1
|
Mosala P, Mpotje T, Abdel Aziz N, Ndlovu H, Musaigwa F, Nono JK, Brombacher F. Cysteinyl leukotriene receptor-1 as a potential target for host-directed therapy during chronic schistosomiasis in murine model. Front Immunol 2024; 15:1279043. [PMID: 38840916 PMCID: PMC11150569 DOI: 10.3389/fimmu.2024.1279043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis remains the most devastating neglected tropical disease, affecting over 240 million people world-wide. The disease is caused by the eggs laid by mature female worms that are trapped in host's tissues, resulting in chronic Th2 driven fibrogranulmatous pathology. Although the disease can be treated with a relatively inexpensive drug, praziquantel (PZQ), re-infections remain a major problem in endemic areas. There is a need for new therapeutic drugs and alternative drug treatments for schistosomiasis. The current study hypothesized that cysteinyl leukotrienes (cysLTs) could mediate fibroproliferative pathology during schistosomiasis. Cysteinyl leukotrienes (cysLTs) are potent lipid mediators that are known to be key players in inflammatory diseases, such as asthma and allergic rhinitis. The present study aimed to investigate the role of cysLTR1 during experimental acute and chronic schistosomiasis using cysLTR1-/- mice, as well as the use of cysLTR1 inhibitor (Montelukast) to assess immune responses during chronic Schistosoma mansoni infection. Mice deficient of cysLTR1 and littermate control mice were infected with either high or low dose of Schistosoma mansoni to achieve chronic or acute schistosomiasis, respectively. Hepatic granulomatous inflammation, hepatic fibrosis and IL-4 production in the liver was significantly reduced in mice lacking cysLTR1 during chronic schistosomiasis, while reduced liver pathology was observed during acute schistosomiasis. Pharmacological blockade of cysLTR1 using montelukast in combination with PZQ reduced hepatic inflammation and parasite egg burden in chronically infected mice. Combination therapy led to the expansion of Tregs in chronically infected mice. We show that the disruption of cysLTR1 is dispensable for host survival during schistosomiasis, suggesting an important role cysLTR1 may play during early immunity against schistosomiasis. Our findings revealed that the combination of montelukast and PZQ could be a potential prophylactic treatment for chronic schistosomiasis by reducing fibrogranulomatous pathology in mice. In conclusion, the present study demonstrated that cysLTR1 is a potential target for host-directed therapy to ameliorate fibrogranulomatous pathology in the liver during chronic and acute schistosomiasis in mice.
Collapse
Affiliation(s)
- Paballo Mosala
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Thabo Mpotje
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Nada Abdel Aziz
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Immuno-Biotechnology Lab, Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hlumani Ndlovu
- Division of Chemical and System Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fungai Musaigwa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Justin Komguep Nono
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Frank Brombacher
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Gales C, Stoica B, Rusu-Zota G, Nechifor M. Montelukast Influence on Lung in Experimental Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:749. [PMID: 38792932 PMCID: PMC11123472 DOI: 10.3390/medicina60050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: The influence of montelukast (MK), an antagonist of cysLT1 leukotriene receptors, on lung lesions caused by experimental diabetes was studied. Materials and Methods: The study was conducted on four groups of six adult male Wistar rats. Diabetes was produced by administration of streptozotocin 65 mg/kg ip. in a single dose. Before the administration of streptozotocin, after 72 h, and after 8 weeks, the serum values of glucose, SOD, MDA, and total antioxidant capacity (TAS) were determined. After 8 weeks, the animals were anesthetized and sacrificed, and the lungs were harvested and examined by optical microscopy. Pulmonary fibrosis, the extent of lung lesions, and the lung wet-weight/dry-weight ratio were evaluated. Results: The obtained results showed that MK significantly reduced pulmonary fibrosis (3.34 ± 0.41 in the STZ group vs. 1.73 ± 0.24 in the STZ+MK group p < 0.01) and lung lesion scores and also decreased the lung wet-weight/dry-weight (W/D) ratio. SOD and TAS values increased significantly when MK was administered to animals with diabetes (77.2 ± 11 U/mL in the STZ group vs. 95.7 ± 13.3 U/mL in the STZ+MK group, p < 0.05, and 25.52 ± 2.09 Trolox units in the STZ group vs. 33.29 ± 1.64 Trolox units in the STZ+MK group, respectively, p < 0.01), and MDA values decreased. MK administered alone did not significantly alter any of these parameters in normal animals. Conclusions: The obtained data showed that by blocking the action of peptide leukotrienes on cysLT1 receptors, montelukast significantly reduced the lung lesions caused by diabetes. The involvement of these leukotrienes in the pathogenesis of fibrosis and other lung diabetic lesions was also demonstrated.
Collapse
Affiliation(s)
- Cristina Gales
- Department of Histology, “Gr T Popa” University of Medicine and Pharmacy, Universitatii 16, 700115 Iasi, Romania;
| | - Bogdan Stoica
- Department of Biochemistry, “Gr T Popa” University of Medicine and Pharmacy, Universitatii 16, 700115 Iasi, Romania
| | - Gabriela Rusu-Zota
- Department of Pharmacology, “Gr T Popa” University of Medicine and Pharmacy, Universitatii 16, 700115 Iasi, Romania;
| | - Mihai Nechifor
- Department of Pharmacology, “Gr T Popa” University of Medicine and Pharmacy, Universitatii 16, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Gao C, Bai Y, Zhou H, Meng H, Wu T, Bai W, Wang J, Fan L, Yang Y, Chang H, Shi S. Effects of N-butanol extract of Amygdalus mongolica on rats with bleomycin-induced pulmonary fibrosis based on metabolomics. Braz J Med Biol Res 2023; 56:e13045. [PMID: 37937603 PMCID: PMC10695158 DOI: 10.1590/1414-431x2023e13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023] Open
Abstract
Pulmonary fibrosis (PF) is a major public health issue with limited treatment options. As the active ingredient of the n-butanol extract of Amygdalus mongolica (BUT), amygdalin inhibits PF. However, its mechanisms of action are unclear and need further verification. Therefore, the purpose of the present studies was to investigate the anti-fibrotic effects of BUT on PF by serum metabolomics and the transforming growth factor β (TGF-β) pathway. Sixty male Sprague-Dawley rats were randomly divided into control, untreated PF, prednisone-treated (5 mg/kg), and BUT-treated (1.75, 1.25, 0.75 g/kg) groups, and the respective drugs were administered intragastrically for 21 days. The serum metabolomics profiles were determined by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and metabolism network analysis. The expression of TGF-β1, Smad-3, Smad-7, and α-smooth muscle actin (α-SMA) was measured using a real-time polymerase chain reaction in the lung tissue. BUT significantly alleviated fibrosis by reducing the mRNA expressions of TGF-β1 (from 1.73 to 1.13), Smad-3 (from 2.01 to 1.19), and α-SMA (from 2.14 to 1.19) and increasing that of Smad7 (from 0.17 to 0.62). Twenty-eight potential biomarkers associated with PF were identified. In addition, four key biomarkers were restored to baseline levels following BUT treatment, with the lowest dose showing optimal effect. Furthermore, A. mongolica BUT was found to improve PF by the pentose phosphate pathway and by taurine, hypotaurine, and arachidonic acid metabolism. These findings revealed the mechanism of A. mongolica BUT antifibrotic effects and metabolic activity in PF rats and provided the experimental basis for its clinical application.
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacy, Baotou Medical College, Baotou, China
- The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hongyu Meng
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Liya Fan
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yuxi Yang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| |
Collapse
|
4
|
Carion TW, Wang Y, Stambersky A, Ebrahim AS, Berger EA. A Dual Role for Cysteinyl Leukotriene Receptors in the Pathogenesis of Corneal Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2331-2342. [PMID: 35470258 PMCID: PMC9117469 DOI: 10.4049/jimmunol.2100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/12/2022] [Indexed: 05/17/2023]
Abstract
Cysteinyl leukotrienes (CysLTs) have been defined as central mediators of inflammation. Despite our extensive understanding of these bioactive lipid mediators in the pathogenesis of diseases such as asthma, allergic rhinitis, and even neurological disorders, information regarding the eye is markedly lacking. As a result, this study examined the expression profiles of two major CysLT receptors, CysLT1 and CysLT2, in the cornea using experimental mouse models of Pseudomonas aeruginosa-induced keratitis with contrasting outcomes: susceptible C57BL/6 (B6) and resistant BALB/c. Postinfection, disparate levels of CysLT receptors were accompanied by distinct expression profiles for select proinflammatory and anti-inflammatory cell surface markers detected on macrophages and polymorphonuclear neutrophils between the two strains. Further, inhibition of either CysLT receptor converted the disease response of both strains, where corneal perforation was prevented in B6 mice, and BALB/c mice fared significantly worse. In addition, receptor antagonist studies revealed changes in inflammatory cell infiltrate phenotypes and an influence on downstream CysLT receptor signaling pathways. Although the B6 mouse model highlights the established proinflammatory activities related to CysLT receptor activation, results generated from BALB/c mice indicate a protective mechanism that may be essential to disease resolution. Further, basal expression levels of CysLT1 and CysLT2 were significantly higher in uninfected corneas of both mouse strains as opposed to during infection, suggestive of a novel role in homeostatic maintenance within the eye. In light of these findings, therapeutic targeting of CysLT receptors extends beyond inhibition of proinflammatory activities and may impact inflammation resolution, as well as corneal surface homeostasis.
