic value. Here, we found that the expression of miR-211 in bovine endometrial epithelial cells (bEECs) stimulated by lipopolysaccharide (LPS) was significantly reduced. Importantly, overexpression of miR-211 can significantly reduce the production of pro-inflammatory cytokines (IL-1β , IL-6 and TNF-α). In addition, we proved that TAB1 is the target gene of miR-211. MiR-211 inhibits TAB1 protein expression by binding to the 3'-UTR of TAB1 mRNA. Subsequently, we verified that the overexpression of miR-211 inhibited the activation of NF-κB p65 by targeting the TAB1-mediated pathway. Therefore, miR-211 has anti-inflammatory effects and mediates the negative regulation of the NF-κB signaling pathway in LPS-induced endometritis by targeting TAB1.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yingfang Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
12
|
MicroRNA: Could It Play a Role in Bovine Endometritis? Inflammation 2021; 44:1683-1695. [PMID: 33907916 DOI: 10.1007/s10753-021-01458-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Endometritis in dairy cows is a major economic problem worldwide; without advances in lifestyle management and drug treatment, it causes high morbidity and death. Micro ribonucleic acid (miRNAs) these days is seen as an important part of gene control networks. It is a class of small nucleotides 20-25, single-stranded RNA molecules. In endometritis, the inflammatory response caused by the gram-negative bacteria Escherichia coli (E. coli) alters the expression of miRNA which can regulate the innate immune system. This manuscript reviews (1) the interaction of miRNAs with the signaling of NF-κB and dysregulation of miRNAs and NF-κB activity in endometritis and (2) the activity of miR-let-7c, miR-148a, and miR-488 in NF-κB activation and their effect on endometritis. Cows with reduced immunity are more vulnerable to transition diseases, such as endometritis. During post-partum, cows undergo stress, metabolic disorders, hormonal imbalance, negative energy balance, and changes in diet. One of the many categories of regulatory molecules, which explain its natural function and pathological impact on NF-κB dysregulation, is important to inform the complexity of the immune system and to develop treatments for endometritis. It shows that miRNAs could have multiple applications in veterinary medicine. Nevertheless, a comprehensive study of is essential which should be aimed at exploring the role of microRNA at physiological level and its effect due to dysfunction and dysregulation.
Collapse
|
13
|
Yan C, Lv H, Peng Z, Yang D, Shen P, Yu J, Tong C, Wang X. Analysis of miRNA expression changes in bovine endometrial stromal cells treated with lipopolysaccharide. Theriogenology 2021; 167:85-93. [PMID: 33784501 DOI: 10.1016/j.theriogenology.2021.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
After parturition, bovine uterine stromal cells are often exposed to complex bacterial and viral stimuli owing to epithelial cell rupture, resulting in an inflammatory response. In this study, we used an in vitro model to study the response of bovine endometrial stromal cells to inflammatory mediators and the associated regulated microRNAs in response to lipopolysaccharide. Lipopolysaccharide (LPS) is a bacterial wall component in gram-negative bacteria that causes inflammation upon immune recognition, which is used to create in vitro inflammation models. Thus, we used high-throughput RNA sequencing to identify miRNAs that may have an anti-inflammatory role in the LPS-induced inflammatory response. Two groups of bovine uterine cells were treated with phosphate buffer saline (PBS) and LPS, respectively. Compared with the control (PBS) group, the LPS-treated group had 219 differentially expressed miRNAs, of which 113 were upregulated, and 106 were downregulated. Gene ontology enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in several activities, such as transferase activity, small molecule binding, and protein binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the target genes of differential miRNAs were significantly enriched in fluid shear stress and atherosclerosis, MAPK signaling pathway, TNF signaling pathway. By analyzing differentially expressed miRNAs, we found that miR-200c, miR-1247-3p, and let-7b are directly related to the inflammatory response. For instance, miR-200c target genes (MAP3K1, MAP4K3, MAPKAPK5, MAP3K8, MAP3K5) and let-7b target genes (CASP3, IL13, MAPK8, CXCL10) were significantly enriched in the MAPK and IL-17 signaling pathways, respectively. In summary, our research provides insight into the molecular mechanism underlying LPS-induced inflammation in vitro, which may unveil new targets for the treatment of endometritis.
