1
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
2
|
Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death Dis 2024; 15:72. [PMID: 38238286 PMCID: PMC10796922 DOI: 10.1038/s41419-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
RNA-binding proteins (RBPs) modulate the expression level of several target RNAs (such as mRNAs) post-transcriptionally through interactions with unique binding sites in the 3'-untranslated region. There is mounting information that suggests RBP dysregulation plays a significant role in carcinogenesis. However, the function of FMR1 autosomal homolog 1(FXR1) in malignancies is just beginning to be unveiled. Due to the diversity of their RNA-binding domains and functional adaptability, FXR1 can regulate diverse transcript processing. Changes in FXR1 interaction with RNA networks have been linked to the emergence of cancer, although the theoretical framework defining these alterations in interaction is insufficient. Alteration in FXR1 expression or localization has been linked to the mRNAs of cancer suppressor genes, cancer-causing genes, and genes involved in genomic expression stability. In particular, FXR1-mediated gene regulation involves in several cellular phenomena related to cancer growth, metastasis, epithelial-mesenchymal transition, senescence, apoptosis, and angiogenesis. FXR1 dysregulation has been implicated in diverse cancer types, suggesting its diagnostic and therapeutic potential. However, the molecular mechanisms and biological effects of FXR1 regulation in cancer have yet to be understood. This review highlights the current knowledge of FXR1 expression and function in various cancer situations, emphasizing its functional variety and complexity. We further address the challenges and opportunities of targeting FXR1 for cancer diagnosis and treatment and propose future directions for FXR1 research in oncology. This work intends to provide an in-depth review of FXR1 as an emerging oncotarget with multiple roles and implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Na Fang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Weijuan Zhang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Shaoping Ji
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, China.
| |
Collapse
|
3
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
4
|
Kharod SC, Hwang DW, Choi H, Yoon KJ, Castillo PE, Singer RH, Yoon YJ. Phosphorylation alters FMRP granules and determines their transport or protein synthesis abilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532613. [PMID: 37781583 PMCID: PMC10541110 DOI: 10.1101/2023.03.15.532613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Fragile X messenger ribonucleoprotein (FMRP) is an RNA-binding protein implicated in autism that suppresses translation and forms granules. While FMRP function has been well-studied, how phosphorylation regulates granule binding and function remains limited. Here, we found that Fragile X patient-derived I304N mutant FMRP could not stably bind granules, underscoring the essential nature of FMRP granule association for function. Next, phosphorylation on serine 499 (S499) led to differences in puncta size, intensity, contrast, and transport as shown by phospho-deficient (S499A) and phospho-mimic (S499D) mutant FMRP granules. Additionally, S499D exchanged slowly on granules relative to S499A, suggesting that phosphorylated FMRP can attenuate translation. Furthermore, the S499A mutant enhanced translation in presynaptic boutons of the mouse hippocampus. Thus, the phospho-state of FMRP altered the structure of individual granules with changes in transport and translation to achieve spatiotemporal regulation of local protein synthesis. Teaser The phosphorylation-state of S499 on FMRP can change FMRP granule structure and function to facilitate processive transport or local protein synthesis.
Collapse
|
5
|
FMRP, FXR1 protein and Dlg4 mRNA, which are associated with fragile X syndrome, are involved in the ubiquitin-proteasome system. Sci Rep 2023; 13:1956. [PMID: 36732356 PMCID: PMC9894842 DOI: 10.1038/s41598-023-29152-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a proteolytic pathway that is essential for life maintenance and vital functions, and its disruption causes serious impairments, e.g., disease development. Thus, the UPS is properly regulated. Here we show novel UPS-related factors: the fragile X mental retardation 1 (FMR1) and Fmr1 autosomal homolog 1 (FXR1) proteins and discs large MAGUK scaffold protein 4 (Dlg4) mRNA, which are associated with Fragile X syndrome, are involved in UPS activity. Fmr1-, Fxr1- and Dlg4-knockdown and Fmr1- and Fxr1-knockdown resulted in increased ubiquitination and proteasome activity, respectively. FXR1 protein was further confirmed to be associated with proteasomes, and Dlg4 mRNA itself was found to be involved in the UPS. Knockdown of these genes also affected neurite outgrowth. These findings provide new insights into the regulatory mechanism of the UPS and into the interpretation of the pathogenesis of diseases in which these genes are involved as UPS-related factors.
Collapse
|
6
|
Karen Nenonene E, Trottier-Lavoie M, Marchais M, Bastien A, Gilbert I, Macaulay AD, Khandjian EW, Maria Luciano A, Lodde V, Viger RS, Robert C. Roles of the cumulus-oocyte transzonal network and the Fragile X protein family in oocyte competence. Reproduction 2023; 165:209-219. [PMID: 36445258 DOI: 10.1530/rep-22-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
In brief RNA granules travel through the cumulus cell network of transzonal projections which is associated with oocyte developmental competence, and RNA packaging involves RNA-binding proteins of the Fragile X protein family. Abstract The determinants of oocyte developmental competence have puzzled scientists for decades. It is known that follicular conditions can nurture the production of a high-quality oocyte, but the underlying mechanisms remain unknown. Somatic cumulus cells most proximal to the oocyte are known to have cellular extensions that reach across the zona pellucida and contact with the oocyte plasma membrane. Herein, it was found that transzonal projections (TZPs) network quality is associated with developmental competence. Knowing that ribonucleoparticles are abundant within TZPs, the distribution of RNA-binding proteins was studied. The Fragile X-related proteins (FXR1P and FXR2P) and two partnering protein families, namely cytoplasmic FMRP-interacting protein and nuclear FMRP-interacting protein, exhibited distinctive patterns consistent with roles in regulating mRNA packaging, transport, and translation. The expression of green fluorescent protein (GFP)-FMRP fusion protein in cumulus cells showed active granule formation and their transport and transfer through filipodia connecting with neighboring cells. Near the projections' ends was found the cytoskeletal anchoring protein Filamin A and active protein synthesis sites. This study highlights key proteins involved in delivering mRNA to the oocyte. Thus, cumulus cells appear to indeed support the development of high-quality oocytes via the transzonal network.
Collapse
Affiliation(s)
- Elolo Karen Nenonene
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Mallorie Trottier-Lavoie
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Mathilde Marchais
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Alexandre Bastien
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Angus D Macaulay
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI)
| | - Edouard W Khandjian
- Centre de recherche CERVO, Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Robert S Viger
- Département d'obstétrique, gynécologie et reproduction, Faculté de médecine, Université Laval, Québec, Québec, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI).,Réseau Québécois en Reproduction (RQR), Université Laval, Québec, Québec, Canada
| |
Collapse
|
7
|
Laroui A, Galarneau L, Abolghasemi A, Benachenhou S, Plantefève R, Bouchouirab FZ, Lepage JF, Corbin F, Çaku A. Clinical significance of matrix metalloproteinase-9 in Fragile X Syndrome. Sci Rep 2022; 12:15386. [PMID: 36100610 PMCID: PMC9470743 DOI: 10.1038/s41598-022-19476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
High plasma matrix metalloproteases-9 (MMP-9) levels have been reported in Fragile X Syndrome in a limited number of animal and human studies. Since the results obtained are method-dependent and not directly comparable, the clinical utility of MMP-9 measurement in FXS remains unclear. This study aimed to compare quantitative gel zymography and ELISA and to determine which method better discriminates abnormal MMP-9 levels of individuals with FXS from healthy controls and correlates with the clinical profile. The active and total forms of MMP-9 were quantified respectively, by gel zymography and ELISA in a cohort of FXS (n = 23) and healthy controls (n = 20). The clinical profile was assessed for the FXS group using the Aberrant Behavior Checklist FXS adapted version (ABC-CFX), Adaptive Behavior Assessment System (ABAS), Social Communication Questionnaire (SCQ), and Anxiety Depression and Mood Scale questionnaires. Method comparison showed a disagreement between gel zymography and ELISA with a constant error of − 0.18 [95% CI: − 0.35 to − 0.02] and a proportional error of 2.31 [95% CI: 1.53 to 3.24]. Plasma level of MMP-9 active form was significantly higher in FXS (n = 12) as compared to their age-sex and BMI matched controls (n = 12) (p = 0.039) and correlated with ABC-CFX (rs = 0.60; p = 0.039) and ADAMS (rs = 0.57; p = 0.043) scores. As compared to the plasma total form, the plasma MMP-9 active form better enables the discrimination of individuals with FXS from controls and correlates with the clinical profile. Our results highlight the importance of choosing the appropriate method to quantify plasma MMP-9 in future FXS clinical studies.
