1
|
Kawajiri A, Li J, Koinuma K, Yang Z, Yoon HJ, Yi J, Nagashima H, Ishii M, Gao F, Sato K, Tayama S, Harigae H, Iwakura Y, Ishii N, Sher A, Ishigaki K, Zhu J, Kim KS, Kawabe T. Naturally arising memory-phenotype CD4 + T lymphocytes contain an undifferentiated population that can generate T H1, T H17, and T reg cells. SCIENCE ADVANCES 2024; 10:eadq6618. [PMID: 39630890 PMCID: PMC11619248 DOI: 10.1126/sciadv.adq6618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Memory-phenotype (MP) CD4+ T lymphocytes develop from naïve cells via self-recognition at homeostasis. While previous studies defined MP cells as a heterogeneous population that comprises T helper 1 (TH1)/17-like subsets, functional significance of the T-bet- Rorγt- subpopulation remains unknown. Here we show that MP lymphocytes as a whole population can differentiate into TH1/17/regulatory T (Treg) cells to mediate mild and persistent inflammation in lymphopenic environments, whereas naïve cells exhibit strong, TH1-dominated responses. Moreover, we demonstrate that MP lymphocytes comprise not only TH1/17-differentiated subsets but a polyclonal, transcriptomically immature "undifferentiated" subpopulation at homeostasis. Furthermore, our data argue that while the T-bet+ Rorγt- MP subset is terminally TH1-differentiated, its undifferentiated counterpart retains the capacity to rapidly proliferate to differentiate into TH1/17/Treg cells, with the latter response tonically constrained by preexisting Treg cells. Together, our results identify undifferentiated MP CD4+ T lymphocytes as a unique precursor that has a diverse differentiation potential to generate TH1/17/Treg cells to contribute to pathogenesis of inflammation.
Collapse
Affiliation(s)
- Akihisa Kawajiri
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jing Li
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keita Koinuma
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ziying Yang
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hye Jin Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biological Science, Ajou University, Suwon, Republic of Korea
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Minami Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Feng Gao
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kosuke Sato
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shunichi Tayama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideo Harigae
- Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Tsurui R, Yamada H, Natori T, Yoshimura M, Akasaki Y, Kawahara S, Niiro H, Kunisaki Y, Nakashima Y. Homeostatic signals, including IL-7 and self-MHC recognition, induce the development of peripheral helper T cells, which are enriched in the joints of rheumatoid arthritis. J Transl Autoimmun 2024; 9:100258. [PMID: 39554252 PMCID: PMC11567946 DOI: 10.1016/j.jtauto.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Objective Dysregulated T cell homeostasis has long been implicated in the pathogenesis of rheumatoid arthritis (RA), in the joint of which peripheral helper T (Tph) cells accumulate and form ectopic lymphoid organs. We examined whether homeostatic signals are involved in the development of Tph cells. Methods Human peripheral blood mononuclear cells were cultured with IL-7, the critical cytokine for T cell homeostasis. Development of Tph-like cells was assessed by flow cytometry, gene expression, and functional analysis. Chemotaxis of the Tph-like cells to RA synovial fluid (RASF) and the effect of RASF on the development of Tph-like cells was examined. Results PD-1highCXCR5- Tph-like cells developed from human peripheral blood CD4 T cells after proliferation in response to IL-7. Signals from self-MHC recognition and CD28 co-stimulation were also involved. The IL-7-induced Tph-like (IL-7-Tph) cells produced CXCL13 and IL-21 and helped B cells produce IgG. Comprehensive gene expression analysis further supported the similarity with Tph cells in RA joint. IL-7-Tph cells exhibited chemotaxis toward synovial fluid from RA patients (RASF), and RASF promoted the development of IL-7-Tph cells, which were also induced from CD4 T cells residing in non-inflamed joints. Conclusions Our results demonstrate an antigen-nonspecific developmental pathway of Tph cells triggered by homeostatic signals and promoted by the local environment of RA, which accounts for the accumulation of Tph cells in inflamed joints.
Collapse
Affiliation(s)
- Ryosuke Tsurui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisakata Yamada
- Department of Clinical Immunology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Natori
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoki Yoshimura
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Kawahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Li J, Yang Z, Kawajiri A, Sato K, Tayama S, Ishii N, Zhu J, Kawabe T. Excess generation and activation of naturally arising memory-phenotype CD4 + T lymphocytes are inhibited by regulatory T cells in steady state. Front Immunol 2024; 15:1429954. [PMID: 39221254 PMCID: PMC11361994 DOI: 10.3389/fimmu.2024.1429954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Conventional CD4+ T lymphocytes consist of naïve, foreign antigen-specific memory, and self-antigen-driven memory-phenotype (MP) cell compartments at homeostasis. We recently showed that MP cells tonically proliferate in response to self-antigens and differentiate into the T-bet+ subset in steady state. How excess proliferation and differentiation of MP cells are inhibited remains unclear. Given immunosuppressive function of regulatory T cells (Tregs), it is possible that they are also involved in inhibition of spontaneous MP cell activation. Here we show using Foxp3-diphtheria toxin receptor-transgenic mice that both MP and naïve CD4+ T cells spontaneously proliferate and differentiate into Th1 cells upon acute Treg depletion. At an early time point post Treg depletion, MP as compared to naïve CD4+ T cells are preferentially activated while at a later stage, the response is dominated by activated cells originated from the naïve pool. Moreover, we argue that MP cell proliferation is driven by TCR and CD28 signaling whereas Th1 differentiation mediated by IL-2. Furthermore, our data indicate that such activation of MP and naïve CD4+ T lymphocytes contribute to development of multi-organ inflammation at early and later time points, respectively, after Treg ablation. Together our findings reveal that Tregs tonically inhibit early, spontaneous proliferation and Th1 differentiation of MP CD4+ T lymphocytes as well as late activation of naïve cells, thereby contributing to maintenance of T cell homeostasis.
Collapse
Affiliation(s)
- Jing Li
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ziying Yang
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akihisa Kawajiri
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kosuke Sato
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shunichi Tayama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Parra-Ortega I, Nájera-Martínez N, Gaytán-Morales F, Castorena-Villa I, López-Martínez B, Ortiz-Navarrete V, Olvera-Gómez I. Enrichment of effector memory T cells in the CD4 and CD8 T cell compartment during chronic graft versus host disease in children. Transpl Immunol 2023; 81:101951. [PMID: 37939887 DOI: 10.1016/j.trim.2023.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND During allogeneic Hematopoietic stem cell transplantation (HSCT), frequent pathological scenarios include graft versus host disease (GVHD) and viral infections. We hypothesized if exogenous stimulus as alloantigen and viral antigens might impact on central and effector memory T cells in pediatric recipients. PATIENTS AND METHODS Subjects included 21 pediatric recipients and 20 healthy children (control group). Peripheral blood samples of patients were collected along the first 712 days post-HSCT. T cell phenotyping of naïve, central, and effector memory T cells (TCMs and TEMs, respectively) was conducted using flow cytometry. Viral nucleic acids were detected using real-time PCR. RESULTS T cell reconstitution was not reached after 1 year post-HSCT. Chronic GVHD was associated with increased numbers of naïve CD4 T cells (p < 0.05) as well as an increase in TEM and TCM cells of the CD4 (p < 0.0001 and p < 0.05, respectively) and CD8 T cell TEM (p < 0.0001). and TCM (p < 0.001) populations too. Moreover, BK and Epstein-Barr viruses were the main viral pathogens detected (<104 copies), which were associated with a decrease in all T cell compartments. CONCLUSION During chronic GVHD, alloantigen persistence generates TEM cell enrichment among CD4 and CD8 T cells, and viral infections are associated with deficient recovery of T cells after HSCT.
Collapse
Affiliation(s)
- Israel Parra-Ortega
- Hospital Infantil de México Federico Gómez, Clinical Laboratory Department, Mexico City, Mexico
| | - Noemí Nájera-Martínez
- Hospital Infantil de México Federico Gómez, Clinical Laboratory Department, Mexico City, Mexico
| | - Félix Gaytán-Morales
- Hospital Infantil de México Federico Gómez, Hematopoietic Stem Cell Transplantation Unit, Mexico City, Mexico
| | - Iván Castorena-Villa
- Hospital Infantil de México Federico Gómez, Hematopoietic Stem Cell Transplantation Unit, Mexico City, Mexico
| | - Briceida López-Martínez
- Hospital Infantil de México Federico Gómez, Sub-directorate of Auxilliary Services and Diagnosis, Mexico City, Mexico
| | | | - Irlanda Olvera-Gómez
- CICSA, Universidad Anáhuac, State of Mexico, Mexico; Immunology Laboratory, Hospital Nacional Homeopático, Mexico City, Mexico.