Collapse
Affiliation(s)
- Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Haimiao Lv
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Zhan Peng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China; Wuhu Overseas Students Pioneer Park, Wuhu, 241006, PR China.
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
14
|
Gebremedhn S, Ali A, Hossain M, Hoelker M, Salilew-Wondim D, Anthony RV, Tesfaye D. MicroRNA-Mediated Gene Regulatory Mechanisms in Mammalian Female Reproductive Health. Int J Mol Sci 2021; 22:938. [PMID: 33477832 PMCID: PMC7832875 DOI: 10.3390/ijms22020938] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian reproductive health affects the entire reproductive cycle starting with the ovarian function through implantation and fetal growth. Various environmental and physiological factors contribute to disturbed reproductive health status leading to infertility problems in mammalian species. In the last couple of decades a significant number of studies have been conducted to investigate the transcriptome of reproductive tissues and organs in relation to the various reproductive health issues including endometritis, polycystic ovarian syndrome (PCOS), intrauterine growth restriction (IUGR), preeclampsia, and various age-associated reproductive disorders. Among others, the post-transcriptional regulation of genes by small noncoding miRNAs contributes to the observed transcriptome dysregulation associated with reproductive pathophysiological conditions. MicroRNAs as a class of non-coding RNAs are also known to be involved in various pathophysiological conditions either in cellular cytoplasm or they can be released to the extracellular fluid via membrane-bounded extracellular vesicles and proteins. The present review summarizes the cellular and extracellular miRNAs and their association with the etiology of major reproductive pathologies including PCOS, endometritis, IUGR and age-associated disorders in various mammalian species.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Asghar Ali
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Munir Hossain
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Michael Hoelker
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Russell V. Anthony
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| |
Collapse
|
15
|
Oladejo AO, Li Y, Wu X, Imam BH, Shen W, Ding XZ, Wang S, Yan Z. MicroRNAome: Potential and Veritable Immunomolecular Therapeutic and Diagnostic Baseline for Lingering Bovine Endometritis. Front Vet Sci 2020; 7:614054. [PMID: 33426032 PMCID: PMC7785807 DOI: 10.3389/fvets.2020.614054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
The bovine endometrium is a natural pathogen invasion barrier of the uterine tissues' endometrial epithelial cells that can resist foreign pathogen invasion by controlling the inflammatory immune response. Some pathogens suppress the innate immune system of the endometrium, leading to prolonged systemic inflammatory response through the blood circulation or cellular degradation resulting in bovine endometritis by bacterial endotoxins. The microRNA (miRNA) typically involves gene expression in multicellular organisms in post-transcription regulation by affecting both the stability and the translation of messenger RNA. Accumulated evidence suggests that miRNAs are important regulators of genes in several cellular processes. They are a class of endogenous non-coding RNAs, which play pivotal roles in the inflammatory response of reproductive diseases. Studies confirmed that miRNAs play a key regulatory role in various inflammatory diseases by mediating the molecular mechanism of inflammatory cytokines via signal pathways. It implicates some miRNAs in the occurrence of bovine endometritis, resorting to regulating the activities of some inflammatory cytokines, chemokine, differentially expressed genes, and protein through modulating of specific cellular signal pathways functions. This review dwells on improving the knowledge of the role of miRNAs involvement in inflammatory response as to early diagnosis, control, and prevention of bovine endometritis and consequently enlighten on the molecular improvement of the genes coded by various differentially expressed miRNA through the need to adopt recent genetic technologies and the development of new pharmaceutical preparations.
