1
|
Dieball C, Godec A. Thermodynamic Bounds on Generalized Transport: From Single-Molecule to Bulk Observables. PHYSICAL REVIEW LETTERS 2024; 133:067101. [PMID: 39178466 DOI: 10.1103/physrevlett.133.067101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/25/2024]
Abstract
We prove that the transport of any differentiable scalar observable in d-dimensional nonequilibrium systems is bounded from above by the total entropy production scaled by the amount the observation "stretches" microscopic coordinates. The result-a time-integrated generalized speed limit-reflects the thermodynamic cost of transport of observables, and places underdamped and overdamped stochastic dynamics on equal footing with deterministic motion. Our work allows for stochastic thermodynamics to make contact with bulk experiments, and fills an important gap in thermodynamic inference, since microscopic dynamics is, at least for short times, underdamped. Requiring only averages but not sample-to-sample fluctuations, the proven transport bound is practical and applicable not only to single-molecule but also bulk experiments where only averages are observed, which we demonstrate by examples. Our results may facilitate thermodynamic inference on molecular machines without an obvious directionality from bulk observations of transients probed, e.g., in time-resolved x-ray scattering.
Collapse
|
2
|
Kim SO, Yun SR, Lee H, Jo J, Ahn DS, Kim D, Kosheleva I, Henning R, Kim J, Kim C, You S, Kim H, Lee SJ, Ihee H. Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities. Nat Commun 2024; 15:6287. [PMID: 39060271 PMCID: PMC11282289 DOI: 10.1038/s41467-024-50696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Understanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups. Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers. SXL breaks through the previously mentioned barriers, enabling microgram-scale TR studies of both irreversible and reversible reactions of even a non-photoactive protein. We demonstrate its versatility in studying a wide range of biological reactions, highlighting its potential as a flexible and multi-dimensional assay framework for kinetic and structural characterization. Leveraging X-ray free-electron lasers and micro-focused X-ray pulses promises further enhancements in both temporal resolution and minimizing sample quantity. SXL offers unprecedented insights into the structural and kinetic landscapes of molecular actions, paving the way for a deeper understanding of complex biological processes.
Collapse
Affiliation(s)
- Seong Ok Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - So Ri Yun
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyosub Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junbeom Jo
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Jungmin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seyoung You
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanui Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Jin Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Qiu Y, Huang T, Cai YD. Review of predicting protein stability changes upon variations. Proteomics 2024; 24:e2300371. [PMID: 38643379 DOI: 10.1002/pmic.202300371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Forecasting alterations in protein stability caused by variations holds immense importance. Improving the thermal stability of proteins is important for biomedical and industrial applications. This review discusses the latest methods for predicting the effects of mutations on protein stability, databases containing protein mutations and thermodynamic parameters, and experimental techniques for efficiently assessing protein stability in high-throughput settings. Various publicly available databases for protein stability prediction are introduced. Furthermore, state-of-the-art computational approaches for anticipating protein stability changes due to variants are reviewed. Each method's types of features, base algorithm, and prediction results are also detailed. Additionally, some experimental approaches for verifying the prediction results of computational methods are introduced. Finally, the review summarizes the progress and challenges of protein stability prediction and discusses potential models for future research directions.
Collapse
Affiliation(s)
- Yiling Qiu
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Wijker S, Palmans ARA. Protein-Inspired Control over Synthetic Polymer Folding for Structured Functional Nanoparticles in Water. Chempluschem 2023; 88:e202300260. [PMID: 37417828 DOI: 10.1002/cplu.202300260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The folding of proteins into functional nanoparticles with defined 3D structures has inspired chemists to create simple synthetic systems mimicking protein properties. The folding of polymers into nanoparticles in water proceeds via different strategies, resulting in the global compaction of the polymer chain. Herein, we review the different methods available to control the conformation of synthetic polymers and collapse/fold them into structured, functional nanoparticles, such as hydrophobic collapse, supramolecular self-assembly, and covalent cross-linking. A comparison is made between the design principles of protein folding to synthetic polymer folding and the formation of structured nanocompartments in water, highlighting similarities and differences in design and function. We also focus on the importance of structure for functional stability and diverse applications in complex media and cellular environments.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Kosheleva I, Henning R, Kim I, Kim SO, Kusel M, Srajer V. Sample-minimizing co-flow cell for time-resolved pump-probe X-ray solution scattering. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:490-499. [PMID: 36891863 PMCID: PMC10000795 DOI: 10.1107/s1600577522012127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 06/10/2023]
Abstract
A fundamental problem in biological sciences is understanding how macromolecular machines work and how the structural changes of a molecule are connected to its function. Time-resolved techniques are vital in this regard and essential for understanding the structural dynamics of biomolecules. Time-resolved small- and wide-angle X-ray solution scattering has the capability to provide a multitude of information about the kinetics and global structural changes of molecules under their physiological conditions. However, standard protocols for such time-resolved measurements often require significant amounts of sample, which frequently render time-resolved measurements impossible. A cytometry-type sheath co-flow cell, developed at the BioCARS 14-ID beamline at the Advanced Photon Source, USA, allows time-resolved pump-probe X-ray solution scattering measurements to be conducted with sample consumption reduced by more than ten times compared with standard sample cells and protocols. The comparative capabilities of the standard and co-flow experimental setups were demonstrated by studying time-resolved signals in photoactive yellow protein.
Collapse
Affiliation(s)
- Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Robert Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Insik Kim
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Seong Ok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, E6-6 #513, 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Michael Kusel
- Kusel Design, 12 Coghlan Street, Niddrie, Wurundjeri Country 3042, Australia
| | - Vukica Srajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| |
Collapse
|
6
|
Sato D, Hikima T, Ikeguchi M. Time-Resolved Small-Angle X-Ray Scattering of Protein Cage Assembly. Methods Mol Biol 2023; 2671:211-218. [PMID: 37308647 DOI: 10.1007/978-1-0716-3222-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent improvements in X-ray detectors and synchrotron light sources have made it possible to measure time-resolved small-angle X-ray scattering (TR-SAXS) at millisecond time resolution. As an example, in this chapter we describe the beamline setup, experimental scheme, and the points that should be noted in stopped-flow TR-SAXS experiments for investigating the ferritin assembly reaction.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Bioinformatics, Soka University, Hachioji, Tokyo, Japan
| | | | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, Hachioji, Tokyo, Japan.