| |
Collapse
|
5
|
Min H, Valente LA, Xu L, O'Neil SM, Begg LR, Kurtzberg J, Filiano AJ. Improving thymus implantation for congenital athymia with interleukin-7. Clin Transl Immunology 2023; 12:e1475. [PMID: 38020730 PMCID: PMC10665642 DOI: 10.1002/cti2.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Thymus implantation is a recently FDA-approved therapy for congenital athymia. Patients receiving thymus implantation develop a functional but incomplete T cell compartment. Our objective was to develop a mouse model to study clinical thymus implantation in congenital athymia and to optimise implantation procedures to maximise T cell education and expansion of naïve T cells. Methods Using Foxn1 nu athymic mice as recipients, we tested MHC-matched and -mismatched donor thymi that were implanted as fresh tissue or cultured to remove donor T cells. We first implanted thymus under the kidney capsule and then optimised intramuscular implantation. Using competitive adoptive transfer assays, we investigated whether the failure of newly developed T cells to expand into a complete T cell compartment was because of intrinsic deficits or whether there were deficits in engaging MHC molecules in the periphery. Finally, we tested whether recombinant IL-7 would promote the expansion of host naïve T cells educated by the implanted thymus. Results We determined that thymus implants in Foxn1 nu athymic mice mimic many aspects of clinical thymus implants in patients with congenital athymia. When we implanted cultured, MHC-mismatched donor thymus into Foxn1 nu athymic mice, mice developed a limited T cell compartment with notably underdeveloped naïve populations and overrepresented memory-like T cells. Newly generated T cells were predominantly educated by MHC molecules expressed by the donor thymus, thus potentially undergoing another round of selection once in the peripheral circulation. Using competitive adoptive transfer assays, we compared expansion rates of T cells educated on donor thymus versus T cells educated during typical thymopoiesis in MHC-matched and -mismatched environments. Once in the circulation, regardless of the MHC haplotypes, T cells educated on a donor thymus underwent abnormal expansion with initially more robust proliferation coupled with greater cell death, resembling IL-7 independent spontaneous expansion. Treating implanted mice with recombinant interleukin (IL-7) promoted homeostatic expansion that improved T cell development, expanded the T cell receptor repertoire, and normalised the naïve T cell compartment. Conclusion We conclude that implanting cultured thymus into the muscle of Foxn1 nu athymic mice is an appropriate system to study thymus implantation for congenital athymia and immunodeficiencies. T cells are educated by the donor thymus, yet naïve T cells have deficits in expansion. IL-7 greatly improves T cell development after thymus implantation and may offer a novel strategy to improve outcomes of clinical thymus implantation.
Collapse
Affiliation(s)
- Hyunjung Min
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Laura A Valente
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PathologyDuke UniversityDurhamNCUSA
| | - Li Xu
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Shane M O'Neil
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Lauren R Begg
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Joanne Kurtzberg
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PediatricsDuke UniversityDurhamNCUSA
| | - Anthony J Filiano
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PathologyDuke UniversityDurhamNCUSA
- Department of NeurosurgeryDuke UniversityDurhamNCUSA
- Department of ImmunologyDuke UniversityDurhamNCUSA
| |
Collapse
|
6
|
Vereertbrugghen A, Pizzano M, Sabbione F, Keitelman IA, Shiromizu CM, Aguilar DV, Fuentes F, de Paiva CS, Giordano M, Trevani A, Galletti JG. An ocular Th1 immune response promotes corneal nerve damage independently of the development of corneal epitheliopathy. J Neuroinflammation 2023; 20:120. [PMID: 37217914 PMCID: PMC10201717 DOI: 10.1186/s12974-023-02800-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene Angelica Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mirta Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Wolf G, Gerber AN, Fasana ZG, Rosenberg K, Singh NJ. Acute effects of FLT3L treatment on T cells in intact mice. Sci Rep 2022; 12:19487. [PMID: 36376544 PMCID: PMC9662129 DOI: 10.1038/s41598-022-24126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T cells express a diverse repertoire of antigen-specific receptors, which together protect against the full range of pathogens. In this context, the total repertoire of memory T cells which are maintained by trophic signals, long after pathogen clearance, is critical. Since these trophic factors include cytokines and self-peptide-MHC, both of which are available from endogenous antigen-presenting cells (APC), we hypothesized that enhancing APC numbers in vivo can be a viable strategy to amplify the population of memory T cells. We evaluated this by acutely treating intact mice with FMS-like tyrosine kinase 3 ligand (Flt3l), which promotes expansion of APCs. Here we report that this treatment allowed for, an expansion of effector-memory CD4+ and CD8+ T cells as well as an increase in their expression of KLRG1 and CD25. In the lymph nodes and spleen, the expansion was limited to a specific CD8 (CD44-low but CD62L-) subset. Functionally, this subset is distinct from naïve T cells and could produce significant amounts of effector cytokines upon restimulation. Taken together, these data suggest that the administration of Flt3L can impact both APC turnover as well as a corresponding flux of specific subsets of CD8+ T cells in an intact peripheral immune compartment.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Allison N Gerber
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Zachary G Fasana
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Kenneth Rosenberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Saidakova EV. Lymphopenia and Mechanisms of T-Cell Regeneration. CELL AND TISSUE BIOLOGY 2022; 16:302-311. [PMID: 35967247 PMCID: PMC9358362 DOI: 10.1134/s1990519x2204006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Chronic lymphopenia, in particular, T-lymphocyte deficiency, increases the risk of death from cancer, cardiovascular and respiratory diseases and serves as a risk factor for a severe course and poor outcome of infectious diseases such as COVID-19. The regeneration of T-lymphocytes is a complex multilevel process, many questions of which still remain unanswered. The present review considers two main pathways of increasing the T-cell number in lymphopenia: production in the thymus and homeostatic proliferation in the periphery. Literature data on the signals that regulate each pathway are summarized. Their contribution to the quantitative and qualitative restoration of the immune cell pool is analyzed. The features of CD4+ and CD8+ T-lymphocytes’ regeneration are considered.
Collapse
Affiliation(s)
- E. V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences—Branch of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, 614081 Perm, Russia
| |
Collapse
|
9
|
Dessalles R, Pan Y, Xia M, Maestrini D, D'Orsogna MR, Chou T. How Naive T-Cell Clone Counts Are Shaped By Heterogeneous Thymic Output and Homeostatic Proliferation. Front Immunol 2022; 12:735135. [PMID: 35250963 PMCID: PMC8891377 DOI: 10.3389/fimmu.2021.735135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The specificity of T cells is that each T cell has only one T cell receptor (TCR). A T cell clone represents a collection of T cells with the same TCR sequence. Thus, the number of different T cell clones in an organism reflects the number of different T cell receptors (TCRs) that arise from recombination of the V(D)J gene segments during T cell development in the thymus. TCR diversity and more specifically, the clone abundance distribution, are important factors in immune functions. Specific recombination patterns occur more frequently than others while subsequent interactions between TCRs and self-antigens are known to trigger proliferation and sustain naive T cell survival. These processes are TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation rates. We describe the heterogeneous steady-state population of naive T cells (those that have not yet been antigenically triggered) by using a mean-field model of a regulated birth-death-immigration process. After accounting for random sampling, we investigate how TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of clone abundance distributions (the number of different clones that are represented by a specific number of cells, or “clone counts”). By using reasonable physiological parameter values and fitting predicted clone counts to experimentally sampled clone abundances, we show that realistic levels of heterogeneity in immigration rates cause very little change to predicted clone-counts, but that modest heterogeneity in proliferation rates can generate the observed clone abundances. Our analysis provides constraints among physiological parameters that are necessary to yield predictions that qualitatively match the data. Assumptions of the model and potentially other important mechanistic factors are discussed.
Collapse
Affiliation(s)
- Renaud Dessalles
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yunbei Pan
- Department of Mathematics, California State University at Northridge, Los Angeles, CA, United States
| | - Mingtao Xia
- Department of Mathematics, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Davide Maestrini
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Maria R D'Orsogna
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States.,Department of Mathematics, California State University at Northridge, Los Angeles, CA, United States
| | - Tom Chou
- Department of Computational Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States.,Department of Mathematics, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
10
|
Kawabe T, Sher A. Memory-phenotype CD4+ T cells: a naturally arising T lymphocyte population possessing innate immune function. Int Immunol 2021; 34:189-196. [PMID: 34897483 PMCID: PMC8962445 DOI: 10.1093/intimm/dxab108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
In conventional adaptive immune responses, upon recognition of foreign antigens, naive CD4+ T lymphocytes are activated to differentiate into effector/memory cells. In addition, emerging evidence suggests that in the steady state, naive CD4+ T cells spontaneously proliferate in response to self-antigens to acquire a memory phenotype (MP) through homeostatic proliferation. This expansion is particularly profound in lymphopenic environments but also occurs in lymphoreplete, normal conditions. The 'MP T lymphocytes' generated in this manner are maintained by rapid proliferation in the periphery and they tonically differentiate into T-bet-expressing 'MP1' cells. Such MP1 CD4+ T lymphocytes can exert innate effector function, producing IFN-γ in response to IL-12 in the absence of antigen recognition, thereby contributing to host defense. In this review, we will discuss our current understanding of how MP T lymphocytes are generated and persist in steady-state conditions, their populational heterogeneity as well as the evidence for their effector function. We will also compare these properties with those of a similar population of innate memory cells previously identified in the CD8+ T lymphocyte lineage.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan,Correspondence to: T. Kawabe; E-mail: or A. Sher; E-mail:
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Correspondence to: T. Kawabe; E-mail: or A. Sher; E-mail:
| |
Collapse
|
11
|
Abstract
Conventional CD4+ and CD8+ T lymphocytes comprise a mixture of naive and memory cells. Generation and survival of these T-cell subsets is under strict homeostatic control and reflects contact with self-major histocompatibility complex (MHC) and certain cytokines. Naive T cells arise in the thymus via T-cell receptor (TCR)-dependent positive selection to self-peptide/MHC complexes and are then maintained in the periphery through self-MHC interaction plus stimulation via interleukin-7 (IL-7). By contrast, memory T cells are largely MHC-independent for their survival but depend strongly on stimulation via cytokines. Whereas typical memory T cells are generated in response to foreign antigens, some arise spontaneously through contact of naive precursors with self-MHC ligands; we refer to these cells as memory-phenotype (MP) T cells. In this review, we discuss the generation and homeostasis of naive T cells and these two types of memory T cells, focusing on their relative interaction with MHC ligands and cytokines.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jaeu Yi
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
12
|
Lymphopenia, Lymphopenia-Induced Proliferation, and Autoimmunity. Int J Mol Sci 2021; 22:ijms22084152. [PMID: 33923792 PMCID: PMC8073364 DOI: 10.3390/ijms22084152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immune homeostasis is a tightly regulated system that is critical for defense against invasion by foreign pathogens and protection from self-reactivity for the survival of an individual. How the defects in this system might result in autoimmunity is discussed in this review. Reduced lymphocyte number, termed lymphopenia, can mediate lymphopenia-induced proliferation (LIP) to maintain peripheral lymphocyte numbers. LIP not only occurs in normal physiological conditions but also correlates with autoimmunity. Of note, lymphopenia is also a typical marker of immune aging, consistent with the fact that not only the autoimmunity increases in the elderly, but also autoimmune diseases (ADs) show characteristics of immune aging. Here, we discuss the types and rates of LIP in normal and autoimmune conditions, as well as the coronavirus disease 2019 in the context of LIP. Importantly, although the causative role of LIP has been demonstrated in the development of type 1 diabetes and rheumatoid arthritis, a two-hit model has suggested that the factors other than lymphopenia are required to mediate the loss of control over homeostasis to result in ADs. Interestingly, these factors may be, if not totally, related to the function/number of regulatory T cells which are key modulators to protect from self-reactivity. In this review, we summarize the important roles of lymphopenia/LIP and the Treg cells in various autoimmune conditions, thereby highlighting them as key therapeutic targets for autoimmunity treatments.