Collapse
Affiliation(s)
- Thomas W Carion
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Yuxin Wang
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Ashten Stambersky
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Elizabeth A Berger
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
5
|
Mandujano A, Méndez-Ramírez I, Silveira-Torre LH. Systemic Sclerosis: Elevated Levels of Leukotrienes in Saliva and Plasma Are Associated with Vascular Manifestations and Nailfold Capillaroscopic Abnormalities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010841. [PMID: 34682587 PMCID: PMC8536043 DOI: 10.3390/ijerph182010841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
The role of leukotrienes (LTs) in the pathogenesis of systemic sclerosis (SSc) needs clarification. We analyzed the association of salivary (sa) and plasma (p) levels (pg/mL) of cysteinyl-leukotrienes (CysLT) and LTB4 with SSc vascular manifestations and nailfold capillaroscopy (NFC) in a cross-sectional study. Patients and healthy controls were evaluated for vascular manifestations and NFC. LTs were compared between groups as follows: SSc with or SSc without vascular features and controls, and by NFC parameters. Twenty SSc patients and 16 volunteers were recruited; Raynaud's phenomenon (RP) history (SSc: saCysLT 99.4 ± 21.8 vs. controls: 23.05 ± 23.7, p = 0.01), RP at examination (SSc: saCysLT 129.3 ± 24.6 vs. controls: 23.05 ± 22.46, p = 0.01; pCysLT SSc: 87.5 ± 11.2 vs. controls: 32.37 ± 10.75, p = 0.002), capillary loss (saCysLT 138.6 ± 26.7 vs. 23.05 ± 21.6, p = 0.0007; saLTB4 3380.9 ± 426.6 vs. 1216.33 ± 346.1, p = 0.0005), "late" scleroderma pattern vs. controls (saCysLT 205.6 ± 32 vs. 23 ± 19.6, p = 0.0002; saLTB4 4564.9 ± 503.6 vs. 1216.3 ± 308.3; p < 0.0001) were all significant. Late patterns had higher levels (saCysLT, p = 0.002; LTB4 p = 0.0006) compared to active and early patterns (LTB4, p = 0.0006), and giant capillaries (p = 0.01) showed higher levels of LTs. Levels of pCysLT were higher in patients with RP at examination vs. patients without RP; saCysLT and LTB4 were higher in SSc group with vs. without capillary loss. LTs could be involved in the pathophysiology of vascular abnormalities. Further research is required to determine if blocking LTs could be a therapeutic target for SSc vascular manifestations.
Collapse
Affiliation(s)
- Angélica Mandujano
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
- Correspondence: (A.M.); (L.H.S.-T.)
| | - Ignacio Méndez-Ramírez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Luis Humberto Silveira-Torre
- Departamento de Reumatología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Correspondence: (A.M.); (L.H.S.-T.)
| |
Collapse
|
6
|
Cellular Senescence in Lung Fibrosis. Int J Mol Sci 2021; 22:ijms22137012. [PMID: 34209809 PMCID: PMC8267738 DOI: 10.3390/ijms22137012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are chronic and ultimately fatal age-related lung diseases characterized by the progressive and irreversible accumulation of scar tissue in the lung parenchyma. Over the past years, significant progress has been made in our incomplete understanding of the pathobiology underlying fibrosing ILDs, in particular in relation to diverse age-related processes and cell perturbations that seem to lead to maladaptation to stress and susceptibility to lung fibrosis. Growing evidence suggests that a specific biological phenomenon known as cellular senescence plays an important role in the initiation and progression of pulmonary fibrosis. Cellular senescence is defined as a cell fate decision caused by the accumulation of unrepairable cellular damage and is characterized by an abundant pro-inflammatory and pro-fibrotic secretome. The senescence response has been widely recognized as a beneficial physiological mechanism during development and in tumour suppression. However, recent evidence strengthens the idea that it also drives degenerative processes such as lung fibrosis, most likely by promoting molecular and cellular changes in chronic fibrosing processes. Here, we review how cellular senescence may contribute to lung fibrosis pathobiology, and we highlight current and emerging therapeutic approaches to treat fibrosing ILDs by targeting cellular senescence.
Collapse
|
7
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
8
|
Chen W, Wang Q, Zhou B, Zhang L, Zhu H. Lipid Metabolism Profiles in Rheumatic Diseases. Front Pharmacol 2021; 12:643520. [PMID: 33897433 PMCID: PMC8064727 DOI: 10.3389/fphar.2021.643520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatic diseases are a group of chronic autoimmune disorders that involve multiple organs or systems and have high mortality. The mechanisms of these diseases are still ill-defined, and targeted therapeutic strategies are still challenging for physicians. Recent research indicates that cell metabolism plays important roles in the pathogenesis of rheumatic diseases. In this review, we mainly focus on lipid metabolism profiles (dyslipidaemia, fatty acid metabolism) and mechanisms in rheumatic diseases and discuss potential clinical applications based on lipid metabolism profiles.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
9
|
Aigner L, Pietrantonio F, Bessa de Sousa DM, Michael J, Schuster D, Reitsamer HA, Zerbe H, Studnicka M. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Front Mol Biosci 2020; 7:610132. [PMID: 33392263 PMCID: PMC7773944 DOI: 10.3389/fmolb.2020.610132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence and global impact of COVID-19 has focused the scientific and medical community on the pivotal influential role of respiratory viruses as causes of severe pneumonia, on the understanding of the underlying pathomechanisms, and on potential treatment for COVID-19. The latter concentrates on four different strategies: (i) antiviral treatments to limit the entry of the virus into the cell and its propagation, (ii) anti-inflammatory treatment to reduce the impact of COVID-19 associated inflammation and cytokine storm, (iii) treatment using cardiovascular medication to reduce COVID-19 associated thrombosis and vascular damage, and (iv) treatment to reduce the COVID-19 associated lung injury. Ideally, effective COVID-19 treatment should target as many of these mechanisms as possible arguing for the search of common denominators as potential drug targets. Leukotrienes and their receptors qualify as such targets: they are lipid mediators of inflammation and tissue damage and well-established targets in respiratory diseases like asthma. Besides their role in inflammation, they are involved in various other aspects of lung pathologies like vascular damage, thrombosis, and fibrotic response, in brain and retinal damages, and in cardiovascular disease. In consequence, leukotriene receptor antagonists might be potential candidates for COVID-19 therapeutics. This review summarizes the current knowledge on the potential involvement of leukotrienes in COVID-19, and the rational for the use of the leukotriene receptor antagonist montelukast as a COVID-19 therapeutic.
Collapse
Affiliation(s)
- Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Diana Marisa Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johanna Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, University Clinic Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program of Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Michael Studnicka
- Department of Pulmonary Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
Wagner KM, Gomes A, McReynolds CB, Hammock BD. Soluble Epoxide Hydrolase Regulation of Lipid Mediators Limits Pain. Neurotherapeutics 2020; 17:900-916. [PMID: 32875445 PMCID: PMC7609775 DOI: 10.1007/s13311-020-00916-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of lipids in pain signaling is well established and built on decades of knowledge about the pain and inflammation produced by prostaglandin and leukotriene metabolites of cyclooxygenase and lipoxygenase metabolism, respectively. The analgesic properties of other lipid metabolites are more recently coming to light. Lipid metabolites have been observed to act directly at ion channels and G protein-coupled receptors on nociceptive neurons as well as act indirectly at cellular membranes. Cytochrome P450 metabolism of specifically long-chain fatty acids forms epoxide metabolites, the epoxy-fatty acids (EpFA). The biological role of these metabolites has been found to mediate analgesia in several types of pain pathology. EpFA act through a variety of direct and indirect mechanisms to limit pain and inflammation including nuclear receptor agonism, limiting endoplasmic reticulum stress and blocking mitochondrial dysfunction. Small molecule inhibitors of the soluble epoxide hydrolase can stabilize the EpFA in vivo, and this approach has demonstrated relief in preclinical modeled pain pathology. Moreover, the ability to block neuroinflammation extends the potential benefit of targeting soluble epoxide hydrolase to maintain EpFA for neuroprotection in neurodegenerative disease.
Collapse
Affiliation(s)
- Karen M Wagner
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Aldrin Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, USA
| | - Cindy B McReynolds
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA.
| |
Collapse
|
11
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
12
|
Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4:130056. [PMID: 31687975 DOI: 10.1172/jci.insight.130056] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.
