1
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
2
|
Bibyk MJ, Campbell MJ, Hummon AB. Mass spectrometric investigations of caloric restriction mimetics. Proteomics 2021; 21:e2000121. [PMID: 33460282 PMCID: PMC8262777 DOI: 10.1002/pmic.202000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022]
Abstract
Caloric restriction (CR) is an innovative therapy used in tumor tissue and tumor model studies to promote cell death and decrease cell viability. Caloric restriction mimetics (CRMs) are a class of drugs that induce CR and starvation conditions within a cell. When used simultaneously with other chemotherapy agents, the effects are synergistic and effective at promoting tumor cell death. In this review, we discuss CRMs and their potential as cancer therapeutics. Firstly, we establish an overview of CR and its impacts on healthy and tumor cells. CR and CRM drugs have shown to decrease age-related diseases and can act as an anti-cancer agent. As it can be challenging for an individual to diligently stick to a diet that would induce CR, CRMs are even more desirable. Then, we discuss the drug class by highlighting three CRMs: resveratrol, (-)-hydroxycitric acid, and rapamycin. These CRMs are commonly known for their dietary effects, but the underlying mechanisms that drive cellular metabolic and proteomic changes show promise as a cancer therapeutic. Lastly, we highlight the use of mass spectrometry and proteomic techniques on experiments utilizing CRM drugs to understand the cellular pathways impacted by this drug class, leading to a better understanding of the anti-cancer properties and potentials of CRM.
Collapse
Affiliation(s)
- Michael J. Bibyk
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Melanie J. Campbell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Mutirangura A. A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Gnome-Stabilizing DNA Gaps. Epigenetics 2019. [DOI: 10.5772/intechopen.83372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
4
|
The Capability of O-Acetyl-ADP-Ribose, an Epigenetic Metabolic Small Molecule, on Promoting the Further Spreading of Sir3 along the Telomeric Chromatin. Genes (Basel) 2019; 10:genes10080577. [PMID: 31366171 PMCID: PMC6723988 DOI: 10.3390/genes10080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 11/17/2022] Open
Abstract
O-acetyl-ADP-ribose (AAR) is a metabolic small molecule relevant in epigenetics that is generated by NAD-dependent histone deacetylases, such as Sir2. The formation of silent heterochromatin in yeast requires histone deacetylation by Sir2, structural rearrangement of SIR complexes, spreading of SIR complexes along the chromatin, and additional maturation processing. AAR affects the interactions of the SIR-nucleosome in vitro and enhances the chromatin epigenetic silencing effect in vivo. In this study, using isothermal titration calorimetry (ITC) and dot blotting methods, we showed the direct interaction of AAR with Sir3. Furthermore, through chromatin immunoprecipitation (ChIP)-on-chip and chromatin affinity purification (ChAP)-on chip assays, we discovered that AAR is capable of increasing the extended spreading of Sir3 along telomeres, but not Sir2. In addition, the findings of a quantitative real-time polymerase chain reaction (qRT-PCR) and examinations of an in vitro assembly system of SIR-nucleosome heterochromatin filament were consistent with these results. This study provides evidence indicating another important effect of AAR in vivo. AAR may play a specific modulating role in the formation of silent SIR-nucleosome heterochromatin in yeast.
Collapse
|
5
|
Hwang ES, Hwang SY. Cellular NAD+Level: A Key Determinant of Mitochondrial Quality and Health. Ann Geriatr Med Res 2017. [DOI: 10.4235/agmr.2017.21.4.149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Sung Yun Hwang
- Department of Life Science, University of Seoul, Seoul, Korea
| |
Collapse
|
6
|
Shen P, Feng X, Zhang X, Huang X, Liu S, Lu X, Li J, You J, Lu J, Li Z, Ye J, Liu P. SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300. J Pharmacol Sci 2016; 132:31-40. [DOI: 10.1016/j.jphs.2016.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/01/2023] Open
|
7
|
Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 2015; 43:10633-54. [PMID: 26590262 PMCID: PMC4678834 DOI: 10.1093/nar/gkv1267] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023] Open
Abstract
Cyclic di- and linear oligo-nucleotide signals activate defenses against invasive nucleic acids in animal immunity; however, their evolutionary antecedents are poorly understood. Using comparative genomics, sequence and structure analysis, we uncovered a vast network of systems defined by conserved prokaryotic gene-neighborhoods, which encode enzymes generating such nucleotides or alternatively processing them to yield potential signaling molecules. The nucleotide-generating enzymes include several clades of the DNA-polymerase β-like superfamily (including Vibrio cholerae DncV), a minimal version of the CRISPR polymerase and DisA-like cyclic-di-AMP synthetases. Nucleotide-binding/processing domains include TIR domains and members of a superfamily prototyped by Smf/DprA proteins and base (cytokinin)-releasing LOG enzymes. They are combined in conserved gene-neighborhoods with genes for a plethora of protein superfamilies, which we predict to function as nucleotide-sensors and effectors targeting nucleic acids, proteins or membranes (pore-forming agents). These systems are sometimes combined with other biological conflict-systems such as restriction-modification and CRISPR/Cas. Interestingly, several are coupled in mutually exclusive neighborhoods with either a prokaryotic ubiquitin-system or a HORMA domain-PCH2-like AAA+ ATPase dyad. The latter are potential precursors of equivalent proteins in eukaryotic chromosome dynamics. Further, components from these nucleotide-centric systems have been utilized in several other systems including a novel diversity-generating system with a reverse transcriptase. We also found the Smf/DprA/LOG domain from these systems to be recruited as a predicted nucleotide-binding domain in eukaryotic TRPM channels. These findings point to evolutionary and mechanistic links, which bring together CRISPR/Cas, animal interferon-induced immunity, and several other systems that combine nucleic-acid-sensing and nucleotide-dependent signaling.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Daniel E Schäffer
- Montgomery Blair High School, Magnet Program, Silver Spring, MD 20901, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
8
|
Choi HJ, Jang SY, Hwang ES. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8(+) T Cell Activation. Mol Cells 2015; 38:918-24. [PMID: 26442863 PMCID: PMC4625074 DOI: 10.14348/molcells.2015.0168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/27/2015] [Accepted: 10/01/2015] [Indexed: 01/29/2023] Open
Abstract
During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8(+) T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential.
Collapse
Affiliation(s)
- Ho Jin Choi
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | | | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| |
Collapse
|
9
|
Hannan A, Abraham NM, Goyal S, Jamir I, Priyakumar UD, Mishra K. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast. Nucleic Acids Res 2015; 43:10213-26. [PMID: 26319015 PMCID: PMC4666389 DOI: 10.1093/nar/gkv842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD+-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well.
Collapse
Affiliation(s)
- Abdul Hannan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Neethu Maria Abraham
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Siddharth Goyal
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Imlitoshi Jamir
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
10
|
Tung SY, Lee KW, Hong JY, Lee SP, Shen HH, Liou GG. Changes in the genome-wide localization pattern of Sir3 in Saccharomyces cerevisiae during different growth stages. Comput Struct Biotechnol J 2013; 7:e201304001. [PMID: 24688731 PMCID: PMC3962127 DOI: 10.5936/csbj.201304001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/03/2022] Open
Abstract
In budding yeast, the Sir2, Sir3 and Sir4 proteins form SIR complexes, required for the assembly of silent heterochromatin domains, and which mediate transcription silencing at the telomeres as well as at silent mating type loci. In this study, under fluorescence microscopy, we found most Sir3-GFP expressions in the logarithmic phase cells appeared as multiple punctations as expected. However, some differences in the distribution of fluorescent signals were detected in the diauxic~early stationary phase cells. To clarify these, we then used ChIP on chip assays to investigate the genome-wide localization of Sir3. In general, Sir3 binds to all 32 telomere proximal regions, the silent mating type loci and also binds to the rDNA region. However, the genome-wide localization patterns of Sir3 are different between these two distinct growth phases. We also confirmed that Sir3 binds to a recently identified secondary binding site, PAU genes, and further identified 349 Sir3-associated cluster regions. These results provide additional support in roles for Sir3 in the modulation of gene expression during physical conditions such as diauxic~early stationary phase growing. Moreover, they imply that Sir3 may be not only involved in the formation of conventional silent heterochromatin, but also able to associate with some other chromatin regions involved in epigenetic regulation.