Collapse
|
13
|
Sureshchandra S, Mendoza N, Jankeel A, Wilson RM, Marshall NE, Messaoudi I. Phenotypic and Epigenetic Adaptations of Cord Blood CD4+ T Cells to Maternal Obesity. Front Immunol 2021; 12:617592. [PMID: 33912153 PMCID: PMC8071865 DOI: 10.3389/fimmu.2021.617592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 01/02/2023] Open
Abstract
Pregravid obesity has been shown to disrupt the development of the offspring's immune system and increase susceptibility to infection. While the mechanisms underlying the impact of maternal obesity on fetal myeloid cells are emerging, the consequences for T cells remain poorly defined. In this study, we collected umbilical cord blood samples from infants born to lean mothers and mothers with obesity and profiled CD4 T cells using flow cytometry and single cell RNA sequencing at resting and following ex vivo polyclonal stimulation. We report that maternal obesity is associated with higher frequencies of memory CD4 T cells suggestive of in vivo activation. Moreover, single cell RNA sequencing revealed expansion of an activated subset of memory T cells with maternal obesity. However, ex vivo stimulation of purified CD4 T cells resulted in poor cytokine responses, suggesting functional defects. These phenotypic and functional aberrations correlated with methylation and chromatin accessibility changes in loci associated with lymphocyte activation and T cell receptor signaling, suggesting a possible link between maternal obesogenic environment and fetal immune reprogramming. These observations offer a potential explanation for the increased susceptibility to microbial infection in babies born to mothers with obesity.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
- Institute for Immunology, University of California Irvine, Irvine, CA, United States
| | - Norma Mendoza
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Randall M. Wilson
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, United States
| | - Nicole E. Marshall
- Maternal-Fetal Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
- Institute for Immunology, University of California Irvine, Irvine, CA, United States
- Center for Virus Research, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Bretscher PA, Al‐Yassin G, Anderson CC. On T cell development, T cell signals, T cell specificity and sensitivity, and the autoimmunity facilitated by lymphopenia. Scand J Immunol 2020; 91:e12888. [DOI: 10.1111/sji.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Peter A. Bretscher
- Department of Biochemistry, Microbiology, and Immunology College of Medicine University of Saskatchewan Saskatoon SK Canada
| | - Ghassan Al‐Yassin
- Department of Biochemistry, Microbiology, and Immunology College of Medicine University of Saskatchewan Saskatoon SK Canada
| | - Colin C. Anderson
- Department of Surgery Alberta Diabetes Institute Alberta Transplant Institute University of Alberta Edmonton AB Canada
- Department of Medical Microbiology & Immunology Alberta Diabetes Institute Alberta Transplant Institute University of Alberta Edmonton AB Canada
| |
Collapse
|
15
|
Speranza E, Ruibal P, Port JR, Feng F, Burkhardt L, Grundhoff A, Günther S, Oestereich L, Hiscox JA, Connor JH, Muñoz-Fontela C. T-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in Humans. J Infect Dis 2019; 218:S508-S518. [PMID: 29986035 DOI: 10.1093/infdis/jiy352] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Differences in T-cell phenotype, particularly the expression of markers of T-cell homeostasis, have been observed in fatal and nonfatal Ebola virus disease (EVD). However, the relationship between these markers with T-cell function and virus clearance during EVD is poorly understood. To gain biological insight into the role of T cells during EVD, combined transcriptomics and T-cell receptor sequencing was used to profile blood samples from fatal and nonfatal EVD patients from the recent West African EVD epidemic. Fatal EVD was characterized by strong T-cell activation and increased abundance of T-cell inhibitory molecules. However, the early T-cell response was oligoclonal and did not result in viral clearance. In contrast, survivors mounted highly diverse T-cell responses, maintained low levels of T-cell inhibitors, and cleared Ebola virus. Our findings highlight the importance of T-cell immunity in surviving EVD and strengthen the foundation for further research on targeting of the dendritic cell-T cell interface for postexposure immunotherapy.
Collapse
Affiliation(s)
- Emily Speranza
- Department of Microbiology, Boston University School of Medicine, Boston MA.,Department of Bioinformatics Program, Boston University, Boston MA.,Department of National Emerging Infectious Diseases Laboratories, Boston University, Boston MA.,Department of Mathematics and Statistics, Boston University, Boston MA
| | - Paula Ruibal
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia R Port
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner SiteHamburg, Germany
| | - Feng Feng
- Department of Microbiology, Boston University School of Medicine, Boston MA.,Department of Mathematics and Statistics, Boston University, Boston MA
| | - Lia Burkhardt
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner SiteHamburg, Germany
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner SiteHamburg, Germany
| | - Julian A Hiscox
- Institute for Infection and Global Health, University of Liverpool, United Kingdom.,Singapore Immunology Network, A*STAR, Singapore
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston MA.,Department of Bioinformatics Program, Boston University, Boston MA.,Department of National Emerging Infectious Diseases Laboratories, Boston University, Boston MA.,Department of Mathematics and Statistics, Boston University, Boston MA
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner SiteHamburg, Germany
| |
Collapse
|
16
|
Knop L, Frommer C, Stoycheva D, Deiser K, Kalinke U, Blankenstein T, Kammertoens T, Dunay IR, Schüler T. Interferon-γ Receptor Signaling in Dendritic Cells Restrains Spontaneous Proliferation of CD4 + T Cells in Chronic Lymphopenic Mice. Front Immunol 2019; 10:140. [PMID: 30792713 PMCID: PMC6374634 DOI: 10.3389/fimmu.2019.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
In lymphopenic mice, T cells become activated and undergo lymphopenia-induced proliferation (LIP). However, not all T cells are equally sensitive to lymphopenia. Several lymphopenia-insensitive T cell clones were described and their non-responsiveness was mainly attributed to clone-specific properties. Here, we provide evidence for an additional, host-dependent mechanism restraining LIP of lymphopenia-insensitive CD4+ T cells. We show that such cells undergo LIP in lymphopenic mice lacking IFN-γ receptor (IFN-γR) expression, a process, which is promoted by the autocrine action of T cell-derived IFN-γ. Additionally, LIP of lymphopenia-insensitive CD4+ T cells requires an intact microflora and is accompanied by the massive accumulation of IL-6 and dendritic cells (DCs). Consistent with these results, IL-6 neutralization and the DC-specific restoration of IFN-γR expression are both sufficient to restrict LIP. Hence, the insensitivity of CD4+ T cells to lymphopenia relies on cell-intrinsic properties and a complex interplay between the commensal microflora, IL-6, IFN-γR+ DCs, and T cell-derived IFN-γ.
