1
|
Piemontese E, Herfort A, Perevedentseva Y, Möller HM, Seitz O. Multiphosphorylation-Dependent Recognition of Anti-pS2 Antibodies against RNA Polymerase II C-Terminal Domain Revealed by Chemical Synthesis. J Am Chem Soc 2024; 146:12074-12086. [PMID: 38639141 PMCID: PMC11066871 DOI: 10.1021/jacs.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Phosphorylation is a major constituent of the CTD code, which describes the set of post-translational modifications on 52 repeats of a YSPTSPS consensus heptad that orchestrates the binding of regulatory proteins to the C-terminal domain (CTD) of RNA polymerase II. Phospho-specific antibodies are used to detect CTD phosphorylation patterns. However, their recognition repertoire is underexplored due to limitations in the synthesis of long multiphosphorylated peptides. Herein, we describe the development of a synthesis strategy that provides access to multiphosphorylated CTD peptides in high purity without HPLC purification for immobilization onto microtiter plates. Native chemical ligation was used to assemble 12 heptad repeats in various phosphoforms. The synthesis of >60 CTD peptides, 48-90 amino acids in length and containing up to 6 phosphosites, enabled a detailed and rapid analysis of the binding characteristics of different anti-pSer2 antibodies. The three antibodies tested showed positional selectivity with marked differences in the affinity of the antibodies for pSer2-containing peptides. Furthermore, the length of the phosphopeptides allowed a systematic analysis of the multivalent chelate-type interactions. The absence of multivalency-induced binding enhancements is probably due to the high flexibility of the CTD scaffold. The effect of clustered phosphorylation proved to be more complex. Recognition of pSer2 by anti-pSer2-antibodies can be prevented and, perhaps surprisingly, enhanced by the phosphorylation of "bystander" amino acids in the vicinity. The results have relevance for functional analysis of the CTD in cell biological experiments.
Collapse
Affiliation(s)
- Emanuele Piemontese
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Alina Herfort
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Yulia Perevedentseva
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Heiko M. Möller
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Oliver Seitz
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
2
|
Barakat S, Ezen E, Devecioğlu İ, Gezen M, Piepoli S, Erman B. Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J 2024; 291:237-255. [PMID: 37450366 DOI: 10.1111/febs.16905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Zinc Finger DNA-binding domain-containing proteins are the most populous family among eukaryotic transcription factors. Among these, members of the BTB domain-containing ZBTB sub-family are mostly known for their transcriptional repressive functions. In this Viewpoint article, we explore molecular mechanisms that potentially diversify the function of ZBTB proteins based on their homo and heterodimerization, alternative splicing and post-translational modifications. We describe how the BTB domain is as much a scaffold for the assembly of co-repressors, as a domain that regulates protein stability. We highlight another mechanism that regulates ZBTB protein stability: phosphorylation in the zinc finger domain. We explore the non-transcriptional, structural roles of ZBTB proteins and highlight novel findings that describe the ability of ZBTB proteins to associate with poly adenosine ribose in the nucleus during the DNA damage response. Herein, we discuss the contribution of BTB domain scaffolds to the formation of transcriptional repressive complexes, to chromosome compartmentalization and their non-transcriptional, purely structural functions in the nucleus.
Collapse
Affiliation(s)
- Sarah Barakat
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Ege Ezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - İzem Devecioğlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Melike Gezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
3
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Scherf M, Danquah BD, Koy C, Lorenz P, Steinbeck F, Neamtu A, Thiesen H, Glocker MO. Epitope Fine Mapping by Mass Spectrometry: Investigations of Immune Complexes Consisting of Monoclonal Anti-HpTGEKP Antibody and Zinc Finger Protein Linker Phospho-Hexapeptides. Chembiochem 2022; 23:e202200390. [PMID: 35950614 PMCID: PMC9826235 DOI: 10.1002/cbic.202200390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Indexed: 01/11/2023]
Abstract
Accurate formation of antibody-antigen complexes has been relied on in both, multitudes of scientific projects and ample therapeutic and diagnostic applications. Mass spectrometrically determined dissociation behavior of immune complexes with the anti-HpTGEKP antibody revealed that the ten most frequently occurring phospho-hexapeptide linker sequences from C2H2 zinc finger proteins could be divided into two classes: orthodox binders, where strong noncovalent interactions developed as anticipated, and unorthodox binders with deviating structures and weaker binding. Phosphorylation of threonine was compulsory for antibody binding in an orthodox manner. Gas phase dissociation energy determinations of seven C2H2 zinc finger protein linker phospho-hexapeptides with orthodox binding properties revealed a bipolar binding motif of the antibody paratope. Epitope peptides, which in addition to the negatively charged phospho-threonine residue were C-terminally flanked by positively charged residues provided stronger binding, i. e. dissociation was endothermic, than peptides with acidic amino acid residues at these positions, for which dissociation was exothermic.