Collapse
Affiliation(s)
- Ayodele Olaolu Oladejo
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China.,Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria
| | - Yajuan Li
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xiaohu Wu
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Bereket Habte Imam
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xue Zhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, China
| |
Collapse
|
16
|
Ding X, Lv H, Deng L, Hu W, Peng Z, Yan C, Yang D, Tong C, Wang X. Analysis of Transcriptomic Changes in Bovine Endometrial Stromal Cells Treated With Lipopolysaccharide. Front Vet Sci 2020; 7:575865. [PMID: 33324700 PMCID: PMC7725876 DOI: 10.3389/fvets.2020.575865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Endometritis adversely affects the ability of cattle to reproduce and significantly reduces milk production. The is mainly composed of epithelial and stromal cells, and they produce the first immune response to invading pathogens. However, most of the epithelial cells are disrupted, and stromal cells are exposed to an inflammatory environment when endometritis occurs, especially postpartum. Many bacteria and toxins start attacking stromal cell due to loss of epithelium, which stimulates Toll-like receptor (TLRs) on stromal cells and causes upregulated expression of cytokines. Understanding the genome-wide characterization of bovine endometritis will be beneficial for prevention and treatment of endometritis. In this study, whole-transcriptomic gene changes in bovine endometrial stromal cells (BESCs) treated with LPS were compared with those treated with PBS (control group) and were analyzed by RNA sequencing. Compared with the control group, a total of 366 differentially expressed genes (DEGs) were identified in the LPS-induced group (234 upregulated and 132 downregulated genes), with an adjusted P < 0.05 by DESeq. Gene Ontology (GO) enrichment analysis revealed that DEGs were most enriched in interleukin-1 receptor binding, regulation of cell activation, and lymphocyte-activated interleukin-12 production. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed DEGs were most enriched in the TNF signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, NF-κB signaling pathway, and chemokine signaling pathway. The results of this study unraveled BESCs affected with LPS transcriptome profile alterations, which may have a significant effect on treatment inflammation by comprehending molecular mechanisms and authenticating unique genes related to endometritis.
Collapse
Affiliation(s)
- Xuefen Ding
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Haimiao Lv
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lixin Deng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenju Hu
- College of Agricultural Medicine, Henan Radio and Television University, Zhengzhou, China
| | - Zhan Peng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Wuhu Overseas Students Pioneer Park, WuHu, China
| | - Xinzhuang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Zhao R, Wang J, Zhang X, Chen Y. MiR-643 inhibits lipopolysaccharide-induced endometritis progression by targeting TRAF6. Cell Biol Int 2020; 44:1059-1067. [PMID: 31930635 DOI: 10.1002/cbin.11306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Endometritis is a prevalent disease with inflammation of uterus endangering women reproductive health. MicroRNAs (miRNAs) play important roles in inflammatory disorders, including endometritis. However, the role and mechanism of miR-643 in endometritis development remain unclear. This study aimed to investigate the effect of miR-643 on lipopolysaccharide (LPS)-induced inflammatory response and clarify the potential mechanism. LPS-treated human endometrial epithelial cells (HEECs) were cultured to investigate the role of miR-643 in vitro. The expression levels of miR-643 and tumor necrosis factor receptor-associated factor 6 (TRAF6) were measured via quantitative real-time polymerase chain reaction and western blot, respectively. LPS-induced inflammatory response was assessed by inflammatory cytokines secretion via enzyme-linked immunosorbent assay. The activation of nuclear factor-κB (NF-κB) pathway was investigated by western blot. The interaction between miR-643 and TRAF6 was validated by bioinformatics analysis, luciferase reporter assay, and RNA immunoprecipitation. The expression of miR-643 was decreased and TRAF6 protein level was enhanced in LPS-treated HEECs. The overexpression of miR-643 suppressed LPS-induced secretion of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β [IL-1β], and IL-6) and activation of NF-κB pathway. The knockdown of TRAF6 inhibited LPS-induced inflammatory response in HEECs. TRAF6 was validated as a target of miR-643 and TRAF6 restoration reversed the effect of miR-643 on inflammation response in LPS-treated HEECs. Collectively, miR-643 attenuated LPS-induced inflammatory response by targeting TRAF6, indicating a novel avenue for the treatment of endometritis.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Gynecology of TCM, Hainan Maternal and Children's Medical Center, Haikou, Hainan, 571199, China
| | - Jing Wang
- Department of Gynecology of TCM, Hainan Maternal and Children's Medical Center, Haikou, Hainan, 571199, China
| | - Xiaojuan Zhang
- Department of Gynecology of TCM, Hainan Maternal and Children's Medical Center, Haikou, Hainan, 571199, China
| | - Yang Chen
- Department of Gynecology of TCM, Hainan Maternal and Children's Medical Center, Haikou, Hainan, 571199, China
| |
Collapse
|
18
|