Collapse
Affiliation(s)
- Laura Knop
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Charlotte Frommer
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Diana Stoycheva
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Katrin Deiser
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Medical School Hannover, Institute for Experimental Infection Research, Hannover, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Thomas Kammertoens
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
17
|
Ferreira CM, Williams JW, Tong J, Rayon C, Blaine KM, Sperling AI. Allergen Exposure in Lymphopenic Fas-Deficient Mice Results in Persistent Eosinophilia Due to Defects in Resolution of Inflammation. Front Immunol 2018; 9:2395. [PMID: 30425708 PMCID: PMC6219400 DOI: 10.3389/fimmu.2018.02395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is characterized by chronic airway type-2 inflammation and eosinophilia, yet the mechanisms involved in chronic, non-resolving inflammation remain poorly defined. Previously, our group has found that when Rag-deficient mice were reconstituted with Fas-deficient B6 LPR T cells and sensitized and challenged, the mice developed a prolonged type-2-mediated airway inflammation that continued for more than 6 weeks after the last antigen exposure. Surprisingly, no defect in resolution was found when intact B6 LPR mice or T cell specific Fas-conditional knockout mice were sensitized and challenged. We hypothesize that the homeostatic proliferation induced by adoptive transfer of T cells into Rag-deficient mice may be an important mechanism involved in the lack of resolution. To investigate the role of homeostatic proliferation, we induced lymphopenia in the T cell-specific Fas-conditional knockout mice by non-lethal irradiation and sensitized them when T cells began to repopulate. Interestingly, we found that defective Fas signaling on T cells plus antigen exposure during homeostatic proliferation was sufficient to induce prolonged eosinophilic airway inflammation. In conclusion, our data show that the combination of transient lymphopenia, abnormal Fas-signaling, and antigen exposure leads to the development of a prolonged airway eosinophilic inflammatory phase in our mouse model of experimental asthma.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Jesse W Williams
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Jiankun Tong
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Crystal Rayon
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Kelly M Blaine
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anne I Sperling
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States.,Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL, United States.,Committee on Immunology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Lythe G, Molina-París C. Some deterministic and stochastic mathematical models of naïve T-cell homeostasis. Immunol Rev 2018; 285:206-217. [DOI: 10.1111/imr.12696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Grant Lythe
- School of Mathematics; University of Leeds; Leeds UK
| | | |
Collapse
|
19
|
Smith-Raska MR, Arenzana TL, D'Cruz LM, Khodadadi-Jamayran A, Tsirigos A, Goldrath AW, Reizis B. The Transcription Factor Zfx Regulates Peripheral T Cell Self-Renewal and Proliferation. Front Immunol 2018; 9:1482. [PMID: 30022979 PMCID: PMC6039547 DOI: 10.3389/fimmu.2018.01482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/14/2018] [Indexed: 12/02/2022] Open
Abstract
Peripheral T lymphocytes share many functional properties with hematopoietic stem cells (HSCs), including long-term maintenance, quiescence, and latent proliferative potential. In addition, peripheral T cells retain the capacity for further differentiation into a variety of subsets, much like HSCs. While the similarities between T cells and HSC have long been hypothesized, the potential common genetic regulation of HSCs and T cells has not been widely explored. We have studied the T cell-intrinsic role of Zfx, a transcription factor specifically required for HSC maintenance. We report that T cell-specific deletion of Zfx caused age-dependent depletion of naïve peripheral T cells. Zfx-deficient T cells also failed to undergo homeostatic proliferation in a lymphopenic environment, and showed impaired antigen-specific expansion and memory response. In addition, the invariant natural killer T cell compartment was severely reduced. RNA-Seq analysis revealed that the most dysregulated genes in Zfx-deficient T cells were similar to those observed in Zfx-deficient HSC and B cells. These studies identify Zfx as an important regulator of peripheral T cell maintenance and expansion and highlight the common molecular basis of HSC and lymphocyte homeostasis.
Collapse
Affiliation(s)
- Matthew R Smith-Raska
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Teresita L Arenzana
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Louise M D'Cruz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, United States.,Department of Pathology, NYU School of Medicine, New York, NY, United States
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, United States.,Department of Pathology, NYU School of Medicine, New York, NY, United States
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States.,Department of Pathology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Du X, Liu M, Su J, Zhang P, Tang F, Ye P, Devenport M, Wang X, Zhang Y, Liu Y, Zheng P. Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Res 2018; 28:433-447. [PMID: 29463898 PMCID: PMC5939041 DOI: 10.1038/s41422-018-0012-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023] Open
Abstract
Anti-CTLA-4 monoclonal antibodies (mAbs) confer a cancer immunotherapeutic effect (CITE) but cause severe immunotherapy-related adverse events (irAE). Targeting CTLA-4 has shown remarkable long-term benefit and thus remains a valuable tool for cancer immunotherapy if the irAE can be brought under control. An animal model, which recapitulates clinical irAE and CITE, would be valuable for developing safer CTLA-4-targeting reagents. Here, we report such a model using mice harboring the humanized Ctla4 gene. In this model, the clinically used drug, Ipilimumab, induced severe irAE especially when combined with an anti-PD-1 antibody; whereas another mAb, L3D10, induced comparable CITE with very mild irAE under the same conditions. The irAE corresponded to systemic T cell activation and resulted in reduced ratios of regulatory to effector T cells (Treg/Teff) among autoreactive T cells. Using mice that were either homozygous or heterozygous for the human allele, we found that the irAE required bi-allelic engagement, while CITE only required monoallelic engagement. As with the immunological distinction for monoallelic vs bi-allelic engagement, we found that bi-allelic engagement of the Ctla4 gene was necessary for preventing conversion of autoreactive T cells into Treg cells. Humanization of L3D10, which led to loss of blocking activity, further increased safety without affecting the therapeutic effect. Taken together, our data demonstrate that complete CTLA-4 occupation, systemic T cell activation and preferential expansion of self-reactive T cells are dispensable for tumor rejection but correlate with irAE, while blocking B7-CTLA-4 interaction impacts neither safety nor efficacy of anti-CTLA-4 antibodies. These data provide important insights for the clinical development of safer and potentially more effective CTLA-4-targeting immunotherapy.
Collapse
Affiliation(s)
- Xuexiang Du
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Mingyue Liu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Juanjuan Su
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Peng Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Fei Tang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Peiying Ye
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | | | - Xu Wang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Yan Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.
- OncoImmune, Inc., Rockville, MD, 20852, USA.
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.
- OncoImmune, Inc., Rockville, MD, 20852, USA.
| |
Collapse
|
21
|
Min B. Spontaneous T Cell Proliferation: A Physiologic Process to Create and Maintain Homeostatic Balance and Diversity of the Immune System. Front Immunol 2018; 9:547. [PMID: 29616038 PMCID: PMC5868360 DOI: 10.3389/fimmu.2018.00547] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/05/2018] [Indexed: 11/14/2022] Open
Abstract
Naive T lymphocytes undergo heterogeneous proliferative responses when introduced into lymphopenic hosts, referred to as “homeostatic proliferation” and “spontaneous proliferation.” Spontaneous proliferation is a unique process through which the immune system generates memory phenotype cells with increasing T cell receptors repertoire complexity. Here, the mechanisms that initiate and control spontaneous proliferation are discussed.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
22
|
Clark SM, Vaughn CN, Soroka JA, Li X, Tonelli LH. Neonatal adoptive transfer of lymphocytes rescues social behaviour during adolescence in immune-deficient mice. Eur J Neurosci 2018; 47:968-978. [PMID: 29430738 DOI: 10.1111/ejn.13860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Accumulating evidence has shown that lymphocytes modulate behaviour and cognition by direct interactions with the central nervous system. Studies have shown that reconstitution by adoptive transfer of lymphocytes from wild type into immune-deficient mice restores a number of neurobehavioural deficits observed in these models. Moreover, it has been shown that these effects are mostly mediated by T lymphocytes. Studies of adoptive transfer thus far have employed adult mice, but whether lymphocytes may also modulate behaviour during development remains unknown. In this study, neonate lymphocyte-deficient Rag2-/- mice were reconstituted within 48 hours after birth with lymphoid cells from transgenic donors expressing green fluorescent protein, allowing for their identification in various tissues in recipient mice while retaining all functional aspects. Adolescent Rag2-/- and reconstituted Rag2-/- along with C57BL/6J wild-type mice underwent a series of behavioural tests, including open field, social interaction and sucrose preference tests. At 12 weeks, they were evaluated in the Morris water maze (MWM). Reconstituted mice showed changes in almost all aspects of behaviour that were assessed, with a remarkable complete rescue of impaired social behaviour displayed by adolescent Rag2-/- mice. Consistent with previous reports in adult mice, neonatal reconstitution in Rag2-/- mice restored spatial memory in the MWM. The presence of donor lymphocytes in the brain of neonatally reconstituted Rag2-/- mice was confirmed at various developmental points. These findings provide evidence that lymphocytes colonize the brain during post-natal development and modulate behaviour across the lifespan supporting a role for adaptive immunity during brain maturation.
Collapse
Affiliation(s)
- Sarah M Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Chloe N Vaughn
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Jennifer A Soroka
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
23
|
Weinstein JS, Laidlaw BJ, Lu Y, Wang JK, Schulz VP, Li N, Herman EI, Kaech SM, Gallagher PG, Craft J. STAT4 and T-bet control follicular helper T cell development in viral infections. J Exp Med 2017; 215:337-355. [PMID: 29212666 PMCID: PMC5748849 DOI: 10.1084/jem.20170457] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 09/10/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Follicular helper T (Tfh) cells promote germinal center (GC) B cell survival and proliferation and guide their differentiation and immunoglobulin isotype switching by delivering contact-dependent and soluble factors, including IL-21, IL-4, IL-9, and IFN-γ. IL-21 and IFN-γ are coexpressed by Tfh cells during viral infections, but transcriptional regulation of these cytokines is not completely understood. In this study, we show that the T helper type 1 cell (Th1 cell) transcriptional regulators T-bet and STAT4 are coexpressed with Bcl6 in Tfh cells after acute viral infection, with a temporal decline in T-bet in the waning response. T-bet is important for Tfh cell production of IFN-γ, but not IL-21, and for a robust GC reaction. STAT4, phosphorylated in Tfh cells upon infection, is required for expression of T-bet and Bcl6 and for IFN-γ and IL-21. These data indicate that T-bet is expressed with Bcl6 in Tfh cells and is required alongside STAT4 to coordinate Tfh cell IL-21 and IFN-γ production and for promotion of the GC response after acute viral challenge.
Collapse
Affiliation(s)
- Jason S Weinstein
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jessica K Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Ningcheng Li
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| | - Edward I Herman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT.,Department of Pathology and Genetics, Yale University School of Medicine, New Haven, CT
| | - Joe Craft
- Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Herkenham M, Kigar SL. Contributions of the adaptive immune system to mood regulation: Mechanisms and pathways of neuroimmune interactions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:49-57. [PMID: 27613155 PMCID: PMC5339070 DOI: 10.1016/j.pnpbp.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Clinical and basic studies of functional interactions between adaptive immunity, affective states, and brain function are reviewed, and the neural, humoral, and cellular routes of bidirectional communication between the brain and the adaptive immune system are evaluated. In clinical studies of depressed populations, lymphocytes-the principal cells of the adaptive immune system-exhibit altered T cell subtype ratios and CD4+ helper T cell polarization profiles. In basic studies using psychological stress to model depression, T cell profiles are altered as well, consistent with stress effects conveyed by the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. Lymphocytes in turn have effects on behavior and CNS structure and function. CD4+ T cells in particular appear to modify affective behavior and rates of hippocampal dentate gyrus neurogenesis. These observations force the question of how such actions are carried out. CNS effects may occur via cellular and molecular mechanisms whereby effector memory T cells and the cytokine profiles they produce in the blood interact with the blood-brain barrier in ways that remain to be clarified. Understanding the mechanisms by which T cells polarize and interact with the brain to alter mood states is key to advances in the field, and may permit development of therapies that target cells in the periphery, thus bypassing problems associated with bioavailability of drugs within the brain.