Collapse
Affiliation(s)
- Maximilian Scherf
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Bright D. Danquah
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Cornelia Koy
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Peter Lorenz
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany
| | - Felix Steinbeck
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Andrei Neamtu
- Department of PhysiologyGr. T. Popa University of Medicine and Pharmacy of IasiStr. Universitatii nr. 16Iasi Jud.Romania
| | - Hans‐Jürgen Thiesen
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Michael O. Glocker
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| |
Collapse
|
5
|
Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev 2022; 51:5691-5730. [PMID: 35726784 DOI: 10.1039/d1cs00991e] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a crucial regulator of protein and cellular function, yet, despite identifying an enormous number of phosphorylation sites, the role of most is still unclear. Each phosphoform, the particular combination of phosphorylations, of a protein has distinct and diverse biological consequences. Aberrant phosphorylation is implicated in the development of many diseases. To investigate their function, access to defined protein phosphoforms is essential. Materials obtained from cells often are complex mixtures. Recombinant methods can provide access to defined phosphoforms if site-specifically acting kinases are known, but the methods fail to provide homogenous material when several amino acid side chains compete for phosphorylation. Chemical and chemoenzymatic synthesis has provided an invaluable toolbox to enable access to previously unreachable phosphoforms of proteins. In this review, we selected important tools that enable access to homogeneously phosphorylated protein and discuss examples that demonstrate how they can be applied. Firstly, we discuss the synthesis of phosphopeptides and proteins through chemical and enzymatic means and their advantages and limitations. Secondly, we showcase illustrative examples that applied these tools to answer biological questions pertaining to proteins involved in signal transduction, control of transcription, neurodegenerative diseases and aggregation, apoptosis and autophagy, and transmembrane proteins. We discuss the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Tim Bilbrough
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
7
|
Kim D, Seo HD, Ryu Y, Kim HS. Functionalized gold nanoparticles with zinc finger-fused proteins as a colorimetric immunoassay platform. Anal Chim Acta 2020; 1126:154-162. [PMID: 32736719 DOI: 10.1016/j.aca.2020.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
The quest for highly sensitive and specific detection of disease biomarkers is high, despite many advances in analysis system. Here, we present a sensitive immunoassay platform using DNA-tethered gold nanoparticles and DNA-binding zinc fingers (ZFs). Monomeric alkaline phosphatase (mAP) and human TNF-α were employed as a signal generator and a disease biomarker, respectively. Gold nanoparticles (AuNPs) were first grafted with double-stranded DNAs having specific sequences for two different types of ZFs (QNK and zif268). The alkaline phosphatase and TNF-α-specific protein binder were genetically fused to each of two different types of ZFs, respectively, followed by conjugation with the DNA-tethered AuNPs in a sequence-specific manner. The use of the functionalized AuNPs as a signal generator in a colorimetric immunoassay of TNF-α led to LOD of 120 pg/ml, showing about 161-fold higher sensitivity than a protein binder-fused mAP. The present immunoassay platform could be applied to other analytes by simply replacing a targeting moiety, allowing a versatile and reproducible colorimetric immunoassay.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hyo-Deok Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yiseul Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| |
Collapse
|
8
|
Eide DJ. Transcription factors and transporters in zinc homeostasis: lessons learned from fungi. Crit Rev Biochem Mol Biol 2020; 55:88-110. [PMID: 32192376 DOI: 10.1080/10409238.2020.1742092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zinc is an essential nutrient for all organisms because this metal serves as a critical structural or catalytic cofactor for many proteins. These zinc-dependent proteins are abundant in the cytosol as well as within organelles of eukaryotic cells such as the nucleus, mitochondria, endoplasmic reticulum, Golgi, and storage compartments such as the fungal vacuole. Therefore, cells need zinc transporters so that they can efficiently take up the metal and move it around within cells. In addition, because zinc levels in the environment can vary drastically, the activity of many of these transporters and other components of zinc homeostasis is regulated at the level of transcription by zinc-responsive transcription factors. Mechanisms of post-transcriptional control are also important for zinc homeostasis. In this review, the focus will be on our current knowledge of zinc transporters and their regulation by zinc-responsive transcription factors and other mechanisms in fungi because these organisms have served as useful paradigms of zinc homeostasis in all organisms. With this foundation, extension to other organisms will be made where warranted.
Collapse
Affiliation(s)
- David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Ryu Y, Hong CA, Song Y, Beak J, Seo BA, Lee JJ, Kim HS. Modular protein-DNA hybrid nanostructures as a drug delivery platform. NANOSCALE 2020; 12:4975-4981. [PMID: 32057052 DOI: 10.1039/c9nr08519j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing number of identified intracellular drug targets, cytosolic drug delivery has gained much attention. Despite advances in synthetic drug carriers, however, construction of homogeneous and biocompatible nanostructures in a controllable manner still remains a challenge in a translational medicine. Herein, we present the modular design and assembly of functional DNA nanostructures through sequence-specific interactions between zinc-finger proteins (ZnFs) and DNA as a cytosolic drug delivery platform. Three kinds of DNA-binding ZnF domains were genetically fused to various proteins with different biological roles, including targeting moiety, molecular probe, and therapeutic cargo. The engineered ZnFs were employed as distinct functional modules, and incorporated into a designed ZnF-binding sequence of a Y-shaped DNA origami (Y-DNA). The resulting functional Y-DNA nanostructures (FYDN) showed self-assembled superstructures with homogeneous morphology, strong resistance to exonuclease activity and multi-modality. We demonstrated the general utility of our approach by showing efficient cytosolic delivery of PTEN tumour suppressor protein to rescue unregulated kinase signaling in cancer cells with negligible nonspecific cytotoxicity.
Collapse
Affiliation(s)
- Yiseul Ryu
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Cheol Am Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Yunjin Song
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Jonghwi Beak
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Bo Am Seo
- Biomedical Science & Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
10
|
Luo H, Yu Q, Liu Y, Tang M, Liang M, Zhang D, Xiao TS, Wu L, Tan M, Ruan Y, Bungert J, Lu J. LATS kinase-mediated CTCF phosphorylation and selective loss of genomic binding. SCIENCE ADVANCES 2020; 6:eaaw4651. [PMID: 32128389 PMCID: PMC7030924 DOI: 10.1126/sciadv.aaw4651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Chromatin topological organization is instrumental in gene transcription. Gene-enhancer interactions are accommodated in the same CTCF-mediated insulated neighborhoods. However, it remains poorly understood whether and how the 3D genome architecture is dynamically restructured by external signals. Here, we report that LATS kinases phosphorylated CTCF in the zinc finger (ZF) linkers and disabled its DNA-binding activity. Cellular stress induced LATS nuclear translocation and CTCF ZF linker phosphorylation, and altered the landscape of CTCF genomic binding partly by dissociating it selectively from a small subset of its genomic binding sites. These sites were highly enriched for the boundaries of chromatin domains containing LATS signaling target genes. The stress-induced CTCF phosphorylation and locus-specific dissociation from DNA were LATS-dependent. Loss of CTCF binding disrupted local chromatin domains and down-regulated genes located within them. The study suggests that external signals may rapidly modulate the 3D genome by affecting CTCF genomic binding through ZF linker phosphorylation.