Jiang K, Yang J, Yang C, Zhang T, Shaukat A, Yang X, Dai A, Wu H, Deng G. miR-148a suppresses inflammation in lipopolysaccharide-induced endometritis. J Cell Mol Med 2019; 24:405-417. [PMID: 31756048 PMCID: PMC6933404 DOI: 10.1111/jcmm.14744] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Endometritis is a postnatal reproductive disorder disease, which leads to great economic losses for the modern dairy industry. Emerging evidence indicates that microRNAs (miRNAs) play a pivotal role in a variety of diseases and have been identified as critical regulators of the innate immune response. Recent miRNome profile analysis revealed an altered expression level of miR‐148a in cows with endometritis. Therefore, the present study aims to investigate the regulatory role of miR‐148a in the innate immune response involved in endometritis and estimate its potential therapeutic value. Here, we found that miR‐148a expression in lipopolysaccharide (LPS)‐stimulated endometrial epithelial cells was significantly decreased. Our results also showed that overexpression of miR‐148a using agomiR markedly reduced the production of pro‐inflammatory cytokines, such as IL‐1β and TNF‐α. Moreover, overexpression of miR‐148a also suppressed NF‐κB p65 activation by targeting the TLR4‐mediated pathway. Subsequently, we further verified that miR‐148a repressed TLR4 expression by binding to the 3′‐UTR of TLR4 mRNA. Additionally, an experimental mouse endometritis model was employed to evaluate the therapeutic value of miR‐148a. In vivo studies suggested that up‐regulation of miR‐148a alleviated the inflammatory conditions in the uterus as evidenced by H&E staining, qPCR and Western blot assays, while inhibition of miR‐148a had inverse effects. Collectively, pharmacologic stabilization of miR‐148a represents a novel therapy for endometritis and other inflammation‐related diseases.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,College of Life Sciences of Longyan University, Longyan, China
| | - Ailing Dai
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,College of Life Sciences of Longyan University, Longyan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Zhao G, Zhang T, Wu H, Jiang K, Qiu C, Deng G. MicroRNA let-7c Improves LPS-Induced Outcomes of Endometritis by Suppressing NF-κB Signaling. Inflammation 2019; 42:650-657. [PMID: 30406463 DOI: 10.1007/s10753-018-0922-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endometritis is a common inflammatory disease which endangers human and animal reproductive health. MicroRNA (miRNA) let-7c plays an important role in the inflammatory process; however, the regulatory underlying mechanism of let-7c in endometritis is unclear. In this study, we confirmed that let-7c was significantly reduced in LPS-induced mouse endometritis model, and overexpression of let-7c was able to effectively reduce uterine tissue damage caused by lipopolysaccharide (LPS), and then, a LPS-induced bovine endometrial epithelial cell (BEND) line was used to mimic the inflammatory model in vitro. Our data showed that overexpression of let-7c significantly reduced the expression of pro-inflammatory cytokines in BEND cells induced by LPS. Meanwhile, immunofluorescence and western blotting results showed that let-7c significantly inhibited LPS-induced phosphorylation of NF-κB, thereby inhibiting downstream pro-inflammatory cytokine expression. Taken together, our results suggested that let-7c ameliorates LPS-induced endometritis by attenuating the expression of pro-inflammatory cytokines via inhibition of the activation of NF-κB.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
20
|
Ibrahim S, Szóstek-Mioduchowska A, Skarzynski D. Expression profiling of selected miRNAs in equine endometrium in response to LPS challenge in vitro: A new understanding of the inflammatory immune response. Vet Immunol Immunopathol 2019; 209:37-44. [PMID: 30885304 DOI: 10.1016/j.vetimm.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
Bacterial infections of the genital tract are the major cause of reproductive failure in the mares. MiRNAs are important regulators of gene expression, mostly through transcriptional and translational regression. We hypothesized that LPS induced aberrant expression of miRNAs and their targets, which are involved in regulation of uterine homeostasis. Three groups of primary endometrial epithelial and stromal cells, and endometrial tissue explants were cultured. The 1st group was kept as control, while the 2nd and 3rd groups were challenged with low (0.5 μg/mL) or high (3.0 μg/mL) doses of Lipopolysaccharides (LPS). Cell pellets and tissue explants were collected after 24 and 48 h, for total RNA isolation and qRT-PCR of the selected miRNAs and their targets. Culture media and cell lysates were collected after 24 and 48 h, for cytokines (IL6 and TNFα) and prostaglandins (PGE2 & PGFα2) measurement. Both endometrial cells expressed TLR4 and its accessory molecules (MyD88 & CD14) that are required for triggering inflammatory immune response after LPS, via up-regulation of TRAF6, TNFα, IL6 and IL8, compared to the respective control. After both doses of LPS challenge, miR-155, miR-223 and miR-17 were significantly increased; miR-181b, miR-21 and let-7a were significantly decreased compared to respective controls. Interestingly, miR-24 and miR-532-5p were clearly up-regulated after only the low LPS dose. TNFα, IL6 and PGs in culture media and from cell lysates revealed dose- and time-dependent patterns, after LPS. Results indicated that both epithelial and stromal cells have a primary role in innate immune response after LPS challenge, while this recognition occurred via TLR4 and its accessory molecules. Dysregulation of miRNAs and their targets expression after LPS might affect normal uterine function through perturbation of PG and cytokine secretion.
