1
|
Colalillo B, Sali S, Aldouhki AH, Aubry I, Di Marco S, Tremblay ML, Gallouzi IE. An HuR mutant, HuR-V225I, identified in adult T-cell Leukemia/Lymphoma, alters the pro-apoptotic function of HuR. Cell Death Discov 2024; 10:503. [PMID: 39695179 DOI: 10.1038/s41420-024-02268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
The RNA-binding protein HuR regulates various cellular processes, such as proliferation, differentiation, and cell fate. Moreover, recent studies have shown that HuR modulates the expression of factors important for tumor growth and progression. Despite its prominent role in tumorigenesis, until recently, there have been no reported mutations in HuR that have been associated to cancer. Here, we show that a HuR mutation, HuR-V225I, previously identified in a patient with Adult T-cell Leukemia/Lymphoma, interferes with the pro-apoptotic function of HuR. In response to apoptosis, HuR translocates to the cytoplasm and is cleaved in a caspase-dependent manner. In cervical cancer cells, neuroblastoma cells, and T-lymphocytes, we observed a decrease in cleavage of the HuR-V225I mutant under apoptotic conditions. This effect was shown to be mediated by the nuclear retention of HuR-V225I. Finally, expression of the HuR-V225I mutant decreases the cell's response to apoptotic stimuli through the increased expression of mRNAs encoding anti-apoptotic factors, such as XIAP and BCL-2. Therefore, our data establishes that the absence of HuR cytoplasmic translocation and cleavage promotes cell viability, and that acquiring this mutation during tumorigenesis may thus reduce the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Bianca Colalillo
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Sujitha Sali
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Ali H Aldouhki
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Isabelle Aubry
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Sergio Di Marco
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| | - Imed E Gallouzi
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Miao F, Lei Y, Guo Y, Ma Y, Zhang Y, Jia B. Increased caveolin 1 by human antigen R exacerbates Porphyromonas gingivali-induced atherosclerosis by modulating oxidative stress and inflammatory responses. Cytojournal 2024; 21:42. [PMID: 39737126 PMCID: PMC11683369 DOI: 10.25259/cytojournal_76_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Many different types of infectious oral diseases have been identified clinically, including chronic periodontitis. Porphyromonas gingivalis is the main pathogen causing chronic periodontitis, which is closely related to atherosclerosis (AS) and can promote the expression levels of caveolin 1 (Cav-1) and induced ribonucleic acid (RNA)-binding protein human antigen R (HuR). However, the roles of Cav-1 and its relationship with HuR in P. gingivalis-mediated AS progression remain largely unknown. Here, we aimed to detect the role and molecular mechanisms of Cav-1 in P. gingivalis-mediated AS. Material and Methods To investigate the role of Cav-1 in P. gingivalis-mediated AS, we infected human umbilical vein endothelial cells (HUVECs) with P. gingivalis at a multiplicity of infection of 100:1 for 6, 12, and 24 h to simulate P. gingivalis-induced AS models in vitro and then transfected them with Cav-1 small interfering RNA to silence Cav-1. Combining molecular biology experimental techniques such as cell counting kit-8 assay, enzyme-linked immunosorbent assay, immunofluorescence staining, flow cytometry, Western blotting, and Oil Red O staining, and apolipoprotein E-deficient AS model mice, the impacts of Cav-1 on cell viability, inflammation, oxidative stress, apoptosis, Cav-1 and intercellular cell adhesion molecule-1 (ICAM-1) levels, and atherosclerotic plaque formation were investigated. Then, the relationship between Cav-1 and HuR was investigated through biotin pull-down and RNA immunoprecipitation assays, reverse transcription quantitative polymerase chain reaction, and Western blot. Results P. gingivalis can induce Cav-1 expression in a time- and dose-dependent manner (P < 0.05). This effect can inhibit the proliferation of HUVECs (P < 0.05). Cav-1 interference repressed inflammatory response, reactive oxygen species (ROS) and ICAM-1 levels, and apoptosis in the HUVECs (P < 0.05). Cav-1 messenger RNA was stabilized by HuR, which can bind to the 3' untranslated region of Cav-1. Increase in HuR level reversed the effects of Cav-1 silencing on ROS and ICAM-1 levels and apoptosis in the HUVECs (P < 0.05). In addition, the levels of inflammatory response, oxidative stress, and atherosclerotic plaque formation induced by P. gingivalis in the mouse model were significantly reduced after Cav-1 expression was inhibited (P < 0.05). Conclusion HuR-activated Cav-1 may promote atherosclerotic plaque formation by modulating inflammatory response and oxidative stress, leading to AS.
Collapse
Affiliation(s)
- Fang Miao
- Department of Prevention and Healthcare, Lanzhou Stomatology Hospital, Lanzhou, China
| | - Yangyang Lei
- Department of Cardiology, The Second People’s Hospital of Lanzhou City, Lanzhou, China
| | - Yunfei Guo
- Department of Prevention and Healthcare, Lanzhou Stomatology Hospital, Lanzhou, China
| | - Yongxia Ma
- Department of Cardiology, The Second People’s Hospital of Lanzhou City, Lanzhou, China
| | - Ye Zhang
- Department of Prevention and Healthcare, Lanzhou Stomatology Hospital, Lanzhou, China
| | - Binbin Jia
- Department of Cardiology, The Second People’s Hospital of Lanzhou City, Lanzhou, China
| |
Collapse
|
3
|
Supe S, Dighe V, Upadhya A, Singh K. Analysis of RNA Interference Targeted Against Human Antigen R (HuR) to Reduce Vascular Endothelial Growth Factor (VEGF) Protein Expression in Human Retinal Pigment Epithelial Cells. Mol Biotechnol 2024; 66:2972-2984. [PMID: 37856012 DOI: 10.1007/s12033-023-00913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
VEGF-A or vascular endothelial growth factor-A is an important factor in enabling neovascularization and angiogenesis. VEGF-A is regulated transcriptionally as well as post transcriptionally. Human antigen R (HuR) belonging to the embryonic lethal abnormal vision (ELAV) family is a key regulator promoting stabilization of VEGF-A mRNA. In this research we investigate, whether HuR targeted RNA interference would enable the reduction of the VEGF-A protein in human retinal pigment epithelial cells (ARPE-19) in-vitro, in normoxic conditions. Three siRNA molecules with sequences complementary to three regions of the HuR mRNA were designed. The three designed siRNA molecules were individually transfected in ARPE-19 cells using Lipofectamine™2000 reagent. Post-transfection (24 h, 48 h, 72 h), downregulation of HuR mRNA was estimated by real-time polymerase reaction, while HuR protein and VEGF-A protein levels were semi-quantitatively determined by western blotting techniques. VEGF-A protein levels were additionally quantified using ELISA techniques. All experiments were done in triplicate. The designed siRNA could successfully downregulate HuR mRNA with concomitant decreases in HuR and VEGF-A protein. The study reveals that HuR downregulation can prominently downregulate VEGF-A, making the protein a target for therapy against pathological angiogenesis conditions such as diabetic retinopathy.
Collapse
Affiliation(s)
- Shibani Supe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Archana Upadhya
- Maharashtra Educational Society's H. K. College of Pharmacy, H. K. College Campus, Oshiwara, Jogeshwari (W), Mumbai, Maharashtra, 400102, India.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
4
|
Ikegawa M, Kano N, Ori D, Fukuta M, Hirano M, Hewson R, Yoshii K, Kawai T, Kawasaki T. HuR (ELAVL1) regulates the CCHFV minigenome and HAZV replication by associating with viral genomic RNA. PLoS Negl Trop Dis 2024; 18:e0012553. [PMID: 39348382 PMCID: PMC11466401 DOI: 10.1371/journal.pntd.0012553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Crimean-Congo Hemorrhagic Fever virus (CCHFV) is a tick-borne pathogen that causes severe acute fever disease in humans and requires a biosafety level 4 laboratory for handling. Hazara virus (HAZV), belonging to the same virus genus as CCHFV, does not exhibit pathogenesis in humans. To investigate host RNA-binding proteins (RBPs) that regulate CCHFV replication, we generated a series of mutant RAW264.7 cells by CRISPR/Cas9 system and these cells were infected with HAZV. The viral titers in the supernatant of these cells was investigated, and HuR (ELAVL1) was identified. HuR KO RAW264.7 cells reduced HAZV replication. HuR is an RBP that enhances mRNA stability by binding to adenyl-uridine (AU)-rich regions in their 3' non-coding region (NCR). HuR regulates innate immune response by binding to host mRNAs of signaling molecules. The expression of cytokine genes such as Ifnb, Il6, and Tnf was reduced in HuR KO cells after HAZV infection. Although HuR supports the innate immune response during HAZV infection, we found that innate immune activation by HAZV infection did not affect its replication. We then investigated whether HuR regulates HAZV genome RNA stability. HAZV RNA genome was precipitated with an anti-HuR antibody, and HAZV genome RNA stability was lowered in HuR KO cells. We found that HuR associated with HAZV RNA and stabilized it to enhance HAZV replication. Furthermore, HuR-deficiency reduced CCHFV minigenome replication. CCHFV is a negative-strand RNA virus and positive-strand RNA is produced during replication. HuR was associated with positive-strand RNA rather than negative-strand RNA, and AU-rich region in 3'-NCR of S segment was responsible for immunoprecipitation with anti-HuR antibody and minigenome replication. Additionally, HuR inhibitor treatment reduced CCHFV minigenome replication. Our results indicate that HuR aids replication of the CCHFV minigenome by associating with the AU-rich region in the 3'-NCR.