Collapse
|
8
|
Khandjian EW, Robert C, Davidovic L. FMRP, a multifunctional RNA-binding protein in quest of a new identity. Front Genet 2022; 13:976480. [PMID: 36035132 PMCID: PMC9399724 DOI: 10.3389/fgene.2022.976480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Edouard W. Khandjian
- Centre de Recherche CERVO, Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- *Correspondence: Edouard W. Khandjian,
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec City, QC, Canada
| | - Laetitia Davidovic
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
9
|
Bleuzé L, Triaca V, Borreca A. FMRP-Driven Neuropathology in Autistic Spectrum Disorder and Alzheimer's disease: A Losing Game. Front Mol Biosci 2021; 8:699613. [PMID: 34760921 PMCID: PMC8573832 DOI: 10.3389/fmolb.2021.699613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer’s disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid β fragments. Indeed, FXS patients show an increase of amyloid β load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson’s Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.
Collapse
Affiliation(s)
- Louis Bleuzé
- University de Rennes 1, Rennes, France.,Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Monterotondo, Italy
| | - Antonella Borreca
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy.,Institute of Neuroscience-National Research Council (CNR-IN), Milan, Italy
| |
Collapse
|
10
|
Aleshkina D, Iyyappan R, Lin CJ, Masek T, Pospisek M, Susor A. ncRNA BC1 influences translation in the oocyte. RNA Biol 2021; 18:1893-1904. [PMID: 33491548 PMCID: PMC8583082 DOI: 10.1080/15476286.2021.1880181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 01/06/2023] Open
Abstract
Regulation of translation is essential for the diverse biological processes involved in development. Particularly, mammalian oocyte development requires the precisely controlled translation of maternal transcripts to coordinate meiotic and early embryo progression while transcription is silent. It has been recently reported that key components of mRNA translation control are short and long noncoding RNAs (ncRNAs). We found that the ncRNABrain cytoplasmic 1 (BC1) has a role in the fully grown germinal vesicle (GV) mouse oocyte, where is highly expressed in the cytoplasm associated with polysomes. Overexpression of BC1 in GV oocyte leads to a minute decrease in global translation with a significant reduction of specific mRNA translation via interaction with the Fragile X Mental Retardation Protein (FMRP). BC1 performs a repressive role in translation only in the GV stage oocyte without forming FMRP or Poly(A) granules. In conclusion, BC1 acts as the translational repressor of specific mRNAs in the GV stage via its binding to a subset of mRNAs and physical interaction with FMRP. The results reported herein contribute to the understanding of the molecular mechanisms of developmental events connected with maternal mRNA translation.
Collapse
Affiliation(s)
- D. Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - R. Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Ch. J. Lin
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - T. Masek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - M. Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - A. Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
11
|
Replication Stress Induces Global Chromosome Breakage in the Fragile X Genome. Cell Rep 2021; 32:108179. [PMID: 32966779 DOI: 10.1016/j.celrep.2020.108179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss. Using Break-seq, we map spontaneous and replication stress-induced DNA double-strand breaks (DSBs) in an FXS patient-derived cell line. We report that the genomes of FXS cells are inherently unstable and accumulate twice as many DSBs as those from an unaffected control. We demonstrate that replication stress-induced DSBs in FXS cells colocalize with R-loop forming sequences. Exogenously expressed FMRP in FXS fibroblasts ameliorates DSB formation. FMRP, not the I304N mutant, abates R-loop-induced DSBs during programmed replication-transcription conflict. These results suggest that FMRP is a genome maintenance protein that prevents R-loop accumulation. Our study provides insights into the etiological basis for FXS.
Collapse
|
12
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Shah S, Molinaro G, Liu B, Wang R, Huber KM, Richter JD. FMRP Control of Ribosome Translocation Promotes Chromatin Modifications and Alternative Splicing of Neuronal Genes Linked to Autism. Cell Rep 2020; 30:4459-4472.e6. [PMID: 32234480 PMCID: PMC7179797 DOI: 10.1016/j.celrep.2020.02.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/24/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Silencing of FMR1 and loss of its gene product, FMRP, results in fragile X syndrome (FXS). FMRP binds brain mRNAs and inhibits polypeptide elongation. Using ribosome profiling of the hippocampus, we find that ribosome footprint levels in Fmr1-deficient tissue mostly reflect changes in RNA abundance. Profiling over a time course of ribosome runoff in wild-type tissue reveals a wide range of ribosome translocation rates; on many mRNAs, the ribosomes are stalled. Sucrose gradient ultracentrifugation of hippocampal slices after ribosome runoff reveals that FMRP co-sediments with stalled ribosomes, and its loss results in decline of ribosome stalling on specific mRNAs. One such mRNA encodes SETD2, a lysine methyltransferase that catalyzes H3K36me3. Chromatin immunoprecipitation sequencing (ChIP-seq) demonstrates that loss of FMRP alters the deployment of this histone mark. H3K36me3 is associated with alternative pre-RNA processing, which we find occurs in an FMRP-dependent manner on transcripts linked to neural function and autism spectrum disorders.
Collapse
Affiliation(s)
- Sneha Shah
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Zhang F, Kang Y, Wang M, Li Y, Xu T, Yang W, Song H, Wu H, Shu Q, Jin P. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum Mol Genet 2019; 27:3936-3950. [PMID: 30107516 DOI: 10.1093/hmg/ddy292] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification of mammalian messenger RNAs (mRNAs) and long non-coding RNAs. The biological functions of this reversible RNA modification can be interpreted by cytoplasmic and nuclear 'm6A reader' proteins to fine-tune gene expression, such as mRNA degradation and translation initiation. Here we profiled transcriptome-wide m6A sites in adult mouse cerebral cortex, underscoring that m6A is a widespread epitranscriptomic modification in brain. Interestingly, the mRNA targets of fragile X mental retardation protein (FMRP), a selective RNA-binding protein, are enriched for m6A marks. Loss of functional FMRP leads to Fragile X syndrome (FXS), the most common inherited form of intellectual disability. Transcriptome-wide gene expression profiling identified 2035 genes differentially expressed in the absence of FMRP in cortex, and 92.5% of 174 downregulated FMRP targets are marked by m6A. Biochemical analyses indicate that FMRP binds to the m6A sites of its mRNA targets and interacts with m6A reader YTHDF2 in an RNA-independent manner. FMRP maintains the stability of its mRNA targets while YTHDF2 promotes the degradation of these mRNAs. These data together suggest that FMRP regulates the stability of its m6A-marked mRNA targets through YTHDF2, which could potentially contribute to the molecular pathogenesis of FXS.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mengli Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Institute for Regenerative Medicine and The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Qiang Shu
- The Children's Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
A Species-Correlated Transitional Residue D132 on Human FMRP Plays a Role in Nuclear Localization via an RNA-Dependent Interaction With PABP1. Neuroscience 2019; 404:282-296. [DOI: 10.1016/j.neuroscience.2019.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/16/2018] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
|
17
|
Leboucher A, Pisani DF, Martinez-Gili L, Chilloux J, Bermudez-Martin P, Van Dijck A, Ganief T, Macek B, Becker JAJ, Le Merrer J, Kooy RF, Amri EZ, Khandjian EW, Dumas ME, Davidovic L. The translational regulator FMRP controls lipid and glucose metabolism in mice and humans. Mol Metab 2019; 21:22-35. [PMID: 30686771 PMCID: PMC6407369 DOI: 10.1016/j.molmet.2019.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Objectives The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. Methods Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased β-adrenergic-driven lipolysis and lipid utilization. Results Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. Conclusions Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism. Loss of the translational regulator FMRP impacts glucose and lipid homeostasis in mouse and human. FMR1-deficiency modifies blood metabolic markers. Loss of FMRP enhances the insulin response and lipolysis. Loss of FMRP exaggerates hepatic protein synthesis. FMRP controls the translation of key hepatic proteins involved in lipid metabolism.