Collapse
Affiliation(s)
- Huacheng Luo
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Qin Yu
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ming Tang
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingwei Liang
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dingpeng Zhang
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ming Tan
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Abstract
Cellular heterogeneity, which was initially defined for tumor cells, is a fundamental property of all cellular systems, ranging from genetic diversity to cell-to-cell variation driven by stochastic molecular interactions involved all cellular processes. Different cells display substantial variation in gene expression and in response to environmental signaling even in an apparently homogeneous population of cells. Recent studies started to reveal the underlying mechanisms for cellular heterogeneity, particularly related to the states of chromatin. Accumulating evidence suggests that CTCF, an important factor regulating chromatin organization, plays a key role in the control of gene expression variation by stabilizing enhancer–promoter interaction.
Collapse
Affiliation(s)
- Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
12
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
13
|
Oomen ME, Hansen AS, Liu Y, Darzacq X, Dekker J. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning. Genome Res 2019; 29:236-249. [PMID: 30655336 PMCID: PMC6360813 DOI: 10.1101/gr.241547.118] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
CCCTC-binding factor (CTCF) plays a key role in the formation of topologically associating domains (TADs) and loops in interphase. During mitosis TADs are absent, but how TAD formation is dynamically controlled during the cell cycle is not known. Several contradicting observations have been made regarding CTCF binding to mitotic chromatin using both genomics- and microscopy-based techniques. Here, we have used four different assays to address this debate. First, using 5C, we confirmed that TADs and CTCF loops are readily detected in interphase, but absent during prometaphase. Second, ATAC-seq analysis showed that CTCF sites display greatly reduced accessibility and lose the CTCF footprint in prometaphase, suggesting loss of CTCF binding and rearrangement of the nucleosomal array around the binding motif. In contrast, transcription start sites remain accessible in prometaphase, although adjacent nucleosomes can also become repositioned and occupy at least a subset of start sites during mitosis. Third, loss of site-specific CTCF binding was directly demonstrated using CUT&RUN. Histone modifications and histone variants are maintained in mitosis, suggesting a role in bookmarking of active CTCF sites. Finally, live-cell imaging, fluorescence recovery after photobleaching, and single molecule tracking showed that almost all CTCF chromatin binding is lost in prometaphase. Combined, our results demonstrate loss of CTCF binding to CTCF sites during prometaphase and rearrangement of the chromatin landscape around CTCF motifs. This, combined with loss of cohesin, would contribute to the observed loss of TADs and CTCF loops during mitosis and reveals that CTCF sites, key architectural cis-elements, display cell cycle stage–dependent dynamics in factor binding and nucleosome positioning.
Collapse
Affiliation(s)
- Marlies E Oomen
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Anders S Hansen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Yu Liu
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
14
|
Ryu Y, Kang JA, Kim D, Kim SR, Kim S, Park SJ, Kwon SH, Kim KN, Lee DE, Lee JJ, Kim HS. Programed Assembly of Nucleoprotein Nanoparticles Using DNA and Zinc Fingers for Targeted Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802618. [PMID: 30398698 DOI: 10.1002/smll.201802618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/29/2018] [Indexed: 06/08/2023]
Abstract
With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double-stranded DNA with multiple ZnF-binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF-fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability. The approach enables controlled loading of a protein cargo on the NNPs, offering a high cytosolic delivery efficiency and target specificity. The utility and potential of the assembly as a versatile protein delivery vehicle is demonstrated based on their remarkable antitumor activity and target specificity with negligible toxicity in a xenograft mice model.
Collapse
Affiliation(s)
- Yiseul Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jung Ae Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Song-Rae Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Seungmin Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seong Ji Park
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung-Hae Kwon
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Kil-Nam Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
15
|
Gil RS, Vagnarelli P. Protein phosphatases in chromatin structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:90-101. [PMID: 30036566 PMCID: PMC6227384 DOI: 10.1016/j.bbamcr.2018.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure and dynamics are highly controlled and regulated processes that play an essential role in many aspects of cell biology. The chromatin transition stages and the factors that control this process are regulated by post-translation modifications, including phosphorylation. While the role of protein kinases in chromatin dynamics has been quite well studied, the nature and regulation of the counteracting phosphatases represent an emerging field but are still at their infancy. In this review we summarize the current literature on phosphatases involved in the regulation of chromatin structure and dynamics, with emphases on the major knowledge gaps that should require attention and more investigation.
Collapse
Affiliation(s)
- Raquel Sales Gil
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
16
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:353-380. [DOI: 10.1007/978-981-10-7311-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Waryah CB, Moses C, Arooj M, Blancafort P. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods Mol Biol 2018. [PMID: 29524128 DOI: 10.1007/978-1-4939-7774-1_2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
| | - Colette Moses
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mahira Arooj
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
19
|
Sekiya T, Murano K, Kato K, Kawaguchi A, Nagata K. Mitotic phosphorylation of CCCTC-binding factor (CTCF) reduces its DNA binding activity. FEBS Open Bio 2017; 7:397-404. [PMID: 28286735 PMCID: PMC5337899 DOI: 10.1002/2211-5463.12189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/30/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022] Open
Abstract
During mitosis, higher order chromatin structures are disrupted and chromosomes are condensed to achieve accurate chromosome segregation. CCCTC‐binding factor (CTCF) is a highly conserved and ubiquitously expressed C2H2‐type zinc finger protein which is considered to be involved in epigenetic memory through regulation of higher order chromatin architecture. However, the regulatory mechanism of CTCF in mitosis is still unclear. Here we found that the DNA‐binding activity of CTCF is regulated in a phosphorylation‐dependent manner during mitosis. The linker domains of the CTCF zinc finger domain were found to be phosphorylated during mitosis. The phosphorylation of linker domains impaired the DNA‐binding activity in vitro. Mutation analyses showed that amino acid residues (Thr289, Thr317, Thr346, Thr374, Ser402, Ser461, and Thr518) located in the linker domains were phosphorylated during mitosis. Based on these results, we propose that the mitotic phosphorylation of the linker domains of CTCF is important for the dissociation of CTCF from mitotic chromatin.