Collapse
Affiliation(s)
- Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| | - Stacey L Kigar
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
25
|
Kawabe T, Jankovic D, Kawabe S, Huang Y, Lee PH, Yamane H, Zhu J, Sher A, Germain RN, Paul WE. Memory-phenotype CD4 + T cells spontaneously generated under steady-state conditions exert innate T H1-like effector function. Sci Immunol 2017; 2:2/12/eaam9304. [PMID: 28783663 DOI: 10.1126/sciimmunol.aam9304] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
Abstract
Conventional CD4+ T cells are composed of naïve, pathogen-specific memory, and pathogen-independent memory-phenotype (MP) cells under steady state. Naïve and pathogen-specific memory cells play key roles in adaptive immunity, whereas the homeostatic mechanisms regulating the generation of MP cells and their biological functions are unclear. We show that MP cells are autonomously generated from peripheral naïve cells in the absence of infectious stimulation in a T cell receptor (TCR)- and CD28-dependent manner. We further demonstrate that MP cells contain a T-bethi subpopulation that is continuously generated by environmental interleukin-12 (IL-12) and rapidly produces interferon-γ (IFN-γ) in response to IL-12 in the absence of pathogen recognition. These cells can provide nonspecific host resistance against Toxoplasma gondii infection while enhancing the adaptive CD4+ T cell responses. Together, these findings reveal that MP cells are continuously generated from naïve precursors and have a previously undescribed innate immune function by which they produce an early, T helper cell type 1 (TH1)-like protective response against pathogens.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. .,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuko Kawabe
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuefeng Huang
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ping-Hsien Lee
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hidehiro Yamane
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ronald N Germain
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. .,Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William E Paul
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Schmitt MER, Sitte S, Voehringer D. CD4 T Helper Cells Instruct Lymphopenia-Induced Memory-Like CD8 T Cells for Control of Acute LCMV Infection. Front Immunol 2017; 7:622. [PMID: 28066432 PMCID: PMC5174106 DOI: 10.3389/fimmu.2016.00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/07/2016] [Indexed: 01/12/2023] Open
Abstract
Lymphopenic conditions lead to expansion of memory-like T cells (TML), which develop from naïve T cells by spontaneous proliferation. TML cells are often increased in the elderly population, AIDS patients, and patients recovering from radio- or chemotherapy. At present, it is unclear whether TML cells can efficiently respond to foreign antigen and participate in antiviral immunity. To address this question, we analyzed the immune response during acute low-dose infection with lymphocytic choriomeningitis virus-WE in T cell lymphopenic CD4Cre/R-diphtheria toxin alpha (DTA) mice in which most peripheral T cells show a TML phenotype. On day 8 after infection, the total number of effector T cells and polyfunctional IFN-γ and TNF-α producing CD8 T cells were three- to fivefold reduced in CD4Cre/R-DTA mice as compared to controls. Viral clearance and the humoral immune response were severely impaired in CD4Cre/R-DTA mice although CTLs efficiently killed transferred target cells in vivo. Transfer of naïve CD4 T cells but not anti-PD-L1 blockade restored the expansion of antigen-specific polyfunctional CD8 T cells and resulted in lower viral titers. This finding indicates that under lymphopenic conditions endogenous CD4 TML cell lack the capacity to promote expansion of CTLs. However, CD8 TML cells retain sufficient functional plasticity to participate in antiviral immunity in the presence of appropriate help by fully functional CD4 T cells. This capacity might be exploited to develop treatments for improvement of CD8 T cell functions under various clinical settings of lymphopenia.
Collapse
Affiliation(s)
- Michaela E R Schmitt
- Department of Infection Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Selina Sitte
- Department of Infection Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
27
|
Do JS, Kim S, Keslar K, Jang E, Huang E, Fairchild RL, Pizarro TT, Min B. γδ T Cells Coexpressing Gut Homing α4β7 and αE Integrins Define a Novel Subset Promoting Intestinal Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 198:908-915. [PMID: 27927968 DOI: 10.4049/jimmunol.1601060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
γδ T lymphocytes, dominant T cell subsets in the intestine, mediate both regulatory and pathogenic roles, yet the mechanisms underlying such opposing effects remain unclear. In this study, we identified a unique γδ T cell subset that coexpresses high levels of gut-homing integrins, CD103 and α4β7. They were exclusively found in the mesenteric lymph node after T cell-mediated colitis induction, and their appearance preceded the inflammation. Adoptive transfer of the CD103+α4β7high subsets enhanced Th1/Th17 T cell generation and accumulation in the intestine, and the disease severity. The level of generation correlated with the disease severity. Moreover, these cells were also found to be elevated in a spontaneous mouse model of ileitis. Based on the procolitogenic function, we referred to this subset as "inflammatory" γδ T cells. Targeting inflammatory γδ T cells may open a novel strategy to treat inflammatory diseases where γδ T cells play a pathogenic role including inflammatory bowel disease.
Collapse
Affiliation(s)
- Jeong-Su Do
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Karen Keslar
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Eunjung Jang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Emina Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; and
| | - Robert L Fairchild
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44116
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| |
Collapse
|
28
|
Vrisekoop N, Artusa P, Monteiro JP, Mandl JN. Weakly self-reactive T-cell clones can homeostatically expand when present at low numbers. Eur J Immunol 2016; 47:68-73. [PMID: 27792294 DOI: 10.1002/eji.201646540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/12/2016] [Accepted: 10/26/2016] [Indexed: 11/07/2022]
Abstract
T-cell division is central to maintaining a stable T-cell pool in adults. It also enables T-cell expansion in neonates, and after depletion by chemotherapy, bone marrow transplantation, or infection. The same signals required for T-cell survival in lymphoreplete settings, IL-7 and T-cell receptor (TCR) interactions with self-peptide MHC (pMHC), induce division when T-cell numbers are low. The strength of reactivity for self-pMHC has been shown to correlate with the capacity of T cells to undergo lymphopenia-induced proliferation (LIP), in that weakly self-reactive T cells are unable to divide, implying that T-cell reconstitution would significantly skew the TCR repertoire toward TCRs with greater self-reactivity and thus compromise T-cell diversity. Here, we show that while CD4+ T cells with low self-pMHC reactivity experience more intense competition, they are able to divide when present at low enough cell numbers. Thus, at physiological precursor frequencies CD4+ T cells with low self-pMHC reactivity are able to contribute to the reconstitution of the T-cell pool.
Collapse
Affiliation(s)
- Nienke Vrisekoop
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricio Artusa
- Department of Physiology, Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Joao P Monteiro
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith N Mandl
- Department of Physiology, Complex Traits Group, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Song C, Nicholson JD, Clark SM, Li X, Keegan AD, Tonelli LH. Expansion of brain T cells in homeostatic conditions in lymphopenic Rag2(-/-) mice. Brain Behav Immun 2016; 57:161-172. [PMID: 27013354 PMCID: PMC5010944 DOI: 10.1016/j.bbi.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022] Open
Abstract
The concept of the brain as an immune privileged organ is rapidly evolving in light of new findings outlining the sophisticated relationship between the central nervous and the immune systems. The role of T cells in brain development and function, as well as modulation of behavior has been demonstrated by an increasing number of studies. Moreover, recent studies have redefined the existence of a brain lymphatic system and the presence of T cells in specific brain structures, such as the meninges and choroid plexus. Nevertheless, much information is needed to further the understanding of brain T cells and their relationship with the central nervous system under non-inflammatory conditions. In the present study we employed the Rag2(-/-) mouse model of lymphocyte deficiency and reconstitution by adoptive transfer to study the temporal and anatomical expansion of T cells in the brain under homeostatic conditions. Lymphopenic Rag2(-/-) mice were reconstituted with 10 million lymphoid cells and studied at one, two and four weeks after transfer. Moreover, lymphoid cells and purified CD4(+) and CD8(+) T cells from transgenic GFP expressing mice were used to define the neuroanatomical localization of transferred cells. T cell numbers were very low in the brain of reconstituted mice up to one week after transfer and significantly increased by 2weeks, reaching wild type values at 4weeks after transfer. CD4(+) T cells were the most abundant lymphocyte subtype found in the brain followed by CD8(+) T cells and lastly B cells. Furthermore, proliferation studies showed that CD4(+) T cells expand more rapidly than CD8(+) T cells. Lymphoid cells localize abundantly in meningeal structures, choroid plexus, and circumventricular organs. Lymphocytes were also found in vascular and perivascular spaces and in the brain parenchyma across several regions of the brain, in particular in structures rich in white matter content. These results provide proof of concept that the brain meningeal system, as well as vascular and perivascular spaces, are homing sites of lymphocytes and suggest the possibility of a brain specific T cell subtype.
