1
|
Sawada H, Saito T, Shimada Y, Nishimura H. Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. Curr Top Dev Biol 2025; 162:55-114. [PMID: 40180517 DOI: 10.1016/bs.ctdb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
2
|
Perez SM, Augustineli HS, Marcello MR. Utilizing C. elegans Spermatogenesis and Fertilization Mutants as a Model for Human Disease. J Dev Biol 2025; 13:4. [PMID: 39982357 PMCID: PMC11843878 DOI: 10.3390/jdb13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
The nematode C. elegans is a proven model for identifying genes involved in human disease, and the study of C. elegans reproduction, specifically spermatogenesis and fertilization, has led to significant contributions to our understanding of cellular function. Approximately 70 genes have been identified in C. elegans that control spermatogenesis and fertilization (spe and fer mutants). This review focuses on eight genes that have human orthologs with known pathogenic phenotypes. Using C. elegans to study these genes has led to critical developments in our understanding of protein domain function and human disease, including understanding the role of OTOF (the ortholog of C. elegans fer-1) in hearing loss, the contribution of the spe-39 ortholog VIPAS39 in vacuolar protein sorting, and the overlapping functions of spe-26 and KLHL10 in spermatogenesis. We discuss the cellular function of both the C. elegans genes and their human orthologs and the impact that C. elegans mutants and human variants have on cellular function and physiology. Utilizing C. elegans to understand the function of the genes reviewed here, and additional understudied and undiscovered genes, represents a unique opportunity to understand the function of variants that could lead to better disease diagnosis and clinical decision making.
Collapse
|
3
|
Sawada H, Hattori I, Hashii N, Saito T. Involvement of Metalloproteases in the Fertilization of the Ascidian Halocynthia roretzi. Biomolecules 2024; 14:1487. [PMID: 39766195 PMCID: PMC11673157 DOI: 10.3390/biom14121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
We previously reported that five astacin-like metalloproteases with thrombospondin type-1 repeats (Tasts) located on the sperm surface are a promising candidate as the protease involved in sperm penetration of the vitelline coat (VC) during fertilization of the ascidian Ciona intestinalis type A (Phlebobranchia). However, whether such a protease is involved in the fertilization of other ascidians is unknown. Here, we investigated the effects of four metalloprotease inhibitors on the fertilization of the ascidian Halocynthia roretzi (Stolidobranchia). Three metalloprotease inhibitors, GM6001, TAPI-0, and TAPI-1, strongly inhibited fertilization at 33 and 11 μM, whereas TAPI-2 weakly inhibited fertilization at 33 μM. In contrast, GM6001NC (negative control) had no effect on fertilization at 100 μM. Furthermore, GM6001 had no inhibitory effect on the fertilization of VC-deprived eggs. The metalloprotease appears to function at the middle or late stage of fertilization. Ten Tast genes were identified in the H. roretzi genome database, among which four genes (HrTast1, HrTast2b, HrTast2c, and HrTast3c) possessed a single transmembrane domain in the N-terminal region. These four genes are transcribed in the testis and ovary, as revealed by RT-PCR. Anti-HrTast2c IgG raised against a peptide corresponding to the Zn-binding consensus sequence weakly inhibited fertilization at 0.5 mg/mL. These results led us to propose that sperm astacin-like metalloproteases may be involved in sperm penetration of the VC during H. roretzi fertilization.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
- Department of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Ikuya Hattori
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
- Department of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan;
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan;
| |
Collapse
|
4
|
Sawada H, Inoue S, Saito T, Otsuka K, Shirae-Kurabayashi M. Involvement in Fertilization and Expression of Gamete Ubiquitin-Activating Enzymes UBA1 and UBA6 in the Ascidian Halocynthia roretzi. Int J Mol Sci 2023; 24:10662. [PMID: 37445840 DOI: 10.3390/ijms241310662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The extracellular ubiquitin-proteasome system is involved in sperm binding to and/or penetration of the vitelline coat (VC), a proteinaceous egg coat, during fertilization of the ascidian (Urochordata) Halocynthia roretzi. It is also known that the sperm receptor on the VC, HrVC70, is ubiquitinated and degraded by the sperm proteasome during the sperm penetration of the VC and that a 700-kDa ubiquitin-conjugating enzyme complex is released upon sperm activation on the VC, which is designated the "sperm reaction". However, the de novo function of ubiquitin-activating enzyme (UBA/E1) during fertilization is poorly understood. Here, we show that PYR-41, a UBA inhibitor, strongly inhibited the fertilization of H. roretzi. cDNA cloning of UBA1 and UBA6 from H. roretzi gonads was carried out, and their 3D protein structures were predicted to be very similar to those of human UBA1 and UBA6, respectively, based on AlphaFold2. These two genes were transcribed in the ovary and testis and other organs, among which the expression of both was highest in the ovary. Immunocytochemistry showed that these enzymes are localized on the sperm head around a mitochondrial region and the follicle cells surrounding the VC. These results led us to propose that HrUBA1, HrUBA6, or both in the sperm head mitochondrial region and follicle cells may be involved in the ubiquitination of HrVC70, which is responsible for the fertilization of H. roretzi.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
- Department of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Omori 2-1723, Moriyama-ku, Nagoya 463-8521, Japan
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shukumi Inoue
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kei Otsuka
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
- Department of Life Science, Faculty of Life Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
| |
Collapse
|
5
|
Liu H, Yu J, Li M, Kang S, Zhao X, Yin G, Liu B, Ji C, Wang Y, Gao W, Chang Z, Zhao F. Proteomic analysis of donkey sperm reveals changes in acrosome enzymes and redox regulation during cryopreservation. J Proteomics 2022; 267:104698. [PMID: 35998806 DOI: 10.1016/j.jprot.2022.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Sperm cryoinjuries caused by cryopreservation restrict the application of donkey frozen semen in artificial insemination (AI). Identification of differentially represented proteins in fresh and frozen-thawed spermatozoa is of great significance to optimize the cryopreservation process and modify the component of cryopreservation extender. In this study, protein samples prepared from fresh (F) and frozen-thawed (FT) donkey spermatozoa were compared. 2682 proteins were quantitatively identified by tandem mass spectrometry (TMT) polypeptide labeling technique and LC-MS/MS method, of which 28 were more abundant in thawed samples and 147 in fresh spermatozoa. The differential abundant proteins (DAPs) were analyzed by bioinformatics. Most of the DAPs in intensive bioinformatic analysis were involved in the process of regulation of biological process and metabolism. Functional protein analysis showed that DAPs process mainly protein hydrolase activity and oxidoreductase activity. Cellular Component analysis showed that DAPs were related to vesicle transport and membrane system. This is the first analysis and study on differential proteomics of donkey sperm proteins before and after cryopreservation, which has a certain guiding significance for studying the mechanism of sperm damage caused by cryopreservation and improving the freezing and thawing procedure. SIGNIFICANCE: In recent years, the commercial value of donkey products has been discovered. Improving the breeding efficiency of donkeys can save the stock of donkeys which is decreasing rapidly, and allow people to continuously benefit from the nutritional value brought by donkey milk. Sperm cryopreservation technology has laid the foundation for encouraging the spread of artificial insemination in donkey reproduction, but the freezing and thawing process causes damage to sperm, which dramatically reducing the viability of frozen sperm and leading to low fertility. At present, the mechanism of damage to donkey sperm caused by cryopreservation is still unclear, and studying this mechanism can provide a direction for improving the quality of frozen semen. Protein is a potential key factor affecting sperm cryopreservation activity. Studying changes in the sperm proteome during cryopreservation can provide promising evidence for revealing sperm cryopreservation damage, which is of great significance for optimizing the cryopreservation process, improving the composition of cryopreservation extender, and seeking directions for improving the quality of frozen semen.