Collapse
Affiliation(s)
- Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC ; These authors contributed equally to this work
| | - Kuan-Wei Lee
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; These authors contributed equally to this work
| | - Jia-Yang Hong
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; These authors contributed equally to this work
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC ; These authors contributed equally to this work
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Gunn-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC ; Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
11
|
Parsons XH. Embedding the Future of Regenerative Medicine into the Open Epigenomic Landscape of Pluripotent Human Embryonic Stem Cells. ANNUAL RESEARCH & REVIEW IN BIOLOGY 2013; 3:323-349. [PMID: 25309947 PMCID: PMC4190676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been recognized that pluripotent human embryonic stem cells (hESCs) must be transformed into fate-restricted derivatives before use for cell therapy. Realizing the therapeutic potential of pluripotent hESC derivatives demands a better understanding of how a pluripotent cell becomes progressively constrained in its fate options to the lineages of tissue or organ in need of repair. Discerning the intrinsic plasticity and regenerative potential of human stem cell populations reside in chromatin modifications that shape the respective epigenomes of their derivation routes. The broad potential of pluripotent hESCs is defined by an epigenome constituted of open conformation of chromatin mediated by a pattern of Oct-4 global distribution that corresponds genome-wide closely with those of active chroma tin modifications. Dynamic alterations in chromatin states correlate with loss-of-Oct4-associated hESC differentiation. The epigenomic transition from pluripotence to restriction in lineage choices is characterized by genome-wide increases in histone H3K9 methylation that mediates global chromatin-silencing and somatic identity. Human stem cell derivatives retain more open epigenomic landscape, therefore, more developmental potential for scale-up regeneration, when derived from the hESCs in vitrothan from the CNS tissuein vivo . Recent technology breakthrough enables direct conversion of pluripotent hESCs by small molecule induction into a large supply of lineage-specific neuronal cells or heart muscle cells with adequate capacity to regenerate neurons and contractile heart muscles for developing safe and effective stem cell therapies. Nuclear translocation of NAD-dependent histone deacetylase SIRT1 and global chromatin silencing lead to hESC cardiac fate determination, while silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family lead to hESC neural fate determination. These recent studies place global chromatin dynamics as central to tracking the normal pluripotence and lineage progres sion of hESCs. Embedding lineage-specific genetic and epigenetic developmental programs into the open epigenomic landscape of pluripotent hESCs offers a new repository of human stem cell therapy derivatives for the future of regenerative medicine.
Collapse
Affiliation(s)
- Xuejun H. Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA,Xcelthera, San Diego, CA 92109, USA,Corresponding author:
| |
Collapse
|
12
|
Kaluarachchi Duffy S, Friesen H, Baryshnikova A, Lambert JP, Chong YT, Figeys D, Andrews B. Exploring the yeast acetylome using functional genomics. Cell 2012; 149:936-48. [PMID: 22579291 DOI: 10.1016/j.cell.2012.02.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/24/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Lysine acetylation is a dynamic posttranslational modification with a well-defined role in regulating histones. The impact of acetylation on other cellular functions remains relatively uncharacterized. We explored the budding yeast acetylome with a functional genomics approach, assessing the effects of gene overexpression in the absence of lysine deacetylases (KDACs). We generated a network of 463 synthetic dosage lethal (SDL) interactions involving class I and II KDACs, revealing many cellular pathways regulated by different KDACs. A biochemical survey of genes interacting with the KDAC RPD3 identified 72 proteins acetylated in vivo. In-depth analysis of one of these proteins, Swi4, revealed a role for acetylation in G1-specific gene expression. Acetylation of Swi4 regulates interaction with its partner Swi6, both components of the SBF transcription factor. This study expands our view of the yeast acetylome, demonstrates the utility of functional genomic screens for exploring enzymatic pathways, and provides functional information that can be mined for future studies.
Collapse
Affiliation(s)
- Supipi Kaluarachchi Duffy
- Department of Molecular Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Chromatin affinity-precipitation using a small metabolic molecule: its application to analysis of O-acetyl-ADP-ribose. Cell Mol Life Sci 2011; 69:641-50. [PMID: 21796450 DOI: 10.1007/s00018-011-0771-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/19/2011] [Accepted: 07/05/2011] [Indexed: 10/17/2022]
Abstract
In the cell, many small endogenous metabolic molecules are involved in distinct cellular functions such as modulation of chromatin structure and regulation of gene expression. O-acetyl-ADP-ribose (AAR) is a small metabolic molecule that is generated during NAD-dependent deacetylation by Sir2. Sir2 regulates gene expression, DNA repair, and genome stability. Here, we developed a novel chromatin affinity-precipitation (ChAP) method to detect the chromatin fragments at which small molecules interact with binding partners. We used this method to demonstrate that AAR associated with heterochromatin. Moreover, we applied the ChAP method to whole genome tiling array chips to compare the association of AAR and Sir2. We found that AAR and Sir2 displayed similar genomic binding patterns. Furthermore, we identified 312 potential association cluster regions of AAR. The ChAP assay may therefore be a generally useful strategy to study the small molecule association with chromosomal regions. Our results further suggest that the small metabolic molecule AAR associates with silent chromatin regions in a Sir2-dependent manner and provide additional support for the role of AAR in assembly of silent chromatin.
Collapse
|
14
|
Li C, Cai F, Yang Y, Zhao X, Wang C, Li J, Jia Y, Tang J, Liu Q. Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats: involvement of SIRT1 and TGF-β1 pathway. Eur J Pharmacol 2010; 649:382-9. [PMID: 20854812 DOI: 10.1016/j.ejphar.2010.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 08/19/2010] [Accepted: 09/06/2010] [Indexed: 12/19/2022]
Abstract
Oxidative stress caused by hyperglycaemia is believed to be a major molecular mechanism underlying diabetic nephropathy. 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), an active component extract from Polygonum multiflorum Thunb, exhibits antioxidative and anti-inflammatory effects. Possible protective mechanisms of TSG on diabetic nephropathy were investigated in rats and cultured rat mesangial cells. Total cholesterol and triglyceride levels of diabetic rats were clearly increased and these increases were diminished by treatment with TSG. Treatment of diabetic rats with TSG also significantly reduced blood urea nitrogen, creatinine, 24 h urinary protein levels, and kidney weight/body weight. The activities of superoxide dismutase and glutathione peroxidase in renal homogenate were increased markedly, whereas malonaldehyde levels were decreased significantly in TSG-treated diabetic rats. TSG dramatically inhibited diabetes-induced overexpression of TGF-β1 and COX-2, and restored the decrease of SIRT1 expression in diabetic rats. High glucose-induced overexpression of TGF-β1 in cultured mesangial cells was significantly inhibited, whereas the decease of SIRT1 expression was restored by pretreatment of TSG. Nicotinamide, the inhibitor of SIRT1, partially relieved the inhibitory effect of TSG on TGF-β1 expression under high glucose condition. These findings indicate that the protective mechanisms of TSG on diabetic nephropathy are involved in the alleviation of oxidative stress injury and overexpression of COX-2 and TGF-β1, partially via activation of SIRT1.