- Department of Biosciences, Soka University, Hachioji, Tokyo, Japan.
| |
Collapse
|
7
|
A comparative study of unpasteurized and pasteurized frozen whole hen eggs using size-exclusion chromatography and small-angle X-ray scattering. Sci Rep 2022; 12:9218. [PMID: 35654960 PMCID: PMC9163139 DOI: 10.1038/s41598-022-12885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Hen eggs are rich in proteins and are an important source of protein for humans. Pasteurized frozen whole hen eggs are widely used in cooking and confectionery and can be stored for long periods. However, processed eggs differ from raw eggs in properties such as viscosity, foaming ability, and thermal aggregation. To develop pasteurized frozen whole egg products with properties similar to those of unpasteurized whole eggs, it is necessary to establish a method that can differentiate between the two egg types with respect to the structures of their proteins. In this study, size-exclusion chromatography (SEC) and SEC coupled with small-angle X-ray scattering (SEC-SAXS) were successfully used to differentiate between the proteins in unpasteurized and pasteurized frozen whole eggs. We found that proteins in the plasma fraction of egg yolk, especially apovitellenins I and II, formed large aggregates in the pasteurized eggs, indicating that their structures are sensitive to temperature changes during pasteurization, freezing, and thawing. The results suggest that SEC and SEC-SAXS can be used to differentiate between unpasteurized and pasteurized frozen whole eggs. Additionally, they may be useful in determining molecular sizes and shapes of multiple components in various complex biological systems such as whole eggs.
Collapse
|
8
|
Parray ZA, Ahmad F, Chaudhary AA, Rudayni HA, Al-Zharani M, Hassan MI, Islam A. Size-Dependent Interplay of Volume Exclusion Versus Soft Interactions: Cytochrome c in Macromolecular Crowded Environment. Front Mol Biosci 2022; 9:849683. [PMID: 35693552 PMCID: PMC9174945 DOI: 10.3389/fmolb.2022.849683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Even though there are a great number of possible conformational states, how a protein generated as a linear unfolded polypeptide efficiently folds into its physiologically active form remained a fascinating and unanswered enigma inside crowded conditions of cells. In this study, various spectroscopic techniques have been exploited to know and understand the effect and mechanism of action of two different sizes of polyethylene glycols, or PEGs (molecular mass ∼10 and ∼20 kilo Daltons, kDa), on cytochrome c (cyt c). The outcomes showed that small size of the PEG leads to perturbation of the protein structure, and conversely, large size of the PEG has stabilizing effect on cyt c. Moreover, binding measurements showed that small size of PEG interacts strongly via soft interactions compared to the larger size of PEG, the latter being governed more by excluded volume effect or preferential exclusion from the protein. Overall, this finding suggests that conformations of protein may be influenced in cellular crowded conditions via interactions which depend upon the size of molecule in the environment. This study proposes that both volume exclusion and soft (chemical) interactions governs the protein’s conformation and functional activities. The cellular environment’s internal architecture as evident from crowder size and shape in this study has a significant role.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Asimul Islam,
| |
Collapse
|
9
|
Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. Int J Mol Sci 2022; 23:ijms23052485. [PMID: 35269628 PMCID: PMC8910466 DOI: 10.3390/ijms23052485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Despite recent developments in protein structure prediction, the process of the structure formation, folding, remains poorly understood. Notably, folding of multidomain proteins, which involves multiple steps of segmental folding, is one of the biggest questions in protein science. Multidomain protein folding often requires the assistance of molecular chaperones. Molecular chaperones promote or delay the folding of the client protein, but the detailed mechanisms are still unclear. This review summarizes the findings of biophysical and structural studies on the mechanism of multidomain protein folding mediated by molecular chaperones and explains how molecular chaperones recognize the client proteins and alter their folding properties. Furthermore, we introduce several recent studies that describe the concept of kinetics-activity relationships to explain the mechanism of functional diversity of molecular chaperones.
Collapse
|
10
|
Yamaguchi T, Akao K, Koutsioubas A, Frielinghaus H, Kohzuma T. Open-Bundle Structure as the Unfolding Intermediate of Cytochrome c' Revealed by Small Angle Neutron Scattering. Biomolecules 2022; 12:95. [PMID: 35053243 PMCID: PMC8774185 DOI: 10.3390/biom12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
The dynamic structure changes, including the unfolding, dimerization, and transition from the compact to the open-bundle unfolding intermediate structure of Cyt c', were detected by a small-angle neutron scattering experiment (SANS). The structure of Cyt c' was changed into an unstructured random coil at pD = 1.7 (Rg = 25 Å for the Cyt c' monomer). The four-α-helix bundle structure of Cyt c' at neutral pH was transitioned to an open-bundle structure (at pD ~13), which is given by a numerical partial scattering function analysis as a joint-clubs model consisting of four clubs (α-helices) connected by short loops. The compactly folded structure of Cyt c' (radius of gyration, Rg = 18 Å for the Cyt c' dimer) at neutral or mildly alkaline pD transited to a remarkably larger open-bundle structure at pD ~13 (Rg = 25 Å for the Cyt c' monomer). The open-bundle structure was also supported by ab initio modeling.
Collapse
Affiliation(s)
- Takahide Yamaguchi
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| | - Kouhei Akao
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Takamitsu Kohzuma
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| |
Collapse
|
11
|
Sagar A, Bernadó P. Disentangling polydisperse biomolecular systems by Chemometrics decomposition of SAS data. Methods Enzymol 2022; 677:531-555. [DOI: 10.1016/bs.mie.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Dell'Aglio M, Salajková Z, Mallardi A, Sportelli MC, Kaiser J, Cioffi N, De Giacomo A. Sensing nanoparticle-protein corona using nanoparticle enhanced Laser Induced Breakdown Spectroscopy signal enhancement. Talanta 2021; 235:122741. [PMID: 34517609 DOI: 10.1016/j.talanta.2021.122741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022]
Abstract
Recently nanoparticle enhanced Laser Induced Breakdown Spectroscopy (NELIBS) is getting a growing interest as an effective alternative method for improving the analytical performance of LIBS. On the other hand, the plasmonic effect during laser ablation can be used for a different task rather than elemental analysis. In this paper, the dependence of NELIBS emission signal enhancement on nanoparticle-protein solutions dried on a reference substrate (metallic titanium) was investigated. Two proteins were studied: Human Serum Albumin (HSA) and Cytochrome C (CytC). Both proteins have a strong affinity for the gold nanoparticles (AuNPs) due to the bonding between the single free exterior thiol (associated with a cysteine residue) and the gold surface to form a stable protein corona. Then, since the protein sizes are vastly different, a different number of protein units is needed to cover AuNP surface to form a protein layer. The NP-protein solution was dropped and dried onto the titanium substrate. Then the NELIBS signal enhancement of Ti emission lines was correlated to the solution characteristics as determined with Dynamic Light Scattering (DLS), Surface Plasmon Resonance (SPR) spectroscopy and Laser Doppler Electrophoresis (LDE) for ζ-potential determination. Moreover, the dried solutions were studied with TEM (Transmission Electron Microscopy) for the inspection of the inter-particle distance. The structural effect of the NP-protein conjugates on the NELIBS signal reveals that NELIBS can be used to determine the number of protein units required to form the nanoparticle-protein corona with good accuracy. Although the investigated NP-protein systems are simple cases in biological applications, this work demonstrates, for the first time, a different use of NELIBS that is beyond elemental analysis and it opens the way for sensing the nanoparticle protein corona.