Collapse
Affiliation(s)
- Sally Ibrahim
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland; Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| |
Collapse
|
21
|
Yin N, Yang Y, Wang X, Yang C, Ma X, Shaukat A, Zhao G, Deng G. MiR-19a mediates the negative regulation of the NF-κB pathway in lipopolysaccharide-induced endometritis by targeting TBK1. Inflamm Res 2019; 68:231-240. [PMID: 30673803 DOI: 10.1007/s00011-019-01213-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE In both humans and animals, endometritis is severe inflammation of the uterus, and it causes great economic losses in dairy cow production. MicroRNAs have been reported to play an important role in various inflammatory diseases. However, the regulatory mechanisms of miR-19a in endometritis remain unclear. Thus, the aims of this study are to investigate the role of miR-19a in a mouse model of lipopolysaccharide (LPS)-induced endometritis and elucidate the possible mechanisms in bovine endometrial epithelial cells (bEECs). METHODS AND RESULTS Histological analysis showed that LPS induced severe pathological changes, suggesting that the endometritis mouse model was well established. The qPCR assay indicated that miR-19a expression in the uterine tissues of mice with endometritis and in bEECs with LPS stimulation was significantly reduced. The overexpression of miR-19a significantly decreased the expression of inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the phosphorylation of NF-κB p65 and IκBα. Similar results were also obtained following the knockdown of TBK1. Furthermore, a dual luciferase reporter assay further validated that miR-19a inhibited TBK1 expression by binding directly to the 3'-UTR of TBK1. CONCLUSION We demonstrated that miR-19a has anti-inflammatory effects and mediates the negative regulation of the NF-κB Pathway in LPS-induced endometritis by targeting TBK1.
Collapse
Affiliation(s)
- Nannan Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
22
|
El-Rheem SMA, Ghallab RS, El-Sharkawy S. SAT, a New Approach in Understanding and Treatment of Subclinical Endometritis in Dairy Cows. OPEN JOURNAL OF VETERINARY MEDICINE 2019; 09:109-119. [DOI: 10.4236/ojvm.2019.98010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Guarini AR, Lourenco DAL, Brito LF, Sargolzaei M, Baes CF, Miglior F, Misztal I, Schenkel FS. Genetics and genomics of reproductive disorders in Canadian Holstein cattle. J Dairy Sci 2018; 102:1341-1353. [PMID: 30471913 DOI: 10.3168/jds.2018-15038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023]
Abstract
In Canada, reproductive disorders known to affect the profitability of dairy cattle herds have been recorded by producers on a voluntary basis since 2007. Previous studies have shown the feasibility of using producer-recorded health data for genetic evaluations. Despite low heritability estimates and limited availability of phenotypic information, sufficient genetic variation has been observed for those traits to indicate that genetic progress, although slow, can be achieved. Pedigree- and genomic-based analyses were performed on producer-recorded health data of reproductive disorders, including retained placenta (RETP), metritis (METR), and cystic ovaries (CYST) using traditional BLUP and single-step genomic BLUP. Genome-wide association studies and functional analyses were carried out to unravel significant genomic regions and biological pathways, and to better understand the genetic mechanisms underlying RETP, METR, and CYST. Heritability estimates (posterior standard deviation in parentheses) were 0.02 (0.003), 0.01 (0.004), and 0.02 (0.003) for CYST, METR, and RETP, respectively. A moderate to strong genetic correlation of 0.69 (0.102) was found between METR and RETP. Averaged over all traits, sire proof reliabilities increased by approximately 11 percentage points with the incorporation of genomic data using a multiple-trait linear model. Biological pathways and associated genes underlying the studied traits were identified and will contribute to a better understanding of the biology of these 3 health disorders in dairy cattle.