Collapse
Affiliation(s)
- Cairong Li
- Department of Medicine, Medical College, Xianning University, 88 Xianning Road, Xianning 437100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tribus M, Bauer I, Galehr J, Rieser G, Trojer P, Brosch G, Loidl P, Haas H, Graessle S. A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus. Mol Biol Cell 2009; 21:345-53. [PMID: 19940017 PMCID: PMC2808227 DOI: 10.1091/mbc.e09-08-0750] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications.
Collapse
Affiliation(s)
- Martin Tribus
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens 2008; 26:334-44. [PMID: 18192848 DOI: 10.1097/hjh.0b013e3282f293c8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ventricular remodeling in type 2 diabetes predisposes to fatal coronary heart disease. The proapoptotic forkhead class O transcription factor 3a (FOXO3a) and its modulator, the cardioprotective longevity factor and class III histone deacetylase Sirtuin1 (Sirt1), have been implicated in the regulation of the cardiomyocyte lifespan and hypertrophy. OBJECTIVE To examine whether FOXO3a-Sirt1 activation is involved in diabetes-induced cardiomyocyte apoptosis and ventricular hypertrophy. METHODS The blood pressure, cardiac functions, cardiomyocyte size, neurohumoral markers, cardiomyocyte apoptosis, nuclear binding of FOXO3a, and Sirt1 expression were determined for 12-week-old spontaneously diabetic Goto-Kakizaki rats and the nondiabetic Wistar control rats. RESULTS Goto-Kakizaki rats showed a modest increase in blood pressure, pronounced cardiac hypertrophy, impaired systolic function, and increased plasma brain natriuretic peptide level without changes in plasma renin activity, serum aldosterone or urinary noradrenaline excretion. The cardiomyocyte cross-sectional area was increased by 22%. Phosphorylation of FOXO3a was decreased with a concomitant increase in its nuclear translocation. The myocardial expression of the antiapoptotic FOXO3a modulator Sirt1 was increased two-fold. Acetylation of p53 at the Sirt1-specific lysine 373/382 site was markedly decreased. Myocardial caspase-3 and Bax expression were increased, indicating increased apoptotic signaling; however, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining did not reveal any significant increase in cardiomyocyte apoptosis. CONCLUSIONS Diabetes-induced cardiac remodeling in Goto-Kakizaki rats is associated with cardiac hypertrophy, systolic dysfunction, increased apoptotic signaling and activation of the FOXO3a pathway. The present study also suggests that antiapoptotic Sirt1 protects against cardiomyocyte apoptosis and acts as a novel regulator of cardiomyocyte growth.
Collapse
|
17
|
Dai JM, Wang ZY, Sun DC, Lin RX, Wang SQ. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol 2007; 210:161-6. [PMID: 16998810 DOI: 10.1002/jcp.20831] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor suppressor p53-related p73 shares significant amino-acid sequence identity with p53. Like p53, p73 recognizes canonical p53 DNA-binding sites and activates p53-responsive target genes and induces apoptosis. Moreover, SIRT1 binds to p53 while repressing the expression of their target genes. Here, we report that SIRT1 also binds to p73 and suppresses p73-dependent transcriptional activity. SIRT1 in human cells reduces the transcriptional activity of p73, and partly inhibits apoptosis induced by p73. Furthermore, SIRT1 can deacetylate p73 protein acetylation both in vivo and in vitro. Collectively, these data suggest that SIRT1 can modulate p73 activity via deacetylation.
Collapse
Affiliation(s)
- Jin Ming Dai
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki SI, Isshiki K, Isono M, Uzu T, Guarente L, Kashiwagi A, Koya D. SIRT1 Inhibits Transforming Growth Factor β-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation. J Biol Chem 2007; 282:151-8. [PMID: 17098745 DOI: 10.1074/jbc.m605904200] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SIRT1, a class III histone deacetylase, is considered a key regulator of cell survival and apoptosis through its interaction with nuclear proteins. In this study, we have examined the likelihood and role of the interaction between SIRT1 and Smad7, which mediates transforming growth factor beta (TGFbeta)-induced apoptosis in renal glomerular mesangial cells. Immunoprecipitation analysis revealed that SIRT1 directly interacts with the N terminus of Smad7. Furthermore, SIRT1 reversed acetyl-transferase (p300)-mediated acetylation of two lysine residues (Lys-64 and -70) on Smad7. In mesangial cells, the Smad7 expression level was reduced by SIRT1 overexpression and increased by SIRT1 knockdown. SIRT1-mediated deacetylation of Smad7 enhanced Smad ubiquitination regulatory factor 1 (Smurf1)-mediated ubiquitin proteasome degradation, which contributed to the low expression of Smad7 in SIRT1-overexpressing mesangial cells. Stimulation by TGFbeta or overexpression of Smad7 induced mesangial cell apoptosis, as assessed by morphological apoptotic changes (nuclear condensation) and biological apoptotic markers (cleavages of caspase3 and poly(ADP-ribose) polymerase). However, TGFbeta failed to induce apoptosis in Smad7 knockdown mesangial cells, indicating that Smad7 mainly mediates TGFbeta-induced apoptosis of mesangial cells. Finally, SIRT1 overexpression attenuated both Smad7- and TGFbeta-induced mesangial cell apoptosis, whereas SIRT1 knockdown enhanced this apoptosis. We have concluded that Smad7 is a new target molecule for SIRT1 and SIRT1 attenuates TGFbeta-induced mesangial cell apoptosis through acceleration of Smad7 degradation. Our results suggest that up-regulation of SIRT1 deacetylase activity is a potentially useful therapeutic strategy for prevention of TGFbeta-related kidney disease through its effect on cell survival.
Collapse
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-Dori, Nagoya, Aichi, Japan.
| | | | | | | |
Collapse
|
20
|
Ohsawa S, Miura M. Caspase-mediated changes in Sir2alpha during apoptosis. FEBS Lett 2006; 580:5875-9. [PMID: 17027980 DOI: 10.1016/j.febslet.2006.09.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 09/13/2006] [Accepted: 09/19/2006] [Indexed: 12/29/2022]
Abstract
Silent information regulator 2 (Sir2) is an NAD(+)-dependent histone deacetylase that establishes repressive chromatin status and extends the life span of both budding yeast and the nematode worm Caenorhabditis elegans. There is growing evidence that its mammalian homologue Sir2alpha protects cells from stress-induced apoptosis. We report here that mammalian Sir2alpha was directly cleaved by both initiator and executioner caspases, and relocated from the nucleus to the cytoplasm in apoptotic cells. These alterations of Sir2alpha were largely inhibited by a caspase-9 dominant-negative mutant or Bcl-xL. Our results indicate that Sir2alpha undergoes dynamic changes in caspase-dependent manner during apoptosis.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
21
|
Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki SI, Isono M, Isshiki K, Uzu T, Kashiwagi A, Koya D. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med 2006; 40:2175-82. [PMID: 16785031 DOI: 10.1016/j.freeradbiomed.2006.02.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 02/03/2006] [Accepted: 02/21/2006] [Indexed: 11/16/2022]
Abstract
Oxidative stress-induced apoptosis of renal glomerular cells is an important factor for the development of various kidney diseases. Identification of molecules that modulate this process could lead to the development of new strategies for preventing kidney diseases. In this study, we evaluated whether mammalian silent information regulator 2 (SIRT1), which has been recently identified as a cell survival factor countering various stressors, is a key regulator of oxidative stress-induced mesangial cell apoptosis. Morphological features of apoptotic cell death (nuclear condensation) and the expression of biochemical proapoptotic markers [cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP)] were assessed in murine mesangial cells (MMCs) exposed to hydrogen peroxide (H(2)O(2)). H(2)O(2) increased mesangial cell apoptosis, predominantly through p53 activation by acetylation, which is a posttranscriptional modification for p53 activation. H(2)O(2)-induced apoptosis was significantly attenuated in SIRT1-overexpressing MMCs, but enhanced in SIRT1-knockdown MMCs. Although SIRT1 did not affect H(2)O(2)-mediated phosphorylation of mitogen-activated protein (MAP) kinase, it interacted with p53 and inhibited H(2)O(2)-mediated p53 acetylation but not phosphorylation in MMCs. Our results indicate that SIRT1 can prevent oxidative stress-induced apoptosis through p53 deacetylation in mesangial cells. Upregulation of SIRT1 may provide a new strategy for preventing kidney glomerular diseases.