Collapse
Affiliation(s)
- Haibing Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Min Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Shouting Kang
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China
| | - Xianlin Zhao
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China
| | - Guijun Yin
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Weiping Gao
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Zhongle Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China.
| |
Collapse
|
6
|
Proteomic analysis of rabbit fresh and cryopreserved semen provides an important insight into molecular mechanisms of cryoinjuries to spermatozoa. Theriogenology 2022; 191:77-95. [DOI: 10.1016/j.theriogenology.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
|
7
|
Sawada H, Saito T. Mechanisms of Sperm-Egg Interactions: What Ascidian Fertilization Research Has Taught Us. Cells 2022; 11:2096. [PMID: 35805180 PMCID: PMC9265791 DOI: 10.3390/cells11132096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Fertilization is an essential process in terrestrial organisms for creating a new organism with genetic diversity. Before gamete fusion, several steps are required to achieve successful fertilization. Animal spermatozoa are first activated and attracted to the eggs by egg-derived chemoattractants. During the sperm passage of the egg's extracellular matrix or upon the sperm binding to the proteinaceous egg coat, the sperm undergoes an acrosome reaction, an exocytosis of acrosome. In hermaphrodites such as ascidians, the self/nonself recognition process occurs when the sperm binds to the egg coat. The activated or acrosome-reacted spermatozoa penetrate through the proteinaceous egg coat. The extracellular ubiquitin-proteasome system, the astacin-like metalloproteases, and the trypsin-like proteases play key roles in this process in ascidians. In the present review, we summarize our current understanding and perspectives on gamete recognition and egg coat lysins in ascidians and consider the general mechanisms of fertilization in animals and plants.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya 463-8521, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
8
|
Gariballa N, Kizhakkedath P, Akawi N, John A, Ali BR. Endoglin Wild Type and Variants Associated With Hereditary Hemorrhagic Telangiectasia Type 1 Undergo Distinct Cellular Degradation Pathways. Front Mol Biosci 2022; 9:828199. [PMID: 35281255 PMCID: PMC8916587 DOI: 10.3389/fmolb.2022.828199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endoglin, also known as cluster of differentiation 105 (CD105), is an auxiliary receptor in the TGFβ signaling pathway. It is predominantly expressed in endothelial cells as a component of the heterotetrameric receptor dimers comprising type I, type II receptors and the binding ligands. Mutations in the gene encoding Endoglin (ENG) have been associated with hereditary hemorrhagic telangiectasia type 1 (HHT1), an autosomal dominant inherited disease that is generally characterized by vascular malformation. Secretory and many endomembrane proteins synthesized in the Endoplasmic reticulum (ER) are subjected to stringent quality control mechanisms to ensure that only properly folded and assembled proteins are trafficked forward through the secretory pathway to their sites of action. We have previously demonstrated that some Endoglin variants causing HHT1 are trapped in the ER and fail to traffic to their normal localization in plasma membrane, which suggested the possible involvement of ER associated protein degradation (ERAD) in their molecular pathology. In this study, we have investigated, for the first time, the degradation routes of Endoglin wild type and two mutant variants, P165L and V105D, and previously shown to be retained in the ER. Stably transfected HEK293 cells were treated with proteasomal and lysosomal inhibitors in order to elucidate the exact molecular mechanisms underlying the loss of function phenotype associated with these variants. Our results have shown that wild type Endoglin has a relatively short half-life of less than 2 hours and degrades through both the lysosomal and proteasomal pathways, whereas the two mutant disease-causing variants show high stability and predominantly degrades through the proteasomal pathway. Furthermore, we have demonstrated that Endoglin variants P165L and V105D are significantly accumulated in HEK293 cells deficient in HRD1 E3 ubiquitin ligase; a major ERAD component. These results implicate the ERAD mechanism in the pathology of HHT1 caused by the two variants. It is expected that these results will pave the way for more in-depth research studies that could provide new windows for future therapeutic interventions.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
9
|
Guo X. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules 2022; 12:biom12020229. [PMID: 35204730 PMCID: PMC8961600 DOI: 10.3390/biom12020229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
The proteasome is responsible for selective degradation of most cellular proteins. Abundantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also associate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates. How and why the proteasome gets to these specific subcellular compartments remains poorly understood, although increasing evidence supports the hypothesis that intracellular localization may have profound impacts on the activity, substrate accessibility and stability/integrity of the proteasome. In this short review, I summarize recent advances on the functions, regulations and targeting mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized protein degradation.
Collapse
Affiliation(s)
- Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|
10
|
Saito T, Sawada H. Fertilization of Ascidians: Gamete Interaction, Self/Nonself Recognition and Sperm Penetration of Egg Coat. Front Cell Dev Biol 2022; 9:827214. [PMID: 35186958 PMCID: PMC8849226 DOI: 10.3389/fcell.2021.827214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Fertilization is one of the most important events in living organisms to generate a new life with a mixed genetic background. To achieve successful fertilization, sperm and eggs must undergo complex processes in a sequential order. Fertilization of marine invertebrate Ciona intestinalis type A (Ciona robusta) has been studied for more than a hundred years. Ascidian sperm are attracted by chemoattractants from eggs and bind to the vitelline coat. Subsequently, sperm penetrate through the vitelline coat proteolytically and finally fuse with the egg plasma membrane. Here, we summarize the fertilization mechanisms of ascidians, particularly from sperm-egg interactions to sperm penetration of the egg coat. Since ascidians are hermaphrodites, inbreeding depression is a serious problem. To avoid self-fertilization, ascidians possess a self-incompatibility system. In this review, we also describe the molecular mechanisms of the self-incompatibility system in C. intestinalis type A governed by three allelic gene pairs of s-Themis and v-Themis.
Collapse
Affiliation(s)
- Takako Saito
- Faculty of Agriculture Department of Applied Life Sciences, Shizuoka University, Shizuoka, Japan
| | - Hitoshi Sawada
- Depatment of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Arunkumar R, Kumaresan A, Sinha MK, Elango K, Ebenezer Samuel King JP, Nag P, Karuthadurai T, Baithalu RK, Mohanty TK, Kumar R, Datta TK. The cryopreservation process induces alterations in proteins associated with bull sperm quality: The equilibration process could be a probable critical control point. Front Endocrinol (Lausanne) 2022; 13:1064956. [PMID: 36568066 PMCID: PMC9787546 DOI: 10.3389/fendo.2022.1064956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The present study quantitatively characterized the proteomic changes in bull spermatozoa induced by the cryopreservation process. We performed high-throughput comparative global proteomic profiling of freshly ejaculated (before cryopreservation), equilibrated (refrigerated storage; during cryopreservation), and frozen (ultralow temperature; after cryopreservation) bull spermatozoa. Using the liquid chromatography-mass spectrometry (LC-MS/MS) technique, a total of 1,692, 1,415, and 1,286 proteins were identified in fresh, equilibrated, and cryopreserved spermatozoa, respectively. When the proteome of fresh spermatozoa was compared with equilibrated spermatozoa, we found that 166 proteins were differentially expressed. When equilibrated spermatozoa were compared with cryopreserved spermatozoa, we found that 147 proteins were differentially expressed between them. Similarly, we found that 156 proteins were differentially expressed between fresh and cryopreserved spermatozoa. Among these proteins, the abundance of 105 proteins was lowered during the equilibration process itself, while the abundance of 43 proteins was lowered during ultralow temperature preservation. Remarkably, the equilibration process lowered the abundance of sperm proteins involved in energy metabolism, structural integrity, and DNA repair and increased the abundance of proteins associated with proteolysis and protein degradation. The abundance of sperm proteins associated with metabolism, cGMP-PKG (cyclic guanosine 3',5'-monophosphate-dependent protein kinase G) signaling, and regulation of the actin cytoskeleton was also altered during the equilibration process. Collectively, the present study showed that the equilibration step in the bull sperm cryopreservation process was the critical point for sperm proteome, during which a majority of proteomic alterations in sperm occurred. These findings are valuable for developing efficient protocols to minimize protein damage and to improve the quality and fertility of cryopreserved bull spermatozoa.