Collapse
Affiliation(s)
- Takeshi Sekiya
- Department of Infection Biology Faculty of Medicine and Graduate School of Comprehensive Human Science University of Tsukuba Japan
| | - Kensaku Murano
- Department of Molecular Biology Keio University School of Medicine Tokyo Japan
| | - Kohsuke Kato
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | - Atsushi Kawaguchi
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | | |
Collapse
|
20
|
Abstract
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
21
|
Fine EJ, Cradick TJ, Bao G. Strategies to Determine Off-Target Effects of Engineered Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Rizkallah R, Batsomboon P, Dudley GB, Hurt MM. Identification of the oncogenic kinase TOPK/PBK as a master mitotic regulator of C2H2 zinc finger proteins. Oncotarget 2015; 6:1446-61. [PMID: 25575812 PMCID: PMC4359306 DOI: 10.18632/oncotarget.2735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/08/2014] [Indexed: 11/25/2022] Open
Abstract
TOPK/PBK is an oncogenic kinase upregulated in most human cancers and its high expression correlates with poor prognosis. TOPK is known to be activated by Cdk1 and needed for mitotic cell division; however, its mitotic functions are not yet fully understood. In this study, we show that TOPK plays a global mitotic role by simultaneously regulating hundreds of DNA binding proteins. C2H2 zinc finger proteins (ZFPs) constitute the largest family of human proteins. All C2H2 ZFPs contain a highly conserved linker sequence joining their multi-zinc finger domains. We have previously shown that phosphorylation of this conserved motif serves as a global mechanism for the coordinate dissociation of C2H2 ZFPs from condensing chromatin, during mitosis. Here, using a panel of kinase inhibitors, we identified K252a as a potent inhibitor of mitotic ZFP linker phosphorylation. We generated a biotinylated form of K252a and used it to purify candidate kinases. From these candidates we identified TOPK/PBK, in vitro and in vivo, as the master ZFP linker kinase. Furthermore, we show precise temporal correlation between TOPK activating phosphorylation by Cdk1 and linker phosphorylation in mitosis. The identification of this fundamental role of TOPK underscores its significance as a promising novel target of cancer therapeutics.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, 32306, United States of America
| | - Paratchata Batsomboon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, United States of America
| | - Gregory B Dudley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, United States of America
| | - Myra M Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, 32306, United States of America
| |
Collapse
|
23
|
Tochio N, Umehara T, Nakabayashi K, Yoneyama M, Tsuda K, Shirouzu M, Koshiba S, Watanabe S, Kigawa T, Sasazuki T, Shirasawa S, Yokoyama S. Solution structures of the DNA-binding domains of immune-related zinc-finger protein ZFAT. ACTA ACUST UNITED AC 2015; 16:55-65. [PMID: 25801860 PMCID: PMC4427657 DOI: 10.1007/s10969-015-9196-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
Abstract
ZFAT is a transcriptional regulator, containing eighteen C2H2-type zinc-fingers and one AT-hook, involved in autoimmune thyroid disease, apoptosis, and immune-related cell survival. We determined the solution structures of the thirteen individual ZFAT zinc-fingers (ZF) and the tandemly arrayed zinc-fingers in the regions from ZF2 to ZF5, by NMR spectroscopy. ZFAT has eight uncommon bulged-out helix-containing zinc-fingers, and six of their structures (ZF4, ZF5, ZF6, ZF10, ZF11, and ZF13) were determined. The distribution patterns of the putative DNA-binding surface residues are different among the ZFAT zinc-fingers, suggesting the distinct DNA sequence preferences of the N-terminal and C-terminal zinc-fingers. Since ZFAT has three to five consecutive tandem zinc-fingers, which may cooperatively function as a unit, we also determined two tandemly arrayed zinc-finger structures, between ZF2 to ZF4 and ZF3 to ZF5. Our NMR spectroscopic analysis detected the interaction between ZF4 and ZF5, which are connected by an uncommon linker sequence, KKIK. The ZF4–ZF5 linker restrained the relative structural space between the two zinc-fingers in solution, unlike the other linker regions with determined structures, suggesting the involvement of the ZF4–ZF5 interfinger linker in the regulation of ZFAT function.
Collapse
Affiliation(s)
- Naoya Tochio
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,Department of Mathematical and Life Sciences, Research Center for the Mathematics on Chromatin Live Dynamics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,PRESTO, Japan Science and Technology Agency (JST), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535 Japan
| | - Misao Yoneyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Kengo Tsuda
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Seizo Koshiba
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan
| | - Satoru Watanabe
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Takanori Kigawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama, 226-8502 Japan.,RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Takehiko Sasazuki
- Institute for Advanced Studies, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan.,Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan.,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
24
|
Suzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, Sagata N. Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Sci Rep 2015; 5:7929. [PMID: 25604483 PMCID: PMC4300507 DOI: 10.1038/srep07929] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/22/2014] [Indexed: 11/09/2022] Open
Abstract
The cyclin B-dependent protein kinase Cdk1 is a master regulator of mitosis and phosphorylates numerous proteins on the minimal consensus motif Ser/Thr-Pro (S/T-P). At least in several proteins, however, not well-defined motifs lacking a Pro in the +1 position, referred herein to as non-S/T-P motifs, have been shown to be phosphorylated by Cdk1. Here we show that non-S/T-P motifs in fact form consensus sequences for Cdk1 and probably play roles in mitotic regulation of physiologically important proteins. First, we show, by in vitro kinase assays, that previously identified non-S/T-P motifs all harbour one or more C-terminal Arg/Lys residues essential for their phosphorylation by Cdk1. Second, using Arg/Lys-scanning oriented peptide libraries, we demonstrate that Cdk1 phosphorylates a minimal sequence S/T-X-X-R/K and more favorable sequences (P)-X-S/T-X-[R/K]2–5 as its non-S/T-P consensus motifs. Third, on the basis of these results, we find that highly conserved linkers (typically, T-G-E-K-P) of C2H2 zinc finger proteins and a nuclear localization signal-containing sequence (matching P-X-S-X-[R/K]5) of the cytokinesis regulator Ect2 are inhibitorily phosphorylated by Cdk1, well accounting for the known mitotic regulation and function of the respective proteins. We suggest that non-S/T-P Cdk1 consensus motifs identified here may function to regulate many other proteins during mitosis.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kosuke Sako
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kazuhiro Akiyama
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Michitaka Isoda
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Chiharu Senoo
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Nobushige Nakajo
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Noriyuki Sagata
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
25
|