Collapse
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Therizols P, Fairhead C, Cabal GG, Genovesio A, Olivo-Marin JC, Dujon B, Fabre E. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. ACTA ACUST UNITED AC 2006; 172:189-99. [PMID: 16418532 PMCID: PMC2063549 DOI: 10.1083/jcb.200505159] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.
Collapse
Affiliation(s)
- Pierre Therizols
- Unité de Génétique Moléculaire des Levures (URA 2171 Centre National de la Recherche Scientifique, UFR 927 Université Pierre et Marie Curie), Département Structure et Dynamique des Génomes, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Clarke AS, Samal E, Pillus L. Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing. Mol Biol Cell 2006; 17:1744-57. [PMID: 16436512 PMCID: PMC1415314 DOI: 10.1091/mbc.e05-07-0613] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Among acetyltransferases, the MYST family enzyme Esa1p is distinguished for its essential function and contribution to transcriptional activation and DNA double-stranded break repair. Here we report that Esa1p also plays a key role in silencing RNA polymerase II (Pol II)-transcribed genes at telomeres and within the ribosomal DNA (rDNA) of the nucleolus. These effects are mediated through Esa1p's HAT activity and correlate with changes within the nucleolus. Esa1p is enriched within the rDNA, as is the NAD-dependent protein deacetylase Sir2p, and the acetylation levels of key Esa1p histone targets are reduced in the rDNA in esa1 mutants. Although mutants of both ESA1 and SIR2 have enhanced rates of rDNA recombination, esa1 effects are more modest yet result in distinct structural changes of rDNA chromatin. Surprisingly, increased expression of ESA1 can bypass the requirement for Sir2p in rDNA silencing, suggesting that these two enzymes with seemingly opposing activities both contribute to achieve optimal nucleolar chromatin structure and function.
Collapse
Affiliation(s)
- Astrid S Clarke
- Division of Biological Sciences, UCSD Cancer Center and Center for Molecular Genetics, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
24
|
Zinovyeva AY, Graham SM, Cloud VJ, Forrester WC. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding. Dev Biol 2006; 289:229-42. [PMID: 16313898 DOI: 10.1016/j.ydbio.2005.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/13/2005] [Accepted: 10/18/2005] [Indexed: 11/25/2022]
Abstract
Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.
Collapse
Affiliation(s)
- Anna Y Zinovyeva
- Department of Biology, Indiana University, Bloomington, 47405, USA
| | | | | | | |
Collapse
|
25
|
Das SP, Sinha P. The budding yeast protein Chl1p has a role in transcriptional silencing, rDNA recombination, and aging. Biochem Biophys Res Commun 2005; 337:167-72. [PMID: 16182251 DOI: 10.1016/j.bbrc.2005.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
We show that the budding yeast protein Chl1p, required for sister-chromatid cohesion, also modulates transcriptional silencing at HMR and telomeres. The absence of this protein results in increased silencing at HMR and, conversely, in decreased silencing at the telomere. The regulation of silencing by Chl1p at these two loci is dependent on the presence of Sir proteins. Chl1p also acts synergistically with Sir2p to suppress rDNA recombination. In the absence of this protein, yeast cells exhibit reduced life span and hypersensitivity to heat stress. These observations suggest a role of Chl1p in regulating chromatin structure.
Collapse
|
26
|
Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T, Takata M. Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 2005; 10:321-32. [PMID: 15773895 DOI: 10.1111/j.1365-2443.2005.00836.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Yeast Sir2 is a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that plays a central role in transcriptional silencing, chromosomal stability, DNA damage response and aging. In mammals, Sir2-like genes constitute a seven-member family whose function is largely unknown. To investigate the role of the Sir2 family in vertebrates, we have disrupted Sir2 homologues SIRT1 and SIRT2 in the p53-deficient chicken cell line DT40. Both SIRT1-/- and SIRT2-/- cells had mild growth defects. Colony survival assays showed moderate and mild sensitivity to cisplatin in SIRT1-/- and SIRT2-/- cells, respectively, while SIRT1-/-, but not SIRT2-/- cells, were sensitive to ionizing radiation (IR). Cells rendered doubly deficient in SIRT1 and SIRT2 exhibited the same levels of IR and cisplatin sensitivity as SIRT1-/- cells. SIRT1-/- cells appeared to be defective neither in DNA double strand break repair nor in G2/M checkpoints, but were more susceptible to cell death induction following IR than wild-type cells. Furthermore, both SIRT1- and SIRT2-deficient cells were more sensitive to pro-apoptotic stimuli including cisplatin and staurosporine. Our results indicate that SIRT1 and SIRT2 regulate stress-induced cell death pathways in a p53-independent manner.
Collapse
Affiliation(s)
- Nobuko Matsushita
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Longevity, i.e., the property of being long-lived, has its natural limitation in the aging process. Longevity has a strong genetic component, as has become apparent from studies with a variety of organisms, from yeast to humans. Genetic screening efforts with invertebrates have unraveled multiple genetic pathways that suggest longevity is promoted through the manipulation of metabolism and the resistance to oxidative stress. To some extent, these same mechanisms appear to act in mammals also, despite considerable divergence during evolution. Thus far, evidence from population-based studies with humans suggests the importance of genes involved in cardiovascular disease as important determinants of longevity. The challenge is to test if the candidate longevity genes that have emerged from studies with model organisms exhibit genetic variation for life span in human populations. Future investigations are likely to involve large-scale case-control studies, in which large numbers of genes, corresponding to entire gene functional modules, will be assessed for all possible sequence variation and associated with detailed phenotypic information on each individual over extended periods of time. This should eventually unravel the genetic factors that contribute to each particular aging phenotype.
Collapse
Affiliation(s)
- Jan Vijg
- University of Texas Health Science Center, San Antonio, Texas 78245, USA.
| | | |
Collapse
|
28
|
Liou GG, Tanny JC, Kruger RG, Walz T, Moazed D. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 2005; 121:515-527. [PMID: 15907466 DOI: 10.1016/j.cell.2005.03.035] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 03/25/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
Assembly of silent chromatin domains in budding yeast involves the deacetylation of histone tails by Sir2 and the association of the Sir3 and Sir4 proteins with hypoacetylated histone tails. Sir2 couples deacetylation to NAD hydrolysis and the synthesis of a metabolite, O-acetyl-ADP-ribose (AAR), but the functional significance of NAD hydrolysis or AAR, if any, is unknown. Here we examine the association of the Sir2, Sir3, and Sir4 proteins with each other and histone tails. Our analysis reveals that deacetylation of histone H4-lysine 16 (K16), which is critical for silencing in vivo, is also critical for the binding of Sir3 and Sir4 to histone H4 peptides in vitro. Moreover, AAR itself promotes the association of multiple copies of Sir3 with Sir2/Sir4 and induces a dramatic structural rearrangement in the SIR complex. These results suggest that Sir2 activity modulates the assembly of the SIR complex through both histone deacetylation and AAR synthesis.