Collapse
Affiliation(s)
- Marcella Dell'Aglio
- CNR-NANOTEC, Institute of Nanotechnology, c/o Chemistry Department, Via Orabona 4, 70125, Bari, Italy.
| | - Zita Salajková
- Department of Chemistry, University of Bari, Via Orabona 4, 70125, Bari, Italy; Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Antonia Mallardi
- CNR-IPCF, Institute for Chemical-Physical Processes, c/o Chemistry Department, Via Orabona 4, 70125, Bari, Italy.
| | | | - Jozef Kaiser
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Nicola Cioffi
- Department of Chemistry, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Alessandro De Giacomo
- CNR-NANOTEC, Institute of Nanotechnology, c/o Chemistry Department, Via Orabona 4, 70125, Bari, Italy; Department of Chemistry, University of Bari, Via Orabona 4, 70125, Bari, Italy; CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
13
|
Jas GS, Childs EW, Middaugh CR, Kuczera K. Probing the Internal Dynamics and Shape of Simple Peptides in Urea, Guanidinium Hydrochloride, and Proline Solutions with Time-Resolved Fluorescence Anisotropy and Atomistic Cosolvent Simulations. J Phys Chem B 2021; 125:10972-10984. [PMID: 34559968 DOI: 10.1021/acs.jpcb.1c06838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Picosecond time-resolved fluorescence anisotropy was used to measure the effect of denaturants and osmolytes on the reorientation dynamics of the simplest dipeptide. The solvent denaturants guanidinium hydrochloride (gdm), urea, and the osmolyte proline were used at several concentrations. Analysis of the concentration dependence of denaturants at a fixed temperature showed faster and slower reorientation time in two different denaturants at a nearly identical solvent viscosity (η). The reorientation time τ significantly deviates from Kramers' theory (τ ∝ η1) in the high friction limit for guanidinium and urea with r ≈ 0.4 and r ≈ 0.6 at pH 7.2, respectively. In proline, τ is nearly proportional to η. Atomistic molecular dynamics simulations of the dipeptide in identical cosolvents showed excellent agreement with the measured rotational orientation time. The dipeptide dihedral (ϕ, ψ) isomerization times in water and 6 M urea are almost identical and significantly slower in guanidinium. If a faster and slower reorientation time can be associated with the compact and expanded shapes, the fractional viscosity dependence for guanidinium and urea may result from the fact that internal dynamics of peptides in these cosolvents involve higher and lower internal friction within the dynamic elements.
Collapse
Affiliation(s)
- Gouri S Jas
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia 30310, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Lee SJ, Kim Y, Kim TW, Yang C, Thamilselvan K, Jeong H, Hyun J, Ihee H. Reversible molecular motional switch based on circular photoactive protein oligomers exhibits unexpected photo-induced contraction. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100512. [PMID: 35509376 PMCID: PMC9062587 DOI: 10.1016/j.xcrp.2021.100512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Molecular switches alterable between two stable states by environmental stimuli, such as light and temperature, offer the potential for controlling biological functions. Here, we report a circular photoswitchable protein complex made of multiple protein molecules that can rapidly and reversibly switch with significant conformational changes. The structural and photochromic properties of photoactive yellow protein (PYP) are harnessed to construct circular oligomer PYPs (coPYPs) of desired sizes. Considering the light-induced N-terminal protrusion of monomer PYP, we expected coPYPs would expand upon irradiation, but time-resolved X-ray scattering data reveal that the late intermediate has a pronounced light-induced contraction motion. This work not only provides an approach to engineering a novel protein-based molecular switch based on circular oligomers of well-known protein units but also demonstrates the importance of characterizing the structural dynamics of designed molecular switches.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Youngmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Tae Wu Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kamatchi Thamilselvan
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Jaekyung Hyun
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology (OIST), Okinawa 904-0495, Japan
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Lead contact
| |
Collapse
|
15
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
16
|
Mosleh I, Khosropour AR, Aljewari H, Carbrello C, Qian X, Wickramasinghe R, Abbaspourrad A, Beitle R. Cationic Covalent Organic Framework as an Ion Exchange Material for Efficient Adsorptive Separation of Biomolecules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35019-35025. [PMID: 34264068 DOI: 10.1021/acsami.1c11270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although covalent organic frameworks (COFs) have earned significant interest in separation applications, the use of COFs in biomolecule separation remains unexplored. We examined the ionic COF Py-BPy2+-COF as an ion exchange material for biomolecule separation. After characterizing the properties of the synthesized COF with a variety of techniques, binding experiments with both large and small biomolecules were performed. High adsorption capacities of amino acids with different hydrophobicity and charge, as well as proteins of different isoelectric points and molecular weights, were determined in batch equilibrium experiments. Desorption experiments with mixtures of model proteins demonstrated an ability to successfully separate one protein from another with the selectivity hypothesized to be a combination of the isoelectric point, hydrophobicity, and ability to penetrate the crystalline material. Overall, the results demonstrated that Py-BPy2+-COF can be exploited as a robust crystalline anion exchange biomolecule separation material.
Collapse
Affiliation(s)
- Imann Mosleh
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Ahmad R Khosropour
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Hazim Aljewari
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Robert Beitle
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
17
|
Leite W, Weiss KL, Phillips G, Zhang Q, Qian S, Tsutakawa SE, Coates L, O’Neill H. Conformational Dynamics in the Interaction of SARS-CoV-2 Papain-like Protease with Human Interferon-Stimulated Gene 15 Protein. J Phys Chem Lett 2021; 12:5608-5615. [PMID: 34110168 PMCID: PMC8204754 DOI: 10.1021/acs.jpclett.1c00831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Papain-like protease (PLpro) from SARS-CoV-2 plays essential roles in the replication cycle of the virus. In particular, it preferentially interacts with and cleaves human interferon-stimulated gene 15 (hISG15) to suppress the innate immune response of the host. We used small-angle X-ray and neutron scattering combined with computational techniques to study the mechanism of interaction of SARS-CoV-2 PLpro with hISG15. We showed that hISG15 undergoes a transition from an extended to a compact state after binding to PLpro, a conformation that has not been previously observed in complexes of SARS-CoV-2 PLpro with ISG15 from other species. Furthermore, computational analysis showed significant conformational flexibility in the ISG15 N-terminal domain, suggesting that it is weakly bound to PLpro and supports a binding mechanism that is dominated by the C-terminal ISG15 domain. This study fundamentally improves our understanding of the SARS-CoV-2 deISGylation complex that will help guide development of COVID-19 therapeutics targeting this complex.