Ryu Y, Jin Z, Lee JJ, Noh SH, Shin TH, Jo SM, Choi J, Park H, Cheon J, Kim HS. Size-Controlled Construction of Magnetic Nanoparticle Clusters Using DNA-Binding Zinc Finger Protein. Angew Chem Int Ed Engl 2014; 54:923-6. [DOI: 10.1002/anie.201408593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/13/2014] [Indexed: 12/25/2022]
|
26
|
Ryu Y, Jin Z, Lee JJ, Noh SH, Shin TH, Jo SM, Choi J, Park H, Cheon J, Kim HS. Size-Controlled Construction of Magnetic Nanoparticle Clusters Using DNA-Binding Zinc Finger Protein. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Choi S, Bird AJ. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics 2014; 6:1198-215. [PMID: 24722954 DOI: 10.1039/c4mt00064a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Zinc-responsive transcription factors are found in all kingdoms of life and include the transcriptional activators ZntR, SczA, Zap1, bZip19, bZip23, and MTF-1, and transcriptional repressors Zur, AdcR, Loz1, and SmtB. These factors have two defining features; their activity is regulated by zinc and they all play a central role in zinc homeostasis by controlling the expression of genes that directly affect zinc levels or its availability. This review summarizes what is known about the mechanisms by which each of these factors sense changes in intracellular zinc levels and how they control zinc homeostasis through target gene regulation. Other factors that influence zinc ion sensing are also discussed.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
28
|
Yoshizaki H, Okuda S. Elucidation of the evolutionary expansion of phosphorylation signaling networks using comparative phosphomotif analysis. BMC Genomics 2014; 15:546. [PMID: 24981518 PMCID: PMC4117960 DOI: 10.1186/1471-2164-15-546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Protein phosphorylation is catalyzed by kinases and is involved in the regulation of a wide range of processes. The phosphosites in protein sequence motifs determine the types of kinases involved. The development of phosphoproteomics has allowed the identification of huge numbers of phosphosites, some of which are not involved in physiological functions. Results We developed a method for extracting phosphosites with important roles in cellular functions and determined 178 phosphomotifs based on the analysis of 34,366 phosphosites. We compared the conservation of serine/threonine/tyrosine residues observed in humans and seven other species. Consequently, we identified 16 phosphomotifs, where the level of conservation increased among species. The highly conserved phosphomotifs in humans and the worm were kinase regulatory sites. The motifs present in the fly were novel phosphomotifs, including zinc finger motifs involved in the regulation of gene expression. Subsequently, we found that this zinc finger motif contributed to subcellular protein localization. The motifs identified in fish allowed us to detect the expansion of phosphorylation signals related to alternative splicing. We also showed that the motifs present in specific species functioned in an additional network that interacted directly with the core signaling network conserved from yeast to humans. Conclusions Our method may facilitate the efficient extraction of novel phosphomotifs with physiological functions, thereby contributing greatly to the analysis of complex phosphorylation signaling cascades. Our study suggests that the phosphorylation networks acquired during evolution have added signaling network modules to the core signaling networks. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-546) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hisayoshi Yoshizaki
- Department of Pathology I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | |
Collapse
|
29
|
Feinauer CJ, Hofmann A, Goldt S, Liu L, Máté G, Heermann DW. Zinc finger proteins and the 3D organization of chromosomes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:67-117. [PMID: 23582202 DOI: 10.1016/b978-0-12-410523-2.00003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Zinc finger domains are one of the most common structural motifs in eukaryotic cells, which employ the motif in some of their most important proteins (including TFIIIA, CTCF, and ZiF268). These DNA binding proteins contain up to 37 zinc finger domains connected by flexible linker regions. They have been shown to be important organizers of the 3D structure of chromosomes and as such are called the master weaver of the genome. Using NMR and numerical simulations, much progress has been made during the past few decades in understanding their various functions and their ways of binding to the DNA, but a large knowledge gap remains to be filled. One problem of the hitherto existing theoretical models of zinc finger protein DNA binding in this context is that they are aimed at describing specific binding. Furthermore, they exclusively focus on the microscopic details or approach the problem without considering such details at all. We present the Flexible Linker Model, which aims explicitly at describing nonspecific binding. It takes into account the most important effects of flexible linkers and allows a qualitative investigation of the effects of these linkers on the nonspecific binding affinity of zinc finger proteins to DNA. Our results indicate that the binding affinity is increased by the flexible linkers by several orders of magnitude. Moreover, they show that the binding map for proteins with more than one domain presents interesting structures, which have been neither observed nor described before, and can be interpreted to fit very well with existing theories of facilitated target location. The effect of the increased binding affinity is also in agreement with recent experiments that until now have lacked an explanation. We further explore the class of proteins with flexible linkers, which are unstructured until they bind. We have developed a methodology to characterize these flexible proteins. Employing the concept of barcodes, we propose a measure to compare such flexible proteins in terms of a similarity measure. This measure is validated by a comparison between a geometric similarity measure and the topological similarity measure that takes geometry as well as topology into account.
Collapse
Affiliation(s)
- Christoph J Feinauer
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Challenges in whole exome sequencing: an example from hereditary deafness. PLoS One 2012; 7:e32000. [PMID: 22363784 PMCID: PMC3283682 DOI: 10.1371/journal.pone.0032000] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
Whole exome sequencing provides unprecedented opportunities to identify causative DNA variants in rare Mendelian disorders. Finding the responsible mutation via traditional methods in families with hearing loss is difficult due to a high degree of genetic heterogeneity. In this study we combined autozygosity mapping and whole exome sequencing in a family with 3 affected children having nonsyndromic hearing loss born to consanguineous parents. Two novel missense homozygous variants, c.508C>A (p.H170N) in GIPC3 and c.1328C>T (p.T443M) in ZNF57, were identified in the same ∼6 Mb autozygous region on chromosome 19 in affected members of the family. Both variants co-segregated with the phenotype and were absent in 335 ethnicity-matched controls. Biallelic GIPC3 mutations have recently been reported to cause autosomal recessive nonsyndromic sensorineural hearing loss. Thus we conclude that the hearing loss in the family described in this report is caused by a novel missense mutation in GIPC3. Identified variant in GIPC3 had a low read depth, which was initially filtered out during the analysis leaving ZNF57 as the only potential causative gene. This study highlights some of the challenges in the analyses of whole exome data in the bid to establish the true causative variant in Mendelian disease.
