1
|
Karbsri W, Hamzeh A, Park JW, Yin T, Yongsawatdigul J. Lipoxygenase activity in tropical fish: Changes during surimi processing and some biochemical characterization in lizardfish (Saurida tumbil). J Food Sci 2024. [PMID: 39495588 DOI: 10.1111/1750-3841.17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
The lipoxygenase (LOX) activity of major tropical fish used for surimi production, including threadfin bream (TB), lizardfish (LZ), and goatfish (GF), was measured in the gills, skin, and muscle. The highest LOX activity was observed in the LZ samples (p < 0.05), with the gills exhibiting the greatest activity at 376.56 U/mg (p < 0.05). The highest peroxide value was detected in the TB samples, particularly in the gills (p < 0.05). Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were the main polyunsaturated fatty acids in all the tissues and surimi. The total lipid and DHA contents of washed mince reduced considerably after the screw press process. Although LOX activity decreased during surimi production, a residual activity of 21.33 U/g was observed in the finished surimi. LOX was partially purified and characterized from LZ gills. The purification was conducted using two successive chromatographic steps, Sephacryl S-200 and diethylaminoethyl (DEAE)-sepharose, resulting in a 3.52% yield and a 22.43-fold increase in purity. The optimum activity was found at 25°C and pH 7.5, with pH stability between 6.0 and 8.5. The relatively high thermal stability at 4°C-10°C suggested that LOX might contribute to fish lipid oxidation during cold storage. The enzyme was thermally inactivated at 60°C. The preferred substrate was EPA. LOX from the LZ gills was inhibited by 1 mM ethylenediaminetetraacetic acid and activated by 1 mM Fe2+, Na+, and Ca2+. PRACTICAL APPLICATION: Elucidating lipoxygenase activity and lipid oxidation in various tropical fish tissues, as well as understanding the characteristics of LOX, can help take appropriate postharvest actions to afford high-quality surimi.
Collapse
Affiliation(s)
- Wilaiwan Karbsri
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jae W Park
- Oregon State University Seafood Laboratory, Astoria, Oregon, USA
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
2
|
Kakularam KR, Gündem E, Stehling S, Rothe M, Heydeck D, Kuhn H. Eicosanoid biosynthesizing enzymes in Prototheria. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159569. [PMID: 39389415 DOI: 10.1016/j.bbalip.2024.159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Eicosanoids and related compounds are pleiotropic lipid mediators, which play a role in cell differentiation and in the pathogenesis of various diseases. The biosynthesis of these lipids has extensively been studied in highly developed mammals including humans but little is known about the formation of these mediators in more ancient Prototheria. We searched the genomes of two extant prototherian species (platypus, short-beaked echidna) for genes encoding for lipoxygenase- (ALOX) and prostaglandin synthase-isoforms (PTGS) and detected intact single copy genes for ALOX5, ALOX12, ALOX12B, ALOXE3, PTGS1 and PTGS2. Moreover, we identified two copies of ALOX15B genes (ALOX15B-1 and ALOX15B-2) but in echidna the ALOX15B-2 gene was structurally corrupted. Interestingly, in the two genomes ALOX15 genes were lacking. For functional characterization we expressed the prototherian ALOX15B isoforms and compared important enzyme characteristics of the wildtype proteins and of relevant enzyme mutants with those of human and mouse ALOX15B. Here we observed that the prototherian ALOX15B isoforms exhibit the same reaction specificity as their human ortholog. Mutagenesis of the Triad determinants did not alter the reaction specificity of the prototherian enzymes but modification of the Jisaka determinants murinized the catalytic properties. These data indicate that Prototheria exhibit an active eicosanoid metabolism. They express functional ALOX15B orthologs but lack ALOX15 genes. These observations and the previous findings that ALOX15 orthologs rarely occur in non-mammalian vertebrates such as fish and birds suggest that ALOX15 orthologs were introduced during Prototheria-Metatheria transition via an ALOX15B gene duplication and subsequent divergent enzyme evolution.