Collapse
Affiliation(s)
- Wellington
C. Leite
- Neutron
Scattering Division, Oak Ridge National
Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Kevin L. Weiss
- Neutron
Scattering Division, Oak Ridge National
Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Gwyndalyn Phillips
- Neutron
Scattering Division, Oak Ridge National
Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Qiu Zhang
- Neutron
Scattering Division, Oak Ridge National
Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Shuo Qian
- Neutron
Scattering Division, Oak Ridge National
Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Susan E. Tsutakawa
- Molecular
Biophysics and Integrated Bioimaging, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leighton Coates
- Second
Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Hugh O’Neill
- Neutron
Scattering Division, Oak Ridge National
Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
18
|
Atsavapranee B, Stark CD, Sunden F, Thompson S, Fordyce PM. Fundamentals to function: Quantitative and scalable approaches for measuring protein stability. Cell Syst 2021; 12:547-560. [PMID: 34139165 DOI: 10.1016/j.cels.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Folding a linear chain of amino acids into a three-dimensional protein is a complex physical process that ultimately confers an impressive range of diverse functions. Although recent advances have driven significant progress in predicting three-dimensional protein structures from sequence, proteins are not static molecules. Rather, they exist as complex conformational ensembles defined by energy landscapes spanning the space of sequence and conditions. Quantitatively mapping the physical parameters that dictate these landscapes and protein stability is therefore critical to develop models that are capable of predicting how mutations alter function of proteins in disease and informing the design of proteins with desired functions. Here, we review the approaches that are used to quantify protein stability at a variety of scales, from returning multiple thermodynamic and kinetic measurements for a single protein sequence to yielding indirect insights into folding across a vast sequence space. The physical parameters derived from these approaches will provide a foundation for models that extend beyond the structural prediction to capture the complexity of conformational ensembles and, ultimately, their function.
Collapse
Affiliation(s)
| | - Catherine D Stark
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| |
Collapse
|
19
|
Sagar A, Herranz-Trillo F, Langkilde AE, Vestergaard B, Bernadó P. Structure and thermodynamics of transient protein-protein complexes by chemometric decomposition of SAXS datasets. Structure 2021; 29:1074-1090.e4. [PMID: 33862013 DOI: 10.1016/j.str.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Transient biomolecular interactions play crucial roles in many cellular signaling and regulation processes. However, deciphering the structure of these assemblies is challenging owing to the difficulties in isolating complexes from the individual partners. The additive nature of small-angle X-ray scattering (SAXS) data allows for probing the species present in these mixtures, but decomposition into structural and thermodynamic information is difficult. We present a chemometric approach enabling the decomposition of titration SAXS data into species-specific information. Using extensive synthetic SAXS data, we demonstrate that robust decomposition can be achieved for titrations with a maximum fraction of complex of 0.5 that can be extended to 0.3 when two orthogonal titrations are simultaneously analyzed. The effect of the structural features, titration points, relative concentrations, and noise are thoroughly analyzed. The validation of the strategy with experimental data highlights the power of the approach to provide unique insights into this family of biomolecular assemblies.
Collapse
Affiliation(s)
- Amin Sagar
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| | - Fátima Herranz-Trillo
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
20
|
Yan B, Bunch J. Probing Folded Proteins and Intact Protein Complexes by Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:690-699. [PMID: 33605725 DOI: 10.1021/jasms.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Native mass spectrometry (MS) enables the study of intact proteins as well as noncovalent protein-protein and protein-ligand complexes in their biological state. In this work, we present the application of a Waters desorption electrospray ionization (DESI) source with a prototype spray emitter for rapid surface measurements of folded and native protein structures. A comparison of DESI spray solvent shows that adding 50% methanol to 200 mM ammonium acetate solution does not reduce its performance in preserving folded protein structures. Instead, improved signal-to-noise (S/N) ratio is obtained, and less adducted peaks are detected by using this uncommon native MS solvent system. The standard DESI design with an inlet tube allows optimization of sampling temperature conditions to improve desolvation and therefore S/N ratio. Furthermore, tuning the inlet temperature enables the control and study of unfolding behavior of proteins from surface samples. The optimized condition for native DESI has been applied to several selected proteins and protein complexes with the molecular weight ranging from 8.6 to 66.4 kDa. Ions of folded proteins with narrow charge state distribution (CSD), or peaks showing noncovalent-bond-assembled intact protein complexes, are observed in the spectra. Evidence for the structural refolding of denatured proteins and protein complexes sampled with native solvent highlights the need for care when interpreting DESI native MS data, particularly for proteins with stable native structures.
Collapse
Affiliation(s)
- Bin Yan
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K
| |
Collapse
|
21
|
Meisburger SP, Xu D, Ando N. REGALS: a general method to deconvolve X-ray scattering data from evolving mixtures. IUCRJ 2021; 8:225-237. [PMID: 33708400 PMCID: PMC7924237 DOI: 10.1107/s2052252521000555] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 06/10/2023]
Abstract
Mixtures of biological macromolecules are inherently difficult to study using structural methods, as increasing complexity presents new challenges for data analysis. Recently, there has been growing interest in studying evolving mixtures using small-angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput or chromatography-coupled setups. Deconvolution and interpretation of the resulting datasets, however, are nontrivial when neither the scattering components nor the way in which they evolve are known a priori. To address this issue, the REGALS method (regularized alternating least squares) is introduced, which incorporates simple expectations about the data as prior knowledge, and utilizes parameterization and regularization to provide robust deconvolution solutions. The restraints used by REGALS are general properties such as smoothness of profiles and maximum dimensions of species, making it well suited for exploring datasets with unknown species. Here, REGALS is applied to the analysis of experimental data from four types of SAXS experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing and time-resolved temperature jump. Based on its performance with these challenging datasets, it is anticipated that REGALS will be a valuable addition to the SAXS analysis toolkit and enable new experiments. The software is implemented in both MATLAB and Python and is available freely as an open-source software package.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| | - Da Xu
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
23
|
Maestre-Reyna M, Huang WC, Wu WJ, Singh PK, Hartmann R, Wang PH, Lee CC, Hikima T, Yamamoto M, Bessho Y, Drescher K, Tsai MD, Wang AHJ. Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity. IUBMB Life 2020; 73:418-431. [PMID: 33372380 PMCID: PMC7898620 DOI: 10.1002/iub.2439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Vibrio cholerae is the causative agent of the diarrheal disease cholera, for which biofilm communities are considered to be environmental reservoirs. In endemic regions, and after algal blooms, which may result from phosphate enrichment following agricultural runoff, the bacterium is released from biofilms resulting in seasonal disease outbreaks. However, the molecular mechanism by which V. cholerae senses its environment and switches lifestyles from the biofilm‐bound state to the planktonic state is largely unknown. Here, we report that the major biofilm scaffolding protein RbmA undergoes autocatalytic proteolysis via a phosphate‐dependent induced proximity activation mechanism. Furthermore, we show that RbmA mutants that are defective in autoproteolysis cause V. cholerae biofilms to grow larger and mechanically stronger, correlating well with the observation that RbmA stability directly affects microbial community homeostasis and rheological properties. In conclusion, our biophysical study characterizes a novel phosphate‐dependent breakdown pathway of RbmA, while microbiological data suggest a new, sensory role of this biofilm scaffolding element.