Collapse
|
31
|
Rizkallah R, Alexander KE, Hurt MM. Global mitotic phosphorylation of C2H2 zinc finger protein linker peptides. Cell Cycle 2011; 10:3327-36. [PMID: 21941085 DOI: 10.4161/cc.10.19.17619] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cessation of transcriptional activity is a hallmark of cell division. Many biochemical pathways have been shown and proposed over the past few decades to explain the silence of this phase. In particular, many individual transcription factors have been shown to be inactivated by phosphorylation. In this report, we show the simultaneous phosphorylation and mitotic redistribution of a whole class of modified transcription factors. C(2)H(2) zinc finger proteins (ZFPs) represent the largest group of gene expression regulators in the human genome. Despite their diversity, C(2)H(2) ZFPs display striking conservation of small linker peptides joining their adjacent zinc finger modules. These linkers are critical for DNA binding activity. It has been proposed that conserved phosphorylation of these linker peptides could be a common mechanism for the inactivation of the DNA binding activity of C(2)H(2) ZFPs, during mitosis. Using a novel antibody, raised against the phosphorylated form of the most conserved linker peptide sequence, we are able to visualize the massive and simultaneous mitotic phosphorylation of hundreds of these proteins. We show that this wave of phosphorylation is tightly synchronized, starting in mid-prophase right after DNA condensation and before the breakdown of the nuclear envelope. This global phosphorylation is completely reversed in telophase. In addition, the exclusion of the phospho-linker signal from condensed DNA clearly demonstrates a common mechanism for the mitotic inactivation of C(2)H(2) ZFPs.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | | | | |
Collapse
|
32
|
Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator. PLoS One 2011; 6:e22535. [PMID: 21799889 PMCID: PMC3142189 DOI: 10.1371/journal.pone.0022535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/23/2011] [Indexed: 12/04/2022] Open
Abstract
The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.
Collapse
|
33
|
Payne MA. Zinc finger structure-function in Ikaros Marvin A Payne. World J Biol Chem 2011; 2:161-6. [PMID: 21765982 PMCID: PMC3135863 DOI: 10.4331/wjbc.v2.i6.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 02/05/2023] Open
Abstract
The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function. The Ikaros gene is alternately spliced to produce several isoforms that confer diversity of function and consequently have complicated analysis of the function of Ikaros in vivo. Key features of Ikaros in vivo function are associated with six C2H2 zinc fingers; four of which are alternately incorporated in the production of the various Ikaros isoforms. Although no complete structures are available for the Ikaros protein or any of its family members, considerable evidence has accumulated about the structure of zinc fingers and the role that this structure plays in the functions of the Ikaros family of proteins. This review summarizes the structural aspects of Ikaros zinc fingers, individually, and in tandem to provide a structural context for Ikaros function and to provide a structural basis to inform the design of future experiments with Ikaros and its family members.
Collapse
Affiliation(s)
- Marvin A Payne
- Department of Chemistry and Biochemistry, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA, USA
| |
Collapse
|
34
|
Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. Proc Natl Acad Sci U S A 2010; 107:15676-80. [PMID: 20720164 DOI: 10.1073/pnas.1001469107] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray fluorescence tomography promises to map elemental distributions in unstained and unfixed biological specimens in three dimensions at high resolution and sensitivity, offering unparalleled insight in medical, biological, and environmental sciences. X-ray fluorescence tomography of biological specimens has been viewed as impractical-and perhaps even impossible for routine application-due to the large time required for scanning tomography and significant radiation dose delivered to the specimen during the imaging process. Here, we demonstrate submicron resolution X-ray fluorescence tomography of a whole unstained biological specimen, quantifying three-dimensional distributions of the elements Si, P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn in the freshwater diatom Cyclotella meneghiniana with 400-nm resolution, improving the spatial resolution by over an order of magnitude. The resulting maps faithfully reproduce cellular structure revealing unexpected patterns that may elucidate the role of metals in diatom biology and of diatoms in global element cycles. With anticipated improvements in data acquisition and detector sensitivity, such measurements could become routine in the near future.
Collapse
|
35
|
Jantz D, Berg JM. Probing the DNA-binding affinity and specificity of designed zinc finger proteins. Biophys J 2010; 98:852-60. [PMID: 20197039 DOI: 10.1016/j.bpj.2009.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/17/2022] Open
Abstract
Engineered transcription factors and endonucleases based on designed Cys(2)His(2) zinc finger domains have proven to be effective tools for the directed regulation and modification of genes. The introduction of this technology into both research and clinical settings necessitates the development of rapid and accurate means of evaluating both the binding affinity and binding specificity of designed zinc finger domains. Using a fluorescence anisotropy-based DNA-binding assay, we examined the DNA-binding properties of two engineered zinc finger proteins that differ by a single amino acid. We demonstrate that the protein with the highest affinity for a particular DNA site need not be the protein that binds that site with the highest degree of specificity. Moreover, by comparing the binding characteristics of the two proteins at varying salt concentrations, we show that the ionic strength makes significant and variable contributions to both affinity and specificity. These results have significant implications for zinc finger design as they highlight the importance of considering affinity, specificity, and environmental requirements in designing a DNA-binding domain for a particular application.