Collapse
Affiliation(s)
- Chang Song
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - James D. Nicholson
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Sarah M. Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Achsah D Keegan
- Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Leonardo H. Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD,Corresponding author: Leonardo H. Tonelli, PhD, 685 West Baltimore Street, MSTF Building Room 934 C, Baltimore, Maryland 21201, , Telephone: 410-706-2325
| |
Collapse
|
30
|
Singh NJ. Self-reactivity as the necessary cost of maintaining a diverse memory T-cell repertoire. Pathog Dis 2016; 74:ftw092. [PMID: 27620200 DOI: 10.1093/femspd/ftw092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2016] [Indexed: 12/30/2022] Open
Abstract
The adaptive immune system is expected to protect the host from infectious agents and malignancies, while avoiding robust activation against self-peptides. However, T cells are notoriously inept at protection whenever the pathogen or tumor is persistent in the body for longer periods of time. While this has been thought of as an adaptation to limit the immunopathology from continued effector T-cell responses, it is also likely an extension of the T cell's intrinsic mechanisms which evolved to tolerate self-peptides. Here we deliberate on how the need to tolerate self-peptides might stem from a paradoxical requirement-the utility of such molecules in maintaining a diverse repertoire of pathogen-specific memory T cells in the body. Understanding the mechanisms underlying this intriguing nexus, therefore, has the potential to reveal therapeutic strategies not only for improving immune responses to chronic infections and tumors but also the long-term efficacy of vaccines aimed at cellular immune responses.
Collapse
Affiliation(s)
- Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Germain RN. William E. Paul, M.D. (1936-2015), President, The American Association of Immunologists, 1986-1987. THE JOURNAL OF IMMUNOLOGY 2015; 195:5519-21. [PMID: 26637660 DOI: 10.4049/jimmunol.1590025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ronald N Germain
- Chief, Laboratory of Systems Biology Chief, Lymphocyte Biology Section Acting Chief, Laboratory of Immunology Associate Director, Trans-NIH Center for Human Immunology NIAID, NIH
| |
Collapse
|
33
|
Do J, Visperas A, Freeman ML, Jang E, Kim S, Malissen B, Min B. γδ T cells support gut Ag-reactive colitogenic effector T-cell generation by enhancing Ag presentation by CD11b(+) DCs in the mesenteric LN. Eur J Immunol 2015; 46:340-6. [PMID: 26549797 DOI: 10.1002/eji.201545919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 12/23/2022]
Abstract
T cells expressing the γδ TCR are dominant T-cell subsets in the intestinal immune system. We previously demonstrated that γδ T cells play important roles in augmenting Th17-type colitogenic immune responses in a T-cell-induced colitic inflammation model. However, its underlying mechanism remains poorly understood. In this study, an in vitro coculture system using effector T cells enriched in gut Ag-reactive cells was employed as a readout tool to search for gut Ag presenting APCs. We found that the presence of γδ T cells dramatically enhances gut Ag presentation within the mLN in mice. Gut Ag presentation by CD11b(+) DC subsets was particularly controlled by γδ T cells. Interestingly, γδ T-cell entry to the lymph nodes was essential to improve the Ag presentation. Therefore, our results highlight that γδ T cells play a previously unrecognized role to support colitogenic immunity by regulating gut Ag presentation in the draining LN.
Collapse
Affiliation(s)
- Jeongsu Do
- Department of Immunology, Lerner Research Institute, Lerner Research InstituteCleveland Clinic Foundation, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Immunology, Lerner Research Institute, Lerner Research InstituteCleveland Clinic Foundation, Cleveland, OH, USA
| | - Michael L Freeman
- Department of Immunology, Lerner Research Institute, Lerner Research InstituteCleveland Clinic Foundation, Cleveland, OH, USA
| | - Eunjung Jang
- Department of Immunology, Lerner Research Institute, Lerner Research InstituteCleveland Clinic Foundation, Cleveland, OH, USA
| | - Sohee Kim
- Department of Immunology, Lerner Research Institute, Lerner Research InstituteCleveland Clinic Foundation, Cleveland, OH, USA
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Institut National de la Santé et de la Recherche Médicale, U631, Centre National de la Recherche Scientifique, UMR6102, Marseille, France
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Lerner Research InstituteCleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
34
|
Lythe G, Callard RE, Hoare RL, Molina-París C. How many TCR clonotypes does a body maintain? J Theor Biol 2015; 389:214-24. [PMID: 26546971 PMCID: PMC4678146 DOI: 10.1016/j.jtbi.2015.10.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
We consider the lifetime of a T cell clonotype, the set of T cells with the same T cell receptor, from its thymic origin to its extinction in a multiclonal repertoire. Using published estimates of total cell numbers and thymic production rates, we calculate the mean number of cells per TCR clonotype, and the total number of clonotypes, in mice and humans. When there is little peripheral division, as in a mouse, the number of cells per clonotype is small and governed by the number of cells with identical TCR that exit the thymus. In humans, peripheral division is important and a clonotype may survive for decades, during which it expands to comprise many cells. We therefore devise and analyse a computational model of homeostasis of a multiclonal population. Each T cell in the model competes for self pMHC stimuli, cells of any one clonotype only recognising a small fraction of the many subsets of stimuli. A constant mean total number of cells is maintained by a balance between cell division and death, and a stable number of clonotypes by a balance between thymic production of new clonotypes and extinction of existing ones. The number of distinct clonotypes in a human body may be smaller than the total number of naive T cells by only one order of magnitude. The number of T cells of one clonotype is an integer. The history of a clonotype starts with release from the thymus, and ends with extinction. Competition and cross-reactivity are included in a natural way. The average number of cells per clonotype, in a human body, is only of order 10.
Collapse
Affiliation(s)
- Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
| | - Robin E Callard
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Rollo L Hoare
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
35
|
Lymphocytes from chronically stressed mice confer antidepressant-like effects to naive mice. J Neurosci 2015; 35:1530-8. [PMID: 25632130 DOI: 10.1523/jneurosci.2278-14.2015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We examined whether cells of the adaptive immune system retain the memory of psychosocial stress and thereby alter mood states and CNS function in the host. Lymphocytes from mice undergoing chronic social defeat stress or from unstressed control mice were isolated and adoptively transferred into naive lymphopenic Rag2(-/-) mice. Changes in affective behavior, hippocampal cell proliferation, microglial activation states, and blood cytokine levels were examined in reconstituted stress-naive mice. The mice receiving lymphocytes from defeated donors showed less anxiety, more social behavior, and increased hippocampal cell proliferation compared with those receiving no cells or cells from unstressed donors. Mice receiving stressed immune cells had reduced pro-inflammatory cytokine levels in the blood relative to the other groups, an effect opposite to the elevated donor pro-inflammatory cytokine profile. Furthermore, mice receiving stressed immune cells had microglia skewed toward an anti-inflammatory, neuroprotective M2-like phenotype, an effect opposite the stressed donors' M1-like pro-inflammatory profile. However, stress had no effect on lymphocyte surface marker profiles in both donor and recipient mice. The data suggest that chronic stress-induced changes in the adaptive immune system, contrary to conferring anxiety and depressive behavior, protect against the deleterious effects of stress. Improvement in affective behavior is potentially mediated by reduced peripheral pro-inflammatory cytokine load, protective microglial activity, and increased hippocampal cell proliferation. The data identify the peripheral adaptive immune system as putatively involved in the mechanisms underlying stress resilience and a potential basis for developing novel rapid-acting antidepressant therapies.
Collapse
|
36
|
Rosenblum JM, Kirk AD. Recollective homeostasis and the immune consequences of peritransplant depletional induction therapy. Immunol Rev 2015; 258:167-82. [PMID: 24517433 DOI: 10.1111/imr.12155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One's cellular immune repertoire is composed of lymphocytes in multiple stages of maturation - the dynamic product of their responses to antigenic challenges and the homeostatic contractions necessary to accommodate immune expansions within physiologic norms. Given that alloreactivity is predominantly a cross-reactive phenomenon that is stochastically distributed throughout the overall T-cell repertoire, one's allospecific repertoire is similarly made up of cells in a variety of differentiation states. As such, the continuous expansion and elimination of activated memory populations, producing a 'recollective homeostasis' of sorts, has the potential over time to alter the maturation state and effector composition of both ones protective and alloreactive T-cell repertoire. Importantly, a T cell's maturation state significantly influences its response to numerous immunomodulatory therapies used in organ transplantation, including depletional antibody induction. In this review, we discuss clinically utilized depletional induction strategies, how their use alters a transplant recipient's cellular immune repertoire, and how a recipient's repertoire influences the clinical effects of induction therapy.
Collapse
|
37
|
Abstract
Memory T cells are usually considered to be a feature of a successful immune response against a foreign antigen, and such cells can mediate potent immunity. However, in mice, alternative pathways have been described, through which naïve T cells can acquire the characteristics and functions of memory T cells without encountering specific foreign antigen or the typical signals required for conventional T cell differentiation. Such cells reflect a response to the internal rather the external environment, and hence such cells are called innate memory T cells. In this review, we describe how innate memory subsets were identified, the signals that induce their generation and their functional properties and potential role in the normal immune response. The existence of innate memory T cells in mice raises questions about whether parallel populations exist in humans, and we discuss the evidence for such populations during human T cell development and differentiation.