Collapse
Affiliation(s)
- Moe Ikegawa
- Immune Dynamics in Viral Infections, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Norisuke Kano
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Mizuki Fukuta
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Minato Hirano
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Roger Hewson
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK; and UK-Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Kentaro Yoshii
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Immune Dynamics in Viral Infections, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Li W, Yang Y, Huang L, Yu X, Wang T, Zhang N, Yang M. The TDP-43/TP63 Positive Feedback Circuit Promotes Esophageal Squamous Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402913. [PMID: 39023169 PMCID: PMC11425248 DOI: 10.1002/advs.202402913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent malignancies with a 5-year survival rate of only 15% in patients with advanced diseases. Tumor protein 63 (TP63), a master transcription factor (TF) in ESCC, cooperates with other TFs to regulate enhancers and/or promoters of target oncogenes, which in turn promotes tumorigenesis. TAR-DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein with elevated expression in several neoplasms. However, it remains unclear how TDP-43 contributes to ESCC progression. In this study, TDP-43 is identified as a novel oncogene with markedly upregulated expression in ESCC tissues through profiling expression levels of one hundred and fifty canonical RNA binding protein (RBP) genes in multiple ESCC patient cohorts. Importantly, TDP-43 boosted TP63 expression via post-transcriptionally stabilizing TP63 mRNAs as a RBP and promoting TP63 transcription as a TF binding to the TP63 promoter in ESCC cells. In contrast, the master TF TP63 also bound to the TDP-43 promoter, accelerated TDP-43 transcription, and caused a noticeable increase in TDP-43 expression in ESCC cells. The findings highlight TDP-43 as a viable therapeutic target for ESCC and uncover a hitherto unrecognized TDP-43/TP63 circuit in cancer.
Collapse
Affiliation(s)
- Wenwen Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, 271021, China
| | - Yanting Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xinyuan Yu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Teng Wang
- Shandong University Cancer Center, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, 271021, China
- Shandong University Cancer Center, Jinan, Shandong, 250117, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
6
|
Liu J, Tang L, Chu W, Wei L. Cellular Retinoic Acid Binding Protein 2 (CRABP2), Up-regulated by HPV E6/E7, Leads to Aberrant Activation of the Integrin β1/FAK/ERK Signaling Pathway and Aggravates the Malignant Phenotypes of Cervical Cancer. Biochem Genet 2024; 62:2686-2701. [PMID: 38001389 DOI: 10.1007/s10528-023-10568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
The ectopic expression of cellular retinoic acid binding protein 2 (CRABP2) is associated with various tumorigenesis. However, the effects of CRABP2 on the progression of cervical cancer are still unclear. The current study aimed to investigate the role of CRABP2 in the malignant phenotypes of cervical cancer cells. CRABP2 was artificially regulated in CaSki, SiHa, and C-33A cells. CCK-8 assay and flow cytometry were used to assess the cell proliferation and apoptosis abilities, respectively. Wound healing assay and transwell assay were employed to measure the cell migration and invasion abilities, respectively. The results showed that CRABP2 was highly expressed in cervical carcinoma tissues and cell lines, and its high expression was associated with poor overall survival. Knockdown of CRABP2 promoted the cell apoptosis and inhibited cell proliferation, migration, and invasion in cervical carcinoma cells, whereas CRABP2 overexpression exhibited the opposite results. Mechanically, CRABP2 silencing suppressed the Integrin β1/FAK/ERK signaling via HuR. Treatment with siITGB1 or a FAK inhibitor PF-562271 or an ERK inhibitor FR180204 reversed the promoting effects of CRABP2 on cell proliferation, migration, and invasion. Moreover, the overexpression of CRABP2 reverted the HPV16 E6/E7 knockdown-induced inhibition of cell proliferation, migration, and invasion in cervical cancer cells. These results suggested that HPV16 E6/E7 promoted the malignant phenotypes of cervical cancer by upregulating the expression of CRABP2. In conclusion, CRABP2, upregulated by HPV E6/E7, promoted the progression of cervical cancer through activating the Integrin β1/FAK/ERK signaling pathway via HuR.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Medical Technology, Taizhou Polytechnic College, Taizhou, Jiangsu, 225300, China
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Lu Tang
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Wenzhu Chu
- Department of Dermatology, Hongqi Hospital, Mudanjiang Medical University, Heilongjiang, 157001, China
| | - Lanlan Wei
- National Clinical Research Center for Infectious Diseases; Institute for Hepatology, The Third People's Hospital of Shenzhen; The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China.
| |
Collapse
|
7
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
8
|
Kim H, Jung SY, Yun HH, Yoo K, Lee JS, Lee JH. UBE4B regulates p27 expression in A549 NSCLC cells through regulating the interaction of HuR and the p27 5' UTR. Biochem Biophys Res Commun 2024; 695:149484. [PMID: 38211530 DOI: 10.1016/j.bbrc.2024.149484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Ubiquitination factor E4B (UBE4B) has a tumor-promoting effect, demonstrated by its aberrant expression in various types of cancers, and in vitro studies have shown that the retardation of cancer cell proliferation can be induced by targeting UBE4B. However, the molecular pathways through which UBE4B exerts its oncogenic activities have not yet been clearly identified and existing knowledge is limited to p53 and its subsequent downstream targets. In this study, we demonstrated that UBE4B regulates p27 expression in A549 cells via the cap-independent translation pathway following treatment with rapamycin and cycloheximide (CHX). Subsequently, we identified that UBE4B regulates p27 translation by regulating the interaction between human antigen R (HuR) and the p27 internal ribosomal entry site (IRES). First, UBE4B interacts with HuR, which inhibits p27 translation through the IRES. Secondly, the interaction between HuR and the p27 IRES was diminished by UBE4B depletion and enhanced by UBE4B overexpression. Finally, HuR depletion-induced growth retardation, accompanied by p27 accumulation, was restored by UBE4B overexpression. Collectively, these results suggest that the oncogenic properties of UBE4B in A549 cells are mediated by HuR, suggesting the potential of targeting the UBE4B-HuR-p27 axis as a therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Hyungmin Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Soon-Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Kyunghyun Yoo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, South Korea; Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
9
|
Ma XJ, Sun Z, Wang YP, Yao XP, Luo TT, Bao YL, Ainiwaer D, Zhang T, Zhu H, Zhang Y, Hu FM, Yu WY. Heat shock induces HuR-dependent MKP-1 posttranslational regulation through the p38 MAPK signaling cascade. Tissue Cell 2024; 86:102262. [PMID: 37984224 DOI: 10.1016/j.tice.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Previous studies demonstrated that phosphatases play a pivotal role in modulating inflammation-associated signal transduction, particularly in the context of heat shock, where Mitogen-Activated Protein Kinase Phosphatase-1 (MKP-1) appears to have a central role. Recently, Human Antigen R (HuR) has also been identified as a factor that enhances stress-response protein MKP-1 levels. Consequently, we have directed our interest towards elucidating the mechanisms by which heat shock induces MKP-1 mRNA stabilization, dependent on HuR via the p38 MAPK Signaling Cascade. In this study, we subjected Mouse Embryonic Fibroblast (Mef) cells to heat shock treatment, resulting in a potent stabilization MKP-1 mRNA. The RNA-binding protein HuR, known to influence mRNA, was observed to bind to the MKP-1 AU-rich 3 ´untranslated region. Transfection of p38 wild-type Mef cells with a flag-HuR plasmid resulted in a significant increase in MKP-1 mRNA stability. Interestingly, transfection of the siRNA for HuR into Mef cells resulted in diminished MKP-1 mRNA stability following heat shock, inhibition of p38 MAPK activity effectively curtailed heat shock-mediated MKP-1 mRNA stability. Immunofluorescence analyses further revealed that the translocation of HuR was contingent on p38 MAPK Signaling Cascade. Collectively, these findings underscore the regulatory role of heat shock in MKP-1 gene expression at posttranscriptional levels. The mechanisms underlying the observed increased MKP-1 mRNA stability are shown to be partially dependent on HuR through the p38 MAPK Signaling Cascade.
Collapse
Affiliation(s)
- Xiao-Juan Ma
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yi-Ping Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xue-Ping Yao
- Department of Functional Center,College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ting-Ting Luo
- Hematological Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ya-Li Bao
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Dina Ainiwaer
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Tian Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Hengyi Zhu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yan Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Fei-Ming Hu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wen-Yan Yu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang 830000, China.
| |
Collapse
|
10
|
Nagorska A, Zaucker A, Lambert F, Inman A, Toral-Perez S, Gorodkin J, Wan Y, Smutny M, Sampath K. Translational control of furina by an RNA regulon is important for left-right patterning, heart morphogenesis and cardiac valve function. Development 2023; 150:dev201657. [PMID: 38032088 PMCID: PMC10730018 DOI: 10.1242/dev.201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.
Collapse
Affiliation(s)
- Agnieszka Nagorska
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Andreas Zaucker
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Finnlay Lambert
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore 138672
| | - Angus Inman
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Sara Toral-Perez
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jan Gorodkin
- Center for non-coding RNAs in Technology and Health, Department of Veterinary and Animal Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Grønnega °rdsvej 3, 1870 Frederiksberg C, Denmark
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore 138672
| | - Michael Smutny
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Centre for Mechanochemical Cell Biology, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Karuna Sampath
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Centre for Mechanochemical Cell Biology, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Centre for Early Life, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568470. [PMID: 38045294 PMCID: PMC10690280 DOI: 10.1101/2023.11.23.568470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR is sufficient to confer temporal dynamics to translation initiation, and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, DaniO5P, revealed a combined role for 5' UTR length, translation initiation site context, upstream AUGs and sequence motifs on in vivo ribosome recruitment. DaniO5P predicts the activities of 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in early vertebrate development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Finan JM, Sutton TL, Dixon DA, Brody JR. Targeting the RNA-Binding Protein HuR in Cancer. Cancer Res 2023; 83:3507-3516. [PMID: 37683260 DOI: 10.1158/0008-5472.can-23-0972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.