Collapse
Affiliation(s)
- Gunn-Guang Liou
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jason C Tanny
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Ryan G Kruger
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Danesh Moazed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
29
|
Korutla L, Wang PJ, Mackler SA. The POZ/BTB protein NAC1 interacts with two different histone deacetylases in neuronal-like cultures. J Neurochem 2005; 94:786-93. [PMID: 16033423 DOI: 10.1111/j.1471-4159.2005.03206.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
NAC1 is a cocaine-regulated POZ/BTB (Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex) protein. NAC1 is increased by cocaine selectively in the nucleus accumbens, a CNS region important for drug addiction. NAC1's role in the cell, however, is not known. Each of the two NAC1 isoforms, sNAC1 (short NAC1) and lNAC1 (long NAC1), may serve as corepressors for other POZ/BTB proteins. This study investigated whether sNAC1 and lNAC1 demonstrated protein-protein interactions with other corepressors. Histone deacetylase (HDAC) inhibition reversed sNAC1 and lNAC1 repression of Gal4 luciferase, but only in neuronal-like cultures. Because these inhibitors do not distinguish among histone deacetylases, two histone deacetylases were selected for further study. HDAC 3 and 4 both demonstrated protein-protein interactions with sNAC1 and lNAC1. This was shown using coimmunoprecipitations, glutathione-S-transferase (GST) pulldowns and mammalian two-hybrids. Importantly, either the POZ domain or NAC1 without the POZ domain can bind these two HDACs. Other corepressors, specifically NCoR (nuclear receptor corepressor), SMRT (silencing mediator for retinoid and thyroid hormone receptor) and mSin3a, do not exhibit protein-protein interactions with sNAC1 and lNAC1. None showed protein-protein interactions in GST pulldowns or mammalian two-hybrids. Taken together, the results of these experiments indicate sNAC1 and lNAC1 recruit histone deacetylases for transcriptional repression, further enhancing POZ/BTB protein mediated repression.
Collapse
Affiliation(s)
- L Korutla
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
30
|
Freeman-Cook LL, Gómez EB, Spedale EJ, Marlett J, Forsburg SL, Pillus L, Laurenson P. Conserved locus-specific silencing functions of Schizosaccharomyces pombe sir2+. Genetics 2005; 169:1243-60. [PMID: 15545655 PMCID: PMC1449530 DOI: 10.1534/genetics.104.032714] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 11/22/2004] [Indexed: 01/09/2023] Open
Abstract
In Schizosaccharomyces pombe, three genes, sir2(+), hst2(+), and hst4(+), encode members of the Sir2 family of conserved NAD(+)-dependent protein deacetylases. The S. pombe sir2(+) gene encodes a nuclear protein that is not essential for viability or for resistance to treatment with UV or a microtubule-destabilizing agent. However, sir2(+) is essential for full transcriptional silencing of centromeres, telomeres, and the cryptic mating-type loci. Chromatin immunoprecipitation results suggest that the Sir2 protein acts directly at these chromosomal regions. Enrichment of Sir2p at silenced regions does not require the HP1 homolog Swi6p; instead, Swi6-GFP localization to telomeres depends in part on Sir2p. The phenotype of sir2 swi6 double mutants supports a model whereby Sir2p functions prior to Swi6p at telomeres and the silent mating-type loci. However, Sir2p does not appear to be essential for the localization of Swi6p to centromeric foci. Cross-complementation experiments showed that the Saccharomyces cerevisiae SIR2 gene can function in place of S. pombe sir2(+), suggesting overlapping deacetylation substrates in both species. These results also suggest that, despite differences in most of the other molecules required, the two distantly related yeast species share a mechanism for targeting Sir2p homologs to silent chromatin.
Collapse
Affiliation(s)
- Lisa L Freeman-Cook
- Division of Biological Sciences, Section of Molecular Biology and UCSD Center for Cancer Research, University of California, San Diego, 92093-0347, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Tervo AJ, Kyrylenko S, Niskanen P, Salminen A, Leppänen J, Nyrönen TH, Järvinen T, Poso A. An in silico approach to discovering novel inhibitors of human sirtuin type 2. J Med Chem 2005; 47:6292-8. [PMID: 15566299 DOI: 10.1021/jm049933m] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type 2 human sirtuin (SIRT2) is a NAD(+)-dependent cytoplasmic protein that is colocalized with HDAC6 on microtubules. SIRT2 has been shown to deacetylate alpha-tubulin and to control mitotic exit in the cell cycle. To date, some small molecular inhibitors of SIRT2 have been identified; however, more inhibitors are still needed to improve the understanding of SIRT2 biological function and to discover its possible therapeutic indications. In this paper, an in silico identification procedure is described for discovering novel SIRT2 inhibitors. Molecular modeling and virtual screening were utilized to find potential compounds, which were then subjected to experimental tests for their SIRT2 inhibitory activity. Five of the 15 compounds tested in vitro showed inhibitory activity toward SIRT2, yielding a hit ratio of 33% in a micromolar level and thus demonstrating the usefulness of this procedure in finding new bioactive compounds. Two of the five compounds yielded in vitro IC(50) values of 56.7 and 74.3 microM, and these can be considered as novel inhibitors of SIRT2. On the basis of our results, a phenol moiety on the active compound is suggested to be important for SIRT2 inhibitory activity. This phenol group, together with a hydrophobic moiety and hydrogen-bonding features, is suggested to form an active SIRT2 pharmacophore.
Collapse
Affiliation(s)
- Anu J Tervo
- Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The histones are responsible for packaging and regulating access to eukaryotic genomes. Trypanosomatids are flagellated protists that diverged early from the eukaryotic lineage and include parasites that cause disease in humans and other mammals. Here, we review the properties of histones in parasitic trypanosomatids, from gene organization and sequence to expression, post-translational modification and function within chromatin. Phylogenetic and experimental analysis indicates that certain specifically conserved histone sequence motifs, particularly within the N-terminal 'tail' domains, possibly represent functionally important modification substrates conserved throughout the eukaryotic lineage. For example, histone H3 contains a highly conserved methylation substrate. Trypanosomatids also possess at least three variant histones. Among these is an orthologue of H2A.Z, a histone involved in protecting 'active' chromatin from silencing in yeast. Histones provide docking platforms for a variety of regulatory factors. The presence of histone modification and variant histones in trypanosomatids therefore represents evidence for a network that provides the discrimination required to regulate transcription, recombination, repair and chromosome replication and segregation.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
33
|
Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338:17-31. [PMID: 15050820 DOI: 10.1016/j.jmb.2004.02.006] [Citation(s) in RCA: 1063] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 12/17/2022]
Abstract
Histone deacetylases (HDACs) modify core histones and participate in large regulatory complexes that both suppress and enhance transcription. Recent studies indicate that some HDACs can act on non-histone proteins as well. Interest in these enzymes is growing because HDAC inhibitors appear to be promising therapeutic agents against cancer and a variety of other diseases. Thus far, 11 members of the HDAC family have been identified in humans, but few have been characterized in detail. To better define the biological function of these proteins, make maximal use of studies performed in other systems, and assist in drug development efforts, we have performed a phylogenetic analysis of all HDAC-related proteins in all fully sequenced free-living organisms. Previous analyses have divided non-sirtuin HDACs into two groups, classes 1 and 2. We find that HDACs can be divided into three equally distinct groups: class 1, class 2, and a third class consisting of proteins related to the recently identified human HDAC11 gene. We term this novel group "class 4" to distinguish it from the unrelated "class 3" sirtuin deacetylases. Analysis of gene duplication events indicates that the common ancestor of metazoan organisms contained two class 1, two class 2, and a single class 4 HDAC. Examination of HDAC characteristics in light of these evolutionary relationships leads to functional predictions, among them that self-association is common among HDAC proteins. All three HDAC classes (including class 4) exist in eubacteria. Phylogenetic analysis of bacterial HDAC relatives suggests that all three HDAC classes precede the evolution of histone proteins and raises the possibility that the primary activity of some "histone deacetylase" enzymes is directed against non-histone substrates.