Collapse
Affiliation(s)
- A R Guarini
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - L F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - M Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; The Semex Alliance, Guelph, ON, Canada N1H 6J2
| | - C F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - F Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Canadian Dairy Network, Guelph, ON, Canada N1K 1E5
| | - I Misztal
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
24
|
Zhao G, Jiang K, Yang Y, Zhang T, Wu H, Shaukat A, Qiu C, Deng G. The Potential Therapeutic Role of miR-223 in Bovine Endometritis by Targeting the NLRP3 Inflammasome. Front Immunol 2018; 9:1916. [PMID: 30186287 PMCID: PMC6113393 DOI: 10.3389/fimmu.2018.01916] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022] Open
Abstract
Bovine endometritis affects milk production and reproductive performance in dairy cows and causes serious economic loss. The underlying molecular mechanisms or signaling pathways of bovine endometritis remain unclear. In this study, we attempted to determine the expression mechanism of mir-223 in endometritis of dairy cows and evaluate its potential therapeutic value. We first confirmed that there was an increased level of miR-223 in endometritis, and then, an LPS-induced bovine endometrial epithelial cell (BEND) line was used to mimic the inflammatory model in vitro. Our data showed that activation of NF-κB promoted the transcription of miR-223, thus inhibiting activation of the inflammatory mediator NLRP3 and its mediation of IL-1β production to protect against inflammatory damage. Meanwhile, in vivo studies showed that inhibition of mir-223 resulted in an enhanced pathology of mice during LPS-induced endometritis, while overexpression of mir-223 attenuated the inflammatory conditions in the uterus. In summary, our study highlights that miR-223 serves both to constrain the level of NLRP3 activation and to act as a protective factor in the inflammatory response and thus provides a future novel therapeutic modality for active flares in cow endometritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Ferlita AL, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, Pietro CD. Non-Coding RNAs in Endometrial Physiopathology. Int J Mol Sci 2018; 19:ijms19072120. [PMID: 30037059 PMCID: PMC6073439 DOI: 10.3390/ijms19072120] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022] Open
Abstract
The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Francesca Andronico
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Salvatore Caruso
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Antonio Cianci
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
26
|
A review of the ongoing discussion about definition, diagnosis and pathomechanism of subclinical endometritis in dairy cows. Theriogenology 2017; 94:21-30. [DOI: 10.1016/j.theriogenology.2017.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/29/2017] [Accepted: 02/08/2017] [Indexed: 01/02/2023]
|
27
|
Perrini C, Strillacci MG, Bagnato A, Esposti P, Marini MG, Corradetti B, Bizzaro D, Idda A, Ledda S, Capra E, Pizzi F, Lange-Consiglio A, Cremonesi F. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Res Ther 2016; 7:169. [PMID: 27863532 PMCID: PMC5114748 DOI: 10.1186/s13287-016-0429-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022] Open
Abstract
Background It is known that a paracrine mechanism exists between mesenchymal stem cells and target cells. This process may involve microvesicles (MVs) as an integral component of cell-to-cell communication. Methods In this context, this study aims to understand the efficacy of MVs in in-vitro endometrial stressed cells in view of potential healing in in-vivo studies. For this purpose, the presence and type of MVs secreted by amniotic mesenchymal stem cells (AMCs) were investigated and the response of endometrial cells to MVs was studied using a dose-response curve at different concentrations and times. Moreover, the ability of MVs to counteract the in vitro stress in endometrial cells induced by lipopolysaccharide was studied by measuring the rate of apoptosis and cell proliferation, the expression of some pro-inflammatory genes such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin 1β (IL-1β), and metalloproteinases (MMP) 1 and 13, and the release of some pro- or anti-inflammatory cytokines. Results MVs secreted by the AMCs ranged in size from 100 to 200 nm. The incorporation of MVs was gradual over time and peaked at 72 h. MVs reduced the apoptosis rate, increased cell proliferation values, downregulated pro-inflammatory gene expression, and decreased the secretion of pro-inflammatory cytokines. Conclusion Our data suggest that some microRNAs could contribute to counteracting in-vivo inflammation of endometrial tissue.