Collapse
Affiliation(s)
- Ramasamy Arunkumar
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
- *Correspondence: Arumugam Kumaresan, ;
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Petelak A, Krylov V. Surface sperm cell ubiquitination directly impaired blastocyst formation rate after intracytoplasmic sperm injection in pig. Theriogenology 2019; 135:115-120. [PMID: 31207472 DOI: 10.1016/j.theriogenology.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
Abstract
The effect of extracellular sperm ubiquitination was examined from many aspects and the majority of existing studies negatively correlated the amount of highly ubiquitinated sperm cells in the sample with the ejaculate quality and the fertilization success rate. In the present study, we compared an early embryonic development up to blastocyst stage in the pig using two defined sperm cell populations sorted by flow cytometry (FACS) based on the rate of the extracellular ubiquitination. This novel approach allows studying the direct effect of extracellular ubiquitin (eUb), which is a marker for epididymal recognition and degradation of defective sperm cells. We further examined the hypothesis that eUb could be recognized directly in the ooplasm. In the porcine model, the significance of results might be seriously affected by a high variability among sperm cell doses from individual boars as well as by the variability among separate sample collections. To overcome this obstacle, we used cryopreserved sperm cells from a single dose. Comparison of an early embryonic development employing intracytoplasmic sperm cell injection (ICSI) with cryopreserved (frozen/thawed, F/T) and fresh sperm cells did not reveal significant difference regarding blastocyst formation rate. We also observed no difference in the male and female pronuclei formation and the first zygote cleavage after fertilization of oocytes with high or non-ubiquitinated sperm cells sorted by FACS. However, results of the early embryonic development to the blastocyst stage showed the difference between both experimental groups (16.67% of blastocysts in non-ubiquitinated group vs. 6.20% of blastocyst in the high-ubiquitinated group, P < 0.001). We further confirmed the negative effect of eUb by the masking of Ub epitopes with the appropriate primary antibody in fresh sperm cells prior to ICSI. This procedure improved the blastocyst formation rate from 14.19% in the untreated group to 24.03% concerning antibody masked sperms (P < 0.01). We conclude our results support a generally accepted hypothesis concerning the negative correlation of the presence of eUb on the sperm cell membrane and developmental competence of fertilized oocytes. However, experiments with masking Ub antibody indicate the direct negative effect of the membrane ubiquitin rather than sperm cell quality on the early embryonic development to the blastocyst stage, at least in the porcine model.
Collapse
Affiliation(s)
- Ales Petelak
- Charles University in Prague, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic.
| | - Vladimir Krylov
- Charles University in Prague, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|
13
|
Tanaka Y, Yamada S, Connop SL, Hashii N, Sawada H, Shih Y, Nishida H. Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi. Dev Biol 2019; 449:52-61. [PMID: 30710513 DOI: 10.1016/j.ydbio.2019.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
Stereotyped left-right asymmetry both in external and internal organization is found in various animals. Left-right symmetry is broken by the neurula rotation in the ascidian, Halocynthia roretzi. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and the rotation stops when the left side of the embryo is oriented downwards, resulting in contact of the left-side epidermis with the vitelline membrane at the bottom of perivitelline space. Then, such contact induces the expression of nodal and its downstream Pitx2 gene in the left-side epidermis. Vitelline membrane is required for the promotion of nodal expression. Here, we showed that a chemical signal from the vitelline membrane promotes nodal gene expression, but mechanical stimulus at the point of contact is unnecessary since the treatment of devitellinated neurulae with an extract of the vitelline membrane promoted nodal expression on both sides. The signal molecules are already present in the vitelline membranes of unfertilized eggs. These signal molecules are proteins but not sugars. Specific fractions in gel filtration chromatography had the nodal promoting activity. By mass spectrometry, we selected 48 candidate proteins. Proteins that contain both a zona pellucida (ZP) domain and epidermal growth factor (EGF) repeats were enriched in the candidates of the nodal inducing molecules. Six of the ZP proteins had multiple EGF repeats that are only found in ascidian ZP proteins. These were considered to be the most viable candidates of the nodal-inducing molecules. Signal molecules are anchored to the entire vitelline membrane, and contact sites of signal-receiving cells are spatially and mechanically controlled by the neurula rotation. In this context, ascidians are unusual with respect to mechanisms for specification of the left-right axis. By suppressing formation of epidermis monocilia, we also showed that epidermal cilia drive the neurula rotation but are dispensable for sensing the signal from the vitelline membrane.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shiori Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Samantha L Connop
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba 517-0004, Japan
| | - Yu Shih
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
14
|
Stewart L, D M Edgar J, Blakely G, Patrick S. Antigenic mimicry of ubiquitin by the gut bacterium Bacteroides fragilis: a potential link with autoimmune disease. Clin Exp Immunol 2018; 194:153-165. [PMID: 30076785 PMCID: PMC6194340 DOI: 10.1111/cei.13195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/18/2018] [Accepted: 07/28/2018] [Indexed: 01/09/2023] Open
Abstract
Ubiquitin is highly conserved across eukaryotes and is essential for normal eukaryotic cell function. The bacterium Bacteroides fragilis is a member of the normal human gut microbiota, and the only bacterium known to encode a homologue of eukaryotic ubiquitin. The B. fragilis gene sequence indicates a past horizontal gene transfer event from a eukaryotic source. It encodes a protein (BfUbb) with 63% identity to human ubiquitin which is exported from the bacterial cell. The aim of this study was (i) to determine if there was antigenic cross‐reactivity between B. fragilis ubiquitin and human ubiquitin and (ii) to determine if humans produced antibodies to BfUbb. Molecular model comparisons of BfUbb and human ubiquitin predicted a high level (99·8% confidence) of structural similarity. Linear epitope mapping identified epitopes in BfUbb and human ubiquitin that cross‐react. BfUbb also has epitope(s) that do not cross‐react with human ubiquitin. The reaction of human serum (n = 474) to BfUbb and human ubiquitin from the following four groups of subjects was compared by enzyme‐linked immunosorbent assay (ELISA): (1) newly autoantibody‐positive patients, (2) allergen‐specific immunoglobulin (Ig)E‐negative patients, (3) ulcerative colitis patients and (4) healthy volunteers. We show that the immune system of some individuals has been exposed to BfUbb which has resulted in the generation of IgG antibodies. Serum from patients referred for first‐time testing to an immunology laboratory for autoimmune disease are more likely to have a high level of antibodies to BfUbb than healthy volunteers. Molecular mimicry of human ubiquitin by BfUbb could be a trigger for autoimmune disease.
Collapse
Affiliation(s)
- L Stewart
- School School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - J D M Edgar
- Regional Immunology Laboratory, Belfast Health and Social Care Trust, Belfast, UK.,The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - G Blakely
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Patrick
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
15
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
16
|
Hui WW, Hercik K, Belsare S, Alugubelly N, Clapp B, Rinaldi C, Edelmann MJ. Salmonella enterica Serovar Typhimurium Alters the Extracellular Proteome of Macrophages and Leads to the Production of Proinflammatory Exosomes. Infect Immun 2018; 86:e00386-17. [PMID: 29158431 PMCID: PMC5778363 DOI: 10.1128/iai.00386-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium, which can invade and survive within macrophages. Pathogenic salmonellae induce the secretion of specific cytokines from these phagocytic cells and interfere with the host secretory pathways. In this study, we describe the extracellular proteome of human macrophages infected with S Typhimurium, followed by analysis of canonical pathways of proteins isolated from the extracellular milieu. We demonstrate that some of the proteins secreted by macrophages upon S Typhimurium infection are released via exosomes. Moreover, we show that infected macrophages produce CD63+ and CD9+ subpopulations of exosomes at 2 h postinfection. Exosomes derived from infected macrophages trigger the Toll-like receptor 4-dependent release of tumor necrosis factor alpha (TNF-α) from naive macrophages and dendritic cells, but they also stimulate secretion of such cytokines as RANTES, IL-1ra, MIP-2, CXCL1, MCP-1, sICAM-1, GM-CSF, and G-CSF. Proinflammatory effects of exosomes are partially attributed to lipopolysaccharide, which is encapsulated within exosomes. In summary, we show for the first time that proinflammatory exosomes are formed in the early phase of macrophage infection with S Typhimurium and that they can be used to transfer cargo to naive cells, thereby leading to their stimulation.