Collapse
Affiliation(s)
- Derek Jantz
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | |
Collapse
|
36
|
Rizkallah R, Hurt MM. Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain. Mol Biol Cell 2009; 20:4766-76. [PMID: 19793915 DOI: 10.1091/mbc.e09-04-0264] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|
37
|
Ritz A, Shakhnarovich G, Salomon AR, Raphael BJ. Discovery of phosphorylation motif mixtures in phosphoproteomics data. ACTA ACUST UNITED AC 2008; 25:14-21. [PMID: 18996944 DOI: 10.1093/bioinformatics/btn569] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MOTIVATION Modification of proteins via phosphorylation is a primary mechanism for signal transduction in cells. Phosphorylation sites on proteins are determined in part through particular patterns, or motifs, present in the amino acid sequence. RESULTS We describe an algorithm that simultaneously discovers multiple motifs in a set of peptides that were phosphorylated by several different kinases. Such sets of peptides are routinely produced in proteomics experiments.Our motif-finding algorithm uses the principle of minimum description length to determine a mixture of sequence motifs that distinguish a foreground set of phosphopeptides from a background set of unphosphorylated peptides. We show that our algorithm outperforms existing motif-finding algorithms on synthetic datasets consisting of mixtures of known phosphorylation sites. We also derive a motif specificity score that quantifies whether or not the phosphoproteins containing an instance of a motif have a significant number of known interactions. Application of our motif-finding algorithm to recently published human and mouse proteomic studies recovers several known phosphorylation motifs and reveals a number of novel motifs that are enriched for interactions with a particular kinase or phosphatase. Our tools provide a new approach for uncovering the sequence specificities of uncharacterized kinases or phosphatases.
Collapse
Affiliation(s)
- Anna Ritz
- Department of Computer Science, Brown University, Toyota Technological Institute at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
38
|
Miller ML, Hanke S, Hinsby AM, Friis C, Brunak S, Mann M, Blom N. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2. Mol Cell Proteomics 2008; 7:181-92. [PMID: 17938406 DOI: 10.1074/mcp.m700241-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic acid binding.
Collapse
Affiliation(s)
- Martin Lee Miller
- Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, Building 208, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Differential effects of phosphorylation on DNA binding properties of N Oct-3 are dictated by protein/DNA complex structures. J Mol Biol 2007; 370:687-700. [PMID: 17543985 DOI: 10.1016/j.jmb.2007.04.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/22/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
N Oct-3, a transcription factor member of the POU protein family, is implicated in normal central nervous system development but also in melanoma growth. Its DNA-binding domain (DBD) comprises two subdomains, POUs and POUh, joined by a linker peptide. We have previously shown that N Oct-3 can interact with the already described PORE and MORE DNA motifs, but also with a new structural element we have termed NORE. Having observed that both the PORE and NORE DNA-association modes depend on a strong anchoring of the POUh subdomain rigid arm into the DNA-target minor groove, in contrast to the MORE mode, we have formulated the hypothesis that phosphorylation of the conserved Ser101 residue located in the N Oct-3 POUh arm could lead to differential results in DNA binding according to the type of target. Here we demonstrate that, in vitro, Ser101 is phosphorylated by protein kinase A (PKA), either purified or contained in melanoma (624 mel) nuclear extract, and that this phosphorylation indeed significantly reduced N Oct-3 DBD binding to PORE and NORE motifs, most likely by hampering the POUh rigid arm insertion in the DNA minor groove. Conversely, no effect was observed on the binding of N Oct-3 DBD to MORE sequences. Finally, once bound to its DNA targets, N Oct-3 DBD is less susceptible to PKA activity. We conclude that transcription of genes exhibiting a MORE motif in their promoter should be less affected by N Oct-3 phosphorylation than that of genes switched on by PORE or NORE sequences.
Collapse
|
40
|
Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Intrinsic disorder in transcription factors. Biochemistry 2006; 45:6873-88. [PMID: 16734424 PMCID: PMC2538555 DOI: 10.1021/bi0602718] [Citation(s) in RCA: 569] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for the general prevalence of intrinsic disorder in transcriptional regulation, we used the predictor of natural disorder regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13 to 82.63% of transcription factors possess extended regions of intrinsic disorder, relative to 54.51 and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors to intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that (a) the AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) the degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) the degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; and (d) the level of alpha-MoRF (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
- Bioinformatics Group, Lilly Research Laboratories, Eli Lilly and Company, DC GL54, Greenfield, IN 46140, USA
| | - Narayanan B. Perumal
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
| | - Christopher J. Oldfield
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 N Senate Ave, suite 250, Indianapolis, IN 46202, USA
| | - Eric W. Su
- Bioinformatics Group, Lilly Research Laboratories, Eli Lilly and Company, DC GL54, Greenfield, IN 46140, USA
| | - Vladimir N. Uversky
- Department of Biochemistry and Molecular Biology, and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 N Senate Ave, suite 250, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
- Molecular Kinetics, Inc., 6201 La Pas Trail, Suite 160, Indianapolis, Indiana 46268, USA
- To whom correspondence should be addressed at Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University - Purdue University at Indianapolis, 714 N. Senate St., Suite 250, Indianapolis, IN 46202. Phone: 317-278-9650; fax: 317-278-9217; E-mail:
| | - A. Keith Dunker
- School of Informatics, Indiana University – Purdue University Indianapolis, 535 West Michigan St., Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 N Senate Ave, suite 250, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
Acar M, Jafar-Nejad H, Giagtzoglou N, Yallampalli S, David G, He Y, Delidakis C, Bellen HJ. Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development 2006; 133:1979-89. [PMID: 16624856 DOI: 10.1242/dev.02372] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The zinc-finger transcription factor Senseless is co-expressed with basic helix-loop-helix (bHLH) proneural proteins in Drosophila sensory organ precursors and is required for their normal development. High levels of Senseless synergize with bHLH proteins and upregulate target gene expression,whereas low levels of Senseless act as a repressor in vivo. However, the molecular mechanism for this dual role is unknown. Here, we show that Senseless binds bHLH proneural proteins via its core zinc fingers and is recruited by proneural proteins to their target enhancers to function as a co-activator. Some point mutations in the Senseless zinc-finger region abolish its DNA-binding ability but partially spare the ability of Senseless to synergize with proneural proteins and to induce sensory organ formation in vivo. Therefore, we propose that the structural basis for the switch between the repressor and co-activator functions of Senseless is the ability of its core zinc fingers to interact physically with both DNA and bHLH proneural proteins. As Senseless zinc fingers are ∼90% identical to the corresponding zinc fingers of its vertebrate homologue Gfi1, which is thought to cooperate with bHLH proteins in several contexts, the Senseless/bHLH interaction might be evolutionarily conserved.