Collapse
Affiliation(s)
| | | | - Sonnet S Davis
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | - Cheresa Calhoun
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | - Ying Wei
- UCSF, San Francisco, California, USA
| | | | - Arvind Ramanathan
- Buck Institute for Research on Aging, Novato, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine (inStem), Rajiv Gandhi Nagar, Kodigehalli, Bengaluru, Karnataka, India
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA.,Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Claude Jourdan Le Saux
- UCSF, San Francisco, California, USA.,University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
Pu S, Liu Q, Li Y, Li R, Wu T, Zhang Z, Huang C, Yang X, He J. Montelukast Prevents Mice Against Acetaminophen-Induced Liver Injury. Front Pharmacol 2019; 10:1070. [PMID: 31620001 PMCID: PMC6759817 DOI: 10.3389/fphar.2019.01070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/22/2019] [Indexed: 02/05/2023] Open
Abstract
Acetaminophen (APAP) is a widely used over-the-counter antipyretic and analgesic drug. Overdose of APAP is the leading cause of hospital admission for acute liver failure. Montelukast is an antagonist of cysteinyl leukotriene receptor 1 (Cysltr1), which protects from inflammation and oxidative stress. However, the function of montelukast in APAP-induced hepatotoxicity remains unknown. In this study, we examined whether pharmacological inhibition of Cystlr1 could protect mice against APAP-induced hepatic damage. We found that APAP treatment upregulated messenger RNA and protein levels of Cysltr1 both in vitro and in vivo. Pharmacological inhibition of Cysltr1 by montelukast ameliorated APAP-induced acute liver failure. The hepatoprotective effect of montelukast was associated with upregulation of hepatic glutathione/glutathione disulfide level, reduction in c-Jun-NH2-terminal kinase activation and oxidative stress. In mouse primary hepatocytes, inhibition of Cysltr1 by montelukast ameliorated the expression of inflammatory-related genes and APAP-induced cytotoxicity. We conclude that montelukast may be used to treat APAP-induced acute hepatic injury.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Li
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tong Wu
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zijing Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Cuiyuan Huang
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xuping Yang
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
14
|
Vos R, Eynde RV, Ruttens D, Verleden SE, Vanaudenaerde BM, Dupont LJ, Yserbyt J, Verbeken EK, Neyrinck AP, Van Raemdonck DE, Verleden GM. Montelukast in chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant 2019; 38:516-527. [DOI: 10.1016/j.healun.2018.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
|
15
|
Mamazhakypov A, Schermuly RT, Schaefer L, Wygrecka M. Lipids - two sides of the same coin in lung fibrosis. Cell Signal 2019; 60:65-80. [PMID: 30998969 DOI: 10.1016/j.cellsig.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive extracellular matrix deposition in the lung parenchyma leading to the destruction of lung structure, respiratory failure and premature death. Recent studies revealed that the pathogenesis of IPF is associated with alterations in the synthesis and the activity of lipids, lipid regulating proteins and cell membrane lipid transporters and receptors in different lung cells. Furthermore, deregulated lipid metabolism was found to contribute to the profibrotic phenotypes of lung fibroblasts and alveolar epithelial cells. Consequently, several pharmacological agents, targeting lipids, lipid mediators, and lipoprotein receptors, was successfully tested in the animal models of lung fibrosis and entered early phase clinical trials. In this review, we highlight new therapeutic options to counteract disturbed lipid hemostasis in the maladaptive lung remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Liliana Schaefer
- Goethe University School of Medicine, Frankfurt am Main, Germany.
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
16
|
Gilroy DW, Bishop-Bailey D. Lipid mediators in immune regulation and resolution. Br J Pharmacol 2019; 176:1009-1023. [PMID: 30674066 DOI: 10.1111/bph.14587] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/31/2022] Open
Abstract
We are all too familiar with the events that follow a bee sting-heat, redness, swelling, and pain. These are Celsus' four cardinal signs of inflammation that are driven by very well-defined signals and hormones. In fact, targeting the factors that drive this onset phase is the basis upon which most current anti-inflammatory therapies were developed. We are also very well aware that within a few hours, these cardinal signs normally disappear. In other words, inflammation resolves. When it does not, inflammation persists, resulting in damaging chronic conditions. While inflammatory onset is actively driven, so also is its resolution-years of research have identified novel internal counter-regulatory signals that work together to switch off inflammation. Among these signals, lipids are potent signalling molecules that regulate an array of immune responses including vascular hyper reactivity and pain, as well as leukocyte trafficking and clearance, so-called resolution. Here, we collate bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and their role in inflammation, as well as resolution. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
- Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - David Bishop-Bailey
- Comparative Biological Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
17
|
Role of the high-affinity leukotriene B4 receptor signaling in fibrosis after unilateral ureteral obstruction in mice. PLoS One 2019; 14:e0202842. [PMID: 30818366 PMCID: PMC6394974 DOI: 10.1371/journal.pone.0202842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator that acts as a potent chemoattractant for inflammatory leukocytes. Kidney fibrosis is caused by migrating inflammatory cells and kidney-resident cells. Here, we examined the role of the high-affinity LTB4 receptor BLT1 during development of kidney fibrosis induced by unilateral ureteral obstruction (UUO) in wild-type (WT) mice and BLT1 knockout (BLT1-/-) mice. We found elevated expression of 5-lipoxygenase (5-LOX), which generates LTB4, in the renal tubules of UUO kidneys from WT mice and BLT1-/- mice. Accumulation of immunoreactive type I collagen in WT UUO kidneys increased over time; however, the increase was less prominent in BLT1-/- UUO kidneys. Accumulation of S100A4-positive fibroblasts increased temporally in WT UUO kidneys, but was again less pronounced in-BLT1-/- UUO kidneys. The same was true of mRNA encoding transforming growth factor-β (TGF)-β and fibroblast growth factor (FGF)-2. Finally, accumulation of F4/80-positive macrophages, which secrete TGF-β, increased temporally in WT UUO and BLT1-/- UUO kidneys, but to a lesser extent in the latter. Following LTB4 stimulation in vitro, macrophages showed increased expression of mRNA encoding TGF-β/FGF-2 and Col1a1, whereas L929 fibroblasts showed increased expression of mRNA encoding α smooth muscle actin (SMA). Bone marrow (BM) transplantation studies revealed that the area positive for type I collagen was significantly smaller in BLT1-/—BM→WT than in WT-BM→WT. Thus, LTB4-BLT1 signaling plays a critical role in fibrosis in UUO kidneys by increasing accumulation of macrophages and fibroblasts. Therefore, blocking BLT1 may prevent renal fibrosis.
Collapse
|
18
|
Montford JR, Bauer C, Dobrinskikh E, Hopp K, Levi M, Weiser-Evans M, Nemenoff R, Furgeson SB. Inhibition of 5-lipoxygenase decreases renal fibrosis and progression of chronic kidney disease. Am J Physiol Renal Physiol 2019; 316:F732-F742. [PMID: 30649890 DOI: 10.1152/ajprenal.00262.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In inflammatory diseases, the 5-lipoxygenase (5-LO) pathway contributes to epithelial damage and fibrosis by catalyzing the production of leukotrienes (LTs). Antagonists of the 5-LO pathway are currently approved for use in patients and are well tolerated. We found that expression of 5-LO is strongly induced in three models of chronic kidney disease: unilateral ureteral obstruction (UUO), folate nephropathy, and an orthologous mouse model of polycystic kidney disease. Immunohistochemistry showed that macrophages are the dominant source of 5-LO. Zileuton, a US Food and Drug Administration-approved antagonist of 5-LO, significantly reduced fibrosis at 7 and 14 days after UUO; these findings were confirmed using a genetically modified [5-LO-associated protein-knockout ( Alox5ap-/-)] mouse strain. Inhibition of 5-LO did not appear to change infiltration of leukocytes after UUO as measured by flow cytometry. However, fluorescence-lifetime imaging microscopy showed that 5-LO inhibitors reversed the glycolytic switch in renal tubular epithelial cells after UUO. Two downstream enzymes of 5-LO, LTA4 hydrolase (LTA4H) and LTC4 synthase (LTC4S), are responsible for the synthesis of LTB4 and cysteinyl LTs, respectively. Fibrosis was reduced after UUO in Ltc4s-/-, but not Lta4h-/-, mice. In contrast, using the folate nephropathy model, we found reduced fibrosis and improved renal function in both Ltc4s-/- and Lta4h-/- mice. In summary, our studies suggest that manipulation of the 5-LO pathway may represent a novel treatment approach for chronic kidney disease.