Collapse
Affiliation(s)
- Antoine Leboucher
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Laura Martinez-Gili
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Julien Chilloux
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Patricia Bermudez-Martin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| | | | | | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Inserm, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Inserm, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - R Frank Kooy
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Edouard W Khandjian
- Centre de Recherche CERVO, Institut en Santé Mentale de Québec, PQ, Canada; Département de Psychiatrie et des Neurosciences, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Marc-Emmanuel Dumas
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Laetitia Davidovic
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| |
Collapse
|
18
|
Maurin T, Bardoni B. Fragile X Mental Retardation Protein: To Be or Not to Be a Translational Enhancer. Front Mol Biosci 2018; 5:113. [PMID: 30619879 PMCID: PMC6297276 DOI: 10.3389/fmolb.2018.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Thomas Maurin
- Université Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Barbara Bardoni
- CNRS LIA "Neogenex", Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| |
Collapse
|
19
|
Patzlaff NE, Shen M, Zhao X. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plast 2018; 3:205-223. [PMID: 30151344 PMCID: PMC6091053 DOI: 10.3233/bpl-170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) has an important role in neural development. Functional loss of FMRP in humans leads to fragile X syndrome, and it is the most common monogenetic contributor to intellectual disability and autism. FMRP is part of a larger family of RNA-binding proteins known as FXRs, which also includes fragile X related protein 1 (FXR1P) and fragile X related protein 2 (FXR2P). Despite the similarities of the family members, the functions of FXR1P and FXR2P in human diseases remain unclear. Although most studies focus on FMRP's role in mature neurons, all three FXRs regulate adult neurogenesis. Extensive studies have demonstrated important roles of adult neurogenesis in neuroplasticity, learning, and cognition. Impaired adult neurogenesis is implicated in neuropsychiatric disorders, neurodegenerative diseases, and neurodevelopmental disorders. Interventions aimed at regulating adult neurogenesis are thus being evaluated as potential therapeutic strategies. Here, we review and discuss the functions of FXRs in adult neurogenesis and their known similarities and differences. Understanding the overlapping regulatory functions of FXRs in adult neurogenesis can give us insights into the adult brain and fragile X syndrome.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Michaelsen‐Preusse K, Feuge J, Korte M. Imbalance of synaptic actin dynamics as a key to fragile X syndrome? J Physiol 2018; 596:2773-2782. [PMID: 29380377 PMCID: PMC6046079 DOI: 10.1113/jp275571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 11/08/2022] Open
Abstract
Our experiences and memories define who we are, and evidence has accumulated that memory formation is dependent on functional and structural adaptations of synaptic structures in our brain. Especially dendritic spines, the postsynaptic compartments of synapses show a strong structure-to-function relationship and a high degree of structural plasticity. Although the molecular mechanisms are not completely understood, it is known that these modifications are highly dependent on the actin cytoskeleton, the major cytoskeletal component of the spine. Given the crucial involvement of actin in these mechanisms, dysregulations of spine actin dynamics (reflected by alterations in dendritic spine morphology) can be found in a variety of neurological disorders ranging from schizophrenia to several forms of autism spectrum disorders such as fragile X syndrome (FXS). FXS is caused by a single mutation leading to an inactivation of the X-linked fragile X mental retardation 1 gene and loss of its gene product, the RNA-binding protein fragile X mental retardation protein 1 (FMRP), which normally can be found both pre- and postsynaptically. FMRP is involved in mRNA transport as well as regulation of local translation at the synapse, and although hundreds of FMRP-target mRNAs could be identified only a very few interactions between FMRP and actin-regulating proteins have been reported and validated. In this review we give an overview of recent work by our lab and others providing evidence that dysregulated actin dynamics might indeed be at the very base of a deeper understanding of neurological disorders ranging from cognitive impairment to the autism spectrum.
Collapse
Affiliation(s)
- Kristin Michaelsen‐Preusse
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Jonas Feuge
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
- Helmholtz Centre for Infection ResearchAG NINDInhoffenstr. 7Braunschweig38124Germany
| |
Collapse
|
21
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
22
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
23
|
Inflammation-regulated mRNA stability and the progression of vascular inflammatory diseases. Clin Sci (Lond) 2017; 131:2687-2699. [PMID: 29109302 DOI: 10.1042/cs20171373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease remains a major medical and socioeconomic burden in developed and developing societies, and will increase with an aging and increasingly sedentary society. Vascular disease and atherosclerotic vascular syndromes are essentially inflammatory disorders, and transcriptional and post-transcriptional processes play essential roles in the ability of resident vascular and inflammatory cells to adapt to environmental stimuli. The regulation of mRNA translocation, stability, and translation are key processes of post-transcriptional regulation that permit these cells to rapidly respond to inflammatory stimuli. For the most part, these processes are controlled by elements in the 3'-UTR of labile, proinflammatory transcripts. Since proinflammatory transcripts almost exclusively contain AU-rich elements (AREs), this represents a tightly regulated and specific mechanism for initiation and maintenance of the proinflammatory phenotype. RNA-binding proteins (RBPs) recognize cis elements in 3'-UTR, and regulate each of these processes, but there is little literature exploring the concept that RBPs themselves can be directly regulated by inflammatory stimuli. Conceptually, inflammation-responsive RBPs represent an attractive target of rational therapies to combat vascular inflammatory syndromes. Herein we briefly describe the cellular and molecular etiology of atherosclerosis, and summarize our current understanding of RBPs and their specific roles in regulation of inflammatory mRNA stability. We also detail RBPs as targets of current anti-inflammatory modalities and how this may translate into better treatment for vascular inflammatory diseases.