Collapse
Affiliation(s)
- Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | - You Jeong Lee
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| |
Collapse
|
38
|
Zhao J, Liu J, Denney J, Li C, Li F, Chang F, Chen M, Yin D. TLR2 Involved in Naive CD4+ T Cells Rescues Stress-Induced Immune Suppression by Regulating Th1/Th2 and Th17. Neuroimmunomodulation 2015; 22:328-36. [PMID: 25721027 DOI: 10.1159/000371468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/05/2014] [Indexed: 11/19/2022] Open
Abstract
Stress, either physical or psychological, can have a dramatic impact on our immune system. There has been little progress, however, in understanding chronic stress-induced immunosuppression. Naive CD4+ T cells could modulate immune responses via differentiation to T helper (Th) cells. In this study, we showed that stress promotes the release of the Th1 cytokines interferon (IFN)-γ and tumor necrosis factor (TNF)-α, the Th2 cytokines interleukin (IL)-4 and IL-10 and the Th17 cytokine IL-17 of splenic naive CD4+ T cells. This suggests that stress promotes the differentiation of naive CD4+ T cells to Th1, Th2 and Th17 cells. Knockout strategies verified that TLR2 might modulate the differentiation of Th1/Th2 cells by inhibiting p38 mitogen-activated protein kinase (MAPK). Taken together, our data suggest that chronic stress induces immune suppression by targeting TLR2 and p38 MAPK in naive CD4+ T cells.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamaki S, Ine S, Kawabe T, Okuyama Y, Suzuki N, Soroosh P, Mousavi SF, Nagashima H, Sun SL, So T, Sasaki T, Harigae H, Sugamura K, Kudo H, Wada M, Nio M, Ishii N. OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4⁺ T cells. Eur J Immunol 2014; 44:3015-25. [PMID: 25103720 DOI: 10.1002/eji.201444701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 01/20/2023]
Abstract
T-cell homeostasis preserves the numbers, the diversity and functional competence of different T-cell subsets that are required for adaptive immunity. Naïve CD4(+) T (TN ) cells are maintained in the periphery via the common γ-chain family cytokine IL-7 and weak antigenic signals. However, it is not clear how memory CD4(+) T-cell subsets are maintained in the periphery and which factors are responsible for the maintenance. To examine the homeostatic mechanisms, CFSE-labeled CD4(+) CD44(high) CD62L(low) effector memory T (TEM ) cells were transferred into sublethally-irradiated syngeneic C57BL/6 mice, and the systemic cell proliferative responses, which can be divided distinctively into fast and slow proliferations, were assessed by CFSE dye dilution. We found that the fast homeostatic proliferation of TEM cells was strictly regulated by both antigen and OX40 costimulatory signals and that the slow proliferation was dependent on IL-7. The simultaneous blockade of both OX40 and IL-7 signaling completely inhibited the both fast and slow proliferation. The antigen- and OX40-dependent fast proliferation preferentially expanded IL-17-producing helper T cells (Th17 cells). Thus, OX40 and IL-7 play synergistic, but distinct roles in the homeostatic proliferation of CD4(+) TEM cells.
Collapse
Affiliation(s)
- Satoshi Yamaki
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Saunders AE, Shim YA, Johnson P. Innate immune cell CD45 regulates lymphopenia-induced T cell proliferation. THE JOURNAL OF IMMUNOLOGY 2014; 193:2831-42. [PMID: 25114101 DOI: 10.4049/jimmunol.1302681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The leukocyte-specific tyrosine phosphatase, CD45, severely impacts T cell development and activation by modulating TCR signaling. CD45-deficient (CD45KO) mice have reduced peripheral T cell numbers where CD8 T cells are underrepresented. In this article, we show that CD45KO mice are unable to support efficient homeostatic proliferation, affecting CD8 T cells more than CD4 T cells. Using CD45-RAG1 double-deficient (45RAGKO) mice, we show that lymphopenia-induced proliferation (LIP) of CD45-sufficient T cells is defective in a host environment lacking CD45 on innate immune cells. We identify two deficiencies in the 45RAGKO mice that affect LIP. One involves CD11c(+) cells and the second the production of IL-7 by lymphoid stromal cells. CD45KO dendritic cells were not defective in foreign Ag-induced T cell proliferation, yet CD45KO CD11c(+) cells were unable to rescue the spontaneous LIP in the 45RAGKO mice. This was in contrast with the CD45-sufficient CD11c(+) cells that partially rescued this spontaneous proliferation and did so without affecting IL-7 levels. The absence of CD45 also led to reduced IL-7 production by lymphoid stromal cells, suggesting an indirect effect of CD45 on innate immune cells in influencing IL-7 production by lymphoid stromal cells. These findings demonstrate a novel role for CD45 on innate immune cells in promoting lymphopenia-induced T cell proliferation and suggest that innate immune cells may communicate with stromal cells to regulate IL-7 production.
Collapse
Affiliation(s)
- Amy E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yaein A Shim
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
41
|
Vaz NM, Carvalho CR. On the origin of immunopathology. J Theor Biol 2014; 375:61-70. [PMID: 24937801 DOI: 10.1016/j.jtbi.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/19/2022]
Abstract
Stranded between medicine and experimental biology, immunology is buried in its own problems and remains distant from important areas of current biology, such as evolutionary theory, developmental biology and cognitive sciences. Immunology has treated the living system merely as the place or dimension in which immune activity takes place, inserted on a misleading axis (progressive responsiveness versus no response; memory versus tolerance) which neglects the analysis of a robustly stable dynamics which is always present and is neither tolerance nor immunity-a problem currently approached as one of "regulatory" activity. However, a regulatory response also demands regulation, leading to an endless recursion and the adoption of a stimulus-response framework inevitably drives us away from the physiological processes in which lymphocytes are involved. Herein, we propose that immunological physiology, like everything else in the body is dynamic and conservative. Immunopathology, including inherited immunodeficiencies, severe forms of infectious diseases, allergy and autoimmune diseases, are interferences with this stability which frequently include oligoclonal expansions of T lymphocytes. We suggest that this decrease in clonal diversity results from a loss of the stabilizing connectivity among lymphocytes and are not simply markers of immunopathology, but are rather expressions of basic pathogenic mechanisms. The so-called autoimmune diseases are examples of this disequilibrium. In the last decade the characterization of an enormous and diversified commensal microbiota has posed a new and pressing problem: how to explain the harmonic conviviality with trillions of foreign macromolecules. In addition, robustly stable relations towards macromolecular diet can be established by simple ingestion, a state presently labeled as "oral tolerance", a problem that has been buffered for decades as anti-inflammatory protection of the gut. A major change in terminology is necessary to describe this new panorama. We focus on two important gaps in immunological discussions: (a) the organism, seen simultaneously as the medium with which the immune system is constantly in touch and as the entity that mediates the contact with external materials; and (b) the observer, the immunologist, who operates as a human being in human languaging with other human beings, and characterizes immunological specificity. We acknowledge that we are proposing radical departures from current dogma and that we should justify them. Most of what we propose stem form a way of seeing called Biology of Cognition and Language, that derives from ideas of the neurobiologist/philosopher Humberto Maturana, also known as "autopoiesis theory".
Collapse
Affiliation(s)
- Nelson M Vaz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Claudia R Carvalho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| |
Collapse
|
42
|
Paul WE, Grossman Z. Pathogen-sensing and regulatory T cells: integrated regulators of immune responses. Cancer Immunol Res 2014; 2:503-9. [PMID: 24894087 PMCID: PMC4277876 DOI: 10.1158/2326-6066.cir-14-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present the concept that pathogen-sensing and regulatory T cells (Treg) mutually regulate immune responses to conventional and tumor antigens through countervailing effects on dendritic cells (DC). Normally, conventional CD4 T cells recognizing their cognate antigen presented by a DC will respond only if the DC also receives a signal through its pathogen-sensing/danger/adjuvant recognition systems (the pathogen-sensing triad). However, in the absence of Tregs capable of interacting with the same DC, DCs are competent to present antigens, both foreign and self, even without the stimulation provided by the pathogen-sensing triad. Tregs recognizing an antigen presented by the DC that is also presenting antigen to a conventional CD4 T cell will prevent the activation of the CD4 T-cell responses, but a signal delivered by a member of the pathogen-sensing triad will overcome the inhibitory action of Tregs, thus allowing CD4 T-cell responses to go forward. These considerations take on special meaning for responses to "weak antigens" such as many of the antigens displayed by spontaneous human tumors.
Collapse
Affiliation(s)
- William E Paul
- Authors' Affiliation: Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Zvi Grossman
- Authors' Affiliation: Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
43
|
Abstract
αβ T cells are an integral part of protective immunity against pathogens. After precursor cells arise in the adult bone marrow or fetal liver, they migrate to the thymus where they rearrange their T-cell receptor genes (TCR) and undergo selection on the basis of their interactions with ligands expressed by thymic stroma and other cells. Those that survive then exit the thymus to populate the peripheral immune compartment, where they patrol the blood and lymphoid systems. The composition of this pre-immune peripheral repertoire is critically important in determining the robustness of an immune response. In both mice and humans, the magnitude and diversity of a response are directly correlated with the frequency of precursor T cells. Equally relevant are the functional characteristics of these lymphocytes. Engagement of a specific antigen to the TCR activates signaling pathways in the naive T cell that result in cellular proliferation and the acquisition of particular effector functions. A portion of these persist following the resolution of infection and become memory cells. These memory cells can mount a faster and stronger response when they encounter the same antigen at a later time. As the molecular basis for TCR ligand interaction has become better defined, it is clear that some T cells can recognize multiple distinct ligands and therefore T-cell memory developed by exposure to one ligand may play a significant role in the response to a different antigen. Thus, there is an increasing focus on understanding how exposure to related or unrelated antigens influences the T-cell repertoire and impacts subsequent immunity. In this review, we discuss the issue of TCR cross-reactivity in the development of memory phenotype CD4(+) T cells and the implications for pathogen-specific responses. We review both the human and mouse data and discuss the therapeutic implications of these findings in the contexts of infection and vaccination.
Collapse
Affiliation(s)
- Laura F Su
- The Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
44
|
Enhanced responses to tumor immunization following total body irradiation are time-dependent. PLoS One 2013; 8:e82496. [PMID: 24349298 PMCID: PMC3861406 DOI: 10.1371/journal.pone.0082496] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/25/2013] [Indexed: 12/25/2022] Open
Abstract
The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference between an ineffective treatment and successful tumor eradication.