Collapse
Affiliation(s)
- Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Thomas L Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
13
|
Huang Z, Luo Y, Chen C, Zhou C, Su Z, Cai C, Li X, Wu W. miR-325-3p Reduces Proliferation and Promotes Apoptosis of Gastric Cancer Cells by Inhibiting Human Antigen R. Can J Gastroenterol Hepatol 2023; 2023:6882851. [PMID: 37766807 PMCID: PMC10522435 DOI: 10.1155/2023/6882851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
Human antigen R (HuR), also known as ELAVL1, is a widely expressed RNA-binding protein (RBP) that has a significant impact on the development and advancement of tumors. Our previous study found that 5-fluorouracil (5-FU) may impede the proliferation and increase apoptosis in gastric cancer cells by reducing the nucleocytoplasmic shuttling of HuR. However, how posttranscriptional regulation influences HuR functions in gastric cancer remains to be elucidated. Here, we demonstrated that miR-325-3p has the potential to regulate the expression level of HuR by directly binding to its 3'UTR, which in turn led to a significant reduction in proliferation and an increase in apoptosis in gastric cancer cells. In addition, xenograft experiment showed that knockdown of HuR or overexpression of miR-325-3p group exhibited smaller tumor sizes after transplant of gastric cancer cells into zebrafish larvae. Thus, our findings offer new insights into the pathogenesis of gastric cancer and may potentially assist in identifying novel targets for drug therapy.
Collapse
Affiliation(s)
- Zhengwei Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Yacan Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Chaoyang Zhou
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, China
| | - Zhengkang Su
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Chang Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Wenzhi Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Amin W, Nishio S, Honjo T, Kobayashi M. Necessity of HuR/ELAVL1 for the activation-induced cytidine deaminase-dependent decrease in topoisomerase 1 in antibody diversification. Int Immunol 2023; 35:361-375. [PMID: 37086201 DOI: 10.1093/intimm/dxad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Activation-induced cytidine deaminase (AID)-dependent DNA cleavage is the initial event of antibody gene-diversification processes such as class switch recombination (CSR) and somatic hypermutation (SHM). We previously reported the requirement of an AID-dependent decrease of topoisomerase 1 (Top1) for efficient DNA cleavage, but the underlying molecular mechanism has remained elusive. This study focuses on HuR/ELAVL1, a protein that binds to AU-rich elements in RNA. HuR-knockout (KO) CH12 cells derived from murine B lymphoma cells were found to have lower CSR and hypermutation efficiencies due to decreased AID-dependent DNA cleavage levels. The HuR-KO CH12 cells do not show impairment in cell cycles and Myc expression, which have been reported in HuR-reduced spleen B cells. Furthermore, drugs that scavenge reactive oxygen species (ROS) do not rescue the lower CSR in HuR-KO CH12 cells, meaning that ROS or decreased c-Myc protein amount is not the reason for the deficiencies of CSR and hypermutation in HuR-KO CH12 cells. We show that HuR binds to Top1 mRNA and that complete deletion of HuR abolishes AID-dependent repression of Top1 protein synthesis in CH12 cells. Additionally, reduction of CSR to IgG3 in HuR-KO cells is rescued by knockdown of Top1, indicating that elimination of the AID-dependent Top1 decrease is the cause of the inefficiency of DNA cleavage, CSR and hypermutation in HuR-KO cells. These results show that HuR is required for initiation of antibody diversification and acquired immunity through the regulation of AID-dependent DNA cleavage by repressing Top1 protein synthesis.
Collapse
Affiliation(s)
- Wajid Amin
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | - Shoki Nishio
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| |
Collapse
|
15
|
Shi B, An K, Wang Y, Fei Y, Guo C, Cliff Zhang Q, Yang YG, Tian X, Kan Q. RNA Structural Dynamics Modulate EGFR-TKI Resistance Through Controlling YRDC Translation in NSCLC Cells. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:850-865. [PMID: 36435452 PMCID: PMC10787121 DOI: 10.1016/j.gpb.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) positively affect the initial control of non-small cell lung cancer (NSCLC). Rapidly acquired resistance to EGFR-TKIs is a major hurdle in successful treatment. However, the mechanisms that control the resistance of EGFR-TKIs remain largely unknown. RNA structures have widespread and crucial functions in many biological regulations; however, the functions of RNA structures in regulating cancer drug resistance remain unclear. Here, the psoralen analysis of RNA interactions and structures (PARIS) method is used to establish the higher-order RNA structure maps of EGFR-TKIs-resistant and -sensitive cells of NSCLC. Our results show that RNA structural regions are enriched in untranslated regions (UTRs) and correlate with translation efficiency (TE). Moreover, yrdC N6-threonylcarbamoyltransferase domain containing (YRDC) promotes resistance to EGFR-TKIs. RNA structure formation in YRDC 3' UTR suppresses embryonic lethal abnormal vision-like 1 (ELAVL1) binding, leading to EGFR-TKI sensitivity by impairing YRDC translation. A potential therapeutic strategy for cancer treatment is provided using antisense oligonucleotide (ASO) to perturb the interaction between RNA and protein. Our study reveals an unprecedented mechanism through which the RNA structure switch modulates EGFR-TKI resistance by controlling YRDC mRNA translation in an ELAVL1-dependent manner.
Collapse
Affiliation(s)
- Boyang Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yuhan Fei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Caixia Guo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| | - Quancheng Kan
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Cai C, Zhi Y, Xie C, Geng S, Sun F, Ji Z, Zhang P, Wang H, Tang J. Ursolic acid-downregulated long noncoding RNA ASMTL-AS1 inhibits renal cell carcinoma growth via binding to HuR and reducing vascular endothelial growth factor expression. J Biochem Mol Toxicol 2023; 37:e23389. [PMID: 37300450 DOI: 10.1002/jbt.23389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
It has been reported ursolic acid (UA), one of the naturally abundant pentacyclic triterpenes, possesses a wide range of biological activities including anti-inflammatory, anti-atherosclerotic, and anticancer properties. Renal cell carcinoma (RCC) is a severe malignancy due to its asymptomatically spreading ability. Our study aimed to investigate the role and molecular mechanism of UA in RCC. RCC cell proliferation, migration, invasion, and angiogenesis were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Transwell, and tube formation assays. Xenograft tumor models were established to confirm the role of UA and long noncoding RNA ASMTL antisense RNA 1 (ASMTL-AS1) in vivo. Expression levels of ASMTL-AS1 and vascular endothelial growth factor (VEGF) were measured using reverse transcriptase quantitative polymerase chain reaction and western blot analysis. The interaction probabilities of ASMTL-AS1 or VEGF with RNA-binding protein human antigen R (HuR) were verified by RNA immunoprecipitation experiment. The half-life period of messenger RNA (mRNA) was determined using actinomycin D. UA inhibited RCC cell growth in vivo and tumorigenesis in vitro. ASMTL-AS1 was highly expressed in RCC cell lines. Of note, UA downregulated ASMTL-AS1 expression, and overexpressed ASMTL-AS1 reversed the UA-induced suppression on RCC cell migration, invasion, and tube formation. Additionally, ASMTL-AS1 bound to HuR to maintain the stability of VEGF mRNA. Rescue experiments showed that the suppressed malignancy of RCC cells mediated by ASMTL-AS1 knockdown was counteracted by overexpression of VEGF. Moreover, silenced ASMTL-AS1 inhibited RCC tumor growth and metastasis in vivo. The obtained data suggest UA as a promising therapeutic agent to attenuate the development of RCC via regulation of the targeted molecules.
Collapse
Affiliation(s)
- Chengkuan Cai
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yunlai Zhi
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Cheng Xie
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Shen Geng
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Fanghu Sun
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Zhengshuai Ji
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Pengcheng Zhang
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Hui Wang
- Department of Urology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Jingyuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Tanwar VS, Reddy MA, Das S, Samara VA, Abdollahi M, Dey S, Malek V, Ganguly R, Stapleton K, Lanting L, Pirrotte P, Natarajan R. Palmitic Acid-Induced Long Noncoding RNA PARAIL Regulates Inflammation via Interaction With RNA-Binding Protein ELAVL1 in Monocytes and Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:1157-1175. [PMID: 37128912 PMCID: PMC10287039 DOI: 10.1161/atvbaha.122.318536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Obesity and diabetes are associated with elevated free fatty acids like palmitic acid (PA), which promote chronic inflammation and impaired inflammation resolution associated with cardiometabolic disorders. Long noncoding RNAs (lncRNAs) are implicated in inflammatory processes; however, their roles in PA-regulated inflammation and resolution are unclear. METHODS We performed RNA-sequencing analysis to identify PA-regulated coding genes and novel lncRNAs in CD14+ monocytes from healthy volunteers. We investigated the regulation and function of an uncharacterized PA-induced lncRNA PARAIL (PA-regulated anti-inflammatory lncRNA). We examined its role in inflammation resolution by employing knockdown and overexpression strategies in human and mouse macrophages. We also used RNA pulldown coupled with mass spectrometry to identify PARAIL interacting nuclear proteins and their mechanistic involvement in PARAIL functions in human macrophages. RESULTS Treatment of human CD14+ monocytes with PA-induced several lncRNAs and genes associated with inflammatory phenotype. PA strongly induced lncRNA PARAIL expressed near RIPK2. PARAIL was also induced by cytokines and infectious agents in human monocytes/macrophages and was regulated by NF-κB (nuclear factor-kappa B). Time course studies showed PARAIL was induced during inflammation resolution phase in PA-treated macrophages. PARAIL knockdown with antisense oligonucleotides upregulated key inflammatory genes and vice versa with PARAIL overexpression. We found that PARAIL interacts with ELAVL1 (ELAV-like RNA-binding protein 1) protein via adenylate/uridylate-rich elements (AU-rich elements; AREs). ELAVL1 knockdown inhibited the anti-inflammatory functions of PARAIL. Moreover, PARAIL knockdown increased cytosolic localization of ELAVL1 and increased the stability of ARE-containing inflammatory genes. Mouse orthologous Parail was downregulated in macrophages from mice with diabetes and atherosclerosis. Parail overexpression attenuated proinflammatory genes in mouse macrophages. CONCLUSIONS Upregulation of PARAIL under acute inflammatory conditions contributes to proresolution mechanisms via PARAIL-ELAVL1 interactions. Conversely, PARAIL downregulation in cardiometabolic diseases enhances ELAVL1 function and impairs inflammation resolution to further augment inflammation. Thus, inflammation-resolving lncRNAs like PARAIL represent novel targets to combat inflammatory cardiometabolic diseases.