Collapse
Affiliation(s)
- John R Montford
- Division of Renal Diseases and Hypertension, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Department of Medicine, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Eastern Colorado Veterans Affairs Hospital , Denver, Colorado
| | - Colin Bauer
- Division of Renal Diseases and Hypertension, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Department of Medicine, University of Colorado-Anschutz Medical Campus , Denver, Colorado
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado-Anschutz Medical Campus , Denver, Colorado
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Department of Medicine, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Consortium for Fibrosis Research and Translation, University of Colorado-Anschutz Medical Campus , Denver, Colorado
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University , Washington, District of Columbia
| | - Mary Weiser-Evans
- Division of Renal Diseases and Hypertension, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Department of Medicine, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Consortium for Fibrosis Research and Translation, University of Colorado-Anschutz Medical Campus , Denver, Colorado
| | - Raphael Nemenoff
- Division of Renal Diseases and Hypertension, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Department of Medicine, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Consortium for Fibrosis Research and Translation, University of Colorado-Anschutz Medical Campus , Denver, Colorado
| | - Seth B Furgeson
- Division of Renal Diseases and Hypertension, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Department of Medicine, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Consortium for Fibrosis Research and Translation, University of Colorado-Anschutz Medical Campus , Denver, Colorado.,Denver Health Hospital , Denver, Colorado
| |
Collapse
|
19
|
Yokomizo T, Nakamura M, Shimizu T. Leukotriene receptors as potential therapeutic targets. J Clin Invest 2018; 128:2691-2701. [PMID: 29757196 DOI: 10.1172/jci97946] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leukotrienes, a class of arachidonic acid-derived bioactive molecules, are known as mediators of allergic and inflammatory reactions and considered to be important drug targets. Although an inhibitor of leukotriene biosynthesis and antagonists of the cysteinyl leukotriene receptor are clinically used for bronchial asthma and allergic rhinitis, these medications were developed before the molecular identification of leukotriene receptors. Numerous studies using cloned leukotriene receptors and genetically engineered mice have unveiled new pathophysiological roles for leukotrienes. This Review covers the recent findings on leukotriene receptors to revisit them as new drug targets.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Motonao Nakamura
- Department of Life Science, Graduate School of Science, Okayama University of Science, Okayama, Japan
| | - Takao Shimizu
- Department of Lipidomics, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Morrone K, Mitchell WB, Manwani D. Novel Sickle Cell Disease Therapies: Targeting Pathways Downstream of Sickling. Semin Hematol 2018; 55:68-75. [PMID: 30616808 DOI: 10.1053/j.seminhematol.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Sickle cell disease is an inherited hemoglobinopathy characterized by hemolytic anemia, frequent painful episodes, poor quality of life, end organ damage and a shortened lifespan. Although the seminal event is the polymerization of the abnormal hemoglobin, the downstream pathophysiology of vaso-occlusion results from heterotypic interactions between the altered, adhesive sickle cell RBCs, neutrophils, endothelium, and platelets. Ischemia reperfusion injury, hemolysis and oxidant damage all contribute to heightened inflammation and activation of the hemostatic system. These downstream targets are the focus of emerging treatments with considerable potential to ameliorate disease manifestations. This review summarizes the progress on development of these agents.
Collapse
Affiliation(s)
- Kerry Morrone
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | - William Beau Mitchell
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY.
| |
Collapse
|
21
|
Rodríguez-Jiménez JC, Moreno-Paz FJ, Terán LM, Guaní-Guerra E. Aspirin exacerbated respiratory disease: Current topics and trends. Respir Med 2018; 135:62-75. [PMID: 29414455 DOI: 10.1016/j.rmed.2018.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Aspirin-exacerbated respiratory disease is a chronic and treatment-resistant disease, characterized by the presence of eosinophilic rhinosinusitis, nasal polyposis, bronchial asthma, and nonsteroidal anti-inflammatory drugs hypersensitivity. Alterations in arachidonic acid metabolism may induce an imbalance between pro-inflammatory and anti-inflammatory substances, expressed as an overproduction of cysteinyl leukotrienes and an underproduction of prostaglandin E2. Although eosinophils play a key role, recent studies have shown the importance of other cells and molecules in the development of the disease like mast cells, basophils, lymphocytes, platelets, neutrophils, macrophages, epithelial respiratory cells, IL-33 and thymic stromal lymphopoietin, making each of them promissory diagnostic and treatment targets. In this review, we summarize the most important clinical aspects of the disease, including the current topics about diagnosis and treatment, like provocation challenges and aspirin desensitization. We also discuss recent findings in the pathogenesis of the disease, as well as future trends in diagnosis and treatment, including monoclonal antibodies and a low salicylate diet as a treatment option.
Collapse
Affiliation(s)
| | | | - Luis Manuel Terán
- Department of Immunogenetics, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Eduardo Guaní-Guerra
- Department of Medicine, University of Guanajuato, León, Guanajuato, Mexico; Department of Immunology, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, Mexico.
| |
Collapse
|
22
|
Abstract
Lipids are potent signaling molecules that regulate a multitude of cellular responses, including cell growth and death and inflammation/infection, via receptor-mediated pathways. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic pathways and because they elicit responses via different receptors. This review will collate the bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins, and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins) will be discussed herein.
Collapse
|
23
|
Lv J, Xiong Y, Li W, Yang W, Zhao L, He R. BLT1 Mediates Bleomycin-Induced Lung Fibrosis Independently of Neutrophils and CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:1673-1684. [PMID: 28077599 DOI: 10.4049/jimmunol.1600465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/12/2016] [Indexed: 02/04/2023]
Abstract
Leukotriene B4 (LTB4) and its functional receptor BLT1 are closely involved in tissue inflammation by primarily mediating leukocyte recruitment and activation. Elevated LTB4 was reported in patients with lung fibrosis; however, the role of the LTB4/BLT1 axis in lung fibrosis remains unknown. In this study, we demonstrated that BLT1-/- mice exhibited significantly attenuated bleomycin (BLM)-induced lung fibrosis. Interestingly, BLT1 blockade with its specific antagonist U75302 in the acute injury phase (days 0-10 after BLM treatment) significantly attenuated lung fibrosis, which was accompanied by significant decreases in early infiltrating neutrophils and later infiltrating CD4+ T cells and the production of TGF-β, IL-13, and IL-17A. In contrast, BLT1 blockade in the fibrotic phase (days 10-21 after BLM treatment) had no effect on lung fibrosis and TGF-β production, although it significantly decreased CD4+ T cell infiltration. Furthermore, depletion of neutrophils or CD4+ T cells had no effect on BLM-induced lung fibrosis, suggesting the independence of profibrotic activity of the LTB4/BLT1 axis on BLT1-dependent lung recruitment of these two leukocytes. Finally, although BLT1 blockade had no effect on the recruitment and phenotype of macrophages in BLM-induced lung fibrosis, the LTB4/BLT1 axis could promote TGF-β production by macrophages stimulated with BLM or supernatants from BLM-exposed airway epithelial cells in an autocrine manner, which further induced collagen secretion by lung fibroblasts. Collectively, our study demonstrates that the LTB4/BLT1 axis plays a critical role in acute injury phase to promote BLM-induced lung fibrosis, and it suggests that early interruption of the LTB4/BLT1 axis in some inflammatory diseases could prevent the later development of tissue fibrosis.
Collapse
Affiliation(s)
- Jiaoyan Lv
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Yingluo Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Wenjing Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Wei Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Lina Zhao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and .,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
24
|
Thompson MD, Capra V, Clunes MT, Rovati GE, Stankova J, Maj MC, Duffy DL. Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies. Front Pharmacol 2016; 7:299. [PMID: 27990118 PMCID: PMC5131607 DOI: 10.3389/fphar.2016.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
Genetic variants associated with asthma pathogenesis and altered response to drug therapy are discussed. Many studies implicate polymorphisms in genes encoding the enzymes responsible for leukotriene synthesis and intracellular signaling through activation of seven transmembrane domain receptors, such as the cysteinyl leukotriene 1 (CYSLTR1) and 2 (CYSLTR2) receptors. The leukotrienes are polyunsaturated lipoxygenated eicosatetraenoic acids that exhibit a wide range of pharmacological and physiological actions. Of the three enzymes involved in the formation of the leukotrienes, arachidonate 5 lipoxygenase 5 (ALOX5), leukotriene C4 synthase (LTC4S), and leukotriene hydrolase (LTA4H) are all polymorphic. These polymorphisms often result in variable production of the CysLTs (LTC4, LTD4, and LTE4) and LTB4. Variable number tandem repeat sequences located in the Sp1-binding motif within the promotor region of the ALOX5 gene are associated with leukotriene burden and bronchoconstriction independent of asthma risk. A 444A > C SNP polymorphism in the LTC4S gene, encoding an enzyme required for the formation of a glutathione adduct at the C-6 position of the arachidonic acid backbone, is associated with severe asthma and altered response to the CYSLTR1 receptor antagonist zafirlukast. Genetic variability in the CysLT pathway may contribute additively or synergistically to altered drug responses. The 601 A > G variant of the CYSLTR2 gene, encoding the Met201Val CYSLTR2 receptor variant, is associated with atopic asthma in the general European population, where it is present at a frequency of ∼2.6%. The variant was originally found in the founder population of Tristan da Cunha, a remote island in the South Atlantic, in which the prevalence of atopy is approximately 45% and the prevalence of asthma is 36%. In vitro work showed that the atopy-associated Met201Val variant was inactivating with respect to ligand binding, Ca2+ flux and inositol phosphate generation. In addition, the CYSLTR1 gene, located at Xq13-21.1, has been associated with atopic asthma. The activating Gly300Ser CYSLTR1 variant is discussed. In addition to genetic loci, risk for asthma may be influenced by environmental factors such as smoking. The contribution of CysLT pathway gene sequence variants to atopic asthma is discussed in the context of other genes and environmental influences known to influence asthma.