Collapse
Affiliation(s)
- Ivan V Gregoretti
- Walther Cancer Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46628, USA
| | | | | |
Collapse
|
34
|
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116:551-63. [PMID: 14980222 DOI: 10.1016/s0092-8674(04)00126-6] [Citation(s) in RCA: 1073] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/20/2004] [Accepted: 01/28/2004] [Indexed: 12/15/2022]
Abstract
The NAD-dependent deacetylase SIR2 and the forkhead transcription factor DAF-16 regulate lifespan in model organisms, such as yeast and C. elegans. Here we show that the mammalian SIR2 ortholog SIRT1 deacetylates and represses the activity of the forkhead transcription factor Foxo3a and other mammalian forkhead factors. This regulation appears to be in the opposite direction from the genetic interaction of SIR2 with forkhead in C. elegans. By restraining mammalian forkhead proteins, SIRT1 also reduces forkhead-dependent apoptosis. The inhibition of forkhead activity by SIRT1 parallels the effect of this deacetylase on the tumor suppressor p53. We speculate how down-regulating these two classes of damage-responsive mammalian factors may favor long lifespan under certain environmental conditions, such as calorie restriction.
Collapse
Affiliation(s)
- Maria Carla Motta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kurtev V, Margueron R, Kroboth K, Ogris E, Cavailles V, Seiser C. Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem 2004; 279:24834-43. [PMID: 15140878 DOI: 10.1074/jbc.m312300200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetyltransferases and deacetylases are recruited by transcription factors and adapter proteins to regulate specific subsets of target genes. We were interested in identifying interaction partners of histone deacetylase 1 (HDAC1) that might be involved in conferring target or substrate specificity. Using the yeast two-hybrid system, we isolated the repressor of estrogen receptor activity (REA) as a novel HDAC1-associated protein. We demonstrated the in vivo interaction of REA with HDAC1 and characterized the respective domains required for their interaction in vitro. In addition, we found that REA also associates with the class II histone deacetylase HDAC5. In luciferase reporter assays, REA decreased transcription, and this repression was sensitive to the deacetylase inhibitor trichostatin A. Finally, we showed that REA specifically interacts with the chicken ovalbumin upstream binding transcription factors and II. The nuclear receptor chicken ovalbumin upstream binding transcription factor I was found to cooperate with REA and histone deacetylases in the repression of target genes. We, therefore, propose a novel function for REA as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases.
Collapse
Affiliation(s)
- Vladislav Kurtev
- Institute of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
36
|
Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, Naoe T, Saito H. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 2004; 22:9176-84. [PMID: 14668799 DOI: 10.1038/sj.onc.1206902] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transcription factor GATA-1 plays a significant role in erythroid differentiation and association with CBP stimulates its activity by acetylation. It is possible that histone deacetylases (HDACs) repress the activity of GATA-1. In the present study, we investigated whether class I and class II HDACs interact with GATA-1 to regulate its function and indeed, GATA-1 is directly associated with HDAC3, HDAC4 and HDAC5. The expression profiling and our previous observation that GATA-2 interacts with members of the HDAC family prompted us to investigate further the biological relevance of the interaction between GATA-1 and HDAC5. Coexpression of HDAC5 suppressed the transcriptional potential of GATA-1. Our results demonstrated that GATA-1 and HDAC5 colocalized to the nucleus of murine erythroleukemia (MEL) cells. Furthermore, a portion of HDAC5 moved to the cytoplasm concomitant with MEL cell erythroid differentiation, which was induced by treatment with N,N'-hexamethylenebisacetamide. These observations support the suggestion that control of the HDAC5 nucleocytoplasmic distribution might be associated with MEL cell differentiation, possibly through regulated GATA-1 transactivation.
Collapse
Affiliation(s)
- Kouichi Watamoto
- Department of Molecular Medicine, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Irminger-Finger I. 3rd Geneva aging workshop 2002: cancer, apoptosis and aging. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:41-5. [PMID: 12781370 DOI: 10.1016/s0304-419x(03)00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The topics of the 3rd Geneva Aging Workshop were cancer, apoptosis, and aging. As the risk for cancer is increasing with age, synergies that could emerge from this encounter could yield significant insights into the molecular mechanisms underlying both the etiology of cancer and the aging process. Several pathways that play a role in aging are thought to have an impact on the initiation and progression of cancer, with apoptosis being the key player. Which are the factors that are correlated with age-dependent cancer incidence? The regulators of apoptosis and genetic pathways that lead to apoptosis were discussed. This included genes that are clearly involved in aging, such as WS and BS, and genes that act in repair, such as BRCA1 and BARD1. The functions of telomere shortening and telomerase, extra cellular matrix, or epigenetic changes were presented in the light of their influence on aging and cancer risk.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Biology of Aging Laboratory, Department of Geriatrics, Geneva University Hospitals, 2 Chemin Petit-Bel-Air, 1225, Geneva, Switzerland.
| |
Collapse
|
38
|
Subramanian T, Chinnadurai G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett 2003; 540:255-8. [PMID: 12681518 DOI: 10.1016/s0014-5793(03)00275-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The C-terminal binding protein (CtBP) family proteins are transcriptional regulators that are conserved from worm to human. They function as corepressors of a wide array of DNA-binding transcriptional repressors. The mammalian CtBPs appear to mediate transcriptional repression in a histone deacetylase (HDAC)-dependent or -independent manner, depending on the context of the promoter. To identify the components of the CtBP corepressor complex, we isolated CtBP-containing protein complexes from the nuclear extracts prepared from HeLa cells infected with adenovirus vectors that expresses hCtBP1. Western blot analysis of these complexes suggests that hCtBP1 associates with class I HDACs, HDAC-1, HDAC-2 and HDAC-3. Some of these HDACs also interact with the Drosophila CtBP homolog, dCtBP. The CtBP protein complex exhibits significant HDAC activity in vitro suggesting that association of CtBP with HDACs may be functionally relevant.
Collapse
Affiliation(s)
- T Subramanian
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, 3681 Park Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
39
|
Liu R, McEachin RC, States DJ. Computationally identifying novel NF-kappa B-regulated immune genes in the human genome. Genome Res 2003; 13:654-61. [PMID: 12654722 PMCID: PMC430162 DOI: 10.1101/gr.911803] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Identifying novel NF-kappa B-regulated immune genes in the human genome is important to our understanding of immune mechanisms and immune diseases. We fit logistic regression models to the promoters of 62 known NF-kappa B-regulated immune genes, to find patterns of transcription factor binding in the promoters of genes with known immune function. Using these patterns, we scanned the promoters of additional genes to find matches to the patterns, selected those with NF-kappa B binding sites conserved in the mouse or fly, and then confirmed them as NF-kappa B-regulated immune genes based on expression data. Among 6440 previously identified promoters in the human genome, we found 28 predicted immune gene promoters, 19 of which regulate genes with known function, allowing us to calculate specificity of 93%-100% for the method. We calculated sensitivity of 42% when searching the 62 known immune gene promoters. We found nine novel NF-kappa B-regulated immune genes which are consistent with available SAGE data. Our method of predicting gene function, based on characteristic patterns of transcription factor binding, evolutionary conservation, and expression studies, would be applicable to finding genes with other functions.