Collapse
Affiliation(s)
- Vinay Singh Tanwar
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Marpadga A. Reddy
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Sadhan Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Vishnu Amaram Samara
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Current affiliation: Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Suchismita Dey
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Kenneth Stapleton
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
18
|
McCarthy GA, Di Niro R, Finan JM, Jain A, Guo Y, Wyatt C, Guimaraes A, Waugh T, Keith D, Morgan T, Sears R, Brody J. Deletion of the mRNA stability factor ELAVL1 (HuR) in pancreatic cancer cells disrupts the tumor microenvironment integrity. NAR Cancer 2023; 5:zcad016. [PMID: 37089813 PMCID: PMC10113877 DOI: 10.1093/narcan/zcad016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Stromal cells promote extensive fibrosis in pancreatic ductal adenocarcinoma (PDAC), which is associated with poor prognosis and therapeutic resistance. We report here for the first time that loss of the RNA-binding protein human antigen R (HuR, ELAVL1) in PDAC cells leads to reprogramming of the tumor microenvironment. In multiple in vivo models, CRISPR deletion of ELAVL1 in PDAC cells resulted in a decrease of collagen deposition, accompanied by a decrease of stromal markers (i.e. podoplanin, α-smooth muscle actin, desmin). RNA-sequencing data showed that HuR plays a role in cell-cell communication. Accordingly, cytokine arrays identified that HuR regulates the secretion of signaling molecules involved in stromal activation and extracellular matrix organization [i.e. platelet-derived growth factor AA (PDGFAA) and pentraxin 3]. Ribonucleoprotein immunoprecipitation analysis and transcription inhibition studies validated PDGFA mRNA as a novel HuR target. These data suggest that tumor-intrinsic HuR supports extrinsic activation of the stroma to produce collagen and desmoplasia through regulating signaling molecules (e.g. PDGFAA). HuR-deficient PDAC in vivo tumors with an altered tumor microenvironment are more sensitive to the standard of care gemcitabine, as compared to HuR-proficient tumors. Taken together, we identified a novel role of tumor-intrinsic HuR in its ability to modify the surrounding tumor microenvironment and regulate PDGFAA.
Collapse
Affiliation(s)
- Grace A McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexander R Guimaraes
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Trent A Waugh
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
19
|
Vujovic A, de Rooij L, Chahi AK, Chen HT, Yee BA, Loganathan SK, Liu L, Chan DC, Tajik A, Tsao E, Moreira S, Joshi P, Xu J, Wong N, Balde Z, Jahangiri S, Zandi S, Aigner S, Dick JE, Minden MD, Schramek D, Yeo GW, Hope KJ. In Vivo Screening Unveils Pervasive RNA-Binding Protein Dependencies in Leukemic Stem Cells and Identifies ELAVL1 as a Therapeutic Target. Blood Cancer Discov 2023; 4:180-207. [PMID: 36763002 PMCID: PMC10150294 DOI: 10.1158/2643-3230.bcd-22-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Acute myeloid leukemia (AML) is fueled by leukemic stem cells (LSC) whose determinants are challenging to discern from hematopoietic stem cells (HSC) or uncover by approaches focused on general cell properties. We have identified a set of RNA-binding proteins (RBP) selectively enriched in human AML LSCs. Using an in vivo two-step CRISPR-Cas9 screen to assay stem cell functionality, we found 32 RBPs essential for LSCs in MLL-AF9;NrasG12D AML. Loss-of-function approaches targeting key hit RBP ELAVL1 compromised LSC-driven in vivo leukemic reconstitution, and selectively depleted primitive malignant versus healthy cells. Integrative multiomics revealed differentiation, splicing, and mitochondrial metabolism as key features defining the leukemic ELAVL1-mRNA interactome with mitochondrial import protein, TOMM34, being a direct ELAVL1-stabilized target whose repression impairs AML propagation. Altogether, using a stem cell-adapted in vivo CRISPR screen, this work demonstrates pervasive reliance on RBPs as regulators of LSCs and highlights their potential as therapeutic targets in AML. SIGNIFICANCE LSC-targeted therapies remain a significant unmet need in AML. We developed a stem-cell-adapted in vivo CRISPR screen to identify key LSC drivers. We uncover widespread RNA-binding protein dependencies in LSCs, including ELAVL1, which we identify as a novel therapeutic vulnerability through its regulation of mitochondrial metabolism. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Ana Vujovic
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Laura de Rooij
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - He Tian Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Sampath K. Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lina Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Derek C.H. Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Amanda Tajik
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Emily Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Steven Moreira
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Pratik Joshi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Nicholas Wong
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Zaldy Balde
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Soheil Jahangiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sasan Zandi
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - John E. Dick
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mark D. Minden
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Kristin J. Hope
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
20
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
21
|
Jaśkiewicz M, Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. EPAS1 resistance to miRNA-based regulation contributes to prolonged expression of HIF-2 during hypoxia in human endothelial cells. Gene 2023; 868:147376. [PMID: 36934786 DOI: 10.1016/j.gene.2023.147376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The cellular adaptation to hypoxia is regulated by hypoxia inducible factors: HIF-1 and HIF-2. HIF-1 mediates response to acute hypoxia, whereas HIF-2 allows adaptation to chronic oxygen deprivation. The hypoxic transition from HIF-1 to HIF-2 is possible due to the low stability of HIF-1α subunit transcript (HIF1A) and the stable mRNA of HIF-2α (EPAS1). Notably, although many micro-RNAs (miRNAs) that regulate endothelial HIF-1 levels during hypoxia have been identified, in case of HIF-2, no analogous ones have been found so far. In this work, using different methods, we tested 23 microRNA that were predicted to interact with the EPAS1 transcript (18 of which were induced during prolonged hypoxia), and we demonstrated that none of them were functional in vitro. This suggests that HIF-2α transcript is much less prone to miRNA-related destabilization during hypoxia.
Collapse
Affiliation(s)
- Maciej Jaśkiewicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | | | - Magdalena Gebert
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland.
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
22
|
Guha A, Husain MA, Si Y, Nabors LB, Filippova N, Promer G, Smith R, King PH. RNA regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia 2023; 71:485-508. [PMID: 36380708 DOI: 10.1002/glia.24288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1β, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.
Collapse
Affiliation(s)
- Abhishek Guha
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammed Amir Husain
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Si
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Burt Nabors
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Filippova
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grace Promer
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reed Smith
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Department of Veterans Health Care System, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
23
|
LncGMDS-AS1 promotes the tumorigenesis of colorectal cancer through HuR-STAT3/Wnt axis. Cell Death Dis 2023; 14:165. [PMID: 36849492 PMCID: PMC9970971 DOI: 10.1038/s41419-023-05700-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
Chronic inflammation promotes the tumorigenesis and cell stemness maintenance of colorectal cancer (CRC). However, the bridge role of long noncoding RNA (lncRNA) in linking chronic inflammation to CRC development and progression needs better understanding. Here, we elucidated a novel function of lncRNA GMDS-AS1 in persistently activated signal transducer and transcription activator 3 (STAT3) and Wnt signaling and CRC tumorigenesis. Interleukin-6 (IL-6) and Wnt3a induced lncRNA GMDS-AS1 expression, which was highly expressed in the CRC tissues and plasma of CRC patients. GMDS-AS1 knockdown impaired the survival, proliferation and stem cell-like phenotype acquisition of CRC cells in vitro and in vivo. We performed RNA sequencing (RNA-seq) and mass spectrometry (MS) to probe target proteins and identify their contributions to the downstream signaling pathways of GMDS-AS1. In CRC cells, GMDS-AS1 physically interacted with the RNA-stabilizing protein HuR, thereby protecting the HuR protein from polyubiquitination- and proteasome-dependent degradation. HuR stabilized STAT3 mRNA and upregulated the levels of basal and phosphorylated STAT3 protein, persistently activating STAT3 signaling. Our research revealed that the lncRNA GMDS-AS1 and its direct target HuR constitutively activate STAT3/Wnt signaling and promote CRC tumorigenesis, the GMDS-AS1-HuR-STAT3/Wnt axis is a therapeutic, diagnostic and prognostic target in CRC.
Collapse
|
24
|
Murphy MR, Ramadei A, Doymaz A, Varriano S, Natelson D, Yu A, Aktas S, Mazzeo M, Mazzeo M, Zakusilo G, Kleiman FE. Long Non-Coding RNA Generated from CDKN1A Gene by Alternative Polyadenylation Regulates p21 Expression during DNA Damage Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523318. [PMID: 36711808 PMCID: PMC9882041 DOI: 10.1101/2023.01.10.523318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alternative Polyadenylation (APA) is an emerging mechanism for dynamic changes in gene expression. Previously, we described widespread APA occurrence in introns during the DNA damage response (DDR). Here, we show that a DNA damage activated APA event occurs in the first intron of CDKN1A , inducing an alternate last exon (ALE)-containing lncRNA. We named this lncRNA SPUD (Selective Polyadenylation Upon Damage). SPUD localizes to polysomes in the cytoplasm and is detectable as multiple isoforms in available high throughput studies. SPUD has low abundance compared to the CDKN1A full-length isoform and is induced in cancer and normal cells under a variety of DNA damaging conditions in part through p53 transcriptional activation. RNA binding protein (RBP) HuR and the transcriptional repressor CTCF regulate SPUD levels. SPUD induction increases p21 protein, but not CDKN1A full-length levels, affecting p21 functions in cell-cycle, CDK2 expression, and cell viability. Like CDKN1A full-length isoform, SPUD can bind two competitive p21 translational regulators, the inhibitor calreticulin and the activator CUGBP1; SPUD can change their association with CDKN1A full-length in a DDR-dependent manner. Together, these results show a new regulatory mechanism by which a lncRNA controls p21 expression post-transcriptionally, highlighting lncRNA relevance in DDR progression and cellcycle.