Collapse
|
24
|
Pellerin D, Lortie A, Corbin F. Platelets as a surrogate disease model of neurodevelopmental disorders: Insights from Fragile X Syndrome. Platelets 2017; 29:113-124. [PMID: 28660769 DOI: 10.1080/09537104.2017.1317733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism spectrum disorders (ASD). Despite a large number of therapeutics developed in past years, there is currently no targeted treatment approved for FXS. In fact, translation of the positive and very promising preclinical findings from animal models to human subjects has so far fallen short owing in part to the low predictive validity of the Fmr1 ko mouse, an overly simplistic model of the complex human disease. This issue stresses the critical need to identify new surrogate human peripheral cell models of FXS, which may in fact allow for the identification of novel and more efficient therapies. Of all described models, blood platelets appear to be one of the most promising and appropriate disease models of FXS, in part owing to their close biochemical similarities with neurons. Noteworthy, they also recapitulate some of FXS neuron's core molecular dysregulations, such as hyperactivity of the MAPK/ERK and PI3K/Akt/mTOR pathways, elevated enzymatic activity of MMP9 and decreased production of cAMP. Platelets might therefore help furthering our understanding of FXS pathophysiology and might also lead to the identification of disease-specific biomarkers, as was shown in several psychiatric disorders such as schizophrenia and Alzheimer's disease. Moreover, there is additional evidence suggesting that platelet signaling may assist with prediction of cognitive phenotype and could represent a potent readout of drug efficacy in clinical trials. Globally, given the neurobiological overlap between different forms of intellectual disability, platelets may be a valuable window to access the molecular underpinnings of ASD and other neurodevelopmental disorders (NDD) sharing similar synaptic plasticity defects with FXS. Platelets are indeed an attractive model for unraveling pathophysiological mechanisms involved in NDD as well as to search for diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- David Pellerin
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada.,b Department of Neurology and Neurosurgery, Faculty of Medicine , McGill University , Montreal , QC , Canada
| | - Audrey Lortie
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada
| | - François Corbin
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada
| |
Collapse
|
25
|
Wang H, Tri Anggraini F, Chen X, DeGracia DJ. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 2017; 37:1494-1507. [PMID: 27381823 PMCID: PMC5453468 DOI: 10.1177/0271678x16657572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prolonged translation arrest correlates with delayed neuronal death of hippocampal CA1 neurons following global cerebral ischemia and reperfusion. Many previous studies investigated ribosome molecular biology, but mRNA regulatory mechanisms after brain ischemia have been less studied. Here we investigated the embryonic lethal abnormal vision/Hu isoforms HuR, HuB, HuC, and HuD, as well as expression of mRNAs containing adenine and rich uridine elements following global ischemia in rat brain. Proteomics of embryonic lethal abnormal vision immunoprecipitations or polysomes isolated from rat hippocampal CA1 and CA3 from controls or following 10 min ischemia plus 8 h of reperfusion showed distinct sets of mRNA-binding proteins, suggesting differential mRNA regulation in each condition. Notably, HuB, HuC, and HuD were undetectable in NIC CA1. At 8 h reperfusion, polysome-associated mRNAs contained 46.1% of ischemia-upregulated mRNAs containing adenine and rich uridine elements in CA3, but only 18.7% in CA1. Since mRNAs containing adenine and rich uridine elements regulation are important to several cellular stress responses, our results suggest CA1 is disadvantaged compared to CA3 in coping with ischemic stress, and this is expected to be an important contributing factor to CA1 selective vulnerability. (Data are available via ProteomeXchange identifier PXD004078 and GEO Series accession number GSE82146).
Collapse
Affiliation(s)
- Haihui Wang
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | | | - Xuequn Chen
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | - Donald J DeGracia
- 1 Department of Physiology, Wayne State University, Detroit, USA.,2 Center for Molecular Medicine and Genetics, Wayne State University, Detroit, USA
| |
Collapse
|
26
|
McCoy M, Poliquin-Duchesneau D, Corbin F. Molecular dynamics of FMRP and other RNA-binding proteins in MEG-01 differentiation: the role of mRNP complexes in non-neuronal development. Biochem Cell Biol 2016; 94:597-608. [DOI: 10.1139/bcb-2015-0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asymmetrically differentiating cells are formed with the aid of RNA-binding proteins (RBPs), which can bind, stabilize, regulate, and transport target mRNAs. The loss of RBPs in neurons may lead to severe neurodevelopmental diseases such as the Fragile X Syndrome with the absence of the Fragile X Mental Retardation Protein (FMRP). Because the latter is ubiquitous and shares many similarities with other RBPs involved in the development of peripheral cells, we suggest that FMRP would have a role in the differentiation of all tissues where it is expressed. A MEG-01 differentiation model was, therefore, established to study the global developmental functions of FMRP. PMA induction of MEG-01 cells causes important morphological changes driven by cytoskeletal dynamics. Cytoskeleton change and colocalization analyses were performed by confocal microscopy and sucrose gradient fractionation. Total cellular protein content and de novo synthesis were also analyzed. Microtubular transport mediates the displacement of FMRP and other RBP-containing mRNP complexes towards regions of the cell in development. De novo protein synthesis decreases significantly upon differentiation and total protein content composition is altered. Because those results are comparable with those obtained in neurons, the absence of FMRP would have significant consequences in cells everywhere in the body. The latter should be further investigated to give a better understanding of the systemic implications of imbalances of FMRP and other functionally similar RBPs.
Collapse
Affiliation(s)
- M. McCoy
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - D. Poliquin-Duchesneau
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - F. Corbin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Adjibade P, Grenier St-Sauveur V, Droit A, Khandjian EW, Toren P, Mazroui R. Analysis of the translatome in solid tumors using polyribosome profiling/RNA-Seq. J Biol Methods 2016; 3:e59. [PMID: 31453221 PMCID: PMC6706116 DOI: 10.14440/jbm.2016.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 01/25/2023] Open
Abstract
Gene expression involves multiple steps from the transcription of a mRNA in the nucleus to the production of the encoded protein in the cytoplasm. This final step occurs through a highly regulated process of mRNA translation on ribosomes that is required to maintain cell homeostasis. Alterations in the control of mRNA translation may lead to cell's transformation, a hallmark of cancer development. Indeed, recent advances indicated that increased translation of mRNAs encoding tumor-promoting proteins may be a key mechanism of tumor resistance in several cancers. Moreover, it was found that proteins whose encoding mRNAs are translated at higher efficiencies may be effective biomarkers. Evaluation of global changes in translation efficiency in human tumors has thus the potential of better understanding what can be used as biomarkers and therapeutic targets. Investigating changes in translation efficiency in human cancer cells has been made possible through the development and use of the polyribosome profiling combined with DNA microarray or deep RNA sequencing (RNA-Seq). While helpful, the use of cancer cell lines has many limitations and it is essential to define translational changes in human tumor samples in order to properly prioritize genes implicated in cancer phenotype. We present an optimized polyribosome RNA-Seq protocol suitable for quantitative analysis of mRNA translation that occurs in human tumor samples and murine xenografts. Applying this innovative approach to human tumors, which requires a complementary bioinformatics analysis, unlocks the potential to identify key mRNA which are preferentially translated in tumor tissue compared to benign tissue as well as translational changes which occur following treatment. These technical advances will be of interest to those researching all solid tumors, opening possibilities for understanding what may be therapeutic Achilles heels' or relevant biomarkers.
Collapse
Affiliation(s)
- Pauline Adjibade
- Centre de Recherche en Cancérologie. Centre de Recherche du CHU de Québec. Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Valérie Grenier St-Sauveur
- Centre de Recherche en Cancérologie. Centre de Recherche du CHU de Québec. Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec. Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Edouard W. Khandjian
- Centre de Recherche, Institut Universitaire en Santé Mentale de Québec. Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Paul Toren
- Centre de Recherche du CHU de Québec. Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Rachid Mazroui
- Centre de Recherche en Cancérologie. Centre de Recherche du CHU de Québec. Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| |
Collapse
|
28
|
Majumder P, Chu JF, Chatterjee B, Swamy KBS, Shen CKJ. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 2016; 132:721-738. [PMID: 27518042 PMCID: PMC5073124 DOI: 10.1007/s00401-016-1603-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/15/2023]
Abstract
For proper mammalian brain development and functioning, the translation of many neuronal mRNAs needs to be repressed without neuronal activity stimulations. We have discovered that the expression of a subclass of neuronal proteins essential for neurodevelopment and neuron plasticity is co-regulated at the translational level by TDP-43 and the Fragile X Syndrome protein FMRP. Using molecular, cellular and imaging approaches, we show that these two RNA-binding proteins (RBP) co-repress the translation initiation of Rac1, Map1b and GluR1 mRNAs, and consequently the hippocampal spinogenesis. The co-repression occurs through binding of TDP-43 to mRNA(s) at specific UG/GU sequences and recruitment of the inhibitory CYFIP1-FMRP complex by its glycine-rich domain. This novel regulatory scenario could be utilized to silence a significant portion of around 160 common target mRNAs of the two RBPs. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases.