Collapse
Affiliation(s)
- Winnie W Hui
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Kamil Hercik
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sayali Belsare
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Navatha Alugubelly
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
Inhibition of deubiquitinases alters gamete ubiquitination states and sperm-oocyte binding ability in pigs. Anim Reprod Sci 2017; 187:64-73. [DOI: 10.1016/j.anireprosci.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/20/2017] [Accepted: 10/06/2017] [Indexed: 01/26/2023]
|
18
|
Donaghy L, Hong HK, Park KI, Nobuhisa K, Youn SH, Kang CK, Choi KS. Flow cytometric characterization of hemocytes of the solitary ascidian, Halocynthia roretzi. FISH & SHELLFISH IMMUNOLOGY 2017; 66:289-299. [PMID: 28476671 DOI: 10.1016/j.fsi.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Internal defense of ascidians relies, at least partially, on cells circulating in body fluids and infiltrating in tissues, referred to as hemocytes, although structure and composition of ascidian hemocytes still remain unclear. In the present study, we investigated hemocyte types and their functions of the solitary ascidian Halocynthia roretzi using flow cytometry. Based on morphology, cellular activities and intracellular parameters from the flow cytometry, we identified eight hemocyte types including, three granulocytes (Gr-1, Gr-2, and Gr-3), 4 hyalinocytes (Hy-1, Hy-1', Hy-2, and Hy-3) and lymphocyte-like (Ly-like) cells. The granulocyte Gr-1 accounted for 30% of the total circulating hemocytes and exhibited highest density of lysosomes and oxidative activity. Gr-1 was deeply involved in phagocytosis and degradation of foreign material. Hyalinocytes consist of two main populations, Hy-1 and Hy-2, and each accounted for 30% of the circulating hemocyte. Hy-1 displayed lysosomal content, an inducible oxidative activity, and no proteases, while Hy-2 expressed highest density of intracellular proteases, no lysosomes and a low oxidative activity. It was believed that Hy-2 may represent an important link between cellular and humoral immune reactions. Hy-1 did not show phagocytosis activity. Hy-3 and the Ly-like cells presented a similar profile except for their size and complexity, and Hy-3 may represent an intermediate differentiation/maturation step between Ly-like cells and other hemocyte populations. This first characterization of the hemocyte populations of H. roretzi provides a solid basis to investigate further their respective roles and functions in physiological and pathological contexts.
Collapse
Affiliation(s)
- Ludovic Donaghy
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 63243, Republic of Korea
| | - Hyun-Ki Hong
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 63243, Republic of Korea; Research Institute for Basic Sciences, Department of Oceanography, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyung-Il Park
- Department of Aquatic Life Medicine, College of Ocean Science and Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Kajino Nobuhisa
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 63243, Republic of Korea
| | - Seok-Hyun Youn
- Fishery and Ocean Information Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Chang-Keun Kang
- School of Environmental Science & Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 63243, Republic of Korea.
| |
Collapse
|
19
|
Berruti G. Towards defining an ‘origin’—The case for the mammalian acrosome. Semin Cell Dev Biol 2016; 59:46-53. [DOI: 10.1016/j.semcdb.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/19/2023]
|
20
|
Kerns K, Morales P, Sutovsky P. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology. Biol Reprod 2016; 94:117. [PMID: 27053366 DOI: 10.1095/biolreprod.115.136622] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/24/2016] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) participates in many biological processes ranging from cell cycle and antigen processing to cellular defense and signaling. Work of the last decade has made it evident that the UPS is involved in many sperm-related processes leading up to and as part of fertilization. The current knowledge of UPS involvement and changes during sperm capacitation are reviewed together with a list of known proteasome-associated sperm proteins and a discussion of the relationships between these proteins and the proteasome. Proteasomal inhibitors such as MG-132 and epoxomicin significantly alter capacitation and prevent acrosome reaction. The 26S proteasome degrades AKAP3, an A-kinase anchoring protein, partially regulating the release of protein-kinase A (PKA), a vital component necessary for the steps leading up to capacitation. Further, changes occur in 20S core subunit localization and abundance throughout capacitation. Proteasome-interacting valosine-containing protein (VCP) undergoes tyrosine phosphorylation; however, its physiological roles in capacitation and fertilization remain unknown. The E1-type ubiquitin-activating enzyme (UBA1) inhibitor PYR-41 also alters acrosomal membrane remodeling during capacitation. Furthermore, after capacitation, the acrosomal proteasomes facilitate the degradation of zona pellucida glycoproteins leading up to fertilization. Methods to modulate the sperm proteasome activity during sperm storage and capacitation may translate to increased reproductive efficiency in livestock animals. Human male infertility diagnostics may benefit from incorporation of research outcomes built upon relationships between UPS and capacitation. Altogether, the studies reviewed here support the involvement of UPS in sperm capacitation and present opportunities for new discoveries.
Collapse
Affiliation(s)
- Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Patricio Morales
- Department of Biomedicine, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile Instituto Antofagasta, Antofagasta, Chile
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, Missouri Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Mino M, Sawada H. Follicle cell trypsin-like protease HrOvochymase: Its cDNA cloning, localization, and involvement in the late stage of oogenesis in the ascidian Halocynthia roretzi. Mol Reprod Dev 2016; 83:347-58. [PMID: 26896838 DOI: 10.1002/mrd.22627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/17/2016] [Indexed: 11/11/2022]
Abstract
We previously reported that the sperm trypsin-like protease HrAcrosin and its precursor HrProacrosin participate in fertilization of the ascidian Halocynthia roretzi. The HrProacrosin gene is annotated in the H. roretzi genome database as Harore.CG.MTP2014.S89.g15383; our previously reported sequence of HrProacrosin gene appeared to include four nucleotides inserted near the 3'-end of HrProacrosin, resulting in a frame-shift mutation and a premature termination codon. The gene architecture of HrProacrosin and Harore.CG.MTP2014.S89.g15383 resembles that of Xenopus laevis ovochymase-1/OVCH1 and ovochymase-2/OVCH2, which encode egg extracellular polyproteases. Considering these new observations, we evaluated the cDNA cloning, expression, localization, and function of Harore.CG.MTP2014.S89.g15383, herein designated as HrOvochymase/HrOVCH. We found that HrOVCH cDNA consists of a single open reading frame of 1,575 amino acids, containing a signal peptide, three trypsin-like protease domains, and six CUB domains. HrOVCH was transcribed by the testis and ovary, but the majority of protein exists in ovarian follicle cells surrounding eggs. An anti-HrOVCH antibody inhibited elevation of the vitelline coat at a late stage of oogenesis, during the period when self-sterility is acquired. As trypsin inhibitors are reported to block the acquisition of self-sterility during oogenesis, whereas trypsin induces the acquisition of self-sterility and elevation of the vitelline coat in defolliculated ovarian eggs, we propose that HrOVCH may play a role in the acquisition of self-sterility by late-stage H. roretzi oocytes.
Collapse
Affiliation(s)
- Masako Mino
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| |
Collapse
|
22
|
Abstract
Fertilization in animals that employ sexual reproduction is an indispensable event for the production of the next generation. A significant advancement in our understanding of the molecular mechanisms of sperm-egg interaction in mammalian species was achieved in the last few decades. However, the same level of knowledge has not been accumulated for birds because of egg size and the difficulty in mimicking the physiological polyspermy that takes place during normal fertilization. In this review, we summarize the current understanding of sperm-egg interaction mechanism during fertilization in birds, especially focusing on sperm-egg binding, sperm acrosome reaction and the authentic sperm protease required for the hole formation on the perivitelline membrane. We explain that the zona pellucida proteins (ZP1 and ZP3) in the perivitelline membrane play important roles in sperm-egg binding, induction of the acrosome reaction as well as sperm penetration by digestion of sperm protease. We anticipate that a deeper understanding of avian fertilization will open up new avenues to create powerful tools for a myriad of applications in the poultry industries including the production of transgenic and cloned birds.