Collapse
Affiliation(s)
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Po-Hsun Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Kirmizialtin S, Pitici F, Cardenas AE, Elber R, Thirumalai D. Dramatic Shape Changes Occur as Cytochrome c Folds. J Phys Chem B 2020; 124:8240-8248. [PMID: 32840372 DOI: 10.1021/acs.jpcb.0c05802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive experimental studies on the folding of cytochrome c (Cyt c) make this small protein an ideal target for atomic detailed simulations for the purposes of quantitatively characterizing the structural transitions and the associated time scales for folding to the native state from an ensemble of unfolded states. We use previously generated atomically detailed folding trajectories by the stochastic difference equation in length to calculate the time-dependent changes in the small-angle X-ray scattering (SAXS) profiles. Excellent agreement is obtained between experiments and simulations for the time-dependent SAXS spectra, allowing us to identify the structures of the folding intermediates, which shows that Cyt c reaches the native state by a sequential folding mechanism. Using the ensembles of structures along the folding pathways, we show that compaction and the sphericity of Cyt c change dramatically from the prolate ellipsoid shape in the unfolded state to the spherical native state. Our data, which are in unprecedented quantitative agreement with all aspects of time-resolved SAXS experiments, show that hydrophobic collapse and amide group protection coincide on the 100 microseconds time scale, which is in accordance with ultrafast hydrogen/deuterium exchange studies. Based on these results, we propose that compaction of polypeptide chains, accompanied by dramatic shape changes, is a universal characteristic of globular proteins, regardless of the underlying folding mechanism.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Chemistry Program, Math and Sciences, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | | | - Alfredo E Cardenas
- Institute for Computational Science and Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- Institute for Computational Science and Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Texas, Austin Texas, 78712, United States
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin Texas, 78712, United States
| |
Collapse
|
25
|
Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering. Proc Natl Acad Sci U S A 2020; 117:14996-15005. [PMID: 32541047 PMCID: PMC7334511 DOI: 10.1073/pnas.1913442117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One of the most challenging tasks in biological science is to understand how a protein folds. In theoretical studies, the hypothesis adopting a funnel-like free-energy landscape has been recognized as a prominent scheme for explaining protein folding in views of both internal energy and conformational heterogeneity of a protein. Despite numerous experimental efforts, however, comprehensively studying protein folding with respect to its global conformational changes in conjunction with the heterogeneity has been elusive. Here we investigate the redox-coupled folding dynamics of equine heart cytochrome c (cyt-c) induced by external electron injection by using time-resolved X-ray solution scattering. A systematic kinetic analysis unveils a kinetic model for its folding with a stretched exponential behavior during the transition toward the folded state. With the aid of the ensemble optimization method combined with molecular dynamics simulations, we found that during the folding the heterogeneously populated ensemble of the unfolded state is converted to a narrowly populated ensemble of folded conformations. These observations obtained from the kinetic and the structural analyses of X-ray scattering data reveal that the folding dynamics of cyt-c accompanies many parallel pathways associated with the heterogeneously populated ensemble of unfolded conformations, resulting in the stretched exponential kinetics at room temperature. This finding provides direct evidence with a view to microscopic protein conformations that the cyt-c folding initiates from a highly heterogeneous unfolded state, passes through still diverse intermediate structures, and reaches structural homogeneity by arriving at the folded state.
Collapse
|
26
|
Kuwajima K. The Molten Globule, and Two-State vs. Non-Two-State Folding of Globular Proteins. Biomolecules 2020; 10:biom10030407. [PMID: 32155758 PMCID: PMC7175247 DOI: 10.3390/biom10030407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
From experimental studies of protein folding, it is now clear that there are two types of folding behavior, i.e., two-state folding and non-two-state folding, and understanding the relationships between these apparently different folding behaviors is essential for fully elucidating the molecular mechanisms of protein folding. This article describes how the presence of the two types of folding behavior has been confirmed experimentally, and discusses the relationships between the two-state and the non-two-state folding reactions, on the basis of available data on the correlations of the folding rate constant with various structure-based properties, which are determined primarily by the backbone topology of proteins. Finally, a two-stage hierarchical model is proposed as a general mechanism of protein folding. In this model, protein folding occurs in a hierarchical manner, reflecting the hierarchy of the native three-dimensional structure, as embodied in the case of non-two-state folding with an accumulation of the molten globule state as a folding intermediate. The two-state folding is thus merely a simplified version of the hierarchical folding caused either by an alteration in the rate-limiting step of folding or by destabilization of the intermediate.
Collapse
Affiliation(s)
- Kunihiro Kuwajima
- Department of Physics, School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ; Tel.: +81-90-5435-6540
- School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Seoul 02455, Korea
| |
Collapse
|
27
|
Akiyama S. Treasurer's comments on the financial position of the Biophysical Society of Japan. Biophys Rev 2020; 12:209-211. [PMID: 32016674 DOI: 10.1007/s12551-020-00623-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022] Open
Affiliation(s)
- Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki,, 444-8585, Japan. .,Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan.
| |
Collapse
|
28
|
Structural Kinetics of MsbA Investigated by Stopped-Flow Time-Resolved Small-Angle X-Ray Scattering. Structure 2019; 28:348-354.e3. [PMID: 31899087 DOI: 10.1016/j.str.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
Abstract
Recent structures of full-length ATP-binding cassette (ABC) transporter MsbA in different states indicate large conformational changes during the reaction cycle that involve transient dimerization of its nucleotide-binding domains (NBDs). However, a detailed molecular understanding of the structural changes and associated kinetics of MsbA upon ATP binding and hydrolysis is still missing. Here, we employed time-resolved small-angle X-ray scattering, initiated by stopped-flow mixing, to investigate the kinetics and accompanying structural changes of NBD dimerization (upon ATP binding) and subsequent dissociation (upon ATP hydrolysis) in the context of isolated NBDs as well as full-length MsbA in lipid nanodiscs. Our data allowed us to structurally characterize the major states involved in the process and determine time constants for NBD dimerization and dissociation. In the full-length protein, these structural transitions occur on much faster time scales, indicating close-proximity effects and structural coupling of the transmembrane domains with the NBDs.