Collapse
|
25
|
Jaśkiewicz M, Moszyńska A, Króliczewski J, Cabaj A, Bartoszewska S, Charzyńska A, Gebert M, Dąbrowski M, Collawn JF, Bartoszewski R. The transition from HIF-1 to HIF-2 during prolonged hypoxia results from reactivation of PHDs and HIF1A mRNA instability. Cell Mol Biol Lett 2022; 27:109. [PMID: 36482296 PMCID: PMC9730601 DOI: 10.1186/s11658-022-00408-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The hypoxia-inducible factors (HIF) are transcription factors that activate the adaptive hypoxic response when oxygen levels are low. The HIF transcriptional program increases oxygen delivery by inducing angiogenesis and by promoting metabolic reprograming that favors glycolysis. The two major HIFs, HIF-1 and HIF-2, mediate this response during prolonged hypoxia in an overlapping and sequential fashion that is referred to as the HIF switch. Both HIF proteins consist of an unstable alpha chain and a stable beta chain. The instability of the alpha chains is mediated by prolyl hydroxylase (PHD) activity during normoxic conditions, which leads to ubiquitination and proteasomal degradation of the alpha chains. During normoxic conditions, very little HIF-1 or HIF-2 alpha-beta dimers are present because of PHD activity. During hypoxia, however, PHD activity is suppressed, and HIF dimers are stable. Here we demonstrate that HIF-1 expression is maximal after 4 h of hypoxia in primary endothelial cells and then is dramatically reduced by 8 h. In contrast, HIF-2 is maximal at 8 h and remains elevated up to 24 h. There are differences in the HIF-1 and HIF-2 transcriptional profiles, and therefore understanding how the transition between them occurs is important and not clearly understood. Here we demonstrate that the HIF-1 to HIF-2 transition during prolonged hypoxia is mediated by two mechanisms: (1) the HIF-1 driven increase in the glycolytic pathways that reactivates PHD activity and (2) the much less stable mRNA levels of HIF-1α (HIF1A) compared to HIF-2α (EPAS1) mRNA. We also demonstrate that the alpha mRNA levels directly correlate to the relative alpha protein levels, and therefore to the more stable HIF-2 expression during prolonged hypoxia.
Collapse
Affiliation(s)
- Maciej Jaśkiewicz
- grid.11451.300000 0001 0531 3426International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Moszyńska
- grid.11451.300000 0001 0531 3426Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jarosław Króliczewski
- grid.11451.300000 0001 0531 3426Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Cabaj
- grid.419305.a0000 0001 1943 2944Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Bartoszewska
- grid.11451.300000 0001 0531 3426Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Agata Charzyńska
- grid.419305.a0000 0001 1943 2944Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Magda Gebert
- grid.11451.300000 0001 0531 3426Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Michał Dąbrowski
- grid.419305.a0000 0001 1943 2944Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - James F. Collawn
- grid.265892.20000000106344187Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, BirminghamBirmingham, AL 35233 USA
| | - Rafal Bartoszewski
- grid.8505.80000 0001 1010 5103Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
26
|
Kunder N, de la Peña JB, Lou TF, Chase R, Suresh P, Lawson J, Shukla T, Black B, Campbell ZT. The RNA-Binding Protein HuR Is Integral to the Function of Nociceptors in Mice and Humans. J Neurosci 2022; 42:9129-9141. [PMID: 36270801 PMCID: PMC9761683 DOI: 10.1523/jneurosci.1630-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
HuR is an RNA-binding protein implicated in RNA processing, stability, and translation. Previously, we examined protein synthesis in dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We found that the HuR consensus binding element was enriched in transcripts with elevated translation. HuR is expressed in the soma of nociceptors and their axons. Pharmacologic inhibition of HuR with the small molecule CMLD-2 reduced the activity of mouse and human sensory neurons. Peripheral administration of CMLD-2 in the paw or genetic elimination of HuR from sensory neurons diminished behavioral responses associated with NGF- and IL-6-induced allodynia in male and female mice. Genetic disruption of HuR altered the proximity of mRNA decay factors near a key neurotrophic factor (TrkA). Collectively, the data suggest that HuR is required for local control of mRNA stability and reveals a new biological function for a broadly conserved post-transcriptional regulatory factor.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in excitability, which may contribute to chronic pain. Noxious cues that promote pain lead to rapid induction of protein synthesis. The underlying mechanisms that confer specificity to mRNA control in nociceptors are unclear. Here, we identify a conserved RNA-binding protein called HuR as a key regulatory factor in sensory neurons. Using a combination of genetics and pharmacology, we demonstrate that HuR is required for signaling in nociceptors. In doing so, we report an important mechanism of mRNA control in sensory neurons that ensures appropriate nociceptive responses to inflammatory mediators.
Collapse
Affiliation(s)
- Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - June Bryan de la Peña
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Prarthana Suresh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854
| | - Tarjani Shukla
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Bryan Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854
| | - Zachary T Campbell
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| |
Collapse
|
27
|
Laverty KU, Jolma A, Pour SE, Zheng H, Ray D, Morris Q, Hughes TR. PRIESSTESS: interpretable, high-performing models of the sequence and structure preferences of RNA-binding proteins. Nucleic Acids Res 2022; 50:e111. [PMID: 36018788 DOI: 10.1093/nar/gkac694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022] Open
Abstract
Modelling both primary sequence and secondary structure preferences for RNA binding proteins (RBPs) remains an ongoing challenge. Current models use varied RNA structure representations and can be difficult to interpret and evaluate. To address these issues, we present a universal RNA motif-finding/scanning strategy, termed PRIESSTESS (Predictive RBP-RNA InterpretablE Sequence-Structure moTif regrESSion), that can be applied to diverse RNA binding datasets. PRIESSTESS identifies dozens of enriched RNA sequence and/or structure motifs that are subsequently reduced to a set of core motifs by logistic regression with LASSO regularization. Importantly, these core motifs are easily visualized and interpreted, and provide a measure of RBP secondary structure specificity. We used PRIESSTESS to interrogate new HTR-SELEX data for 23 RBPs with diverse RNA binding modes and captured known primary sequence and secondary structure preferences for each. Moreover, when applying PRIESSTESS to 144 RBPs across 202 RNA binding datasets, 75% showed an RNA secondary structure preference but only 10% had a preference besides unpaired bases, suggesting that most RBPs simply recognize the accessibility of primary sequences.
Collapse
Affiliation(s)
- Kaitlin U Laverty
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Arttu Jolma
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Sara E Pour
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Chen Y, Qin H, Zheng L. Research progress on RNA−binding proteins in breast cancer. Front Oncol 2022; 12:974523. [PMID: 36059653 PMCID: PMC9433872 DOI: 10.3389/fonc.2022.974523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and has a high incidence rate and mortality. Abnormal regulation of gene expression plays an important role in breast cancer occurrence and development. RNA-binding proteins (RBPs) are one kind of the key regulators for gene expression. By interacting with RNA, RBPs are widely involved in RNA cutting, transport, editing, intracellular localization, and translation regulation. RBPs are important during breast cancer occurrence and progression by engaging in many aspects, like proliferation, migration, invasion, and stemness. Therefore, comprehensively understanding the role of RBPs in breast cancer progression can facilitate early diagnosis, timely treatment, and long-term survival and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang, China
- *Correspondence: Lufeng Zheng, ; Hai Qin,
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Hai Qin,
| |
Collapse
|
29
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Duan L, Zaepfel BL, Aksenova V, Dasso M, Rothstein JD, Kalab P, Hayes LR. Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Cell Rep 2022; 40:111106. [PMID: 35858577 PMCID: PMC9345261 DOI: 10.1016/j.celrep.2022.111106] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear clearance of the RNA-binding protein TDP-43 is a hallmark of neurodegeneration and an important therapeutic target. Our current understanding of TDP-43 nucleocytoplasmic transport does not fully explain its predominantly nuclear localization or mislocalization in disease. Here, we show that TDP-43 exits nuclei by passive diffusion, independent of facilitated mRNA export. RNA polymerase II blockade and RNase treatment induce TDP-43 nuclear efflux, suggesting that nuclear RNAs sequester TDP-43 in nuclei and limit its availability for passive export. Induction of TDP-43 nuclear efflux by short, GU-rich oligomers (presumably by outcompeting TDP-43 binding to endogenous nuclear RNAs), and nuclear retention conferred by splicing inhibition, demonstrate that nuclear TDP-43 localization depends on binding to GU-rich nuclear RNAs. Indeed, RNA-binding domain mutations markedly reduce TDP-43 nuclear localization and abolish transcription blockade-induced nuclear efflux. Thus, the nuclear abundance of GU-RNAs, dictated by the balance of transcription, pre-mRNA processing, and RNA export, regulates TDP-43 nuclear localization.
Collapse
Affiliation(s)
- Lauren Duan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin L Zaepfel
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Lindsey R Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Long Noncoding RNA SCIRT Promotes HUVEC Angiogenesis via Stabilizing VEGFA mRNA Induced by Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9102978. [PMID: 35698607 PMCID: PMC9187973 DOI: 10.1155/2022/9102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion injury (IRI) is closely associated the abnormal expression of long noncoding RNAs (lncRNAs), especially for their regulatory roles in IRI-related angiogenesis. This study applied a hypoxia-reoxygenation (HR) cell model to simulate the IRI condition, as well as RNA sequencing and RNA pull-down experiments to reveal roles of the lncRNA and Stem Cell Inhibitory RNA Transcript (SCIRT), in endothelial angiogenesis. We found that SCIRT was increased under the HR condition and exhibited a high expression correlation with angiogenesis marker VEGFA. RNA-seq data analysis further revealed that VEGFA-related angiogenesis was regulated by SCIRT in HUVECs. Gain and loss of function experiments proved that SCIRT posttranscriptionally regulated VEGFA via affecting its mRNA stability. Furthermore, HuR (ELAVL1), an RNA binding protein (RBP), was identified as a SCIRT-binding partner, which bound and stabilized VEGFA. Moreover, SCIRT promoted HuR expression posttranslationally by inhibiting its ubiquitination under the HR condition. These findings reveal that lncRNA SCIRT can mediate endothelial angiogenesis by stabilizing the VEGFA mRNA via modulating RBP HuR stability under the HR condition.