Collapse
|
23
|
Nakazawa S, Shirae-Kurabayashi M, Otsuka K, Sawada H. Proteomics of ionomycin-induced ascidian sperm reaction: Released and exposed sperm proteins in the ascidian Ciona intestinalis. Proteomics 2015. [DOI: 10.1002/pmic.201500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shiori Nakazawa
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Kei Otsuka
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
24
|
Saldívar-Hernández A, González-González ME, Sánchez-Tusié A, Maldonado-Rosas I, López P, Treviño CL, Larrea F, Chirinos M. Human sperm degradation of zona pellucida proteins contributes to fertilization. Reprod Biol Endocrinol 2015; 13:99. [PMID: 26329136 PMCID: PMC4557330 DOI: 10.1186/s12958-015-0094-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The mammalian oocyte extracellular matrix known as the zona pellucida (ZP) acts as a barrier to accomplish sperm fusion with the female gamete. Although penetration of the ZP is a limiting event to achieve fertilization, this is one of the least comprehended stages of gamete interaction. Even though previous studies suggest that proteases of sperm origin contribute to facilitate the passage of sperm through the ZP, in human this process is not yet fully understood. The aim of this study was to determine the ability of human sperm to degrade recombinant human ZP (rhZPs) proteins and to characterize the proteases involved in this process. METHODS Purified rhZP2, rhZP3 and rhZP4 proteins were incubated with capacitated sperm and the proteolytic activity was determined by Western blot analysis. To further characterize the proteases involved, parallel incubations were performed in the presence of the protease inhibitors o-phenanthroline, benzamidine and MG-132 meant to block the activity of metalloproteases, serine proteases and the proteasome, respectively. Additionally, protease inhibitors effect on sperm-ZP binding was evaluated by hemizona assay. RESULTS The results showed that rhZPs were hydrolyzed in the presence of capacitated sperm. O-phenanthroline inhibited the degradation of rhZP3, MG-132 inhibited the degradation of rhZP4 and benzamidine inhibited the degradation of the three proteins under investigation. Moreover, hemizona assays demonstrated that sperm proteasome inhibition impairs sperm interaction with human native ZP. CONCLUSIONS This study suggests that sperm proteasomes could participate in the degradation of ZP, particularly of the ZP4 protein. Besides, metalloproteases may be involved in specific degradation of ZP3 while serine proteases may contribute to unspecific degradation of the ZP. These findings suggest that localized degradation of ZP proteins by sperm is probably involved in ZP penetration and may be of help in understanding the mechanisms of fertilization in humans.
Collapse
Affiliation(s)
- Analilia Saldívar-Hernández
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F. 14080, Mexico.
| | - María E González-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F. 14080, Mexico.
| | - Ana Sánchez-Tusié
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, 62210, Mexico.
| | - Israel Maldonado-Rosas
- Instituto Mexicano de Alta Tecnología Reproductiva (Inmater), Mexico, D.F. 11000, Mexico.
| | - Pablo López
- Instituto Mexicano de Alta Tecnología Reproductiva (Inmater), Mexico, D.F. 11000, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, 62210, Mexico.
| | - Fernando Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F. 14080, Mexico.
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F. 14080, Mexico.
| |
Collapse
|
25
|
A Catalog of Proteins Expressed in the AG Secreted Fluid during the Mature Phase of the Chinese Mitten Crabs (Eriocheir sinensis). PLoS One 2015; 10:e0136266. [PMID: 26305468 PMCID: PMC4549300 DOI: 10.1371/journal.pone.0136266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022] Open
Abstract
The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction.
Collapse
|
26
|
Yuan LL, Chen X, Zong Q, Zhao T, Wang JL, Zheng Y, Zhang M, Wang Z, Brownlie JC, Yang F, Wang YF. Quantitative Proteomic Analyses of Molecular Mechanisms Associated with Cytoplasmic Incompatibility in Drosophila melanogaster Induced by Wolbachia. J Proteome Res 2015. [DOI: 10.1021/acs.jproteome.5b00191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lin-Ling Yuan
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Xiulan Chen
- Key
Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of
Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qiong Zong
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Ting Zhao
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Jia-Lin Wang
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Ya Zheng
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Ming Zhang
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Zailong Wang
- Novartis Pharmaceuticals, East Hanover, New Jersey 07936, United States
| | - Jeremy C. Brownlie
- School
of Natural Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Fuquan Yang
- Key
Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of
Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yu-Feng Wang
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| |
Collapse
|
27
|
Shu L, Suter MJF, Räsänen K. Evolution of egg coats: linking molecular biology and ecology. Mol Ecol 2015; 24:4052-73. [DOI: 10.1111/mec.13283] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Department of Environmental Systems Science; Swiss Federal Institute of Technology; ETH Zurich; 8092 Zurich Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
28
|
Watthammawut A, Somrit M, Asuvapongpatana S, Weerachatyanukul W. Enhancement of trypsin-like enzymes by A23187 ionophore is crucial for sperm penetration through the egg vestment of the giant freshwater prawn. Cell Tissue Res 2015; 362:643-52. [DOI: 10.1007/s00441-015-2226-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
29
|
Kasvandik S, Sillaste G, Velthut-Meikas A, Mikelsaar AV, Hallap T, Padrik P, Tenson T, Jaakma Ü, Kõks S, Salumets A. Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment. Proteomics 2015; 15:1906-20. [PMID: 25603787 DOI: 10.1002/pmic.201400297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/01/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
A significant proportion of mammalian fertilization is mediated through the proteomic composition of the sperm surface. These protein constituents can present as biomarkers to control and regulate breeding of agricultural animals. Previous studies have addressed the bovine sperm cell apical plasma membrane (PM) proteome with nitrogen cavitation enrichment. Alternative workflows would enable to expand the compositional data more globally around the entire sperm's surface. We used a cell surface biotin-labeling in combination with differential centrifugation to enrich sperm surface proteins. Using nano-LC MS/MS, 338 proteins were confidently identified in the PM-enriched proteome. Functional categories of sperm-egg interaction, protein turnover, metabolism as well as molecular transport, spermatogenesis, and signal transduction were represented by proteins with high quantitative signal in our study. A highly significant degree of enrichment was found for transmembrane and PM-targeted proteins. Among them, we also report proteins previously not described on bovine sperm (CPQ, CD58, CKLF, CPVL, GLB1L3, and LPCAT2B) of which CPQ and CPVL cell surface localization was further validated. A descriptive overview of the bovine sperm PM integral and peripheral proteins is provided to complement future studies on animal reproduction and its relation to sperm cell surface. All MS data have been deposited in the ProteomeXchange with identifier PXD001096 (http://proteomecentral.proteomexchange.org/dataset/PXD001096).