Collapse
Affiliation(s)
- Claudia Perrini
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | | | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Paola Esposti
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Maria Giovanna Marini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Bruna Corradetti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Davide Bizzaro
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonella Idda
- Department of Veterinary Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Emanuele Capra
- Institute of Biology and Agricultural Biotechnology-CNR, Milano, Italy
| | - Flavia Pizzi
- Institute of Biology and Agricultural Biotechnology-CNR, Milano, Italy
| | - Anna Lange-Consiglio
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Fausto Cremonesi
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
28
|
Bogado Pascottini O, Hostens M, Sys P, Vercauteren P, Opsomer G. Cytological endometritis at artificial insemination in dairy cows: Prevalence and effect on pregnancy outcome. J Dairy Sci 2016; 100:588-597. [PMID: 27865501 DOI: 10.3168/jds.2016-11529] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022]
Abstract
The aims of our field study in dairy cows were (1) to consolidate cytotape (CT) as a valid technique to diagnose cytological endometritis (CYTO) during artificial insemination (AI); (2) to establish a cutoff point concerning the polymorphonuclear cells (PMN) proportion to diagnose CYTO at AI; (3) to assess the prevalence of CYTO at AI; and (4) to evaluate the effect of CYTO on the pregnancy outcome of that AI. The investigation was performed using 1,625 AI-CT samples harvested from 873 Holstein-Friesian cows from 18 dairy farms in the Flemish region of Belgium. The CT device consisted of adapting a 1.5-cm piece of paper tape on the top of a conventional AI catheter covered with a double guard sheet, allowing an endometrial cytology sample to be taken when performing an AI. A receiving operator characteristic curve was built to assess the threshold level above which the PMN proportion significantly affected the AI success. Multilevel generalized mixed-effect models were built to identify factors affecting the pregnancy outcome of the AI under investigation. Only 7 samples (0.4%) harvested in 5 cows were discarded because of low-quality parameters. The cutoff point for CYTO at AI was set at ≥1% PMN (sensitivity=33.8%, specificity=88.6%). Prevalence of CYTO at AI was 27.8%. The conception rate for CYTO-positive samples was 32.7%, whereas it was 47% for CYTO-negative samples. A CYTO-negative AI had 1.8 [odds ratio (OR)] more chances to become pregnant than a CYTO-positive one. Other factors identified as detrimental for the pregnancy outcome were body condition score ≤1.5 (OR=0.6), relative 305-d milk yield (OR=0.9), dystocia (OR=0.3), parity ≥2 (OR=0.7), and warm months of the year. In conclusion, CT is a consolidated technique to diagnose CYTO at AI, PMN 1% is the threshold level to diagnose CYTO at AI, around one-quarter of inseminated uteri suffer from CYTO, and affected uteri having a significantly lower chance to become pregnant from that insemination.
Collapse
Affiliation(s)
- O Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium.
| | - M Hostens
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - P Sys
- CRV Holding BV, Van Thorenburghlaan 14, Oosterzele 9860, Belgium
| | - P Vercauteren
- CRV Holding BV, Van Thorenburghlaan 14, Oosterzele 9860, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
29
|
Circulating cell-free mature microRNAs and their target gene prediction in bovine metritis. Sci Rep 2016; 6:29509. [PMID: 27404038 PMCID: PMC4941693 DOI: 10.1038/srep29509] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/17/2016] [Indexed: 12/23/2022] Open
Abstract
Uterine infections in dairy cows are common after calving, reduce fertility and cause substantial economic losses. Conventional diagnosis (based on clinical signs) and treatment can be challenging. Serum microRNA (miRNA) profiles serve as non-invasive biomarkers in several pathological conditions including inflammatory diseases. The objective was to identify differentially expressed serum miRNAs in cows with metritis and normal uterus (four cows per group), integrate miRNAs to their target genes, and categorize target genes for biological processes involved in bacterial infection and inflammatory responses. Out of 84 bovine-specific, prioritized miRNAs analyzed, 30 were differentially expressed between metritis and normal cows (p ≤ 0.05, fold regulation ≥2 magnitudes). Bta-miR-15b, bta-miR-17-3p, bta-miR-16b, bta-miR-148a, bta-miR-26b, bta-miR-101 and bta-miR-29b were highly up-regulated whereas bta-miR-148b, bta-miR-199a-3p, bta-miR-122, bta-miR-200b and bta-miR-10a were highly down-regulated in cows with metritis compared to cows with normal uterus. Highly scored target genes of up-regulated and down-regulated miRNAs were categorized for various biological processes, including biological regulation, cellular process, developmental process, metabolic process, localization, multicellular organismal process, response to stimulus, immune system process, cellular components organization, apoptotic process, biological adhesion, developmental process, and locomotion that are critical to combat bacterial infections and provoke inflammatory responses.