Collapse
Affiliation(s)
- Melih Acar
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
van Vliet J, Crofts LA, Quinlan KGR, Czolij R, Perkins AC, Crossley M. Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 2006; 87:474-82. [PMID: 16460907 DOI: 10.1016/j.ygeno.2005.12.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 12/26/2022]
Abstract
The Sp/KLF transcription factors perform a variety of biological functions, but are related in that they bind GC-box and CACCC-box sequences in DNA via a highly conserved DNA-binding domain. A database homology search, using the zinc finger DNA-binding domain characteristic of the family, has identified human KLF17 as a new family member that is most closely related to KLFs 1-8 and 12. KLF17 appears to be the human orthologue of the previously reported mouse gene, zinc finger protein 393 (Zfp393), although it has diverged significantly. The DNA-binding domain is the most conserved region, suggesting that both the murine and the human forms recognize the same binding sites in DNA and may retain similar functions. We show that human KLF17 can bind G/C-rich sites via its zinc fingers and is able to activate transcription from CACCC-box elements. This is the first report of the DNA-binding characteristics and transactivation activity of human KLF17, which, together with the homology it displays to other KLF proteins, put it in the Sp/KLF family.
Collapse
Affiliation(s)
- Jane van Vliet
- School of Molecular and Microbial Biosciences, G08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Michaille JJ, Tili E, Calin GA, Garin J, Louwagie M, Croce CM. Cloning and characterization of cDNAs expressed during chick development and encoding different isoforms of a putative zinc finger transcriptional regulator. Biochimie 2006; 87:939-49. [PMID: 16023281 DOI: 10.1016/j.biochi.2005.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 06/10/2005] [Indexed: 11/22/2022]
Abstract
Development proceeds through successive activation of different sets of genes by specific transcription factors as a consequence of cell interactions and signaling. It is thus of primary interest to identify new putative transcriptional regulators. We report here the isolation of chicken clones bearing sequences coding for a chicken zinc finger protein (chZFp) which contains four pairs of zinc fingers of mixed type C2-H-C/C2-H2. At least five chZFp isoforms are produced through differential splicing of four small exons. The amino acid domains encoded by these four exons are highly conserved across species. Northern blot analysis and RNase-protection assays showed that chZFp transcripts are present in brain, heart, skin and liver during chick development. Reverse transcription mediated polymerase chain reaction (RT-PCR) experiments suggested that the relative amount of some chZFp isoforms increases at critical stages of development and skin morphogenesis. Finally, the main chZFp isoforms are able to directly interact in vitro with the scaffold attachment factor-A (SAF-A, also known as heterogenous nuclear ribonucleoprotein U) through both their aminoterminal and carboxyterminal domains.
Collapse
Affiliation(s)
- J-J Michaille
- Développement, communication chimique, CNRS-UMR 5548, faculté Gabriel, 6, boulevard Gabriel, 21000 Dijon, France.
| | | | | | | | | | | |
Collapse
|
44
|
Dhanasekaran M, Negi S, Sugiura Y. Designer zinc finger proteins: tools for creating artificial DNA-binding functional proteins. Acc Chem Res 2006; 39:45-52. [PMID: 16411739 DOI: 10.1021/ar050158u] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of artificial functional DNA-binding proteins has long been a goal for several research laboratories. The zinc finger proteins, which typically contain many fingers linked in tandem fashion, are some of the most studied DNA-binding proteins. The zinc finger protein's tandem arrangement and its the ability to recognize a wide variety of DNA sequences make it an attractive framework to design novel DNA-binding peptides/proteins. Our laboratory has utilized several design strategies to create novel zinc finger peptides by re-engineering the C(2)H(2)-type zinc finger motif of transcription factor Sp1. Some of the engineered zinc fingers have shown nuclease and catalytic functional properties. Based on these results, we present the design strategies for the creation of novel zinc fingers.
Collapse
Affiliation(s)
- Muthu Dhanasekaran
- Faculty of Pharmaceutical Sciences, Doshisha Women's University, Koudo, Kyotanabe-Shi, Kyoto 610 0395, Japan
| | | | | |
Collapse
|
45
|
Imanishi M, Yan W, Morisaki T, Sugiura Y. An artificial six-zinc finger peptide with polyarginine linker: Selective binding to the discontinuous DNA sequences. Biochem Biophys Res Commun 2005; 333:167-73. [PMID: 15939400 DOI: 10.1016/j.bbrc.2005.05.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Artificial DNA binding peptides recognizing separated sequences would expand varieties of the target genes for desirable transcriptional control. Here we demonstrated that polyarginine linker between two 3-zinc finger domains gives DNA binding selectivity to the separated target sequences. We created a six-zinc finger peptide, Sp1ZF6(Arg)8, by connecting two DNA binding domains of transcription factor Sp1 with a bulky and cationic polyarginine linker. The DNA binding properties to continuous and discontinuous target sequences were examined and compared to those of Sp1ZF6(Gly)10 containing a flexible and neutral polyglycine linker. The dissociation constants indicate that Sp1ZF6(Arg)8 has an obvious DNA binding preference to discontinuous target sequences but not Sp1ZF6(Gly)10. Footprinting analyses also showed that Sp1ZF6(Arg)8 binds properly only to the discontinuous target sites, while Sp1ZF6(Gly)10 does not distinguish them. The results provide helpful information for linker design of future zinc finger peptides to various states of DNA as gene expression regulators.
Collapse
Affiliation(s)
- Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Japan.
| | | | | | | |
Collapse
|
46
|
Abstract
In this issue of Chemistry & Biology, Weiss and colleagues use phage display to map residues in the engrailed homeodomain that influence DNA recognition. Their shotgun scanning data provides surprising new insights into the importance of regions outside the recognition helix and N-terminal arm for DNA binding.
Collapse
Affiliation(s)
- Scot A Wolfe
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|