Collapse
Affiliation(s)
- Rongxiang Liu
- Bioinformatics Program and the Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
40
|
Balasubramanian P, Zhao LJ, Chinnadurai G. Nicotinamide adenine dinucleotide stimulates oligomerization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP. FEBS Lett 2003; 537:157-60. [PMID: 12606049 DOI: 10.1016/s0014-5793(03)00119-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The C-terminal region of adenovirus E1A interacts with the transcriptional corepressor, CtBP. The mechanism of transcriptional regulation by CtBP is not known. CtBP shares a significant homology with NAD(+)-dependent D2-hydroxy acid dehydrogenases. CtBP binds to NAD(+) and NADH. Both forms of the dinucleotide stimulate oligomerization of native CtBP and enhance complex formation with E1A. CtBP also has a slow dehydrogenase activity. Interaction of CtBP with E1A reduces the dehydrogenase activity. Our results raise the possibility that the oxidation/reduction reactions of CtBP may regulate transcription. Thus, CtBP is a unique transcriptional regulator with an enzymatic activity similar to metabolic dehydrogenases. The levels of intracellular nicotinamide adenine dinucleotide may modulate transcriptional activity of CtBP.
Collapse
Affiliation(s)
- P Balasubramanian
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, 3681 Park Avenue, MO 63110, USA
| | | | | |
Collapse
|
41
|
Ding Z, Gillespie LL, Paterno GD. Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Mol Cell Biol 2003; 23:250-8. [PMID: 12482978 PMCID: PMC140656 DOI: 10.1128/mcb.23.1.250-258.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/27/2002] [Accepted: 10/02/2002] [Indexed: 11/20/2022] Open
Abstract
mi-er1 (previously called er1) was first isolated from Xenopus laevis embryonic cells as a novel fibroblast growth factor-regulated immediate-early gene. Xmi-er1 was shown to encode a nuclear protein with an N-terminal acidic transcription activation domain. The human orthologue of mi-er1 (hmi-er1) displays 91% similarity to the Xenopus sequence at the amino acid level and was shown to be upregulated in breast carcinoma cell lines and tumors. Alternative splicing at the 3' end of hmi-er1 produces two major isoforms, hMI-ER1alpha and hMI-ER1beta, which contain distinct C-terminal domains. In this study, we investigated the role of hMI-ER1alpha and hMI-ER1beta in the regulation of transcription. Using fusion proteins of hMI-ER1alpha or hMI-ER1beta tethered to the GAL4 DNA binding domain, we show that both isoforms, when recruited to the G5tkCAT minimal promoter, function to repress transcription. We demonstrate that this repressor activity is due to interaction and recruitment of a trichostatin A-sensitive histone deacetylase 1 (HDAC1). Furthermore, deletion analysis revealed that recruitment of HDAC1 to hMI-ER1alpha and hMI-ER1beta occurs through their common ELM2 domain. The ELM2 domain was first described in the Caenorhabditis elegans Egl-27 protein and is present in a number of SANT domain-containing transcription factors. This is the first report of a function for the ELM2 domain, highlighting its role in the regulation of transcription.
Collapse
Affiliation(s)
- Zhihu Ding
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada A1B 3V6
| | | | | |
Collapse
|
42
|
Rafty LA, Schmidt MT, Perraud AL, Scharenberg AM, Denu JM. Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases. J Biol Chem 2002; 277:47114-22. [PMID: 12370179 DOI: 10.1074/jbc.m208997200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sir2 family of NAD(+)-dependent histone/protein deacetylases has been implicated in a wide range of biological activities, including gene silencing, life span extension, and chromosomal stability. Recent evidence has indicated that these proteins produce a novel metabolite O-acetyl-ADP-ribose (OAADPr) during deacetylation. Cellular studies have demonstrated that this metabolite exhibits biological effects when microinjected in living cells. However, the molecular targets of OAADPr remain to be identified. Here we have analyzed the ADP-ribose-specific Nudix family of hydrolases as potential in vivo metabolizing enzymes of OAADPr. In vitro, we found that the ADP-ribose hydrolases (yeast YSA1, mouse NudT5, and human NUDT9) cleaved OAADPr to the products AMP and acetylated ribose 5'-phosphate. Steady-state kinetic analyses revealed that YSA1 and NudT5 hydrolyzed OAADPr with similar kinetic constants to those obtained with ADP-ribose as substrate. In dramatic contrast, human NUDT9 was 500-fold less efficient (k(cat)/K(m) values) at hydrolyzing OAADPr compared with ADP-ribose. The inability of OAADPr to inhibit the reaction of NUDT9 with ADP-ribose suggests that NUDT9 binds OAADPr with low affinity, likely due to steric considerations of the additional acetylated-ribose moiety. We next explored whether Nudix hydrolytic activities against OAADPr could be observed in cell extracts from yeast and human. Using a detailed analysis of the products generated during the consumption of OAADPr in extracts, we identified two robust enzymatic activities that were not consistent with the known Nudix hydrolases. Instead, we identified cytoplasmic esterase activities that hydrolyze OAADPr to acetate and ADP-ribose, whereas a distinct activity residing in the nucleus is consistent with an OAADPr-specific acetyltransferase. These findings establish for the first time that select members of the ADP-ribose hydrolases are potential targets of OAADPr metabolism. However, the predominate endogenous activities observed from diverse cell extracts represent novel enzymes.
Collapse
Affiliation(s)
- Louise A Rafty
- Oregon Health & Science University, Department of Biochemistry and Molecular Biology, Portland, Oregon 97201-3098, USA
| | | | | | | | | |
Collapse
|
43
|
Garcia SN, Pillus L. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae. Genetics 2002; 162:721-36. [PMID: 12399383 PMCID: PMC1462279 DOI: 10.1093/genetics/162.2.721] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silencing provides a critical means of repressing transcription through the assembly and modification of chromatin proteins. The NAD(+)-dependent deacetylation of histones by the Sir2p family of proteins lends mechanistic insight into how SIR2 contributes to silencing. Here we describe three locus-specific sir2 mutants that have a spectrum of silencing phenotypes in yeast. These mutants are dependent on SIR1 for silencing function at the HM silent mating-type loci, display distinct phenotypes at the rDNA, and have dominant silencing defects at the telomeres. Telomeric silencing is restored if the mutant proteins are directly tethered to subtelomeric regions, via a Gal4p DNA-binding domain (GBD), or are recruited by tethered GBD-Sir1p. These sir2 mutations are found within conserved residues of the SIR2 family and lead to defects in catalytic activity. Since one of the mutations lies outside the previously defined minimal catalytic core, our results show that additional regions of Sir2p can be important for enzymatic activity and that differences in levels of activity may have distinct effects at the silenced loci.
Collapse
Affiliation(s)
- Sandra N Garcia
- Division of Biology, UCSD Cancer Center and Center for Molecular Genetics, University of California, San Diego 92093-0347, USA
| | | |
Collapse
|
44
|
Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002; 10:857-69. [PMID: 12419229 DOI: 10.1016/s1097-2765(02)00650-0] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptional repression is based on the selective actions of recruited corepressor complexes, including those with enzymatic activities. One well-characterized developmentally important corepressor is the C-terminal binding protein (CtBP). Although intriguingly related in sequence to D2 hydroxyacid dehydrogenases, the mechanism by which CtBP functions remains unclear. We report here biochemical and crystallographic studies which reveal that CtBP is a functional dehydrogenase. In addition, both a cofactor-dependent conformational change, with NAD(+) and NADH being equivalently effective, and the active site residues are linked to the binding of the PXDLS consensus recognition motif on repressors, such as E1A and RIP140. Together, our data suggest that CtBP is an NAD(+)-regulated component of critical complexes for specific repression events in cells.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Matecic M, Stuart S, Holmes SG. SIR2-induced inviability is suppressed by histone H4 overexpression. Genetics 2002; 162:973-6. [PMID: 12399404 PMCID: PMC1462276 DOI: 10.1093/genetics/162.2.973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified histone H4 as a high-expression suppressor of Sir2-induced inviability in yeast cells. Overexpression of histone H3 does not suppress Sir2-induced lethality, nor does overexpression of histone H4 alleles associated with silencing defects. These results suggest a direct and specific interaction between Sir2 and H4 in the silencing mechanism.