Collapse
|
45
|
Do JS, Visperas A, Freeman ML, Iwakura Y, Oukka M, Min B. Colitogenic effector T cells: roles of gut-homing integrin, gut antigen specificity and γδ T cells. Immunol Cell Biol 2013; 92:90-8. [PMID: 24189163 PMCID: PMC3947309 DOI: 10.1038/icb.2013.70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 02/08/2023]
Abstract
Disturbance of T cell homeostasis could lead to intestinal inflammation. Naïve CD4 T cells undergoing spontaneous proliferation, a robust proliferative response that occurs under severe lymphopenic conditions, differentiate into effector cells producing Th1 and/or Th17 type cytokines and induce a chronic inflammation in the intestine that resembles human inflammatory bowel disease. In this study, we investigated key properties of CD4 T cells necessary to induce experimental colitis. α4β7 upregulation was primarily induced by mLN resident CD11b+ dendritic cell subsets via TGFβ/retinoic acid-dependent mechanism. Interestingly, α4β7 expression was essential but not sufficient to induce inflammation. In addition to gut homing specificity, expression of gut Ag specificity was also crucial. T cell acquisition of the specificity was dramatically enhanced by the presence of γδ T cells, a population previously shown to exacerbate T cell mediated colitis. Importantly, IL-23-mediated γδ T cell stimulation was necessary to enhance colitogenicity but not gut antigen reactivity of proliferating CD4 T cells. These findings demonstrate that T cell colitogenicity is achieved through multiple processes, offering a therapeutic rationale by intervening these pathways.
Collapse
Affiliation(s)
- Jeong-Su Do
- Department of Immunology/NB30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anabelle Visperas
- 1] Department of Immunology/NB30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA [2] Department of Molecular Medicine, Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Michael L Freeman
- Department of Immunology/NB30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yoichiro Iwakura
- Center of Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mohamed Oukka
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Booki Min
- 1] Department of Immunology/NB30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA [2] Department of Molecular Medicine, Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
46
|
Mohme M, Hotz C, Stevanovic S, Binder T, Lee JH, Okoniewski M, Eiermann T, Sospedra M, Rammensee HG, Martin R. HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. ACTA ACUST UNITED AC 2013; 136:1783-98. [PMID: 23739916 DOI: 10.1093/brain/awt108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The HLA-DR15 haplotype confers the largest part of the genetic risk to develop multiple sclerosis, a prototypic CD4+ T cell-mediated autoimmune disease. The mechanisms how certain HLA-class II molecules functionally contribute to autoimmune diseases are still poorly understood, but probably involve shaping an autoimmune-prone T cell repertoire during central tolerance in the thymus and subsequently maintaining or even expanding it in the peripheral immune system. Self-peptides that are presented by disease-associated HLA-class II molecules most likely play important roles during both processes. Here, we examined the functional involvement of the HLA-DR15 haplotype in autologous proliferation in multiple sclerosis and the contribution of HLA-DR15 haplotype-derived self-peptides in an in vitro system. We observe increased autologous T cell proliferation in patients with multiple sclerosis in relation to the multiple sclerosis risk-associated HLA-DR15 haplotype. Assuming that the spectrum of self-peptides that is presented by the two HLA-DR15 allelic products is important for sustaining autologous proliferation we performed peptide elution and identification experiments from the multiple sclerosis-associated DR15 molecules and a systematic analysis of a DR15 haplotype-derived self-peptide library. We identify HLA-derived self-peptides as potential mediators of altered autologous proliferation. Our data provide novel insights about perturbed T cell repertoire dynamics and the functional involvement of the major genetic risk factor, the HLA-DR15 haplotype, in multiple sclerosis.
Collapse
Affiliation(s)
- Malte Mohme
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Centre for Molecular Neurobiology Hamburg, University Medical Centre Eppendorf, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kawabe T, Sun SL, Fujita T, Yamaki S, Asao A, Takahashi T, So T, Ishii N. Homeostatic proliferation of naive CD4+ T cells in mesenteric lymph nodes generates gut-tropic Th17 cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:5788-98. [PMID: 23610141 DOI: 10.4049/jimmunol.1203111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Homeostatic proliferation of naive T cells in the spleen and cutaneous lymph nodes supplies memory-phenotype T cells. The "systemic" proliferative responses divide distinctly into fast or slow cell division rates. The fast proliferation is critical for generation of effector memory T cells. Because effector memory T cells are abundant in the lamina propria of the intestinal tissue, "gut-specific" homeostatic proliferation of naive T cells may be important for generation of intestinal effector memory T cells. However, such organ-specific homeostatic proliferation of naive T cells has not yet been addressed. In this study, we examined the gut-specific homeostatic proliferation by transferring CFSE-labeled naive CD4(+) T cells into sublethally irradiated mice and separately evaluating donor cell division and differentiation in the intestine, mesenteric lymph nodes (MLNs), and other lymphoid organs. We found that the fast-proliferating cell population in the intestine and MLNs had a gut-tropic α4β7(+) Th17 phenotype and that their production was dependent on the presence of commensal bacteria and OX40 costimulation. Mesenteric lymphadenectomy significantly reduced the Th17 cell population in the host intestine. Furthermore, FTY720 treatment induced the accumulation of α4β7(+)IL-17A(+) fast-dividing cells in MLNs and eliminated donor cells in the intestine, suggesting that MLNs rather than intestinal tissues are essential for generating intestinal Th17 cells. These results reveal that MLNs play a central role in inducing gut-tropic Th17 cells and in maintaining CD4(+) T cell homeostasis in the small intestine.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM. Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 2013; 38:373-83. [PMID: 23395677 DOI: 10.1016/j.immuni.2012.10.021] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/25/2012] [Indexed: 11/29/2022]
Abstract
Although T cell memory is generally thought to require direct antigen exposure, we found an abundance of memory-phenotype cells (20%-90%, averaging over 50%) of CD4(+) T cells specific to viral antigens in adults who had never been infected. These cells express the appropriate memory markers and genes, rapidly produce cytokines, and have clonally expanded. In contrast, the same T cell receptor (TCR) specificities in newborns are almost entirely naïve, which might explain the vulnerability of young children to infections. One mechanism for this phenomenon is TCR cross-reactivity to environmental antigens, and in support of this, we found extensive cross-recognition by HIV-1 and influenza-reactive T lymphocytes to other microbial peptides and expansion of one of these after influenza vaccination. Thus, the presence of these memory-phenotype T cells has significant implications for immunity to novel pathogens, child and adult health, and the influence of pathogen-rich versus hygienic environments.
Collapse
Affiliation(s)
- Laura F Su
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | | | | | | | | |
Collapse
|
49
|
Analysis of naïve lung CD4 T cells provides evidence of functional lung to lymph node migration. Proc Natl Acad Sci U S A 2013; 110:1821-6. [PMID: 23319636 DOI: 10.1073/pnas.1221306110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proportion of CD4 T cells with phenotypic and functional properties of naïve cells out of total CD4 T cells is similar in the lung parenchyma and lymph nodes. On treatment with a sphingosine-1-phosphate agonist, the frequency of these cells falls precipitously, but with a delay of ∼14 h compared with blood CD4 T cells; neither anti-CD62L nor pertussis toxin prevents entry of naïve CD4 T cells into the lung. Based on treatment with anti-CD62L and the use of CCR7(-/-) cells, lung naïve CD4 T cells appear to migrate to the mediastinal lymph nodes along a CD62L-independent, CCR7-dependent pathway. Cells that have entered the node in this manner are competent to respond to antigen. Thus, a portion (approximately one-half) of naïve CD4 T cells appears to enter the mediastinal lymph nodes through a blood-to-lung-to-lymph node route.
Collapse
|
50
|
Maggio-Price L, Seamons A, Bielefeldt-Ohmann H, Zeng W, Brabb T, Ware C, Lei M, Hershberg RM. Lineage targeted MHC-II transgenic mice demonstrate the role of dendritic cells in bacterial-driven colitis. Inflamm Bowel Dis 2013; 19:174-84. [PMID: 22619032 PMCID: PMC3427724 DOI: 10.1002/ibd.23000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) pathogenesis involves an inadequately controlled immune reaction to intestinal microbiota, and CD4(+) T cells, dependent on MHC class II (MHC-II) processing and presentation by antigen-presenting cells (APC), play important roles. The role of professional APC (macrophages and dendritic cells [DCs]) and nonprofessional APC (intestinal epithelial cells [IECs]) in microbial-driven intestinal inflammation remains controversial. METHODS We generated transgenic animals on an MHC-II(-/-) genetic background in which MHC-II is expressed on 1) DC via the CD11c promoter (CD11cTg) or 2) IEC via the fatty acid binding protein (liver) promoter (EpithTg). These mice were crossed with Rag2(-/-) mice to eliminate T and B cells (CD11cTg/Rag2(-/-) and EpithTg/Rag2(-/-)). Helicobacter bilis (Hb) infection and adoptive transfer (AT) of naïve CD4 T cells were used to trigger IBD. RESULTS CD11cTg/Rag2(-/-) mice infected with Hb+AT developed severe colitis within 3 weeks post-AT, similar to disease in positive control Rag2(-/-) mice infected with Hb+AT. CD11cTg/Rag2(-/-) mice given AT alone or Hb alone had significantly less severe colitis. In contrast, EpithTg/Rag2(-/-) mice infected with Hb+AT developed mild colitis by 3 weeks and even after 16 weeks post-AT had only mild lesions. CONCLUSIONS MHC-II expression restricted to DCs is sufficient to induce severe colitis in the presence of T cells and a microorganism such as Hb within 3 weeks of AT. Expression of MHC-II solely on IEC in the presence of a microbial trigger and T cells was insufficient to trigger severe colitis.
Collapse
Affiliation(s)
| | - Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | | - Weiping Zeng
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Carol Ware
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Mingzu Lei
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|