Collapse
|
29
|
Pedersen JN, Lyngsø J, Zinn T, Otzen DE, Pedersen JS. A complete picture of protein unfolding and refolding in surfactants. Chem Sci 2019; 11:699-712. [PMID: 34123043 PMCID: PMC8145811 DOI: 10.1039/c9sc04831f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Interactions between proteins and surfactants are of relevance in many applications including food, washing powder formulations, and drug formulation. The anionic surfactant sodium dodecyl sulfate (SDS) is known to unfold globular proteins, while the non-ionic surfactant octaethyleneglycol monododecyl ether (C12E8) can be used to refold proteins from their SDS-denatured state. While unfolding have been studied in detail at the protein level, a complete picture of the interplay between protein and surfactant in these processes is lacking. This gap in our knowledge is addressed in the current work, using the β-sheet-rich globular protein β-lactoglobulin (bLG). We combined stopped-flow time-resolved SAXS, fluorescence, and circular dichroism, respectively, to provide an unprecedented in-depth picture of the different steps involved in both protein unfolding and refolding in the presence of SDS and C12E8. During unfolding, core-shell bLG-SDS complexes were formed within ∼10 ms. This involved an initial rapid process where protein and SDS formed aggregates, followed by two slower processes, where the complexes first disaggregated into single protein structures situated asymmetrically on the SDS micelles, followed by isotropic redistribution of the protein. Refolding kinetics (>100 s) were slower than unfolding (<30 s), and involved rearrangements within the mixing deadtime (∼5 ms) and transient accumulation of unfolded monomeric protein, differing in structure from the original bLG-SDS structure. Refolding of bLG involved two steps: extraction of most of the SDS from the complexes followed by protein refolding. These results reveal that surfactant-mediated unfolding and refolding of proteins are complex processes with rearrangements occurring on time scales from sub-milliseconds to minutes.
Collapse
Affiliation(s)
- Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| | - Thomas Zinn
- ESRF - The European Synchrotron 38043 Grenoble France
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| |
Collapse
|
30
|
Wu JLY, Tellkamp F, Khajehpour M, Robertson WD, Miller RJD. Rapid mixing of colliding picoliter liquid droplets delivered through-space from piezoelectric-actuated pipettes characterized by time-resolved fluorescence monitoring. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:055109. [PMID: 31153275 DOI: 10.1063/1.5050270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Rapid mixing of aqueous solutions is a crucial first step to study the kinetics of fast biochemical reactions with high temporal resolution. Remarkable progress toward this goal has been made through the development of advanced stopped-flow mixing techniques resulting in reduced dead times, and thereby extending reaction monitoring capabilities to numerous biochemical systems. Concurrently, piezoelectric actuators for through-space liquid droplet sample delivery have also been applied in several experimental systems, providing discrete picoliter sample volume delivery and precision sample deposition onto a surface, free of confinement within microfluidic devices, tubing, or other physical constraints. Here, we characterize the inertial mixing kinetics of two aqueous droplets (130 pl) produced by piezoelectric-actuated pipettes, following droplet collision in free space and deposition on a surface in a proof of principle experiment. A time-resolved fluorescence system was developed to monitor the mixing and fluorescence quenching of 5-carboxytetramethylrhodamine (5-Tamra) and N-Bromosuccinimide, which we show to occur in less than 10 ms. In this respect, this methodology is unique in that it offers millisecond mixing capabilities for very small quantities of discrete sample volumes. Furthermore, the use of discrete droplets for sample delivery and mixing in free space provides potential advantages, including the elimination of the requirement for a physical construction as with microfluidic systems, and thereby makes possible and extends the experimental capabilities of many systems.
Collapse
Affiliation(s)
- Jamie L Y Wu
- Division of Engineering Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Wesley D Robertson
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| |
Collapse
|
31
|
Zhang Y, Zhang Y, McCready MJ, Maginn EJ. Prediction of membrane separation efficiency for hydrophobic and hydrophilic proteins. J Mol Model 2019; 25:132. [DOI: 10.1007/s00894-019-3985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/13/2019] [Indexed: 11/25/2022]
|
32
|
Otosu T, Yamaguchi S. Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Concepts and Applications. Molecules 2018; 23:E2972. [PMID: 30441830 PMCID: PMC6278346 DOI: 10.3390/molecules23112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/03/2023] Open
Abstract
We review the basic concepts and recent applications of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS), which is the extension of fluorescence correlation spectroscopy (FCS) to analyze the correlation of fluorescence lifetime in addition to fluorescence intensity. Fluorescence lifetime is sensitive to the microenvironment and can be a "molecular ruler" when combined with FRET. Utilization of fluorescence lifetime in 2D FLCS thus enables us to quantify the inhomogeneity of the system and the interconversion dynamics among different species with a higher time resolution than other single-molecule techniques. Recent applications of 2D FLCS to various biological systems demonstrate that 2D FLCS is a unique and promising tool to quantitatively analyze the microsecond conformational dynamics of macromolecules at the single-molecule level.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
33
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Abraham B, Kosheleva I, Henning R, Chen LX. Insulin hexamer dissociation dynamics revealed by photoinduced T-jumps and time-resolved X-ray solution scattering. Photochem Photobiol Sci 2018; 17:874-882. [PMID: 29855030 DOI: 10.1039/c8pp00034d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural dynamics of insulin hexamer dissociation were studied by the photoinduced temperature jump technique and monitored by time-resolved X-ray scattering. The process of hexamer dissociation was found to involve several transient intermediates, including an expanded hexamer and an unstable tetramer. Our findings provide insights into the mechanisms of protien-protein association.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Abraham B, Henning R, Kosheleva I, Chen LX. Probing Cytochrome c Folding Transitions upon Phototriggered Environmental Perturbations Using Time-Resolved X-ray Scattering. J Phys Chem B 2018; 122:5218-5224. [PMID: 29709179 DOI: 10.1021/acs.jpcb.8b03354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct tracking of protein structural dynamics during folding-unfolding processes is important for understanding the roles of hierarchic structural factors in the formation of functional proteins. Using cytochrome c (cyt c) as a platform, we investigated its structural dynamics during folding processes triggered by local environmental changes (i.e., pH or heme iron center oxidation/spin/ligation states) with time-resolved X-ray solution scattering measurements. Starting from partially unfolded cyt c, a sudden pH drop initiated by light excitation of a photoacid caused a structural contraction in microseconds, followed by active site restructuring and unfolding in milliseconds. In contrast, the reduction of iron in the heme via photoinduced electron transfer did not affect conformational stability at short timescales (<1 ms), despite active site coordination geometry changes. These results demonstrate how different environmental perturbations can change the nature of interaction between the active site and protein conformation, even within the same metalloprotein, which will subsequently affect the folding structural dynamics.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Denis Leshchev
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Darren J Hsu
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jiyun Hong
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Baxter Abraham
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Robert Henning
- Center for Advanced Radiation Sources , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lin X Chen
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
35
|
Silva BFB. SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices. Phys Chem Chem Phys 2018; 19:23690-23703. [PMID: 28828415 DOI: 10.1039/c7cp02736b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of microfluidics offers attractive possibilities to perform novel experiments that are difficult (or even impossible) to perform using conventional bulk and surface-based methods. Such attractiveness comes from several important aspects inherent to these miniaturized devices. First, the flow of fluids under submillimeter confinement typically leads to a drop of inertial forces, meaning that turbulence is practically suppressed. This leads to predictable and controllable flow profiles, along with well-defined chemical gradients and stress fields that can be used for controlled mixing and actuation on the micro and nanoscale. Secondly, intricate microfluidic device designs can be fabricated using cleanroom standard procedures. Such intricate geometries can take diverse forms, designed by researchers to perform complex tasks, that require exquisite control of flow of several components and gradients, or to mimic real world examples, facilitating the establishment of more realistic models. Thirdly, microfluidic devices are usually compatible with in situ or integrated characterization methods that allow constant real-time monitoring of the processes occurring inside the microchannels. This is very different from typical bulk-based methods, where usually one can only observe the final result, or otherwise, take quick snapshots of the evolving process or take aliquots to be analyzed separately. Altogether, these characteristics inherent to microfluidic devices provide researchers with a set of tools that allow not only exquisite control and manipulation of materials at the micro and nanoscale, but also observation of these effects. In this review, we will focus on the use and prospects of combining microfluidic devices with in situ small-angle X-ray scattering (and related techniques such as small-angle neutron scattering and X-ray photon correlation spectroscopy), and their enormous potential for physical-chemical research, mainly in self-assembly and phase-transitions, and surface characterization.