Collapse
|
32
|
Wang K, Tong H, Gao Y, Xia L, Jin X, Li X, Zeng X, Boldogh I, Ke Y, Ba X. Cell-Penetrating Peptide TAT-HuR-HNS3 Suppresses Proinflammatory Gene Expression via Competitively Blocking Interaction of HuR with Its Partners. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2376-2389. [PMID: 35444028 PMCID: PMC9125198 DOI: 10.4049/jimmunol.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Proinflammatory cytokines/chemokines are commonly regulated by RNA-binding proteins at posttranscriptional levels. Human Ag R (HuR)/embryonic lethal abnormal vision-like 1 (ELAVL1) is one of the well-characterized RNA-binding proteins that increases the stability of short-lived mRNAs, which encode proinflammatory mediators. HuR employs its nucleocytoplasmic shuttling sequence (HNS) domain, interacting with poly(ADP-ribose) polymerase 1 (PARP1), which accounts for the enhanced poly-ADP-ribosylation and cytoplasmic shuttling of HuR. Also by using its HNS domain, HuR undergoes dimerization/oligomerization, underlying the increased binding of HuR with proinflammatory cytokine/chemokine mRNAs and the disassociation of the miRNA-induced silencing complex from the targets. Therefore, competitively blocking the interactions of HuR with its partners may suppress proinflammatory mediator production. In this study, peptides derived from the sequence of the HuR-HNS domain were synthesized, and their effects on interfering HuR interacting with PARP1 and HuR itself were analyzed. Moreover, cell-penetrating TAT-HuR-HNS3 was delivered into human and mouse cells or administered into mouse lungs with or without exposure of TNF-α or LPS. mRNA levels of proinflammatory mediators as well as neutrophil infiltration were evaluated. We showed that TAT-HuR-HNS3 interrupts HuR-PARP1 interaction and therefore results in a lowered poly-ADP-ribosylation level and decreased cytoplasmic distribution of HuR. TAT-HuR-HNS3 also blocks HuR dimerization and promotes Argonaute 2-based miRNA-induced silencing complex binding to the targets. Moreover, TAT-HuR-HNS3 lowers mRNA stability of proinflammatory mediators in TNF-α-treated epithelial cells and macrophages, and it decreases TNF-α-induced inflammatory responses in lungs of experimental animals. Thus, TAT-HuR-HNS3 is a promising lead peptide for the development of inhibitors to treat inflammation-related diseases.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China; and
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China; and
| | - Lan Xia
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Xiaoxue Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Yueshuang Ke
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China;
- School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China;
- School of Life Science, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
33
|
CircEIF3H-IGF2BP2-HuR scaffold complex promotes TNBC progression via stabilizing HSPD1/RBM8A/G3BP1 mRNA. Cell Death Dis 2022; 8:261. [PMID: 35568705 PMCID: PMC9107465 DOI: 10.1038/s41420-022-01055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is a molecular subtype with an unfavorable prognosis, and metastasis is the main reason for the failure of clinical treatment. However, the expression profile and regulatory function of circRNAs in TNBC progression are not fully understood. Herein, we performed high-throughput RNA-seq in paired breast cancer tissues and adjacent normal tissues and discovered a novel circRNA, circEIF3H, which was upregulated in breast cancer tissues. Large cohort survival analysis confirmed the association between high circEIF3H expression and poor prognosis of TNBC, indicating the vital function of circEIF3H in TNBC progression. Then we conducted both in vitro and in vivo experiments which illustrated that circEIF3H was essential for TNBC proliferation and metastasis. Further experiments showed that circEIF3H did not function as a microRNA sponge as in the most well-established pathway, but as a scaffold for IGF2BP2 and HuR to regulate the mRNA stability of HSPD1, RBM8A, and G3BP1. Our findings provide insight into a novel circRNA, circEIF3H, with significant cancer-promoting function via serving as a scaffold for IGF2BP2/HuR. These results identified circEIF3H as a potential target for developing individualized therapy of TNBC in the approaching future.
Collapse
|
34
|
Agarwal A, Alagar S, Kant S, Bahadur RP. Molecular insights into binding dynamics of tandem RNA recognition motifs (tRRMs) of human antigen R (HuR) with mRNA and the effect of point mutations in impaired HuR-mRNA recognition. J Biomol Struct Dyn 2022:1-17. [PMID: 35538713 DOI: 10.1080/07391102.2022.2073270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human antigen R (HuR) is a key regulatory protein with prominent roles in RNA metabolism and post-transcriptional gene regulation. Many studies have shown the involvement of HuR in plethora of human diseases, which are often manifestations of impaired HuR-RNA interactions. However, the inherent complexities of highly flexible protein-RNA interactions have limited our understanding of the structural basis of HuR-RNA recognition. In this study, we dissect the underlying molecular mechanism of interaction between N-terminal tandem RNA-recognition motifs (tRRMs) of HuR and mRNA using molecular dynamics simulation. We have also explored the effect of point mutations (T90A, R97A and R136A) of three reported critical residues in HuR-mRNA binding specificity. Our findings show that N-terminal tRRMs exhibit conformational stability upon RNA binding. We further show that R136A and R97A mutants significantly lose their binding affinity owing to the loss of critical interactions with mRNA. This may be attributed to the larger domain rearrangements in the mutant complexes, especially the β2β3 loops in both the tRRMs, leading to unfavourable conformations and loss of binding affinity. We have identified critical binding residues in tRRMs of HuR, contributing favourable binding energy in mRNA recognition. This study contributes significantly to understand the molecular mechanism of RNA recognition by tandem RRMs and provides a platform to modulate binding affinities through mutations. This may further guide in future structure-based drug-therapies targeting impaired HuR-RNA interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankita Agarwal
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur, India.,Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Suresh Alagar
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shri Kant
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
35
|
Wu X, Xu L. The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev 2022; 184:114179. [PMID: 35248670 PMCID: PMC9035123 DOI: 10.1016/j.addr.2022.114179] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022]
Abstract
The RNA-binding proteins (RBPs) are critical trans factors that associate with specific cis elements present in mRNAs whose stability and translation are subject to regulation. The RBP Hu antigen R (HuR) is overexpressed in a wide variety of human cancers and serves as a prognostic factor of poor clinical outcome. HuR promotes tumorigenesis by interacting with a subset of oncogenic mRNAs implicated in different cancer hallmarks, and resistance to therapy. Reduction of HuR levels in cancer cells leads to tumor regression in mouse xenograft models. These findings prompt a working model whereby cancer cells use HuR, a master switch of multiple oncogenic mRNAs, to drive drug resistance and promote cell survival and metastasis, thus rendering the tumor cells with high cytoplasmic HuR more progressive and resistant to therapy. This review summarizes the roles of HuR in cancer and other diseases, therapeutic potential of HuR inhibition, and the current status of drug discovery on HuR.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA.
| | - Liang Xu
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA; Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
36
|
Xu Y, Yu X, Xu J, Lu J, Jiang H, Lou N, Lu W, Xu J, Ye G, Dong S, Nie F. LncRNA RP11-138J23.1 Contributes to Gastric Cancer Progression by Interacting With RNA-Binding Protein HuR. Front Oncol 2022; 12:848406. [PMID: 35392234 PMCID: PMC8980803 DOI: 10.3389/fonc.2022.848406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
In spite of improvements in diagnostics and treatment of gastric cancer (GC), it remains the most common malignancy of human digestive system. It is now widely appreciated that long noncoding RNAs (lncRNAs) exert extensive regulatory effects on a spectrum of fundamental biological processes through diverse mechanisms. In this study, we explored the expression level and functional role of lncRNA RP11-138J23.1 in GC. Through bioinformatics analyses and in situ hybridization (ISH), we identified that RP11-138J23.1 was upregulated in GC tissue. Further study showed that RP11-138J23.1 knockdown significantly inhibited cell proliferation and metastatic ability. Whereas, RP11-138J23.1 overexpression could promote tumor cell growth and metastasis in vitro. Additionally, loss-of-function assays were used to confirm the role of RP11-138J23.1 in vivo. Mechanistically, RP11-138J23.1 exerted its oncogenic functions by binding to HuR protein and increasing stability of VAV3 mRNA. Overall, our study highlights the essential role of RP11-138J23.1 in GC, suggesting that RP11-138J23.1 might be a potent therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Yongcan Xu
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Xiang Yu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yanta, China
| | - Jing Xu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Lu
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Hao Jiang
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Neng Lou
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Wei Lu
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Jiewei Xu
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Guochao Ye
- Department of General Surgery, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Shunli Dong
- Department of Central Laboratory, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, China
| | - Fengqi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Zhang W, Liu L, Zhao S, Chen L, Wei Y, Chen W, Ge F. Research progress on RNA‑binding proteins in breast cancer (Review). Oncol Lett 2022; 23:121. [PMID: 35261635 PMCID: PMC8867207 DOI: 10.3892/ol.2022.13241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignancy among women, and the abnormal regulation of gene expression serves an important role in its occurrence and development. However, the molecular mechanisms underlying gene expression are highly complex and heterogeneous, and RNA-binding proteins (RBPs) are among the key regulatory factors. RBPs bind targets in an environment-dependent or environment-independent manner to influence mRNA stability and the translation of genes involved in the formation, progression, metastasis and treatment of breast cancer. Due to the growing interest in these regulators, the present review summarizes the most influential studies concerning RBPs associated with breast cancer to elucidate the role of RBPs in breast cancer and to assess how they interact with other key pathways to provide new molecular targets for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
38
|
Guha A, Waris S, Nabors LB, Filippova N, Gorospe M, Kwan T, King PH. The versatile role of HuR in Glioblastoma and its potential as a therapeutic target for a multi-pronged attack. Adv Drug Deliv Rev 2022; 181:114082. [PMID: 34923029 PMCID: PMC8916685 DOI: 10.1016/j.addr.2021.114082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 12/12/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a malignant and aggressive brain tumor with a median survival of ∼15 months. Resistance to treatment arises from the extensive cellular and molecular heterogeneity in the three major components: glioma tumor cells, glioma stem cells, and tumor-associated microglia and macrophages. Within this triad, there is a complex network of intrinsic and secreted factors that promote classic hallmarks of cancer, including angiogenesis, resistance to cell death, proliferation, and immune evasion. A regulatory node connecting these diverse pathways is at the posttranscriptional level as mRNAs encoding many of the key drivers contain adenine- and uridine rich elements (ARE) in the 3' untranslated region. Human antigen R (HuR) binds to ARE-bearing mRNAs and is a major positive regulator at this level. This review focuses on basic concepts of ARE-mediated RNA regulation and how targeting HuR with small molecule inhibitors represents a plausible strategy for a multi-pronged therapeutic attack on GBM.