Collapse
Affiliation(s)
- Miles D Thompson
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La JollaCA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONCanada
| | - Valerie Capra
- Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano Milano, Italy
| | - Mark T Clunes
- Department of Physiology/Neuroscience, School of Medicine, Saint George's University Saint George's, Grenada
| | - G E Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milano, Italy
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke QC, Canada
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University Saint George's, Grenada
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| |
Collapse
|
25
|
Eosinophils and Mast Cells in Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2016; 36:719-734. [PMID: 27712766 DOI: 10.1016/j.iac.2016.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) involves overexpression of proinflammatory mediators, including 5-lipoxygenase and leukotriene C4 synthase (LTC4S), resulting in constitutive overproduction of cysteinyl leukotrienes. Mast cells and eosinophils have roles in mediating many of the observed effects. Increased levels of both interleukin-4 (IL-4) and interferon (IFN)-γ are present in the tissue of patients with AERD. Previous studies showed that IL-4 is primarily responsible for the upregulation of LTC4S by mast cells. Our studies show that IFN-γ, but not IL-4, drives this process in eosinophils. This article examines the overall role that eosinophils and mast cells contribute to the pathophysiology of AERD.
Collapse
|
26
|
Beauchemin KJ, Wells JM, Kho AT, Philip VM, Kamir D, Kohane IS, Graber JH, Bult CJ. Temporal dynamics of the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development. PeerJ 2016; 4:e2318. [PMID: 27602285 PMCID: PMC4991849 DOI: 10.7717/peerj.2318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
To characterize temporal patterns of transcriptional activity during normal lung development, we generated genome wide gene expression data for 26 pre- and post-natal time points in three common inbred strains of laboratory mice (C57BL/6J, A/J, and C3H/HeJ). Using Principal Component Analysis and least squares regression modeling, we identified both strain-independent and strain-dependent patterns of gene expression. The 4,683 genes contributing to the strain-independent expression patterns were used to define a murine Developing Lung Characteristic Subtranscriptome (mDLCS). Regression modeling of the Principal Components supported the four canonical stages of mammalian embryonic lung development (embryonic, pseudoglandular, canalicular, saccular) defined previously by morphology and histology. For postnatal alveolar development, the regression model was consistent with four stages of alveolarization characterized by episodic transcriptional activity of genes related to pulmonary vascularization. Genes expressed in a strain-dependent manner were enriched for annotations related to neurogenesis, extracellular matrix organization, and Wnt signaling. Finally, a comparison of mouse and human transcriptomics from pre-natal stages of lung development revealed conservation of pathways associated with cell cycle, axon guidance, immune function, and metabolism as well as organism-specific expression of genes associated with extracellular matrix organization and protein modification. The mouse lung development transcriptome data generated for this study serves as a unique reference set to identify genes and pathways essential for normal mammalian lung development and for investigations into the developmental origins of respiratory disease and cancer. The gene expression data are available from the Gene Expression Omnibus (GEO) archive (GSE74243). Temporal expression patterns of mouse genes can be investigated using a study specific web resource (http://lungdevelopment.jax.org).
Collapse
Affiliation(s)
- Kyle J. Beauchemin
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME, United States
| | | | - Alvin T. Kho
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | | | - Daniela Kamir
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Isaac S. Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | | | - Carol J. Bult
- The Jackson Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
27
|
Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, Navratil T, Schwarz J, Zikova N, Makes O, Syslova K, Belacek J, Zakharov S. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO
2
nanoparticles. J Breath Res 2016; 10:036004. [DOI: 10.1088/1752-7155/10/3/036004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
McGovern T, Goldberger M, Chen M, Allard B, Hamamoto Y, Kanaoka Y, Austen KF, Powell WS, Martin JG. CysLT1 Receptor Is Protective against Oxidative Stress in a Model of Irritant-Induced Asthma. THE JOURNAL OF IMMUNOLOGY 2016; 197:266-77. [PMID: 27226094 DOI: 10.4049/jimmunol.1501084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Abstract
The bronchoconstrictive and proinflammatory properties of cysteinyl leukotrienes (cysLTs) in allergic asthma mediate their effects predominantly through the cysLT1 receptor (cysLT1R). However, the role of cysLTs and cysLT1R in innate immune-triggered asthma is largely unexplored. We explored the synthesis of cysLTs and cysLT1R as determinants of airway responses in an oxidative stress-induced model of irritant asthma. Wild-type (WT) mice exposed to 100 ppm Cl2 for 5 min had airway neutrophilia, increased cysLT production, and pulmonary expression of cysLT-related biosynthetic genes. CysLT1R-deficient (CysLTr1(-/-)) mice that were exposed to Cl2 demonstrated airway hyperresponsiveness to inhaled methacholine significantly greater than in WT BALB/c mice. Compared to WT mice, airway neutrophilia and keratinocyte chemoattractant production levels were higher in CysLTr1(-/-) mice and airway hyperresponsiveness was ameliorated using a granulocyte depletion Ab. CysLTr1(-/-) mice also demonstrated prolonged bronchial epithelial cell apoptosis following Cl2 WT mice showed increased antioxidant and NF erythroid 2-related factor 2 (Nrf2) gene expression, Nrf2 nuclear translocation in bronchial epithelial cells, and increased reduced glutathione/oxidized glutathione following Cl2 exposure whereas CysLTr1(-/-) mice did not. Furthermore, CysLTr1(-/-) mice demonstrated increased pulmonary E-cadherin expression and soluble E-cadherin shedding compared with WT mice. Loss of a functional cysLT1R results in aberrant antioxidant response and increased susceptibility to oxidative injury, apparently via a cysLT1R-dependent impairment of Nrf2 function.
Collapse
Affiliation(s)
- Toby McGovern
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Madison Goldberger
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Michael Chen
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Benoit Allard
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Yoichiro Hamamoto
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Yoshihide Kanaoka
- Department of Allergy and Immunology, Brigham and Women's Hospital, Boston, MA 02130; and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - K Frank Austen
- Department of Allergy and Immunology, Brigham and Women's Hospital, Boston, MA 02130; and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - William S Powell
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University Health Centre and McGill University, Montreal, Quebec H4A 3J1, Canada;
| |
Collapse
|
29
|
Yeh DYW, Yang YC, Wang JJ. Hepatic Warm Ischemia-Reperfusion-Induced Increase in Pulmonary Capillary Filtration Is Ameliorated by Administration of a Multidrug Resistance-Associated Protein 1 Inhibitor and Leukotriene D4 Antagonist (MK-571) Through Reducing Neutrophil Infiltration and Pulmonary Inflammation and Oxidative Stress in Rats. Transplant Proc 2016; 47:1087-91. [PMID: 26036526 DOI: 10.1016/j.transproceed.2014.10.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/28/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hepatopulmonary syndrome (HPS) is the major complication subsequent to liver ischemia and reperfusion (I/R) injury after resection or transplantation of liver. Hallmarks of HPS include increases in pulmonary leukotrienes and neutrophil recruitment and infiltrating across capillaries. We aimed to investigate the protective efficacy of MK-571, a multidrug resistance-associated protein 1 inhibitor and leukotriene D4 agonist, against hepatic I/R injury-associated change in capillary filtration. METHODS Eighteen Sprague-Dawley male rats were evenly divided into a sham-operated group, a hepatic I/R group, and an MK-571-treated I/R group. MK-571 was administered intraperitoneally 15 min before hepatic ischemia and every 12 hours during reperfusion. Ischemia was conducted by occluding the hepatic artery and portal vein for 30 min, followed by removing the clamps and closing the incision. Forty-eight hours after hepatic ischemia, we assessed the pulmonary capillary filtration coefficient (Kfc) through the use of in vitro-isolated, perfused rat lung preparation. We also measured the lung wet-to-dry weight ratio (W/D) and protein concentration in broncho-alveolar lavage fluid (PCBAL). Lung inflammation and oxidative stress were evaluated by use of tissue tumor necrosis factor (TNF)-α and malondialdehyde levels and lavage differential macrophage and neutrophil cell count. RESULTS Hepatic I/R injury markedly increased Kfc, W/D, PCBAL, tissue TNF-α level, and differential neutrophil cell count (P < .05). MK-571 treatment reduced neutrophil infiltration and lung inflammation and improved pulmonary capillary filtration, collectively suggesting lung protection. CONCLUSIONS Treatment with MK-571 before and during hepatic ischemia and reperfusion protects lung against pulmonary capillary barrier function impairment through decreasing pulmonary lung inflammation and lavage neutrophils.
Collapse
Affiliation(s)
- D Y-W Yeh
- Division of Chest Medicine, Internal Medicine, Shin Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Y-C Yang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - J-J Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
30
|
Steinke JW, Borish L. Factors driving the aspirin exacerbated respiratory disease phenotype. Am J Rhinol Allergy 2015; 29:35-40. [PMID: 25590316 DOI: 10.2500/ajra.2015.29.4123] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is explained in part by overexpression of 5-lipoxygenase and leukotriene C4 synthase (LTC4S), resulting in constitutive overproduction of cysteinyl leukotrienes (CysLTs) and driving the surge in CysLT production that occurs with aspirin ingestion. Similarly, AERD is characterized by the overexpression of CysLT receptors. Increased levels of both interleukin (IL)-4 and interferon (IFN)-γ are present in the tissue of AERD subjects. Previous studies demonstrated that IL-4 is primarily responsible for the up-regulation of LTC4S by mast cells. METHODS Literature review. RESULTS Our previous studies demonstrated that IFN-γ, but not IL-4, drives this process in eosinophils. These published studies also extend to both IL-4 and IFN-γ the ability to up-regulate CysLT receptors. Prostaglandin E2 (PGE2) acts to prevent CysLT secretion by inhibiting mast cell and eosinophil activation. PGE2 concentrations are reduced in AERD, and our published studies confirm that this reflects diminished expression of cyclooxygenase (COX)-2. A process again that is driven by IL-4. Thus, IL-4 and IFN-γ together play an important pathogenic role in generating the phenotype of AERD. Finally, induction of LTC4S and CysLT1 receptors by IL-4 reflects in part the IL-4-mediated activation of signal transducer and activator of transcription 6 (STAT6). Our previous studies demonstrated that aspirin blocks trafficking of STAT6 into the nucleus and thereby prevents IL-4-mediated induction of these transcripts, thereby suggesting a modality by which aspirin desensitization could provide therapeutic benefit for AERD patients. CONCLUSION This review will examine the evidence supporting this model.