Collapse
|
29
|
Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, Bardoni B. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Stem Cells 2016; 35:374-385. [PMID: 27664080 DOI: 10.1002/stem.2505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 01/14/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Nicolas Nottet
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Sandrine Cestèle
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| |
Collapse
|
30
|
El Fatimy R, Davidovic L, Tremblay S, Jaglin X, Dury A, Robert C, De Koninck P, Khandjian EW. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules. PLoS Genet 2016; 12:e1006192. [PMID: 27462983 PMCID: PMC4963131 DOI: 10.1371/journal.pgen.1006192] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/22/2016] [Indexed: 11/30/2022] Open
Abstract
Local translation at the synapse plays key roles in neuron development and activity-dependent synaptic plasticity. mRNAs are translocated from the neuronal soma to the distant synapses as compacted ribonucleoparticles referred to as RNA granules. These contain many RNA-binding proteins, including the Fragile X Mental Retardation Protein (FMRP), the absence of which results in Fragile X Syndrome, the most common inherited form of intellectual disability and the leading genetic cause of autism. Using FMRP as a tracer, we purified a specific population of RNA granules from mouse brain homogenates. Protein composition analyses revealed a strong relationship between polyribosomes and RNA granules. However, the latter have distinct architectural and structural properties, since they are detected as close compact structures as observed by electron microscopy, and converging evidence point to the possibility that these structures emerge from stalled polyribosomes. Time-lapse video microscopy indicated that single granules merge to form cargoes that are transported from the soma to distal locations. Transcriptomic analyses showed that a subset of mRNAs involved in cytoskeleton remodelling and neural development is selectively enriched in RNA granules. One third of the putative mRNA targets described for FMRP appear to be transported in granules and FMRP is more abundant in granules than in polyribosomes. This observation supports a primary role for FMRP in granules biology. Our findings open new avenues for the study of RNA granule dysfunctions in animal models of nervous system disorders, such as Fragile X syndrome. Fragile X syndrome is the most common form of inherited mental retardation affecting approximately 1 female out of 7000 and 1 male out of 4000 worldwide. The syndrome is due to the silencing of a single gene, the Fragile Mental Retardation 1 (FMR1), that codes for the Fragile X mental retardation protein (FMRP). This protein is highly expressed in brain and controls local protein synthesis essential for neuronal development and maturation as well as the formation of neural circuits. Several studies suggest a role for FMRP in the regulation of mRNA transport along axons and dendrites to distant synaptic locations in structures called RNA granules. Here we report the isolation of a particular subpopulation of these structures and the analysis of their architecture and composition in terms of RNA and protein. Also, using time-lapse video microscopy, we monitored granule transport and fusion throughout neuronal processes. These findings open new avenues for the study of RNA transport dysfunctions in animal models of nervous system disorders.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université de Nice-Sophia Antipolis, F-06560 Valbonne, France
| | - Sandra Tremblay
- Institut universitaire en santé mentale de Québec, Quebec, Canada
| | - Xavier Jaglin
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York, United States of America
| | - Alain Dury
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Claude Robert
- Centre de recherche en biologie de la reproduction, Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Quebec, Canada
| | - Paul De Koninck
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, Quebec, Canada
| | - Edouard W. Khandjian
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
- * E-mail:
| |
Collapse
|
31
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|
32
|
Maurin T, Melko M, Abekhoukh S, Khalfallah O, Davidovic L, Jarjat M, D'Antoni S, Catania MV, Moine H, Bechara E, Bardoni B. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum. Nucleic Acids Res 2015; 43:8540-50. [PMID: 26250109 PMCID: PMC4787806 DOI: 10.1093/nar/gkv801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.
Collapse
Affiliation(s)
- Thomas Maurin
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Mireille Melko
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Sabiha Abekhoukh
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Olfa Khalfallah
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Simona D'Antoni
- Institute of Neurological Sciences, The National Research Council of Italy, 95126 Catania, Italy
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, The National Research Council of Italy, 95126 Catania, Italy IRCCS Oasi Maria SS, 94018 Troina (EN), Italy
| | - Hervé Moine
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS, UMR7104, Inserm U596, Collège de France, Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Elias Bechara
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| |
Collapse
|
33
|
The function of RNA-binding proteins at the synapse: implications for neurodegeneration. Cell Mol Life Sci 2015; 72:3621-35. [PMID: 26047658 PMCID: PMC4565867 DOI: 10.1007/s00018-015-1943-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022]
Abstract
The loss of synapses is a central event in
neurodegenerative diseases. Synaptic proteins are often associated with disease neuropathology, but their role in synaptic loss is not fully understood. Of the many processes involved in sustaining the integrity of synapses, local protein translation can directly impact synaptic formation, communication, and maintenance. RNA-binding proteins and their association with RNA granules serve to regulate mRNA transportation and translation at synapses and in turn regulate the synapse. Genetic mutations in RNA-binding proteins FUS and TDP-43 have been linked with causing neurodegenerative diseases: amyotrophic lateral sclerosis and frontotemporal dementia. The observation that mutations in FUS and TDP-43 coincide with changes in RNA granules provides evidence that dysfunction of RNA metabolism may underlie the mechanism of synaptic loss in these diseases. However, we do not know how mutations in RNA-binding proteins would affect RNA granule dynamics and local translation, or if these alterations would cause neurodegeneration. Further investigation into this area will lead to important insights into how disruption of RNA metabolism and local translation at synapses can cause neurodegenerative diseases.
Collapse
|
34
|
Bonaccorso CM, Spatuzza M, Di Marco B, Gloria A, Barrancotto G, Cupo A, Musumeci SA, D'Antoni S, Bardoni B, Catania MV. Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. Int J Dev Neurosci 2015; 42:15-23. [PMID: 25681562 DOI: 10.1016/j.ijdevneu.2015.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022] Open
Abstract
Fragile X syndrome is caused by the lack of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein involved in mRNA transport and translation. FMRP is a component of mRNA ribonucleoprotein complexes and it can interact with a range of proteins either directly or indirectly, as demonstrated by two-hybrid selection and co-immunoprecipitation, respectively. Most of FMRP-interacting proteins are RNA-binding proteins such as FXR1P, FXR2P and 82-FIP. Interestingly, FMRP can also interact directly with the cytoplasmic proteins CYFIP1 and CYFIP2, which do not bind RNA and link FMRP to the RhoGTPase pathway. The interaction with these different proteins may modulate the functions of FMRP by influencing its affinity to RNA and by affecting the FMRP ability of cytoskeleton remodeling through Rho/Rac GTPases. To better define the relationship of FMRP with its interacting proteins during brain development, we have analyzed the expression pattern of FMRP and its interacting proteins in the cortex, striatum, hippocampus and cerebellum at different ages in wild type (WT) mice. FMRP and FXR2P were strongly expressed during the first week and gradually decreased thereafter, more rapidly in the cerebellum than in the cortex. FXR1P was also expressed early and showed a reduction at later stages of development with a similar developmental pattern in these two regions. CYFIP1 was expressed at all ages and peaked in the third post-natal week. In contrast, CYFIP2 and 82-FIP (only in forebrain regions) were moderately expressed at P3 and gradually increased after P7. In general, the expression pattern of each protein was similar in the regions examined, except for 82-FIP, which exhibited a strong expression at P3 and low levels at later developmental stages in the cerebellum. Our data indicate that FMRP and its interacting proteins have distinct developmental patterns of expression and suggest that FMRP may be preferentially associated to certain proteins in early and late developmental periods. In particular, the RNA-binding and cytoskeleton remodeling functions of FMRP may be differently modulated during development.