Collapse
|
30
|
Palma-Vera SE, Einspanier R. Experimental and bioinformatic analysis of cultured Bovine Endometrial Cells (BEND) responding to interferon tau (IFNT). Reprod Biol Endocrinol 2016; 14:22. [PMID: 27091464 PMCID: PMC4835850 DOI: 10.1186/s12958-016-0156-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/10/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In ruminants, embryo implantation depends on progesterone (P4) and interferon tau (IFNT) controlling endometrial function. IFNT antagonizes bovine endometrial cells (BEND) response to phorbol 12,13-dibutyrate (PDBU) through posttranscriptional regulation of gene expression. We have previously described microRNAs (miRNAs) profiles in bovine endometrium, detecting miR-106a, relevant for embryo maternal communication. In this study, we investigated the expression miR-106a and genes for prostaglandin-endoperoxide synthase 2 (PTGS2), phospholipase A2, group IVA (PLA2G4A), estrogen receptor 1 (ESR1) and progesterone receptor (PR) in response to IFNT in BEND cells and searched for interferon responsive factors (IRFs) binding sites in their promoter genomic regions. The aim of this study was to unravel the molecular mechanisms involved in IFNT signalling and its regulation of miR-106a. FINDINGS PTGS2 showed increased expression under PDBU, which was antagonized by IFNT. IFNT induced expression of PR and miR-106a and downregulation of ESR1 and PR. Bioinformatic analyses detected that PLA2G4A was associated to IRF-1 and IRF-6, while ESR1, PR and PTGS2 were associated to only IRF-6. All genes exhibit one motif per IRF, except miR-106a that had three binding sites for IRF-6. CONCLUSIONS We report the IFNT regulatory effect on miR-106a expression through IRF-6 in bovine endometrial cells. We identified a set of potential binding sites for IRF-1 and IRF-6 within the bovine genome. A set of candidate gene regions could be characterized where IFNT can act via IRFs to regulate the expression of proteins and miRNAs. Future studies will use these data to detect new IFNT regulatory mechanisms in the endometrium.
Collapse
Affiliation(s)
- Sergio E. Palma-Vera
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
31
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
32
|
Palma-Vera SE, Sharbati S, Einspanier R. Identification of miRNAs in Bovine Endometrium through RNAseq and Prediction of Regulated Pathways. Reprod Domest Anim 2015; 50:800-6. [DOI: 10.1111/rda.12590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- SE Palma-Vera
- Freie Universität Berlin; Institute of Veterinary Biochemistry; Berlin Germany
| | - S Sharbati
- Freie Universität Berlin; Institute of Veterinary Biochemistry; Berlin Germany
| | - R Einspanier
- Freie Universität Berlin; Institute of Veterinary Biochemistry; Berlin Germany
| |
Collapse
|
33
|
Expression pattern of inflammatory response genes and their regulatory micrornas in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development. PLoS One 2015; 10:e0119388. [PMID: 25764515 PMCID: PMC4357424 DOI: 10.1371/journal.pone.0119388] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/30/2015] [Indexed: 12/22/2022] Open
Abstract
In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC) were challenged with lipopolysaccharide (LPS) for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1) and insulin-like growth factor 2 (IGF2) was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1), stress response genes (SOD and CAT), mitochondrial activity, reactive oxygen species (ROS) accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development.
Collapse
|