Collapse
Affiliation(s)
- John W Steinke
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
31
|
Kim SB, Lee JH, Lee J, Shin SH, Eun HS, Lee SM, Sohn JA, Kim HS, Choi BM, Park MS, Park KI, Namgung R, Park MS. The efficacy and safety of Montelukast sodium in the prevention of bronchopulmonary dysplasia. KOREAN JOURNAL OF PEDIATRICS 2015; 58:347-53. [PMID: 26512261 PMCID: PMC4623454 DOI: 10.3345/kjp.2015.58.9.347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Abstract
Purpose The purpose of this study was to evaluate the efficacy and safety of Montelukast sodium in the prevention of bronchopulmonarydysplasia (BPD). Methods The Interventional study was designed as a multicenter, prospective, and randomized trial, with open labeled and parallel-experimental groups, 66 infants were enrolled and allocated to either the case group (n=30) or the control group (n=36) based on gestational age (GA). Infants in the case group were given Montelukast sodium (Singulair) based on their body weight (BW). Zero week was defined as the start time of the study. Results The incidence of moderate to severe BPD was not different between the groups (case group: 13 of 30 [43.3%] vs. control group: 19 of 36 [52.8%], P=0.912). Additionally, secondary outcomes such as ventilation index, mean airway pressure and resort to systemic steroids were not significantly different. There were no serious adverse drug reactions in either group, and furthermore the rate of occurrence of mild drug related-events were not significantly different (case group: 10 of 42 [23.8%] vs. control group: 6 of 48 (15.8%), P=0.414). Conclusion Montelukast was not effective in reducing moderate or severe BPD. There were no significant adverse drug events associated with Montelukast treatment.
Collapse
Affiliation(s)
- Sang Bum Kim
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Jang Hoon Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Juyoung Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Han Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Sun Eun
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Soon Min Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Jin A Sohn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Han Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Min Choi
- Department of Pediatrics, Korea University Ansan Hospital, Ansan, Korea
| | - Min Soo Park
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kook In Park
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Namgung
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Sung Park
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
32
|
Autocrine activity of cysteinyl leukotrienes in human vascular endothelial cells: Signaling through the CysLT2 receptor. Prostaglandins Other Lipid Mediat 2015; 120:115-25. [DOI: 10.1016/j.prostaglandins.2015.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/19/2015] [Accepted: 03/18/2015] [Indexed: 12/22/2022]
|
33
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
34
|
Moore BB. Following the path of CCL2 from prostaglandins to periostin in lung fibrosis. Am J Respir Cell Mol Biol 2014; 50:848-52. [PMID: 24605795 DOI: 10.1165/rcmb.2014-0075ps] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Without question, the greatest and most humbling honor of my scientific career was to learn that I was nominated for the American Thoracic Society Recognition Award for Scientific Accomplishments. On the occasion of this award, as I look back on the progress made in the last 15 years, I am pleased by the scientific insights; however, I am also saddened that we still have no internationally recognized efficacious therapy. This perspective will highlight the areas my laboratory has addressed regarding the pathogenesis of idiopathic pulmonary fibrosis in hopes of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Bethany B Moore
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
35
|
Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol 2014; 20:968-977. [PMID: 24574769 PMCID: PMC3921548 DOI: 10.3748/wjg.v20.i4.968] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/16/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Long-standing inflammation has emerged as a hallmark of neoplastic transformation of epithelial cells and may be a limiting factor of successful conventional tumor therapies. A complex milieu composed of distinct stromal and immune cells, soluble factors and inflammatory mediators plays a crucial role in supporting and promoting various types of cancers. An augmented inflammatory response can predispose a patient to colorectal cancer (CRC). Common risk factors associated with CRC development include diet and lifestyle, altered intestinal microbiota and commensals, and chronic inflammatory bowel diseases. Cysteinyl leukotrienes are potent inflammatory metabolites synthesized from arachidonic acid and have a broad range of functions involved in the etiology of various pathologies. This review discusses the important role of cysteinyl leukotriene signaling in linking inflammation and CRC.
Collapse
|
36
|
Kawakami Y, Hirano S, Kinoshita M, Otsuki A, Suzuki-Yamamoto T, Suzuki M, Kimoto M, Sasabe S, Fukushima M, Kishimoto K, Izumi T, Oga T, Narumiya S, Sugahara M, Miyano M, Yamamoto S, Takahashi Y. Neutralization of leukotriene C4 and D4 activity by monoclonal and single-chain antibodies. Biochim Biophys Acta Gen Subj 2013; 1840:1625-33. [PMID: 24361619 DOI: 10.1016/j.bbagen.2013.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/19/2013] [Accepted: 12/11/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (LTs) are key mediators in inflammation. To explore the structure of the antigen-recognition site of a monoclonal antibody against LTC4 (mAbLTC), we previously isolated full-length cDNAs for heavy and light chains of the antibody and prepared a single-chain antibody comprising variable regions of these two chains (scFvLTC). METHODS We examined whether mAbLTC and scFvLTC neutralized the biological activities of LTC4 and LTD4 by competing their binding to their receptors. RESULTS mAbLTC and scFvLTC inhibited their binding of LTC4 or LTD4 to CysLT1 receptor (CysLT1R) and CysLT2 receptor (CysLT2R) overexpressed in Chinese hamster ovary cells. The induction by LTD4 of monocyte chemoattractant protein-1 and interleukin-8 mRNAs in human monocytic leukemia THP-1 cells expressing CysLT1R was dose-dependently suppressed not only by mAbLTC but also by scFvLTC. LTC4- and LTD4-induced aggregation of mouse platelets expressing CysLT2R was dose-dependently suppressed by either mAbLTC or scFvLTC. Administration of mAbLTC reduced pulmonary eosinophil infiltration and goblet cell hyperplasia observed in a murine model of asthma. Furthermore, mAbLTC bound to CysLT2R antagonists but not to CysLT1R antagonists. CONCLUSIONS These results indicate that mAbLTC and scFvLTC neutralize the biological activities of LTs by competing their binding to CysLT1R and CysLT2R. Furthermore, the binding of cysteinyl LT receptor antagonists to mAbLTC suggests the structural resemblance of the LT-recognition site of the antibody to that of these receptors. GENERAL SIGNIFICANCE mAbLTC can be used in the treatment of inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Shiori Hirano
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Mai Kinoshita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Akemi Otsuki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Makiko Suzuki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Masumi Kimoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Sae Sasabe
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Mitsuo Fukushima
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Koji Kishimoto
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toru Oga
- Department of Respiratory Care & Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mitsuaki Sugahara
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Masashi Miyano
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan; Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| | - Shozo Yamamoto
- Department of Food and Nutrition, Kyoto Women's University, Kyoto 605-8501, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan.
| |
Collapse
|
37
|
Hirata H, Arima M, Fukushima Y, Sugiyama K, Tokuhisa T, Fukuda T. Leukotriene C4 aggravates bleomycin-induced pulmonary fibrosis in mice. Respirology 2013; 18:674-81. [PMID: 23432979 DOI: 10.1111/resp.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/11/2012] [Accepted: 11/11/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Synthesis of cysteinyl leukotrienes (cys-LT) is thought to cause inflammatory disorders such as bronchial asthma and allergic rhinitis. Recent reports have suggested that leukotriene C4 (LTC4 ) is an important regulator of pulmonary fibrosis. This study examined the effect of LTC4 in LTC4 synthase-overexpressed transgenic mice with bleomycin-induced pulmonary fibrosis. The function of lung-derived fibroblasts from transgenic mice was also investigated. METHODS Bleomycin was administrated to transgenic mice and wild-type (WT) mice by intratracheal instillation. Concentrations of interleukin (IL)-4 and -13, interferon-γ, and transforming growth factor (TGF)-β1 in bronchoalveolar lavage fluid were measured 1, 3, 7 and 14 days after the administration of bleomycin. Lung tissue was examined histopathologically on day 14. In addition, lung-derived fibroblasts from transgenic and WT mice were cultured for 7 days. Expression of TGF-β1 mRNA was measured by real-time polymerase chain reaction. RESULTS Both the pathological scores for pulmonary fibrosis (3.8 ± 0.4 vs 2.0 ± 0.1, P < 0.05) and the levels of IL-4 (12.1 ± 2.3 vs <7.8 pg/mL, P < 0.05), IL-13 (26.5 ± 5.2 vs <7.8 pg/mL, P < 0.01) and TGF-β1 (211.1 ± 30.2 vs 21.3 ± 1.2 pg/mL, P < 0.01) on day 14 were significantly greater in transgenic than in WT mice. Furthermore, the reduction of LTC4 by pranlukast hydrate, a cys-LT1 receptor antagonist, in fibroblasts from transgenic significantly (P < 0.05) decreased the expression of TGF-β1 mRNA (by ∼50%) compared with those from WT mice. CONCLUSIONS Overexpression of LTC4 , amplifies bleomycin-induced pulmonary fibrosis in mice. Our findings suggest a role for LTC4 in lung fibrosis.