Collapse
Affiliation(s)
- Mirela Matecic
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
46
|
Zhang Z, Hayashi MK, Merkel O, Stillman B, Xu RM. Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. EMBO J 2002; 21:4600-11. [PMID: 12198162 PMCID: PMC125411 DOI: 10.1093/emboj/cdf468] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The N-terminal domain of the largest subunit of the Saccharomyces cerevisiae origin recognition complex (Orc1p) functions in transcriptional silencing and contains a bromo-adjacent homology (BAH) domain found in some chromatin-associated proteins including Sir3p. The 2.2 A crystal structure of the N-terminal domain of Orc1p revealed a BAH core and a non-conserved helical sub-domain. Mutational analyses demonstrated that the helical sub-domain was necessary and sufficient to bind Sir1p, and critical for targeting Sir1p primarily to the cis-acting E silencers at the HMR and HML silent chromatin domains. In the absence of the BAH domain, approximately 14-20% of cells in a population were silenced at the HML locus. Moreover, the distributions of the Sir2p, Sir3p and Sir4p proteins, while normal, were at levels lower than found in wild-type cells. Thus, in the absence of the Orc1p BAH domain, HML resembled silencing of genes adjacent to telomeres. These data are consistent with the view that the Orc1p-Sir1p interaction at the E silencers ensures stable inheritance of pre-established Sir2p, Sir3p and Sir4p complexes at the silent mating type loci.
Collapse
Affiliation(s)
| | | | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
Corresponding authors e-mail: or Z.Zhang, M.K.Hayashi and O.Merkel contributed equally to this work
| | - Rui-Ming Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
Corresponding authors e-mail: or Z.Zhang, M.K.Hayashi and O.Merkel contributed equally to this work
| |
Collapse
|
47
|
Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277:25748-55. [PMID: 11948178 DOI: 10.1074/jbc.m111871200] [Citation(s) in RCA: 491] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have cloned and characterized a human cDNA that belongs to the histone deacetylase family, which we designate as HDAC11. The predicted HDAC11 amino acid sequence reveals an open reading frame of 347 residues with a corresponding molecular mass of 39 kDa. Sequence analyses of the putative HDAC11 protein indicate that it contains conserved residues in the catalytic core regions shared by both class I and II mammalian HDAC enzymes. Putative orthologues of HDAC11 exist in primate, mouse, Drosophila, and plant. Epitope-tagged HDAC11 protein expressed in mammalian cells displays histone deacetylase activity in vitro. Furthermore, HDAC11's enzymatic activity is inhibited by trapoxin, a known histone deacetylase inhibitor. Multiple tissue Northern blot and real-time PCR experiments show that the high expression level of HDAC11 transcripts is limited to kidney, heart, brain, skeletal muscle, and testis. Epitope-tagged HDAC11 protein localizes predominantly to the cell nucleus. Co-immunoprecipitation experiments indicate that HDAC11 may be present in protein complexes that also contain HDAC6. These results indicate that HDAC11 is a novel and unique member of the histone deacetylase family and it may have distinct physiological roles from those of the known HDACs.
Collapse
Affiliation(s)
- Lin Gao
- Department of Oncology, Novartis Pharmaceuticals Corporation, Summit, New Jersey 07901, USA
| | | | | | | |
Collapse
|
48
|
Ingram AK, Horn D. Histone deacetylases in Trypanosoma brucei: two are essential and another is required for normal cell cycle progression. Mol Microbiol 2002; 45:89-97. [PMID: 12100550 DOI: 10.1046/j.1365-2958.2002.03018.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reversible protein acetylation is established as a modification of major regulatory significance. In particular, histone acetylation regulates access to genetic information in eukaryotes. For example, class I and class II histone deacetylases are regulatory components of corepressor complexes involved in cell cycle progression and differentiation. Here, we have investigated the function of such enzymes in Trypanosoma brucei, mono-flagellated parasitic protozoa that branched very early from the eukaryotic lineage. Four T. brucei genes encoding histone deacetylase orthologues have been identified, cloned and characterized. The predicted deacetylases, DAC1-4 are approximately 43, 61, 75 and 64 kDa respectively. They share significant similarity with mammalian and yeast class I (DAC1 and DAC2) and class II (DAC3 and DAC4) histone deacetylases, and all except DAC2 have the critical residues predicted to be required for deacetylase activity. In gene targeting experiments, DAC1 and DAC3 appear to be essential whereas DAC2 and DAC4 are not required for viability. Of the two mutant cell types, the dac4 mutant displays a delay in the G2/M phase of the cell cycle. Our results provide genetic validation of DAC1 and DAC3 as potential chemotherapy targets and demonstrate that T. brucei expresses at least three probable histone deacetylases with distinct function.
Collapse
Affiliation(s)
- Alexandra K Ingram
- Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK
| | | |
Collapse
|
49
|
Choe W, Budd M, Imamura O, Hoopes L, Campbell JL. Dynamic localization of an Okazaki fragment processing protein suggests a novel role in telomere replication. Mol Cell Biol 2002; 22:4202-17. [PMID: 12024033 PMCID: PMC133873 DOI: 10.1128/mcb.22.12.4202-4217.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found that the Dna2 helicase-nuclease, thought to be involved in maturation of Okazaki fragments, is a component of telomeric chromatin. We demonstrate a dynamic localization of Dna2p to telomeres that suggests a dual role for Dna2p, one in telomere replication and another, unknown function, perhaps in telomere capping. Both chromatin immunoprecipitation (ChIP) and immunofluorescence show that Dna2p associates with telomeres but not bulk chromosomal DNA in G(1) phase, when there is no telomere replication and the telomere is transcriptionally silenced. In S phase, there is a dramatic redistribution of Dna2p from telomeres to sites throughout the replicating chromosomes. Dna2p is again localized to telomeres in late S, where it remains through G(2) and until the next S phase. Telomeric localization of Dna2p required Sir3p, since the amount of Dna2p found at telomeres by two different assays, one-hybrid and ChIP, is severely reduced in strains lacking Sir3p. The Dna2p is also distributed throughout the nucleus in cells growing in the presence of double-strand-break-inducing agents such as bleomycin. Finally, we show that Dna2p is functionally required for telomerase-dependent de novo telomere synthesis and also participates in telomere lengthening in mutants lacking telomerase.
Collapse
Affiliation(s)
- Wonchae Choe
- Braun Laboratories, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
50
|
Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, Manchester JK, Gordon JI, Sinclair DA. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 2002; 277:18881-90. [PMID: 11884393 DOI: 10.1074/jbc.m111773200] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast deprived of nutrients exhibit a marked life span extension that requires the activity of the NAD(+)-dependent histone deacetylase, Sir2p. Here we show that increased dosage of NPT1, encoding a nicotinate phosphoribosyltransferase critical for the NAD(+) salvage pathway, increases Sir2-dependent silencing, stabilizes the rDNA locus, and extends yeast replicative life span by up to 60%. Both NPT1 and SIR2 provide resistance against heat shock, demonstrating that these genes act in a more general manner to promote cell survival. We show that Npt1 and a previously uncharacterized salvage pathway enzyme, Nma2, are both concentrated in the nucleus, indicating that a significant amount of NAD(+) is regenerated in this organelle. Additional copies of the salvage pathway genes, PNC1, NMA1, and NMA2, increase telomeric and rDNA silencing, implying that multiple steps affect the rate of the pathway. Although SIR2-dependent processes are enhanced by additional NPT1, steady-state NAD(+) levels and NAD(+)/NADH ratios remain unaltered. This finding suggests that yeast life span extension may be facilitated by an increase in the availability of NAD(+) to Sir2, although not through a simple increase in steady-state levels. We propose a model in which increased flux through the NAD(+) salvage pathway is responsible for the Sir2-dependent extension of life span.
Collapse
Affiliation(s)
- Rozalyn M Anderson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|