Collapse
Affiliation(s)
- Sergo Kasvandik
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Estonia.,Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia
| | - Gerly Sillaste
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | - Agne Velthut-Meikas
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Center for Biology of Integrated Systems, Tallinn University of Technology, Tallinn, Estonia
| | - Aavo-Valdur Mikelsaar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Triin Hallap
- Department of Reproductive Biology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Peeter Padrik
- Animal Breeders Association of Estonia, Keava, Kehtna vald, Raplamaa, Estonia
| | - Tanel Tenson
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülle Jaakma
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Reproductive Biology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Sulev Kõks
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
30
|
Rodriguez D, Sanders EN, Farell K, Langenbacher AD, Taketa DA, Hopper MR, Kennedy M, Gracey A, De Tomaso AW. Analysis of the basal chordate Botryllus schlosseri reveals a set of genes associated with fertility. BMC Genomics 2014; 15:1183. [PMID: 25542255 PMCID: PMC4523013 DOI: 10.1186/1471-2164-15-1183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 11/25/2022] Open
Abstract
Background Gonad differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. The colonial ascidian, Botryllus schlosseri is a chordate model organism which offers two unique traits that can be utilized to characterize the genes underlying germline development: a colonial life history and variable fertility. These properties allow individual genotypes to be isolated at different stages of fertility and gene expression can be characterized comprehensively. Results Here we characterized the transcriptome of both fertile and infertile colonies throughout blastogenesis (asexual development) using differential expression analysis. We identified genes (as few as 7 and as many as 647) regulating fertility in Botryllus at each stage of blastogenesis. Several of these genes appear to drive gonad maturation, as they are expressed by follicle cells surrounding both testis and oocyte precursors. Spatial and temporal expression of differentially expressed genes was analyzed by in situ hybridization, confirming expression in developing gonads. Conclusion We have identified several genes expressed in developing and mature gonads in B. schlosseri. Analysis of genes upregulated in fertile animals suggests a high level of conservation of the mechanisms regulating fertility between basal chordates and vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1183) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Erin N Sanders
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Kelsea Farell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Adam D Langenbacher
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Daryl A Taketa
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Michelle Rae Hopper
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Morgan Kennedy
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Andrew Gracey
- Department of Marine Environmental Biology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
31
|
Yokoe M, Sano M, Shibata H, Shibata D, Takayama-Watanabe E, Inaba K, Watanabe A. Sperm proteases that may be involved in the initiation of sperm motility in the newt, Cynops pyrrhogaster. Int J Mol Sci 2014; 15:15210-24. [PMID: 25170808 PMCID: PMC4200841 DOI: 10.3390/ijms150915210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 07/28/2014] [Accepted: 08/25/2014] [Indexed: 11/17/2022] Open
Abstract
A protease of sperm in the newt Cynops pyrrhogaster that is released after the acrosome reaction (AR) is proposed to lyse the sheet structure on the outer surface of egg jelly and release sperm motility-initiating substance (SMIS). Here, we found that protease activity in the sperm head was potent to widely digest substrates beneath the sperm. The protease activity measured by fluorescein thiocarbamoyl-casein digestion was detected in the supernatant of the sperm after the AR and the activity was inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), an inhibitor for serine or cysteine protease, suggesting the release of serine and/or cysteine proteases by AR. In an in silico analysis of the testes, acrosins and 20S proteasome were identified as possible candidates of the acrosomal proteases. We also detected another AEBSF-sensitive protease activity on the sperm surface. Fluorescence staining with AlexaFluor 488-labeled AEBSF revealed a cysteine protease in the principal piece; it is localized in the joint region between the axial rod and undulating membrane, which includes an axoneme and produces powerful undulation of the membrane for forward sperm motility. These results indicate that AEBSF-sensitive proteases in the acrosome and principal piece may participate in the initiation of sperm motility on the surface of egg jelly.
Collapse
Affiliation(s)
- Misato Yokoe
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
| | - Makoto Sano
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
| | - Honami Shibata
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
| | - Daisuke Shibata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| | - Eriko Takayama-Watanabe
- Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| | - Akihiko Watanabe
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
| |
Collapse
|
32
|
Self/non-self recognition mechanisms in sexual reproduction: New insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals. Biochem Biophys Res Commun 2014; 450:1142-8. [DOI: 10.1016/j.bbrc.2014.05.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 01/17/2023]
|
33
|
Teaniniuraitemoana V, Huvet A, Levy P, Klopp C, Lhuillier E, Gaertner-Mazouni N, Gueguen Y, Le Moullac G. Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes. BMC Genomics 2014; 15:491. [PMID: 24942841 PMCID: PMC4082630 DOI: 10.1186/1471-2164-15-491] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Black pearl farming is based on culture of the blacklip pearl oyster Pinctada margaritifera (Mollusca, lophotrochozoa), a protandrous hermaphrodite species. At first maturation, all individuals are males. The female sex appears progressively from two years old, which represents a limitation for broodstock conditioning for aquaculture production. In marine mollusks displaying hermaphroditic features, data on sexual determinism and differentiation, including the molecular sex determining cascade, are scarce. To increase genomic resources and identify the molecular mechanisms whereby gene expression may act in the sexual dimorphism of P. margaritifera, we performed gonad transcriptome analysis. RESULTS The gonad transcriptome of P. margaritifera was sequenced from several gonadic samples of males and females at different development stages, using a Next-Generation-Sequencing method and RNAseq technology. After Illumina sequencing, assembly and annotation, we obtained 70,147 contigs of which 62.2% shared homologies with existing protein sequences, and 9% showed functional annotation with Gene Ontology terms. Differential expression analysis identified 1,993 differentially expressed contigs between the different categories of gonads. Clustering methods of samples revealed that the sex explained most of the variation in gonad gene expression. K-means clustering of differentially expressed contigs showed 815 and 574 contigs were more expressed in male and female gonads, respectively. The analysis of these contigs revealed the presence of known specific genes coding for proteins involved in sex determinism and/or differentiation, such as dmrt and fem-1 like for males, or foxl2 and vitellogenin for females. The specific gene expression profiles of pmarg-fem1-like, pmarg-dmrt and pmarg-foxl2 in different reproductive stages (undetermined, sexual inversion and regression) suggest that these three genes are potentially involved in the sperm-oocyte switch in P. margaritifera. CONCLUSIONS The study provides a new transcriptomic tool to study reproduction in hermaphroditic marine mollusks. It identifies sex differentiation and potential sex determining genes in P. margaritifera, a protandrous hermaphrodite species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilles Le Moullac
- Ifremer, UMR 241 EIO, Labex CORAIL, BP 7004, 98719 Taravao, Tahiti, Polynésie Française.
| |
Collapse
|
34
|
Zimmerman SW, Yi YJ, Sutovsky M, van Leeuwen FW, Conant G, Sutovsky P. Identification and characterization of RING-finger ubiquitin ligase UBR7 in mammalian spermatozoa. Cell Tissue Res 2014; 356:261-78. [PMID: 24664117 DOI: 10.1007/s00441-014-1808-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls intracellular protein turnover in a substrate-specific manner via E3-type ubiquitin ligases. Mammalian fertilization and particularly sperm penetration through the oocyte vitelline coat, the zona pellucida (ZP), is regulated by UPS. We use an extrinsic substrate of the proteasome-dependent ubiquitin-fusion degradation pathway, the mutant ubiquitin UBB(+1), to provide evidence that an E3-type ligase activity exists in sperm-acrosomal fractions. Protein electrophoresis gels from such de novo ubiquitination experiments contained a unique protein band identified by tandem mass spectrometry as being similar to ubiquitin ligase UBR7 (alternative name: C14ORF130). Corresponding mRNA was amplified from boar testis and several variants of the UBR7 protein were detected in boar, mouse and human sperm extracts by Western blotting. Genomic analysis indicated a high degree of evolutionary conservation, remarkably constant purifying selection and conserved testis expression of the UBR7 gene. By immunofluorescence, UBR7 was localized to the spermatid acrosomal cap and sperm acrosome, in addition to hotspots of proteasomal activity in spermatids, such as the cytoplasmic lobe, caudal manchette, nucleus and centrosome. During fertilization, UBR7 remained with the ZP-bound acrosomal shroud following acrosomal exocytosis. Thus, UBR7 is present in the acrosomal cap of round spermatids and within the acrosomal matrix of mature boar spermatozoa. These data provide the first evidence of ubiquitin ligase activity in mammalian spermatozoa and indicate UBR7 involvement in spermiogenesis.