Collapse
Affiliation(s)
| | - M Spatuzza
- Institute of Neurological Sciences, CNR, Catania, Italy
| | - B Di Marco
- Institute of Neurological Sciences, CNR, Catania, Italy; International PhD Program in Neuropharmacology, Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - A Gloria
- IRCCS Oasi Maria SS, Troina, EN, Italy
| | | | - A Cupo
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France; University of Nice Sophia-Antipolis, Nice, France
| | | | - S D'Antoni
- Institute of Neurological Sciences, CNR, Catania, Italy
| | - B Bardoni
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France; University of Nice Sophia-Antipolis, Nice, France; CNRS LIA "NEOGENEX", Valbonne Sophia-Antipolis, France
| | - M V Catania
- IRCCS Oasi Maria SS, Troina, EN, Italy; Institute of Neurological Sciences, CNR, Catania, Italy.
| |
Collapse
|
35
|
Halevy T, Czech C, Benvenisty N. Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Reports 2015; 4:37-46. [PMID: 25483109 PMCID: PMC4297868 DOI: 10.1016/j.stemcr.2014.10.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/27/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the absence of the fragile X mental retardation protein (FMRP). We have previously generated FXS-induced pluripotent stem cells (iPSCs) from patients' fibroblasts. In this study, we aimed at unraveling the molecular phenotype of the disease. Our data revealed aberrant regulation of neural differentiation and axon guidance genes in FXS-derived neurons, which are regulated by the RE-1 silencing transcription factor (REST). Moreover, we found REST to be elevated in FXS-derived neurons. As FMRP is involved in the microRNA (miRNA) pathway, we employed miRNA-array analyses and uncovered several miRNAs dysregulated in FXS-derived neurons. We found hsa-mir-382 to be downregulated in FXS-derived neurons, and introduction of mimic-mir-382 into these neurons was sufficient to repress REST and upregulate its axon guidance target genes. Our data link FMRP and REST through the miRNA pathway and show a new aspect in the development of FXS.
Collapse
Affiliation(s)
- Tomer Halevy
- Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Christian Czech
- Roche Pharmaceutical Research & Early Development, Neuroscience, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nissim Benvenisty
- Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
36
|
Costa FC, Saito A, Gonçalves KA, Vidigal PM, Meirelles GV, Bressan GC, Kobarg J. Ki-1/57 and CGI-55 ectopic expression impact cellular pathways involved in proliferation and stress response regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2944-56. [PMID: 25205453 DOI: 10.1016/j.bbamcr.2014.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Collapse
Affiliation(s)
- Fernanda C Costa
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Angela Saito
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Kaliandra A Gonçalves
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Pedro M Vidigal
- Laboratório de Bioinformática, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.
| | - Gabriela V Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Gustavo C Bressan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil; Departamento de Genética, Evolução e Bioagentes - Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| |
Collapse
|
37
|
Kim GE, Kaczmarek LK. Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci 2014; 8:209. [PMID: 25120433 PMCID: PMC4112808 DOI: 10.3389/fncel.2014.00209] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023] Open
Abstract
The sodium-activated potassium KNa channels Slack and Slick are encoded by KCNT1 and KCNT2, respectively. These channels are found in neurons throughout the brain, and are responsible for a delayed outward current termed I KNa. These currents integrate into shaping neuronal excitability, as well as adaptation in response to maintained stimulation. Abnormal Slack channel activity may play a role in Fragile X syndrome, the most common cause for intellectual disability and inherited autism. Slack channels interact directly with the fragile X mental retardation protein (FMRP) and I KNa is reduced in animal models of Fragile X syndrome that lack FMRP. Human Slack mutations that alter channel activity can also lead to intellectual disability, as has been found for several childhood epileptic disorders. Ongoing research is elucidating the relationship between mutant Slack channel activity, development of early onset epilepsies and intellectual impairment. This review describes the emerging role of Slack channels in intellectual disability, coupled with an overview of the physiological role of neuronal I KNa currents.
Collapse
Affiliation(s)
- Grace E Kim
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
38
|
Doxakis E. RNA binding proteins: a common denominator of neuronal function and dysfunction. Neurosci Bull 2014; 30:610-26. [PMID: 24962082 DOI: 10.1007/s12264-014-1443-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, gene activity is not directly reflected by protein levels because mRNA processing, transport, stability, and translation are co- and post-transcriptionally regulated. These processes, collectively known as the ribonome, are tightly controlled and carried out by a plethora of trans-acting RNA-binding proteins (RBPs) that bind to specific cis elements throughout the RNA sequence. Within the nervous system, the role of RBPs in brain function turns out to be essential due to the architectural complexity of neurons exemplified by a relatively small somal size and an extensive network of projections and connections. Thus far, RBPs have been shown to be indispensable for several aspects of neurogenesis, neurite outgrowth, synapse formation, and plasticity. Consequently, perturbation of their function is central in the etiology of an ever-growing spectrum of neurological diseases, including fragile X syndrome and the neurodegenerative disorders frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Laboratory of Molecular and Cellular Neuroscience, Center of Basic Neuroscience, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece,
| |
Collapse
|
39
|
Increased long-term potentiation at medial-perforant path-dentate granule cell synapses induced by selective inhibition of histone deacetylase 3 requires Fragile X mental retardation protein. Neurobiol Learn Mem 2014; 114:193-7. [PMID: 24956240 DOI: 10.1016/j.nlm.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/10/2023]
Abstract
Non-selective inhibition of histone deacetylases (HDACs), enzymes that remove acetyl groups from histone core proteins, enhances cognition and NMDAR-dependent long-term potentiation at hippocampal CA3-CA1 synapses. It is not known whether this is a general mechanism by which HDACs modulate plasticity at other hippocampal synapses. Furthermore, it has yet to be tested whether HDAC inhibition can reverse deficits in synaptic plasticity in disease models. Here, we investigated whether inhibition of HDACs, and specifically HDAC3, a class I HDAC isoform known to negatively regulate hippocampus-dependent learning and memory, enhances LTP at medial perforant path-dentate granule cell (MPP-DGC) synapses in wild-type and Fragile X (Fmr1-/y) mice, a model with known LTP deficits at this synapse. The non-selective HDAC inhibitor trichostatin A (TSA) significantly increased the magnitude of LTP at MPP-DGC synapses in wild-type mice, similar to reports at CA3-CA1 synapses. The enhancement of LTP was mimicked by selective HDAC3 inhibition, implicating a role for this isoform in the negative regulation of synaptic plasticity. However, HDAC3 inhibition was completely ineffective in reversing the deficit in LTP at MPP-DGC synapses in slices from Fmr1-/y mice, and in fact, HDAC3 inhibition was unable to induce any improvement whatsoever. These findings indicate that the enhancing effect of HDAC3 inhibition on LTP in wild-type mice requires FMRP, revealing a novel role for FMRP in hippocampal plasticity.
Collapse
|
40
|
Coudert L, Adjibade P, Mazroui R. Analysis of translation initiation during stress conditions by polysome profiling. J Vis Exp 2014. [PMID: 24893838 DOI: 10.3791/51164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Precise control of mRNA translation is fundamental for eukaryotic cell homeostasis, particularly in response to physiological and pathological stress. Alterations of this program can lead to the growth of damaged cells, a hallmark of cancer development, or to premature cell death such as seen in neurodegenerative diseases. Much of what is known concerning the molecular basis for translational control has been obtained from polysome analysis using a density gradient fractionation system. This technique relies on ultracentrifugation of cytoplasmic extracts on a linear sucrose gradient. Once the spin is completed, the system allows fractionation and quantification of centrifuged zones corresponding to different translating ribosomes populations, thus resulting in a polysome profile. Changes in the polysome profile are indicative of changes or defects in translation initiation that occur in response to various types of stress. This technique also allows to assess the role of specific proteins on translation initiation, and to measure translational activity of specific mRNAs. Here we describe our protocol to perform polysome profiles in order to assess translation initiation of eukaryotic cells and tissues under either normal or stress growth conditions.