Collapse
Affiliation(s)
- Kumar R Kakularam
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Eda Gündem
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössler-Straße 10, 13125 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
3
|
Chrisnasari R, Hennebelle M, Nguyen KA, Vincken JP, van Berkel WJH, Ewing TA. Engineering the substrate specificity and regioselectivity of Burkholderia thailandensis lipoxygenase. N Biotechnol 2024; 84:64-76. [PMID: 39341453 DOI: 10.1016/j.nbt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Lipoxygenases (LOXs) catalyze the regioselective dioxygenation of polyunsaturated fatty acids (PUFAs), generating fatty acid hydroperoxides (FAHPs) with diverse industrial applications. Bacterial LOXs have garnered significant attention in recent years due to their broad activity towards PUFAs, yet knowledge about the structural factors influencing their substrate preferences remains limited. Here, we characterized a bacterial LOX from Burkholderia thailandensis (Bt-LOX), and identified key residues affecting its substrate preference and regioselectivity through site-directed mutagenesis. Bt-LOX preferred ω-6 PUFAs and exhibited regioselectivity at the ω-5 position. Mutations targeting the substrate binding pocket and the oxygen access channel led to the production of three active variants with distinct catalytic properties. The A431G variant bifurcated dioxygenation between the ω-5 and ω-9 positions, while F446V showed reduced regioselectivity with longer PUFAs. Interestingly, L445A displayed altered substrate specificity, favoring ω-3 over ω-6 PUFAs. Furthermore, L445A shifted the regioselectivity of dioxygenation to the ω-2 position in ω-3 PUFAs, and, for some substrates, facilitated dioxygenation closer to the carboxylic acid terminus, suggesting an altered substrate orientation. Among these variants, L445A represents a significant milestone in LOX research, as these alterations in substrate specificity, dioxygenation regioselectivity, and substrate orientation were achieved by a single mutation only. These findings illuminate key residues governing substrate preference and regioselectivity in Bt-LOX, offering opportunities for synthesizing diverse FAHPs and highlighting the potential of bacterial LOXs as biocatalysts with widespread applications.
Collapse
Affiliation(s)
- Ruth Chrisnasari
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Faculty of Biotechnology, University of Surabaya (UBAYA), Surabaya 60293, Indonesia.
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Khoa A Nguyen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Tom A Ewing
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
4
|
Benatzy Y, Palmer MA, Lütjohann D, Ohno RI, Kampschulte N, Schebb NH, Fuhrmann DC, Snodgrass RG, Brüne B. ALOX15B controls macrophage cholesterol homeostasis via lipid peroxidation, ERK1/2 and SREBP2. Redox Biol 2024; 72:103149. [PMID: 38581859 PMCID: PMC11002893 DOI: 10.1016/j.redox.2024.103149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Macrophage cholesterol homeostasis is crucial for health and disease and has been linked to the lipid-peroxidizing enzyme arachidonate 15-lipoxygenase type B (ALOX15B), albeit molecular mechanisms remain obscure. We performed global transcriptome and immunofluorescence analysis in ALOX15B-silenced primary human macrophages and observed a reduction of nuclear sterol regulatory element-binding protein (SREBP) 2, the master transcription factor of cellular cholesterol biosynthesis. Consequently, SREBP2-target gene expression was reduced as were the sterol biosynthetic intermediates desmosterol and lathosterol as well as 25- and 27-hydroxycholesterol. Mechanistically, suppression of ALOX15B reduced lipid peroxidation in primary human macrophages and thereby attenuated activation of mitogen-activated protein kinase ERK1/2, which lowered SREBP2 abundance and activity. Low nuclear SREBP2 rendered both, ALOX15B-silenced and ERK1/2-inhibited macrophages refractory to SREBP2 activation upon blocking the NPC intracellular cholesterol transporter 1. These studies suggest a regulatory mechanism controlling macrophage cholesterol homeostasis based on ALOX15B-mediated lipid peroxidation and concomitant ERK1/2 activation.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Rei-Ichi Ohno
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany.
| | - Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany; Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, CA, USA.