Collapse
Affiliation(s)
- Hirokuni Hirata
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
39
|
Santos LA, Silva CA, Polacow MLO. Effect of early treatment with transcutaneous electrical diaphragmatic stimulation (TEDS) on pulmonary inflammation induced by bleomycin. Braz J Phys Ther 2013; 17:606-13. [PMID: 24346295 PMCID: PMC4207142 DOI: 10.1590/s1413-35552012005000130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/27/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bleomycin (B) is an antineoplastic drug that has pulmonary fibrosis as a side effect. There are few experimental studies about the effects of physical therapy treatment in this case. OBJECTIVE The objective was to study rat lungs treated with B and precocious intervention by transcutaneous electrical diaphragmatic stimulation (TEDS). METHOD Wistar rats were divided into 4 groups (n=5): a control group (C); a stimulated group (TEDS); a group treated with a single dose of B (intratracheally, 2.5 mg/kg) (B); and a group treated with B and electric stimulation (B + TEDS). After the B instillation, the electrical stimulation was applied for 7 days, for a duration of 20 minutes. Lung fragments were histologically processed with hematoxylin and eosin (HE) and 8-isoprostane-PGF2α (8-iso-PGF2α). The density of the alveolar area was determined by planimetry, the inflammatory profile was defined by the number of cells, and the level of oxidative stress in the pulmonary tissue was evaluated by 8-iso-PGF2α. For statistical analysis of the data, the Shapiro-Wilk test was used, followed by a one-way ANOVA with the post-hoc Bonferroni test (p ≤ 0.05). RESULTS The B group exhibited a significant reduction in the area density, and the acute treatment with B + TEDS prevented this reduction. There were increased numbers of fibroblasts, leukocytes, and macrophages in the B group, as well as increased lipid peroxidation, which was observed only in this group. CONCLUSION B promoted a reduction in the alveolar density area, thereby inducing the inflammatory process and increasing the production of free radicals. These effects were minimized by the application of TEDS at the initial treatment stage.
Collapse
Affiliation(s)
- Laisa A. Santos
- Postgraduate Program in Physical Therapy, Universidade Metodista de Piracicaba
(UNIMEP), Piracicaba, SP, Brasil
| | - Carlos A. Silva
- Postgraduate Program in Physical Therapy, Universidade Metodista de Piracicaba
(UNIMEP), Piracicaba, SP, Brasil
| | - Maria L. O. Polacow
- Postgraduate Program in Physical Therapy, Universidade Metodista de Piracicaba
(UNIMEP), Piracicaba, SP, Brasil
| |
Collapse
|
40
|
Differential regulation of cysteinyl leukotriene receptor signaling by protein kinase C in human mast cells. PLoS One 2013; 8:e71536. [PMID: 23977066 PMCID: PMC3744564 DOI: 10.1371/journal.pone.0071536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/28/2013] [Indexed: 01/05/2023] Open
Abstract
Cysteinyl leukotrienes (cys-LTs) are a group of lipid mediators that are potent bronchoconstrictors, powerful inducers of vascular leakage and potentiators of airway hyperresponsiveness. Cys-LTs play an essential role in asthma and are synthesized as well as activated in mast cells (MCs). Cys-LTs relay their effects mainly through two known GPCRs, CysLT1R and CysLT2R. Although protein kinase C (PKC) isoforms are implicated in the regulation of CysLT1R function, neither the role of PKCs in cys-LT-dependent MC inflammatory signaling nor the involvement of specific isoforms in MC function are known. Here, we show that PKC inhibition augmented LTD4 and LTE4-induced calcium influx through CysLT1R in MCs. In contrast, inhibition of PKCs suppressed c-fos expression as well MIP1β generation by cys-LTs. Interestingly, cys-LTs activated both PKCα and PKCε isoforms in MC. However, knockdown of PKCα augmented cys-LT mediated calcium flux, while knockdown of PKCε attenuated cys-LT induced c-fos expression and MIP1β generation. Taken together, these results demonstrate for the first time that cys-LT signaling downstream of CysLT1R in MCs is differentially regulated by two distinct PKCs which modulate inflammatory signals that have significant pathobiologic implications in allergic reactions and asthma pathology.
Collapse
|
41
|
Mukherjee S, Sadekar N, Ashton AW, Huang H, Spray DC, Lisanti MP, Machado FS, Weiss LM, Tanowitz HB. Identification of a functional prostanoid-like receptor in the protozoan parasite, Trypanosoma cruzi. Parasitol Res 2013; 112:1417-25. [PMID: 23403991 DOI: 10.1007/s00436-012-3271-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 12/26/2012] [Indexed: 11/26/2022]
Abstract
Trypanosoma cruzi infection in humans and experimental animals causes Chagas disease which is often accompanied by myocarditis, cardiomyopathy, and vasculopathy. T. cruzi-derived thromboxane A2 (TXA2) modulates vasculopathy and other pathophysiological features of Chagasic cardiomyopathy. Here, we provide evidence that epimastigotes, trypomastigotes, and amastigotes of T. cruzi (Brazil and Tulahuen strains) express a biologically active prostanoid receptor (PR) that is responsive to TXA2 mimetics, e.g. IBOP. This putative receptor, TcPR, is mainly localized in the flagellar membrane of the parasites and shows a similar glycosylation pattern to that of bona fide thromboxane prostanoid (TP) receptors obtained from human platelets. Furthermore, TXA2-PR signal transduction activates T. cruzi-specific MAPK pathways. While mammalian TP is a G-protein coupled receptor (GPCR); T. cruzi genome sequencing has not demonstrated any confirmed GPCRs in these parasites. Based on this genome sequencing it is likely that TcPR is unique in these protists with no counterpart in mammals. TXA2 is a potent vasoconstrictor which contributes to the pathogenesis of Chagasic cardiovascular disease. It may, however, also control parasite differentiation and proliferation in the infected host allowing the infection to progress to a chronic state.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy 2013; 42:1313-20. [PMID: 22925317 DOI: 10.1111/j.1365-2222.2012.03982.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs) are three structurally similar, but functionally distinct lipid mediators of inflammation. The parent cys-LT, LTC(4) , is synthesized by and released from mast cells, eosinophils, basophils, and macrophages, and is converted to the potent constrictor LTD(4) and the stable metabolite, LTE(4) . While only two cys-LT-selective receptors (CysLTRs) have been identified, cloned, and characterized, studies dating back three decades predicted the existence of at least three functional CysLTRs, each with a characteristic physiological function in airways and other tissues. The recent demonstration that mice lacking both known CysLTRs exhibit full (and in some instances, augmented) physiological responses to cys-LTs verifies the existence of unidentified CysLTRs. Moreover, the ability to manipulate receptor expression in both whole animal and cellular systems reveals that the functions of CysLTRs are controlled at multiple levels, including receptor-receptor interactions. Finally, studies in transgenic mice have uncovered a potentially major role for cys-LTs in controlling the induction of Th(2) responses to common allergens. This review focuses on these recent findings and their potential clinical implications.
Collapse
Affiliation(s)
- T M Laidlaw
- Departments of Medicine and Paediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
43
|
Eosinophil-derived leukotriene C4 signals via type 2 cysteinyl leukotriene receptor to promote skin fibrosis in a mouse model of atopic dermatitis. Proc Natl Acad Sci U S A 2012; 109:4992-7. [PMID: 22416124 DOI: 10.1073/pnas.1203127109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atopic dermatitis (AD) skin lesions exhibit epidermal and dermal thickening, eosinophil infiltration, and increased levels of the cysteinyl leukotriene (cys-LT) leukotriene C(4) (LTC(4)). Epicutaneous sensitization with ovalbumin of WT mice but not ΔdblGATA mice, the latter of which lack eosinophils, caused skin thickening, collagen deposition, and increased mRNA expression of the cys-LT generating enzyme LTC(4) synthase (LTC(4)S). Skin thickening and collagen deposition were significantly reduced in ovalbumin-sensitized skin of LTC(4)S-deficient and type 2 cys-LT receptor (CysLT(2)R)-deficient mice but not type 1 cys-LT receptor (CysLT(1)R)-deficient mice. Adoptive transfer of bone marrow-derived eosinophils from WT but not LTC(4)S-deficient mice restored skin thickening and collagen deposition in epicutaneous-sensitized skin of ΔdblGATA recipients. LTC(4) stimulation caused increased collagen synthesis by human skin fibroblasts, which was blocked by CysLT(2)R antagonism but not CysLT(1)R antagonism. Furthermore, LTC(4) stimulated skin fibroblasts to secrete factors that elicit keratinocyte proliferation. These findings establish a role for eosinophil-derived cys-LTs and the CysLT(2)R in the hyperkeratosis and fibrosis of allergic skin inflammation. Strategies that block eosinophil infiltration, cys-LT production, or the CysLT(2)R might be useful in the treatment of AD.