Collapse
Affiliation(s)
- Laëtitia Coudert
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University; CHU de Quebec Research Center
| | - Pauline Adjibade
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University; CHU de Quebec Research Center
| | - Rachid Mazroui
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University; CHU de Quebec Research Center;
| |
Collapse
|
41
|
Abekhoukh S, Bardoni B. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front Cell Neurosci 2014; 8:81. [PMID: 24733999 PMCID: PMC3973919 DOI: 10.3389/fncel.2014.00081] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASDs) have in common alterations in some brain circuits and brain abnormalities, such as synaptic transmission and dendritic spines morphology. Recent studies have indicated a differential expression for specific categories of genes as a cause for both types of disease, while an increasing number of genes is recognized to produce both disorders. An example is the Fragile X mental retardation gene 1 (FMR1), whose silencing causes the Fragile X syndrome, the most common form of ID and autism, also characterized by physical hallmarks. Fragile X mental retardation protein (FMRP), the protein encoded by FMR1, is an RNA-binding protein with an important role in translational control. Among the interactors of FMRP, CYFIP1/2 (cytoplasmic FMRP interacting protein) proteins are good candidates for ID and autism, on the bases of their genetic implication and functional properties, even if the precise functional significance of the CYFIP/FMRP interaction is not understood yet. CYFIP1 and CYFIP2 represent a link between Rac1, the WAVE (WAS protein family member) complex and FMRP, favoring the cross talk between actin polymerization and translational control.
Collapse
Affiliation(s)
- Sabiha Abekhoukh
- CNRS, Institute of Molecular and Cellular Pharmacology, UMR 7275 Valbonne, France ; University of Nice Sophia-Antipolis Nice, France ; CNRS, International Associated Laboratories-NEOGENEX Valbonne, France
| | - Barbara Bardoni
- CNRS, Institute of Molecular and Cellular Pharmacology, UMR 7275 Valbonne, France ; University of Nice Sophia-Antipolis Nice, France ; CNRS, International Associated Laboratories-NEOGENEX Valbonne, France
| |
Collapse
|
42
|
Maurin T, Zongaro S, Bardoni B. Fragile X Syndrome: from molecular pathology to therapy. Neurosci Biobehav Rev 2014; 46 Pt 2:242-55. [PMID: 24462888 DOI: 10.1016/j.neubiorev.2014.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/12/2014] [Accepted: 01/14/2014] [Indexed: 02/09/2023]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability due to the silencing of the FMR1 gene encoding FMRP (Fragile X Mental Retardation Protein), an RNA-binding protein involved in different steps of RNA metabolism. Of particular interest is the key role of FMRP in translational regulation. Since the first functional characterizations of FMRP, its role has been underlined by its association with actively translating polyribosomes. Furthermore, a plethora of mRNA targets of FMRP have been identified. In the absence of FMRP the deregulation of translation/transport/stability of these mRNAs has a cascade effect on many pathways, resulting into the final phenotype. We review here a set of targets of FMRP (mRNAs and proteins) that may have an impact on the FXS phenotype by deregulating some key cellular processes, such as translation, cytoskeleton remodeling and oxidative stress. The manipulation of these abnormal pathways by specific drugs may represent new therapeutic opportunities for FXS patients.
Collapse
Affiliation(s)
- Thomas Maurin
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France
| | - Samantha Zongaro
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France
| | - Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France.
| |
Collapse
|
43
|
Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models. PLoS One 2014; 9:e85510. [PMID: 24427314 PMCID: PMC3888428 DOI: 10.1371/journal.pone.0085510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of genetic Parkinson’s disease (PD). The biological function of LRRK2 and how mutations lead to disease remain poorly defined. It has been proposed that LRRK2 could function in gene transcription regulation; however, this issue remains controversial. Here, we investigated in parallel gene and microRNA (miRNA) transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout (KO) mice, as well as mice expressing human LRRK2 wildtype (hLRRK2-WT) or the PD-associated R1441G mutation (hLRRK2-R1441G). We identified a total of 761 genes and 24 miRNAs that were misregulated in the absence of LRRK2 when a false discovery rate of 0.2 was applied. Notably, most changes in gene expression were modest (i.e., <2 fold). By real-time quantitative RT-PCR, we confirmed the variations of selected genes (e.g., adra2, syt2, opalin) and miRNAs (e.g., miR-16, miR-25). Surprisingly, little or no changes in gene expression were observed in mice expressing hLRRK2-WT or hLRRK2-R1441G when compared to non-transgenic controls. Nevertheless, a number of miRNAs were misexpressed in these models. Bioinformatics analysis identified several miRNA-dependent and independent networks dysregulated in LRRK2-deficient mice, including PD-related pathways. These results suggest that brain LRRK2 plays an overall modest role in gene transcription regulation in mammals; however, these effects seem context and RNA type-dependent. Our data thus set the stage for future investigations regarding LRRK2 function in PD development.
Collapse
|
44
|
Dury AY, El Fatimy R, Tremblay S, Rose TM, Côté J, De Koninck P, Khandjian EW. Nuclear Fragile X Mental Retardation Protein is localized to Cajal bodies. PLoS Genet 2013; 9:e1003890. [PMID: 24204304 PMCID: PMC3814324 DOI: 10.1371/journal.pgen.1003890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/03/2013] [Indexed: 01/04/2023] Open
Abstract
Fragile X syndrome is caused by loss of function of a single gene encoding the Fragile X Mental Retardation Protein (FMRP). This RNA-binding protein, widely expressed in mammalian tissues, is particularly abundant in neurons and is a component of messenger ribonucleoprotein (mRNP) complexes present within the translational apparatus. The absence of FMRP in neurons is believed to cause translation dysregulation and defects in mRNA transport essential for local protein synthesis and for synaptic development and maturation. A prevalent model posits that FMRP is a nucleocytoplasmic shuttling protein that transports its mRNA targets from the nucleus to the translation machinery. However, it is not known which of the multiple FMRP isoforms, resulting from the numerous alternatively spliced FMR1 transcripts variants, would be involved in such a process. Using a new generation of anti-FMRP antibodies and recombinant expression, we show here that the most commonly expressed human FMRP isoforms (ISO1 and 7) do not localize to the nucleus. Instead, specific FMRP isoforms 6 and 12 (ISO6 and 12), containing a novel C-terminal domain, were the only isoforms that localized to the nuclei in cultured human cells. These isoforms localized to specific p80-coilin and SMN positive structures that were identified as Cajal bodies. The Cajal body localization signal was confined to a 17 amino acid stretch in the C-terminus of human ISO6 and is lacking in a mouse Iso6 variant. As FMRP is an RNA-binding protein, its presence in Cajal bodies suggests additional functions in nuclear post-transcriptional RNA metabolism. Supporting this hypothesis, a missense mutation (I304N), known to alter the KH2-mediated RNA binding properties of FMRP, abolishes the localization of human FMRP ISO6 to Cajal bodies. These findings open unexplored avenues in search for new insights into the pathophysiology of Fragile X Syndrome. Fragile X syndrome is the most common form of inherited mental retardation affecting approximately 1/7000 females and 1/4000 males worldwide. The syndrome is due to the silencing of a single gene, the Fragile Mental Retardation 1 (FMR1), that codes for a protein called the Fragile X mental retardation protein (FMRP). This protein, highly expressed in the brain, controls local protein synthesis essential for neuronal development and maturation. While considerable efforts have been focused on understanding FMRP functions in mental retardation, the pathophysiology of the syndrome is not well understood. Here, we show that in addition to the well-studied roles of FMRP in regulating protein synthesis, a minor species of FMRP different from the major one, is specifically found in structures called Cajal bodies present in the cell nucleus. Our observations suggest that different FMRP species, also called isoforms, might have independent cellular functions. These findings might open new avenues in search for new insights in the pathophysiology of Fragile X Syndrome.