Collapse
Affiliation(s)
- Bruno F B Silva
- Department of Life Sciences, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal.
| |
Collapse
|
36
|
Denz M, Brehm G, Hémonnot CYJ, Spears H, Wittmeier A, Cassini C, Saldanha O, Perego E, Diaz A, Burghammer M, Köster S. Cyclic olefin copolymer as an X-ray compatible material for microfluidic devices. LAB ON A CHIP 2017; 18:171-178. [PMID: 29210424 DOI: 10.1039/c7lc00824d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of microfluidics and X-ray methods attracts a lot of attention from researchers as it brings together the high controllability of microfluidic sample environments and the small length scales probed by X-rays. In particular, the fields of biophysics and biology have benefited enormously from such approaches. We introduce a straightforward fabrication method for X-ray compatible microfluidic devices made solely from cyclic olefin copolymers. We benchmark the performance of the devices against other devices including more commonly used Kapton windows and obtain data of equal quality using small angle X-ray scattering. An advantage of the devices presented here is that no gluing between interfaces is necessary, rendering the production very reliable. As a biophysical application, we investigate the early time points of the assembly of vimentin intermediate filament proteins into higher-order structures. This weakly scattering protein system leads to high quality data in the new devices, thus opening up the way for numerous future applications.
Collapse
Affiliation(s)
- Manuela Denz
- Institute for X-Ray Physics, University of Goettingen, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
|
38
|
Fraga H, Pujols J, Gil-Garcia M, Roque A, Bernardo-Seisdedos G, Santambrogio C, Bech-Serra JJ, Canals F, Bernadó P, Grandori R, Millet O, Ventura S. Disulfide driven folding for a conditionally disordered protein. Sci Rep 2017; 7:16994. [PMID: 29208936 PMCID: PMC5717278 DOI: 10.1038/s41598-017-17259-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
Affiliation(s)
- Hugo Fraga
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marcos Gil-Garcia
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alicia Roque
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Oscar Millet
- Protein Stability and Inherited Diseases Laboratory, CIC bioGUNE, 48160, Derio, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
39
|
Bernadó P, Shimizu N, Zaccai G, Kamikubo H, Sugiyama M. Solution scattering approaches to dynamical ordering in biomolecular systems. Biochim Biophys Acta Gen Subj 2017; 1862:253-274. [PMID: 29107147 DOI: 10.1016/j.bbagen.2017.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Abstract
Clarification of solution structure and its modulation in proteins and protein complexes is crucially important to understand dynamical ordering in macromolecular systems. Small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are among the most powerful techniques to derive structural information. Recent progress in sample preparation, instruments and software analysis is opening up a new era for small-angle scattering. In this review, recent progress and trends of SAXS and SANS are introduced from the point of view of instrumentation and analysis, touching on general features and standard methods of small-angle scattering. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Giuseppe Zaccai
- Institut Laue Langevin, Institut de Biologie Structurale, CNRS, CNRS, UGA, Grenoble, France
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan..
| |
Collapse
|
40
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Kosheleva I, Chen LX. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering. J Phys Chem Lett 2017; 8:4413-4418. [PMID: 28853898 PMCID: PMC5804350 DOI: 10.1021/acs.jpclett.7b01720] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ∼8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two-state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiyun Hong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Corresponding Author, ,
| |
Collapse
|
41
|
Tuukkanen AT, Spilotros A, Svergun DI. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCRJ 2017; 4:518-528. [PMID: 28989709 PMCID: PMC5619845 DOI: 10.1107/s2052252517008740] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 05/26/2023]
Abstract
Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution shapes of proteins and to generate atomistic models of macromolecular assemblies using hybrid approaches. Very importantly, SAXS is capable of yielding structural information on systems with size and conformational polydispersity, including highly flexible objects. In addition, utilizing high-flux synchrotron facilities, time-resolved SAXS allows analysis of kinetic processes over time ranges from microseconds to hours. Dedicated bioSAXS beamlines now offer fully automated data-collection and analysis pipelines, where analysis and modelling is conducted on the fly. This enables SAXS to be employed as a high-throughput method to rapidly screen various sample conditions and additives. The growing SAXS user community is supported by developments in data and model archiving and quality criteria. This review illustrates the latest developments in SAXS, in particular highlighting time-resolved applications aimed at flexible and evolving systems.
Collapse
Affiliation(s)
- Anne T. Tuukkanen
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
42
|
Samanta HS, Zhuravlev PI, Hinczewski M, Hori N, Chakrabarti S, Thirumalai D. Protein collapse is encoded in the folded state architecture. SOFT MATTER 2017; 13:3622-3638. [PMID: 28447708 DOI: 10.1039/c7sm00074j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Folded states of single domain globular proteins are compact with high packing density. The radius of gyration, Rg, of both the folded and unfolded states increase as Nν where N is the number of amino acids in the protein. The values of the Flory exponent ν are, respectively, ≈⅓ and ≈0.6 in the folded and unfolded states, coinciding with those for homopolymers. However, the extent of compaction of the unfolded state of a protein under low denaturant concentration (collapsibility), conditions favoring the formation of the folded state, is unknown. We develop a theory that uses the contact map of proteins as input to quantitatively assess collapsibility of proteins. Although collapsibility is universal, the propensity to be compact depends on the protein architecture. Application of the theory to over two thousand proteins shows that collapsibility depends not only on N but also on the contact map reflecting the native structure. A major prediction of the theory is that β-sheet proteins are far more collapsible than structures dominated by α-helices. The theory and the accompanying simulations, validating the theoretical predictions, provide insights into the differing conclusions reached using different experimental probes assessing the extent of compaction of proteins. By calculating the criterion for collapsibility as a function of protein length we provide quantitative insights into the reasons why single domain proteins are small and the physical reasons for the origin of multi-domain proteins. Collapsibility of non-coding RNA molecules is similar β-sheet proteins structures adding support to "Compactness Selection Hypothesis".