Collapse
|
44
|
Eap R, Jacques E, Semlali A, Plante S, Chakir J. Cysteinyl leukotrienes regulate TGF-β(1) and collagen production by bronchial fibroblasts obtained from asthmatic subjects. Prostaglandins Leukot Essent Fatty Acids 2012; 86:127-33. [PMID: 22316690 DOI: 10.1016/j.plefa.2011.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (CysLTs) play an important role in airway inflammation in asthma but their role in airway remodeling is not completely known. METHODS CysLTs receptors and procollagen I(α(1)) mRNA were determined by qPCR. Procollagen protein production was measured by RIA and TGF-β(1) expression was determined by ELISA. TGF-β receptor expression was assessed by western blots. RESULTS CysLT1R, TGF-β-R1 and active TGF-β(1) are highly expressed in cells from asthmatics compared to normal controls. LTD(4) increased significantly procollagen I(α(1)) mRNA and protein expression in fibroblasts from asthmatics. This increase was blocked by CysLTs receptor antagonist. LTD(4) increased significantly mRNA expression of TGF-β(1) and active form production in fibroblasts from asthmatics. Inhibition of TGF-β(1) signaling blocked LTD(4)-induced procollagen I(α(1)) expression. CONCLUSIONS Fibroblasts from asthmatic subjects express high level of CysLT1R. LTD(4) regulates procollagen I(α(1)) transcription in fibroblasts derived from asthmatic patients by modulating TGF-β(1) expression. This suggests that CysLTs may play a role in regulating collagen deposition in asthma.
Collapse
Affiliation(s)
- R Eap
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
45
|
Shimbori C, Shiota N, Okunishi H. Pranlukast, a cysteinyl leukotriene type 1 receptor antagonist, attenuates the progression but not the onset of silica-induced pulmonary fibrosis in mice. Int Arch Allergy Immunol 2012; 158:241-51. [PMID: 22378144 DOI: 10.1159/000331439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/01/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although cysteinyl leukotrienes (CysLTs) have been implicated in the etiology of acute inflammatory diseases, recent studies have suggested that they also directly stimulate fibroblasts. However, their precise role in the pathogenesis of pulmonary fibrosis is unclear. METHODS In this study, we evaluated the effect of both short- and long-term treatment with pranlukast, a CysLT type 1 (CysLT(1)) receptor antagonist, on silica-induced pulmonary fibrosis in mice, which is characterized by persistent progression of fibrosis in the chronic phase. Pranlukast (30 mg/kg/day) was administered orally to mice for 2 or 10 weeks after intratracheal silica instillation. RESULTS Pranlukast treatment for 10 weeks significantly attenuated the progression of pulmonary fibrosis, and decreased the content of CysLTs and LTB(4), which were markedly increased in the bronchoalveolar lavage fluid (BALF) and lung tissues of silica-instilled mice in the chronic phase. However, pranlukast treatment for 2 weeks neither affected the acute inflammatory response induced by silica instillation nor inhibited the onset of fibrosis. The expression of TGF-β1 and TNF-α was not affected by pranlukast treatment for either 2 or 10 weeks. CONCLUSIONS Pranlukast attenuates the progression of pulmonary fibrosis in the chronic phase but has no effect on the acute inflammatory response or on the onset of pulmonary fibrosis. The antifibrotic effect of pranlukast may be exhibited by antagonizing the direct profibrotic effect of CysLTs, without affecting the expression of other profibrotic cytokines such as TGF-β1 and TNF-α, and also by decreasing the production of CysLTs and LTB(4).
Collapse
Affiliation(s)
- Chiko Shimbori
- Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, Japan
| | | | | |
Collapse
|
46
|
Interleukin-4 in the Generation of the AERD Phenotype: Implications for Molecular Mechanisms Driving Therapeutic Benefit of Aspirin Desensitization. J Allergy (Cairo) 2012; 2012:182090. [PMID: 22262978 PMCID: PMC3259477 DOI: 10.1155/2012/182090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/04/2011] [Indexed: 01/04/2023] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) is explained in part by over-expression of 5-lipoxygenase, leukotriene C4 synthase (LTC4S) and the cysteinyl leukotriene (CysLT) receptors (CysLT1 and 2), resulting in constitutive over-production of CysLTs and the hyperresponsiveness to CysLTs that occurs with aspirin ingestion. Increased levels of IL-4 have been found in the sinus mucosa and nasal polyps of AERD subjects. Previous studies demonstrated that IL-4 is primarily responsible for the upregulation of LTC4S by mast cells and the upregulation of CysLT1 and 2 receptors on many immune cell types. Prostaglandin E2 (PGE2) acts to prevent CysLT secretion by inhibiting mast cell and eosinophil activation. PGE2 concentrations are reduced in AERD reflecting diminished expression of cyclooxygenase (COX)-2. IL-4 can inhibit basal and stimulated expression of COX-2 and microsomal PGE synthase 1 leading to decreased capacity for PGE2 secretion. Thus, IL-4 plays an important pathogenic role in generating the phenotype of AERD. This review will examine the evidence supporting this hypothesis and describe a model of how aspirin desensitization provides therapeutic benefit for AERD patients.
Collapse
|
47
|
Baron RM, Choi AJS, Owen CA, Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2011; 302:L485-97. [PMID: 22198907 DOI: 10.1152/ajplung.00085.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite. Chagas disease remains a serious health problem in large parts of Mexico and Central and South America, where it is a major cause of morbidity and mortality. This disease is being increasingly recognized in non-endemic regions due to immigration. Heart disease develops in 10-30% of infected individuals. It is increasingly clear that parasite- and host-derived bioactive lipids potently modulate disease progression. Many of the changes that occur during acute and chronic Chagas disease can be accounted for by the effects of arachidonic acid (AA)-derived lipids such as leukotrienes, lipoxins, H(P)ETEs, prostaglandins (PGs) and thromboxane. During the course of infection with T. cruzi, changes in circulating levels of AA metabolites are observed. Antagonism of PG synthesis with cyclooxygenase (COX) inhibitors has both beneficial and adverse effects. Treatment with COX inhibitors during acute infection may result in increased parasite load and mortality. However, treatment instituted during chronic infection may be beneficial with no increase in mortality and substantial improvement with cardiac function. Recently, T. cruzi infection of mice deficient in AA biosynthetic enzymes for various pathways has yielded more insightful data than pharmacological inhibition and has highlighted the potential deleterious effects of inhibitors due to "off-target" actions. Using COX-1 null mice, it was observed that parasite biosynthesis is dependent upon host metabolism, that the majority of TXA(2) liberated during T. cruzi infection is derived from the parasite and that this molecule may act as a quorum sensor to control parasite growth/differentiation. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to, and maintenance of, the chronic stage of the disease. It is also likely that the same mediators that initially function to ensure host survival may later contribute to cardiovascular damage. Collectively, the eicosanoids represent a new series of targets for therapy in Chagas disease with defined potential therapeutic windows in which to apply these agents for greatest effect. A deeper understanding of the mechanism of action of non-steroidal anti-inflammatory drugs may provide clues to the differences between host responses in acute and chronic T. cruzi infection.
Collapse
|
49
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
50
|
Tufvesson E, Nihlberg K, Westergren-Thorsson G, Bjermer L. Leukotriene receptors are differently expressed in fibroblast from peripheral versus central airways in asthmatics and healthy controls. Prostaglandins Leukot Essent Fatty Acids 2011; 85:67-73. [PMID: 21596548 DOI: 10.1016/j.plefa.2011.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/07/2011] [Accepted: 04/23/2011] [Indexed: 11/27/2022]
Abstract
Leukotrienes are involved in airway inflammation, and are believed to stimulate airway remodeling in asthma. The aim of the project was to investigate the expression of leukotriene receptors in peripheral and central airway fibroblasts. Peripheral and central airway fibroblasts, from asthmatics and healthy controls, were investigated for the amount of cysteinyl-leukotriene receptors (CysLT(1) and CysLT(2)), leukotriene B(4) receptors (BLT(1) and BLT(2)), IL-13 receptor-α(1) (IL-13Rα(1)) and the IL-4 receptor (IL-4R). The mRNA expression of CysLT(1) in fibroblasts from peripheral airways was higher compared to central airways. There was no difference in CysLT(2) between peripheral and central airways. On the contrary, BLT(1) and BLT(2) were lower in fibroblasts from peripheral airways compared to central. The expression of CysLT(1) was higher than CysLT(2) in fibroblasts from peripheral airways, and the expression of BLT(1) was higher than BLT(2) in both peripheral and central airways. Both BLT(1) and BLT(2) were higher in asthmatics compared to healthy controls, while CysLT(1) and CysLT(2) did not differ. The expression of IL-13Rα(1) was higher in asthmatics compared to controls, and correlated to the BLTs. All fibroblasts stained for the different receptor proteins. Leukotriene receptors are differently expressed in fibroblasts from peripheral compared to central airways, which may explain a suggested cysteinyl-leukotriene driven remodeling mainly in the peripheral airways.
Collapse
Affiliation(s)
- Ellen Tufvesson
- Respiratory Medicine and Allergology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|