Collapse
Affiliation(s)
- Alain Y. Dury
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de psychiatrie et des neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Rachid El Fatimy
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de psychiatrie et des neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sandra Tremblay
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
| | - Timothy M. Rose
- Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul De Koninck
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, Québec, Canada
| | - Edouard W. Khandjian
- Centre de recherche, Institut en santé mentale de Québec, Québec, Québec, Canada
- Département de psychiatrie et des neurosciences, Faculté de médecine, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
45
|
Bagni C, Oostra BA. Fragile X syndrome: From protein function to therapy. Am J Med Genet A 2013; 161A:2809-21. [PMID: 24115651 DOI: 10.1002/ajmg.a.36241] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.
Collapse
Affiliation(s)
- Claudia Bagni
- VIB Center for the Biology of Disease, Catholic University of Leuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy
| | | |
Collapse
|
46
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
47
|
Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS, Postma FR, Brynczka C, Rush R, Thomas A, Paylor R, Warren ST, Vanderklish PW, Kind PC, Carpenter RL, Bear MF, Healy AM. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci Transl Med 2013; 4:152ra128. [PMID: 22993295 DOI: 10.1126/scitranslmed.3004218] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism, results from the transcriptional silencing of FMR1 and loss of the mRNA translational repressor protein fragile X mental retardation protein (FMRP). Patients with FXS exhibit changes in neuronal dendritic spine morphology, a pathology associated with altered synaptic function. Studies in the mouse model of fragile X have shown that loss of FMRP causes excessive synaptic protein synthesis, which results in synaptic dysfunction and altered spine morphology. We tested whether the pharmacologic activation of the γ-aminobutyric acid type B (GABA(B)) receptor could correct or reverse these phenotypes in Fmr1-knockout mice. Basal protein synthesis, which is elevated in the hippocampus of Fmr1-knockout mice, was corrected by the in vitro application of the selective GABA(B) receptor agonist STX209 (arbaclofen, R-baclofen). STX209 also reduced to wild-type values the elevated AMPA receptor internalization in Fmr1-knockout cultured neurons, a known functional consequence of increased protein synthesis. Acute administration of STX209 in vivo, at doses that modify behavior, decreased mRNA translation in the cortex of Fmr1-knockout mice. Finally, the chronic administration of STX209 in juvenile mice corrected the increased spine density in Fmr1-knockout mice without affecting spine density in wild-type mice. Thus, activation of the GABA(B) receptor with STX209 corrected synaptic abnormalities considered central to fragile X pathophysiology, a finding that suggests that STX209 may be a potentially effective therapy to treat the core symptoms of FXS.
Collapse
|
48
|
The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 2013; 16:1530-6. [PMID: 23584741 DOI: 10.1038/nn.3379] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/15/2013] [Indexed: 12/14/2022]
Abstract
De novo protein synthesis is necessary for long-lasting modifications in synaptic strength and dendritic spine dynamics that underlie cognition. Fragile X syndrome (FXS), characterized by intellectual disability and autistic behaviors, holds promise for revealing the molecular basis for these long-term changes in neuronal function. Loss of function of the fragile X mental retardation protein (FMRP) results in defects in synaptic plasticity and cognition in many models of the disease. FMRP is a polyribosome-associated RNA-binding protein that regulates the synthesis of a set of plasticity-reated proteins by stalling ribosomal translocation on target mRNAs. The recent identification of mRNA targets of FMRP and its upstream regulators, and the use of small molecules to stall ribosomes in the absence of FMRP, have the potential to be translated into new therapeutic avenues for the treatment of FXS.
Collapse
|
49
|
Modic M, Ule J, Sibley CR. CLIPing the brain: studies of protein-RNA interactions important for neurodegenerative disorders. Mol Cell Neurosci 2013; 56:429-35. [PMID: 23583633 PMCID: PMC3793874 DOI: 10.1016/j.mcn.2013.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 02/07/2023] Open
Abstract
The fate of an mRNA is largely determined by its interactions with RNA binding proteins (RBPs). Post-transcriptional processing, RNA stability, localisation and translation are some of the events regulated by the plethora of RBPs present within cells. Mutations in various RBPs cause several diseases of the central nervous system, including frontotemporal lobar degeneration, amyotrophic lateral sclerosis and fragile X syndrome. Here we review the studies that integrated UV-induced cross-linked immunoprecipitation (CLIP) with other genome-wide methods to comprehensively characterise the function of diverse RBPs in the brain. We discuss the technical challenges of these studies and review the strategies that can be used to reliably identify the RNAs bound and regulated by an RBP. We conclude by highlighting how CLIP and related techniques have been instrumental in addressing the role of RBPs in neurologic diseases. This article is part of a Special Issue entitled: RNA and splicing regulation in neurodegeneration.
Collapse
Affiliation(s)
- Miha Modic
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jernej Ule
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Corresponding authors at: Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. Fax: + 44 1223213556.
| | - Christopher R. Sibley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Corresponding authors at: Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. Fax: + 44 1223213556.
| |
Collapse
|
50
|
Brackett DM, Qing F, Amieux PS, Sellers DL, Horner PJ, Morris DR. FMR1 transcript isoforms: association with polyribosomes; regional and developmental expression in mouse brain. PLoS One 2013; 8:e58296. [PMID: 23505481 PMCID: PMC3591412 DOI: 10.1371/journal.pone.0058296] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/01/2013] [Indexed: 12/31/2022] Open
Abstract
The primary transcript of the mammalian Fragile X Mental Retardation-1 gene (Fmr1), like many transcripts in the central nervous system, is alternatively spliced to yield mRNAs encoding multiple proteins, which can possess quite different biochemical properties. Despite the fact that the relative levels of the 12 Fmr1 transcript isoforms examined here vary by as much as two orders of magnitude amongst themselves in both adult and embryonic mouse brain, all are associated with polyribosomes, consistent with translation into the corresponding isoforms of the protein product, FMRP (Fragile X Mental Retardation Protein). Employing the RiboTag methodology developed in our laboratory, the relative proportions of the 7 most abundant transcript isoforms were measured specifically in neurons and found to be similar to those identified in whole brain. Measurements of isoform profiles across 11 regions of adult brain yielded similar distributions, with the exceptions of the hippocampus and the olfactory bulb. These two regions differ from most of the brain in relative amounts of transcripts encoding an alternate form of one of the KH RNA binding domains. A possible relationship between patterns of expression in the hippocampus and olfactory bulb and the presence of neuroblasts in these two regions is suggested by the isoform patterns in early embryonic brain and in cultured neural progenitor cells. These results demonstrate that the relative levels of the Fmr1 isoforms are modulated according to developmental stage, highlighting the complex ramifications of losing all the protein isoforms in individuals with Fragile X Syndrome. It should also be noted that, of the eight most prominent FMRP isoforms (1–3, 6–9 and 12) in mouse, only two have the major site of phosphorylation at Ser-499, which is thought to be involved in some of the regulatory interactions of this protein.
Collapse
Affiliation(s)
- David M. Brackett
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Feng Qing
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Paul S. Amieux
- Department of Pharmacology; University of Washington, Seattle, Washington, United States of America
| | - Drew L. Sellers
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States of America
| | - Philip J. Horner
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States of America
| | - David R. Morris
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|