Collapse
Affiliation(s)
- Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Saboora Waris
- Shaheed Zulfiqar Ali Bhutto Medical University, PIMS, G-8, Islamabad, Pakistan
| | - Louis B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Natalia Filippova
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Peter H King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, United States.
| |
Collapse
|
39
|
Zhong Y, Mahoney RC, Khatun Z, Chen HH, Nguyen CT, Caravan P, Roberts JD. Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2022; 322:L204-L223. [PMID: 34878944 PMCID: PMC8794022 DOI: 10.1152/ajplung.00158.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFβ-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFβ treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFβ stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFβ and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Collapse
Affiliation(s)
- Ying Zhong
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rose C. Mahoney
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Zehedina Khatun
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Howard H. Chen
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher T. Nguyen
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts,7The Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse D. Roberts
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,2Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts,3Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
40
|
Soundararajan R, Varanasi SM, Patil SS, Srinivas S, Hernández-Cuervo H, Czachor A, Bulkhi A, Fukumoto J, Galam L, Lockey RF, Kolliputi N. Lung fibrosis is induced in ADAR2 overexpressing mice via HuR-induced CTGF signaling. FASEB J 2022; 36:e22143. [PMID: 34985777 PMCID: PMC10395739 DOI: 10.1096/fj.202101511r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2), an RNA editing enzyme is involved in a site-selective modification of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Its role in the lungs is unknown. The phenotypic characterization of Adarb1 mice that lacked ADAR2 auto-regulation due to the deletion of editing complementary sequence (ΔECS mice) determined the functional role of ADAR2 in the lungs. ADAR2 protein expression increased in the ΔECS mice. These mice display immune cell infiltration and alveolar disorganization. The lung wet by dry ratio indicates there is no lung edema in ΔECS mice. Bronchoalveolar lavage (BAL) analysis of ΔECS mice reveals a significant increase in neutrophils. Interestingly, ΔECS mice spontaneously develop lung fibrosis as indicated by Sirius red staining of collagen fibers in the lung sections and a significant increase in hydroxyproline level in their lungs. ADAR2 expression increased significantly in a bleomycin mouse model, implicating a role of ADAR2 in lung fibrosis. Furthermore, there is a likely possibility that the genetically modified ΔECS mice does not model the physiological or pathophysiological process of lung fibrosis. Nevertheless, this model is useful in interrogating the role of ADAR2 in the lungs. The Ctgf mRNA and connective tissue growth factor (CTGF) protein significantly increased in ΔECS lungs and occurs in bronchial epithelial cells. There is a significant increase in Human antigen R (ELAVL1; HuR) protein levels in ΔECS lungs and suggests a role in stabilizing Ctgf mRNA. Lung mechanics such as total respiratory resistance, Newtonian resistance and tissue damping were increased, whereas inspiratory capacity was decreased in the ΔECS mice. Taken together, these data indicate that overexpression of ADAR2 causes spontaneous lung fibrosis via HuR-mediated CTGF signaling and implicate a role for ADAR2 auto-regulation in lung homeostasis. The identification of ADAR2 target genes in ΔECS mice would facilitate a mechanistic understanding of the role of ADAR2 in the lungs and provide a therapeutic strategy for lung fibrosis.
Collapse
Affiliation(s)
- Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sai Manasa Varanasi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sriraja Srinivas
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Alexander Czachor
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Adeeb Bulkhi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Internal Medicine, College of Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
41
|
Filippova N, Grimes JM, Leavenworth JW, Namkoong D, Yang X, King PH, Crowley M, Crossman DK, Nabors LB. Targeting the TREM1-positive myeloid microenvironment in glioblastoma. Neurooncol Adv 2022; 4:vdac149. [PMID: 36249290 PMCID: PMC9555298 DOI: 10.1093/noajnl/vdac149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Tumor cellular and molecular heterogeneity is a hallmark of glioblastoma and underlies treatment resistance and recurrence. This manuscript investigated the myeloid-derived microenvironment as a driver of glioblastoma heterogeneity and provided a pharmacological pathway for its suppression. Methods Transcriptomic signatures of glioblastoma infiltrated myeloid-derived cells were assessed using R2: genomic platform, Ivy Glioblastoma Spatial Atlas, and single-cell RNA-seq data of primary and recurrent glioblastomas. Myeloid-derived cell prints were evaluated in five PDX cell lines using RNA-seq data. Two immunocompetent mouse glioblastoma models were utilized to isolate and characterize tumor-infiltrated myeloid-derived cells and glioblastoma/host cell hybrids. The ability of an inhibitor of HuR dimerization SRI42127 to suppress TREM1+-microenvironment and glioblastoma/myeloid-derived cell interaction was assessed in vivo and in vitro. Results TREM1+-microenvironment is enriched in glioblastoma peri-necrotic zones. TREM1 appearance is enhanced with tumor grade and associated with poor patient outcomes. We confirmed an expression of a variety of myeloid-derived cell markers, including TREM1, in PDX cell lines. In mouse glioblastoma models, we demonstrated a reduction in the TREM1+-microenvironment and glioblastoma/host cell fusion after treatment with SRI42127. In vitro assays confirmed inhibition of cell fusion events and reduction of myeloid-derived cell migration towards glioblastoma cells by SRI42127 and TREM1 decoy peptide (LP17) versus control treatments. Conclusions TREM1+-myeloid-derived microenvironment promulgates glioblastoma heterogeneity and is a therapeutic target. Pharmacological inhibition of HuR dimerization leads to suppression of the TREM1+-myeloid-derived microenvironment and the neoplastic/non-neoplastic fusogenic cell network.
Collapse
Affiliation(s)
- Natalia Filippova
- Department of Neurology, Division of Neuro-oncology, UAB, Birmingham, Alabama, USA
| | - Jeffrey M Grimes
- Department of Neurosurgery, Program of Immunology, UAB, Birmingham, Alabama, USA
| | | | - David Namkoong
- Department of Neurology, Division of Neuro-oncology, UAB, Birmingham, Alabama, USA
| | - Xiuhua Yang
- Department of Neurology, Division of Neuro-oncology, UAB, Birmingham, Alabama, USA
| | - Peter H King
- Department of Neurology, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Michael Crowley
- Department of Genetics, Heflin Center Genomics Core, UAB, Birmingham, Alabama, USA (M.C., D.K.C.)
| | - David K Crossman
- Department of Genetics, Heflin Center Genomics Core, UAB, Birmingham, Alabama, USA (M.C., D.K.C.)
| | - L Burt Nabors
- Department of Neurology, Division of Neuro-oncology, UAB, Birmingham, Alabama, USA
| |
Collapse
|
42
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
43
|
Si R, Cabrera JTO, Tsuji-Hosokawa A, Guo R, Watanabe M, Gao L, Lee YS, Moon JS, Scott BT, Wang J, Ashton AW, Rao JN, Wang JY, Yuan JXJ, Makino A. HuR/Cx40 downregulation causes coronary microvascular dysfunction in type 2 diabetes. JCI Insight 2021; 6:147982. [PMID: 34747371 PMCID: PMC8663561 DOI: 10.1172/jci.insight.147982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with diabetes with coronary microvascular disease (CMD) exhibit higher cardiac mortality than patients without CMD. However, the molecular mechanism by which diabetes promotes CMD is poorly understood. RNA-binding protein human antigen R (HuR) is a key regulator of mRNA stability and translation; therefore, we investigated the role of HuR in the development of CMD in mice with type 2 diabetes. Diabetic mice exhibited decreases in coronary flow velocity reserve (CFVR; a determinant of coronary microvascular function) and capillary density in the left ventricle. HuR levels in cardiac endothelial cells (CECs) were significantly lower in diabetic mice and patients with diabetes than the controls. Endothelial-specific HuR-KO mice also displayed significant reductions in CFVR and capillary density. By examining mRNA levels of 92 genes associated with endothelial function, we found that HuR, Cx40, and Nox4 levels were decreased in CECs from diabetic and HuR-KO mice compared with control mice. Cx40 expression and HuR binding to Cx40 mRNA were downregulated in CECs from diabetic mice. Cx40-KO mice exhibited decreased CFVR and capillary density, whereas endothelium-specific Cx40 overexpression increased capillary density and improved CFVR in diabetic mice. These data suggest that decreased HuR contributes to the development of CMD in diabetes through downregulation of gap junction protein Cx40 in CECs.