Collapse
Affiliation(s)
- Shawn W Zimmerman
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sawada H, Mino M, Akasaka M. Sperm proteases and extracellular ubiquitin-proteasome system involved in fertilization of ascidians and sea urchins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:1-11. [PMID: 25030757 DOI: 10.1007/978-1-4939-0817-2_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ascidians (primitive chordates) are hermaphroditic animals that release spermatozoa and eggs almost simultaneously, but some species, including Halocynthia roretzi, show strict self-sterility. In H. roretzi, a 70-kDa vitelline coat (VC) protein consisting of 12 EGF-like repeats, named HrVC70, appears to be a promising candidate for the self/nonself-recognition (or allorecognition) system during gamete interaction. After spermatozoon recognizes the VC as nonself, sperm 700-kDa extracellular ubiquitin-conjugating enzyme complex appears to ubiquitinate Lys234 of HrVC70, and the ubiquitinated HrVC70 is degraded by the sperm 26S proteasome that is located on the sperm head surface. This novel ubiquitin-proteasome system enables spermatozoa to penetrate through the VC. Sperm trypsin-like proteases, acrosin and spermosin, also participate in fertilization, probably as sperm-side 'movable' binding proteins to the VC.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, 517-0004, Mie Prefecture, Japan,
| | | | | |
Collapse
|
36
|
Deubiquitinating enzymes in oocyte maturation, fertilization and preimplantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:89-110. [PMID: 25030761 DOI: 10.1007/978-1-4939-0817-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications of cellular proteins by ubiquitin and ubiquitin-like protein modifiers are important regulatory events involved in diverse aspects of gamete and embryo physiology including oocyte maturation, fertilization and development of embryos to term. Deubiquitinating enzymes (DUBs) regulate proteolysis by reversing ubiquitination, which targets proteins to the 26S proteasome. The ubiquitin C-terminal hydrolases (UCHs) comprise are DUBs that play a role in the removal of multi-ubiquitin chains. We review here the roles of UCHs in oocytes maturation, fertilization and development in mouse, bovine, porcine and rhesus monkeys. Oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex as well as oocyte spindle. Lack of UCHs in embryos reduces fertilization, while mutant embryos fail to undergo compaction and blastocyst formation. In addition to advancing our understanding of reproductive process, research on the role of deubiquitinating enzymes will allow us to better understand and treat human infertility, and to optimize reproductive performance in agriculturally important livestock species.
Collapse
|
37
|
Otsuka K, Yamada L, Sawada H. cDNA cloning, localization, and candidate binding partners of acid-extractable vitelline-coat protein Ci-v-Themis-like in the ascidian Ciona intestinalis. Mol Reprod Dev 2013; 80:840-8. [DOI: 10.1002/mrd.22213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Kei Otsuka
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
38
|
Zhou Y, Ru Y, Wang C, Wang S, Zhou Z, Zhang Y. Tripeptidyl peptidase II regulates sperm function by modulating intracellular Ca(2+) stores via the ryanodine receptor. PLoS One 2013; 8:e66634. [PMID: 23818952 PMCID: PMC3688596 DOI: 10.1371/journal.pone.0066634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/08/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies have identified Ca2+ stores in sperm cells; however, it is not clear whether these Ca2+ stores are functional and how they are mobilized. Here, in vitro and in vivo, we determined that tripeptidyl peptidase II antagonists strongly activated the cAMP/PKA signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation. We demonstrated that in the absence of Ca2+, TPIII antagonists elevated the intracellular Ca2+ levels in sperm, resulting in a marked improvement in sperm movement, capacitation, acrosome reaction, and the in vitro fertilizing ability. This antagonist-induced release of intracellular Ca2+ could be blocked by the inhibitors of ryanodine receptors (RyRs) which are the main intracellular Ca2+ channels responsible for releasing stored Ca2+. Consistent with these results, indirect immunofluorescence assay using anti-RyR antibodies further validated the presence of RyR3 in the acrosomal region of mature sperm. Thus, TPPII can regulate sperm maturation by modulating intracellular Ca2+ stores via the type 3 RyR.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanfei Ru
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunmei Wang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shoulin Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yonglian Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Abstract
Among its many functions, the ubiquitin-proteasome system regulates substrate-specific proteolysis during the cell cycle, apoptosis, and fertilization and in pathologies such as Alzheimer's disease, cancer, and liver cirrhosis. Proteasomes are present in human and boar spermatozoa, but little is known about the interactions of proteasomal subunits with other sperm proteins or structures. We have created a transgenic boar with green fluorescent protein (GFP) tagged 20S proteasomal core subunit α-type 1 (PSMA1-GFP), hypothesizing that the PSMA1-GFP fusion protein will be incorporated into functional sperm proteasomes. Using direct epifluorescence imaging and indirect immunofluorescence detection, we have confirmed the presence of PSMA1-GFP in the sperm acrosome. Western blotting revealed a protein band corresponding to the predicted mass of PSMA1-GFP fusion protein (57 kDa) in transgenic spermatozoa. Transgenic boar fertility was confirmed by in vitro fertilization, resulting in transgenic blastocysts, and by mating, resulting in healthy transgenic offspring. Immunoprecipitation and proteomic analysis revealed that PSMA1-GFP copurifies with several acrosomal membrane-associated proteins (e.g., lactadherin/milk fat globule E8 and spermadhesin alanine-tryptophan-asparagine). The interaction of MFGE8 with PSMA1-GFP was confirmed through cross-immunoprecipitation. The identified proteasome-interacting proteins may regulate sperm proteasomal activity during fertilization or may be the substrates of proteasomal proteolysis during fertilization. Proteomic analysis also confirmed the interaction/coimmunoprecipitation of PSMA1-GFP with 13/14 proteasomal core subunits. These results demonstrate that the PSMA1-GFP was incorporated in the assembled sperm proteasomes. This mammal carrying green fluorescent proteasomes will be useful for studies of fertilization and wherever the ubiquitin-proteasome system plays a role in cellular function or pathology.
Collapse
|
40
|
Akasaka M, Kato KH, Kitajima K, Sawada H. Identification of Novel Isoforms of Vitellogenin Expressed in Ascidian Eggs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:118-28. [DOI: 10.1002/jez.b.22488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022]
Affiliation(s)
| | - Koichi H. Kato
- Graduate School of Natural Sciences; Nagoya City University, Mizuho-ku; Nagoya; Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center; Nagoya University; Nagoya; Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory; Graduate School of Science, Nagoya University, Sugashima; Toba; Japan
| |
Collapse
|
41
|
Gallo A, Costantini M. Glycobiology of reproductive processes in marine animals: the state of the art. Mar Drugs 2012; 10:2861-92. [PMID: 23247316 PMCID: PMC3528131 DOI: 10.3390/md10122861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 10/31/2022] Open
Abstract
Glycobiology is the study of complex carbohydrates in biological systems and represents a developing field of science that has made huge advances in the last half century. In fact, it combines all branches of biomedical research, revealing the vast and diverse forms of carbohydrate structures that exist in nature. Advances in structure determination have enabled scientists to study the function of complex carbohydrates in more depth and to determine the role that they play in a wide range of biological processes. Glycobiology research in marine systems has primarily focused on reproduction, in particular for what concern the chemical communication between the gametes. The current status of marine glycobiology is primarily descriptive, devoted to characterizing marine glycoconjugates with potential biomedical and biotechnological applications. In this review, we describe the current status of the glycobiology in the reproductive processes from gametogenesis to fertilization and embryo development of marine animals.
Collapse
Affiliation(s)
| | - Maria Costantini
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy; E-Mail:
| |
Collapse
|
42
|
Sasanami T, Sugiura K, Tokumoto T, Yoshizaki N, Dohra H, Nishio S, Mizushima S, Hiyama G, Matsuda T. Sperm proteasome degrades egg envelope glycoprotein ZP1 during fertilization of Japanese quail (Coturnix japonica). Reproduction 2012; 144:423-31. [PMID: 22859519 DOI: 10.1530/rep-12-0165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At the time of fertilization, the extracellular matrix surrounding avian oocytes, termed the perivitelline membrane (pvm), is hydrolyzed by a sperm-borne protease, although the actual protease that is responsible for the digestion of the pvm remains to be identified. Here, we show evidence that the ubiquitin-proteasome system is functional in the fertilization of Japanese quail. The activities for the induction of the acrosome reaction and binding to ZP3 as revealed by ligand blotting of purified serum ZP1 are similar to those of pvm ZP1. Western blot analysis of purified ZP1 and ZP3 by the use of the anti-ubiquitin antibody showed that only pvm ZP1 was reactive to the antibody. In vitro penetration assay of the sperm on the pvm indicated that fragments of ZP1 and intact ZP3 were released from the pvm. Western blot analysis using the anti-20S proteasome antibody and ultrastructural analysis showed that immunoreactive proteasome was localized in the acrosomal region of the sperm. Inclusion of specific proteasome inhibitor MG132 in the incubation mixture, or depletion of extracellular ATP by the addition of apyrase, efficiently suppressed the sperm perforation of the pvm. These results demonstrate for the first time that the sperm proteasome is important for fertilization in birds and that the extracellular ubiquitination of ZP1 might occur during its transport via blood circulation.