Collapse
Affiliation(s)
- Himadri S Samanta
- Department of Chemistry, University of Texas at Austin, TX 78712, USA.
| | - Pavel I Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | | | - Naoto Hori
- Department of Chemistry, University of Texas at Austin, TX 78712, USA.
| | - Shaon Chakrabarti
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, TX 78712, USA. and Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
43
|
Adamo M, Poulos AS, Miller RM, Lopez CG, Martel A, Porcar L, Cabral JT. Rapid contrast matching by microfluidic SANS. LAB ON A CHIP 2017; 17:1559-1569. [PMID: 28379253 DOI: 10.1039/c7lc00179g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a microfluidic approach to perform small angle neutron scattering (SANS) measurements of contrast variation and matching, extensively employed in soft and biological matter research. We integrate a low scattering background microfluidic mixer and serpentine channel in a SANS beamline to yield a single phase, continuous flow, reconfigurable liquid cell. By contrast with conventional, sequential measurements of discrete (typically 4-6) solutions of varying isotopic solvent composition, our approach continually varies solution composition during SANS acquisition. We experimentally and computationally determine the effects of flow dispersion and neutron beam overillumination of microchannels in terms of the composition resolution and precision. The approach is demonstrated with model systems: H2O/D2O mixtures, a surfactant (sodium dodecyl sulfate, SDS), a triblock copolymer (pluronic F127), and silica nanoparticles (Ludox) in isotopic aqueous mixtures. The system is able to zoom into a composition window to refine contrast matching conditions, and robustly resolve solute structure and form factors by simultaneous fitting of scattering data with continuously varying contrast. We conclude by benchmarking our microflow-SANS with the discrete approach, in terms of volume required, composition resolution and (preparation and measurement) time required, proposing a leap forward in equilibrium, liquid solution phase mapping and contrast variation by SANS.
Collapse
Affiliation(s)
- Marco Adamo
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Structural Analysis of Multi-component Amyloid Systems by Chemometric SAXS Data Decomposition. Structure 2017; 25:5-15. [DOI: 10.1016/j.str.2016.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/23/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
|
45
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
46
|
Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Labrador A, Mortensen K, Yaghmur A. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716014199] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol–ene-based system equipped with 125 µm-thick polystyrene windows, which are suitable for X-ray experiments. The device was prepared by soft lithography using elastomeric molds followed by a simple UV-initiated curing step to polymerize the chip material and simultaneously seal the device with the polystyrene windows. The microfluidic device was successfully used to explore the dynamics of the structural transitions of phytantriol/dioleoylphosphatidylglycerol-based cubosomes on exposure to a buffer containing calcium ions. The resulting SAXS data were resolved in the time frame between 0.5 and 5.5 s, and a calcium-triggered structural transition from an internal inverted-type cubic phase of symmetryIm3mto an internal inverted-type cubic phase of symmetryPn3mwas detected. The combination of microfluidics with X-ray techniques opens the door to the investigation of early dynamic structural transitions, which is not possible with conventional techniques such as glass flow cells. The combination of microfluidics with X-ray techniques can be used for investigating protein unfolding, for monitoring the formation of nanoparticles in real time, and for other biomedical and pharmaceutical investigations.
Collapse
|
47
|
Seiffert S. Microfluidics and Macromolecules: Top-Down Analytics and Bottom-Up Engineering of Soft Matter at Small Scales. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Seiffert
- Johannes Gutenberg-Universität Mainz; Institute of Physical Chemistry; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
48
|
Bruetzel LK, Gerling T, Sedlak SM, Walker PU, Zheng W, Dietz H, Lipfert J. Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering. NANO LETTERS 2016; 16:4871-4879. [PMID: 27356232 DOI: 10.1021/acs.nanolett.6b01338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-assembled DNA origami nanostructures enable the creation of precisely defined shapes at the molecular scale. Dynamic DNA devices that are capable of switching between defined conformations could afford completely novel functionalities for diagnostic, therapeutic, or engineering applications. Developing such objects benefits strongly from experimental feedback about conformational changes and 3D structures, ideally in solution, free of potential biases from surface attachment or labeling. Here, we demonstrate that small-angle X-ray scattering (SAXS) can quantitatively resolve the conformational changes of a DNA origami two-state switch device as a function of the ionic strength of the solution. In addition, we show how SAXS data allow for refinement of the predicted idealized three-dimensional structure of the DNA object using a normal mode approach based on an elastic network model. The results reveal deviations from the idealized design geometries that are otherwise difficult to resolve. Our results establish SAXS as a powerful tool to investigate conformational changes and solution structures of DNA origami and we anticipate our methodology to be broadly applicable to increasingly complex DNA and RNA devices.
Collapse
Affiliation(s)
- Linda K Bruetzel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| | - Thomas Gerling
- Physik Department, Walter Schottky Institute, Technische Universität München , Am Coulombwall 4a, 85748 Garching near Munich, Germany
| | - Steffen M Sedlak
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| | - Philipp U Walker
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| | - Wenjun Zheng
- Physics Department, State University of New York at Buffalo , Buffalo, New York 14260, United States
| | - Hendrik Dietz
- Physik Department, Walter Schottky Institute, Technische Universität München , Am Coulombwall 4a, 85748 Garching near Munich, Germany
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|
49
|
Karle M, Vashist SK, Zengerle R, von Stetten F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review. Anal Chim Acta 2016; 929:1-22. [DOI: 10.1016/j.aca.2016.04.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 01/25/2023]
|
50
|
Austerberry JI, Belton DJ. The aggregation of cytochrome C may be linked to its flexibility during refolding. 3 Biotech 2016; 6:33. [PMID: 28330101 PMCID: PMC4713397 DOI: 10.1007/s13205-015-0345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Abstract
Large-scale expression of biopharmaceutical proteins in cellular hosts results in production of large insoluble mass aggregates. In order to generate functional product, these aggregates require further processing through refolding with denaturant, a process in itself that can result in aggregation. Using a model folding protein, cytochrome C, we show how an increase in final denaturant concentration decreases the propensity of the protein to aggregate during refolding. Using polarised fluorescence anisotropy, we show how reduced levels of aggregation can be achieved by increasing the period of time the protein remains flexible during refolding, mediated through dilution ratios. This highlights the relationship between the flexibility of a protein and its propensity to aggregate. We attribute this behaviour to the preferential urea-residue interaction, over self-association between molecules.
Collapse
Affiliation(s)
- James I Austerberry
- Manchester Institute of Biotechnology, University of Manchester, 121 Princess Street, Manchester, M1 7DN, UK.
| | - Daniel J Belton
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| |
Collapse
|