Collapse
Affiliation(s)
- Rui Si
- Department of Physiology, The University of Arizona (UA), Tucson, Arizona, USA.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | | | | | - Rui Guo
- Department of Physiology, The University of Arizona (UA), Tucson, Arizona, USA
| | - Makiko Watanabe
- Department of Physiology, The University of Arizona (UA), Tucson, Arizona, USA
| | - Lei Gao
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Yun Sok Lee
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Jae-Su Moon
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Brian T Scott
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Jian Wang
- Department of Physiology, The University of Arizona (UA), Tucson, Arizona, USA.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute of Medical Research, University of Sydney, New South Wales, Australia
| | - Jaladanki N Rao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Ayako Makino
- Department of Physiology, The University of Arizona (UA), Tucson, Arizona, USA.,Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
44
|
Lisy S, Rothamel K, Ascano M. RNA Binding Proteins as Pioneer Determinants of Infection: Protective, Proviral, or Both? Viruses 2021; 13:2172. [PMID: 34834978 PMCID: PMC8625426 DOI: 10.3390/v13112172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
As the first intracellular host factors that directly interact with the genomes of RNA viruses, RNA binding proteins (RBPs) have a profound impact on the outcome of an infection. Recent discoveries brought about by new methodologies have led to an unprecedented ability to peer into the earliest events between viral RNA and the RBPs that act upon them. These discoveries have sparked a re-evaluation of current paradigms surrounding RBPs and post-transcriptional gene regulation. Here, we highlight questions that have bloomed from the implementation of these novel approaches. Canonical RBPs can impact the fates of both cellular and viral RNA during infection, sometimes in conflicting ways. Noncanonical RBPs, some of which were first characterized via interactions with viral RNA, may encompass physiological roles beyond viral pathogenesis. We discuss how these RBPs might discriminate between an RNA of either cellular or viral origin and thus exert either pro- or antiviral effects-which is a particular challenge as viruses contain mechanisms to mimic molecular features of cellular RNA.
Collapse
Affiliation(s)
- Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| |
Collapse
|
45
|
Danan C, Manickavel S, Hafner M. PAR-CLIP: A Method for Transcriptome-Wide Identification of RNA Binding Protein Interaction Sites. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2404:167-188. [PMID: 34694609 DOI: 10.1007/978-1-0716-1851-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During post-transcriptional gene regulation (PTGR), RNA binding proteins (RBPs) interact with all classes of RNA to control RNA maturation, stability, transport, and translation. Here, we describe Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), a transcriptome-scale method for identifying RBP binding sites on target RNAs with nucleotide-level resolution. This method is readily applicable to any protein directly contacting RNA, including RBPs that are predicted to bind in a sequence- or structure-dependent manner at discrete RNA recognition elements (RREs), and those that are thought to bind transiently, such as RNA polymerases or helicases.
Collapse
Affiliation(s)
- Charles Danan
- RNA Molecular Biology Group, NIAMS, Bethesda, MD, USA
| | | | - Markus Hafner
- RNA Molecular Biology Group, NIAMS, Bethesda, MD, USA.
| |
Collapse
|
46
|
HuR Plays a Positive Role to Strengthen the Signaling Pathways of CD4 + T Cell Activation and Th17 Cell Differentiation. J Immunol Res 2021; 2021:9937243. [PMID: 34395636 PMCID: PMC8357502 DOI: 10.1155/2021/9937243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/09/2023] Open
Abstract
After antigen and/or different cytokine stimulation, CD4+ T cells activated and differentiated into distinct T helper (Th) cells via differential T cell signaling pathways. Transcriptional regulation of the activation and differentiation of naïve CD4+ T cells into distinct lineage Th cells such as Th17 cells has been fully studied. However, the role of RNA-binding protein HuR in the signaling pathways of their activation and differentiation has not been well characterized. Here, we used HuR conditional knockout (HuR KO) CD4+ T cells to study mechanisms underlying HuR regulation of T cell activation and differentiation through distinct signaling pathways. Our work showed that, mechanistically, HuR positively promoted CD3g expression by binding its mRNA and enhanced the expression of downstream adaptor Zap70 and Malt1 in activated CD4+ T cells. Compared to WT Th0 cells, HuR KO Th0 cells with reduced Bcl-2 expression are much more susceptible to apoptosis than WT Th0 cells. We also found that HuR stabilized IL-6Rα mRNA and promoted IL-6Rα protein expression, thereby upregulating its downstream phosphorylation of Jak1 and Stat3 and increased level of phosphorylation of IκBα to facilitate Th17 cell differentiation. However, knockout of HuR increased IL-22 production in Th17 cells, which was due to HuR deficiency in reducing IL-22 transcription repressor c-Maf expression. These results highlight the importance of HuR in TCR signaling and IL-6/IL-6R axis driving naïve CD4+ T cell activation and differentiation into Th17 cells.
Collapse
|
47
|
Priyanka P, Sharma M, Das S, Saxena S. The lncRNA HMS recruits RNA-binding protein HuR to stabilize the 3'-UTR of HOXC10 mRNA. J Biol Chem 2021; 297:100997. [PMID: 34302808 PMCID: PMC8363838 DOI: 10.1016/j.jbc.2021.100997] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to drive key cancer pathways but the functions of majority of lncRNAs are unknown making a case for comprehensive functional evaluation of lncRNAs. With an aim to identify lncRNAs dysregulated in human cancers, we analyzed the cancer patient database of lung adenocarcinoma (LUAD), which revealed an upregulated lncRNA, LINC02381 (renamed HOXC10mRNA stabilizing factor or HMS in this study), whose depletion results in proliferation defects and inhibition of colony formation of human cancer cells. In order to identify the binding targets of HMS, we screened for cis-genes and discovered that HOXC10, an oncogene, is downregulated in the absence of HMS. Depletion of HMS does not affect the HOXC10 promoter activity but inhibits the HOXC10 3′-UTR-linked luciferase reporter activity. Since lncRNAs have been known to associate with RNA-binding proteins (RBPs) to stabilize mRNA transcripts, we screened for different RBPs and discovered that HuR, an ELAV family protein, stabilizes HOXC10 mRNA. Using RNA pull-down and deletion mapping experiments, we show that HuR physically interacts with the cytosine-rich stretch of HMS and HOXC10 3′-UTR to stabilize HOXC10 mRNA. HOXC10 is overexpressed in many human cancers, and our discovery highlights that lncRNA HMS sustains the HOXC10 mRNA levels to maintain the invasive phenotypes of cancer cells.
Collapse
Affiliation(s)
- Priyanka Priyanka
- DNA Replication and Cell Cycle Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Sanjeev Das
- DNA Replication and Cell Cycle Laboratory, National Institute of Immunology, New Delhi, India
| | - Sandeep Saxena
- DNA Replication and Cell Cycle Laboratory, National Institute of Immunology, New Delhi, India; Department of Biotechnology, JNU, New Delhi, India.
| |
Collapse
|
48
|
Rao JN, Xiao L, Wang JY. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology (Bethesda) 2021; 35:328-337. [PMID: 32783609 DOI: 10.1152/physiol.00011.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Daks A, Petukhov A, Fedorova O, Shuvalov O, Kizenko A, Tananykina E, Vasileva E, Semenov O, Bottrill A, Barlev N. The RNA-binding protein HuR is a novel target of Pirh2 E3 ubiquitin ligase. Cell Death Dis 2021; 12:581. [PMID: 34091597 PMCID: PMC8179929 DOI: 10.1038/s41419-021-03871-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022]
Abstract
The RING-finger protein Pirh2 is a p53 family-specific E3 ubiquitin ligase. Pirh2 also ubiquitinates several other important cellular factors and is involved in carcinogenesis. However, its functional role in other cellular processes is poorly understood. To address this question, we performed a proteomic search for novel interacting partners of Pirh2. Using the GST-pulldown approach combined with LC-MS/MS, we revealed 225 proteins that interacted with Pirh2. We found that, according to the GO description, a large group of Pirh2-associated proteins belonged to the RNA metabolism group. Importantly, one of the identified proteins from that group was an RNA-binding protein ELAVL1 (HuR), which is involved in the regulation of splicing and protein stability of several oncogenic proteins. We demonstrated that Pirh2 ubiquitinated the HuR protein facilitating its proteasome-mediated degradation in cells. Importantly, the Pirh2-mediated degradation of HuR occurred in response to heat shock, thereby affecting the survival rate of HeLa cells under elevated temperature. Functionally, Pirh2-mediated degradation of HuR augmented the level of c-Myc expression, whose RNA level is otherwise attenuated by HuR. Taken together, our data indicate that HuR is a new target of Pirh2 and this functional interaction contributes to the heat-shock response of cancer cells affecting their survival.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation.
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation.,Almazov National Medical Research Centre, Institute of Hematology, 197341, St Petersburg, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Alena Kizenko
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Elizaveta Tananykina
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Elena Vasileva
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Oleg Semenov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Andrew Bottrill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation. .,Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russian Federation.
| |
Collapse
|
50
|
Rothamel K, Arcos S, Kim B, Reasoner C, Lisy S, Mukherjee N, Ascano M. ELAVL1 primarily couples mRNA stability with the 3' UTRs of interferon-stimulated genes. Cell Rep 2021; 35:109178. [PMID: 34038724 PMCID: PMC8225249 DOI: 10.1016/j.celrep.2021.109178] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Upon pathogen detection, the innate immune system triggers signaling events leading to upregulation of pro-inflammatory and anti-microbial mRNA transcripts. RNA-binding proteins (RBPs) interact with these critical mRNAs and regulate their fates at the post-transcriptional level. One such RBP is ELAVL1. Although significant progress has been made in understanding how embryonic lethal vision-like protein 1 (ELAVL1) regulates mRNAs, its target repertoire and binding distribution within an immunological context remain poorly understood. We overlap four high-throughput approaches to define its context-dependent targets and determine its regulatory impact during immune activation. ELAVL1 transitions from binding overwhelmingly intronic sites to 3′ UTR sites upon immune stimulation of cells, binding previously and newly expressed mRNAs. We find that ELAVL1 mediates the RNA stability of genes that regulate pathways essential to pathogen sensing and cytokine production. Our findings reveal the importance of examining RBP regulatory impact under dynamic transcriptomic events to understand their post-transcriptional regulatory roles within specific biological circuitries. Rothamel et al. show that upon immune activation, the RNA-binding protein ELAVL1 accumulates in the cytoplasm and redistributes from introns to mRNA 3′ UTRs. 3′ UTR binding confers enrichment and transcript stability. Many top-ranking transcripts are interferon-stimulated genes (ISGs), indicating that ELAVL1 is a positive regulator of an innate immune response.
Collapse
Affiliation(s)
- Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah Arcos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Byungil Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Clara Reasoner
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|