Collapse
Affiliation(s)
- Tomohiro Sasanami
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 2012; 349:765-82. [DOI: 10.1007/s00441-012-1370-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
|
44
|
He L, Wang Q, Jin X, Wang Y, Chen L, Liu L, Wang Y. Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLoS One 2012; 7:e33735. [PMID: 22442720 PMCID: PMC3307765 DOI: 10.1371/journal.pone.0033735] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
The testis is a highly specialized tissue that plays dual roles in ensuring fertility by producing spermatozoa and hormones. Spermatogenesis is a complex process, resulting in the production of mature sperm from primordial germ cells. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. The gene expression pattern of testis in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been performed on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for testis of E. sinensis. In two runs, we produced 25,698,778 sequencing reads corresponding with 2.31 Gb total nucleotides. These reads were assembled into 342,753 contigs or 141,861 scaffold sequences, which identified 96,311 unigenes. Based on similarity searches with known proteins, 39,995 unigenes were annotated based on having a Blast hit in the non-redundant database or ESTscan results with a cut-off E-value above 10−5. This is the first report of a mitten crab transcriptome using high-throughput sequencing technology, and all these testes transcripts can help us understand the molecular mechanisms involved in spermatogenesis and testis maturation.
Collapse
Affiliation(s)
| | - Qun Wang
- School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| | | | | | | | | | | |
Collapse
|
45
|
Mtango NR, Sutovsky M, Susor A, Zhong Z, Latham KE, Sutovsky P. Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. J Cell Physiol 2012; 227:1592-603. [PMID: 21678411 DOI: 10.1002/jcp.22876] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational protein modification by ubiquitination, a signal for lysosomal or proteasomal proteolysis, can be regulated and reversed by deubiquitinating enzymes (DUBs). This study examined the roles of UCHL1 and UCHL3, two members of ubiquitin C-terminal hydrolase (UCH) family of DUBs, in murine fertilization and preimplantation development. Before fertilization, these proteins were associated with the oocyte cortex (UCHL1) and meiotic spindle (UCHL3). Intracytoplasmic injection of the general UCH-family inhibitor ubiquitin-aldehyde (UBAL) or antibodies against UCHL3 into mature metaphase II oocytes blocked fertilization by reducing sperm penetration of the zona pellucida and incorporation into the ooplasm, suggesting a role for cortical UCHL1 in sperm incorporation. Both UBAL and antibodies against UCHL1 injected at the onset of oocyte maturation (germinal vesicle stage) reduced the fertilizing ability of oocytes. The subfertile Uchl1(gad-/-) mutant mice showed an intriguing pattern of switched UCH localization, with UCHL3 replacing UCHL1 in the oocyte cortex. While fertilization defects were not observed, the embryos from homozygous Uchl1(gad-/-) mutant females failed to undergo morula compaction and did not form blastocysts in vivo, indicating a maternal effect related to UCHL1 deficiency. We conclude that the activity of oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex.
Collapse
Affiliation(s)
- Namdori R Mtango
- The Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
46
|
Proteasomal degradation of ubiquitinated proteins in oocyte meiosis and fertilization in mammals. Cell Tissue Res 2011; 346:1-9. [DOI: 10.1007/s00441-011-1235-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 07/30/2011] [Indexed: 12/18/2022]
|
47
|
Yi YJ, Zimmerman SW, Manandhar G, Odhiambo JF, Kennedy C, Jonáková V, Maňásková-Postlerová P, Sutovsky M, Park CS, Sutovsky P. Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. ACTA ACUST UNITED AC 2011; 35:196-210. [PMID: 21950462 DOI: 10.1111/j.1365-2605.2011.01217.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein ubiquitination is a stable, covalent post-translational modification that alters protein activity and/or targets proteins for proteolysis by the 26S proteasome. The E1-type ubiquitin-activating enzyme (UBA1) is responsible for ubiquitin activation, the initial step of ubiquitin-protein ligation. Proteasomal proteolysis of ubiquitinated spermatozoa and oocyte proteins occurs during mammalian fertilization, particularly at the site of sperm acrosome contact with oocyte zona pellucida. However, it is not clear whether the substrates are solely proteins ubiquitinated during gametogenesis or if de novo ubiquitination also occurs during fertilization supported by ubiquitin-activating and -conjugating enzymes present in the sperm acrosome. Along this line of inquiry, UBA1 was detected in boar sperm-acrosomal extracts by Western blotting (WB). Immunofluorescence revealed accumulation of UBA1 in the nuclei of spermatogonia, spermatocytes and spermatids, and in the acrosomal caps of round and elongating spermatids. Thiol ester assays utilizing biotinylated ubiquitin and isolated sperm acrosomes confirmed the enzymatic activity of the resident UBA1. A specific UBA1 inhibitor, PYR-41, altered the remodelling of the outer acrosomal membrane (OAM) during sperm capacitation, monitored using flow cytometry of fluorescein isothiocyanate-conjugated peanut agglutinin (FITC-PNA). Although viable and motile, the spermatozoa capacitated in the presence of PYR-41, showed significantly reduced fertilization rates during in vitro fertilization (IVF; p < 0.05). Similarly, the fertilization rate was lowered by the addition of PYR-41 directly into fertilization medium during IVF. In WB, high Mr bands, suggestive of protein ubiquitination, were detected in non-capacitated spermatozoa by antibodies against ubiquitin; WB with anti-phosphotyrosine antibodies and antibodies against acrosomal proteins SPINK2 (acrosin inhibitor) and AQN1 (spermadhesin) revealed that the capacitation-induced modification of those proteins was altered by PYR-41. In summary, it appears that de novo protein ubiquitination involving UBA1 contributes to sperm capacitation and acrosomal function during fertilization.
Collapse
Affiliation(s)
- Y-J Yi
- Division of Animal Sciences, Gynecology and Women's Health, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Involvement of multimeric protein complexes in mediating the capacitation-dependent binding of human spermatozoa to homologous zonae pellucidae. Dev Biol 2011; 356:460-74. [DOI: 10.1016/j.ydbio.2011.05.674] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 02/06/2023]
|
49
|
Yokota N, Kataoka Y, Hashii N, Kawasaki N, Sawada H. Sperm-specific C-terminal processing of the proteasome PSMA1/α6 subunit. Biochem Biophys Res Commun 2011; 410:809-15. [DOI: 10.1016/j.bbrc.2011.06.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 12/19/2022]
|
50
|
Abstract
The omnipresent ubiquitin–proteasome system (UPS) is an ATP-dependent enzymatic machinery that targets substrate proteins for degradation by the 26S proteasome by tagging them with an isopeptide chain composed of covalently linked molecules of ubiquitin, a small chaperone protein. The current knowledge of UPS involvement in the process of sperm penetration through vitelline coat (VC) during human and animal fertilization is reviewed in this study, with attention also being given to sperm capacitation and acrosome reaction/exocytosis. In ascidians, spermatozoa release ubiquitin-activating and conjugating enzymes, proteasomes, and unconjugated ubiquitin to first ubiquitinate and then degrade the sperm receptor on the VC; in echinoderms and mammals, the VC (zona pellucida/ZP in mammals) is ubiquitinated during oogenesis and the sperm receptor degraded during fertilization. Various proteasomal subunits and associated enzymes have been detected in spermatozoa and localized to sperm acrosome and other sperm structures. By using specific fluorometric substrates, proteasome-specific proteolytic and deubiquitinating activities can be measured in live, intact spermatozoa and in sperm protein extracts. The requirement of proteasomal proteolysis during fertilization has been documented by the application of various proteasome-specific inhibitors and antibodies. A similar effect was achieved by depletion of sperm-surface ATP. Degradation of VC/ZP-associated sperm receptor proteins by sperm-borne proteasomes has been demonstrated in ascidians and sea urchins. On the applied side, polyspermy has been ameliorated by modulating sperm-associated deubiquitinating enzymes. Diagnostic and therapeutic applications could emerge in human reproductive medicine. Altogether, the studies on sperm proteasome indicate that animal fertilization is controlled in part by a unique, gamete associated, extracellular UPS.
Collapse
|