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|
5
|
Palmer MA, Benatzy Y, Brüne B. Murine Alox8 versus the human ALOX15B ortholog: differences and similarities. Pflugers Arch 2024:10.1007/s00424-024-02961-w. [PMID: 38637408 DOI: 10.1007/s00424-024-02961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Human arachidonate 15-lipoxygenase type B is a lipoxygenase that catalyzes the peroxidation of arachidonic acid at carbon-15. The corresponding murine ortholog however has 8-lipoxygenase activity. Both enzymes oxygenate polyunsaturated fatty acids in S-chirality with singular reaction specificity, although they generate a different product pattern. Furthermore, while both enzymes utilize both esterified fatty acids and fatty acid hydro(pero)xides as substrates, they differ with respect to the orientation of the fatty acid in their substrate-binding pocket. While ALOX15B accepts the fatty acid "tail-first," Alox8 oxygenates the free fatty acid with its "head-first." These differences in substrate orientation and thus in regio- and stereospecificity are thought to be determined by distinct amino acid residues. Towards their biological function, both enzymes share a commonality in regulating cholesterol homeostasis in macrophages, and Alox8 knockdown is associated with reduced atherosclerosis in mice. Additional roles have been linked to lung inflammation along with tumor suppressor activity. This review focuses on the current knowledge of the enzymatic activity of human ALOX15B and murine Alox8, along with their association with diseases.
Collapse
Affiliation(s)
- Megan A Palmer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Yvonne Benatzy
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Amoah AS, Pestov NB, Korneenko TV, Prokhorenko IA, Kurakin GF, Barlev NA. Lipoxygenases at the Intersection of Infection and Carcinogenesis. Int J Mol Sci 2024; 25:3961. [PMID: 38612771 PMCID: PMC11011848 DOI: 10.3390/ijms25073961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.
Collapse
Affiliation(s)
- Abdul-Saleem Amoah
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Igor A. Prokhorenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Georgy F. Kurakin
- Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow 117513, Russia;
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
7
|
Golovko MY, Seeger DR, Schofield B, Besch D, Kotha P, Mansouripour A, Solaymani-Mohammadi S, Golovko SA. 12-Hydroxyeicosatetraenoic acid is the only enzymatically produced HETE increased under brain ischemia. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102631. [PMID: 39059107 PMCID: PMC11392603 DOI: 10.1016/j.plefa.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Hydroxyeicosatetraenoic acids (HETE) are dramatically increased under brain ischemia and significantly affect post-ischemic recovery. However, the exact mechanism of HETE increase and their origin under ischemia are poorly understood. HETE might be produced de novo through lipoxygenase (LOX) -dependent synthesis with possible esterification into a lipid storage pool, or non-enzymatically through free radical oxidation of esterified arachidonic acid (20:4n6). Because HETE synthesized through LOX exhibit stereospecificity, chiral analysis allows separation of enzymatic from non-enzymatic pools. In the present study, we analyzed free HETE stereoisomers at 30 sec, 2 min, and 10 min of ischemia. Consistent with previous reports, we demonstrated a significant, gradual increase in all analyzed HETE over 10 min of brain ischemia, likely attributed to release of the esterified pool. The R/S ratio for 5-HETE, 8-HETE, and 15-HETE was not different from a racemic standard mix, indicating their non-enzymatic origin, which was in opposition to the inflamed tissue used as a positive control in our study. However, 12(S)-HETE was the predominant isoform under ischemia, indicating that ∼90 % of 12-HETE are produced enzymatically. These data demonstrate, for the first time, that 12-LOX is the major LOX isoform responsible for the enzymatic formation of the inducible HETE pool under ischemia. We also confirmed the requirement for enzyme inactivation with high-energy focused microwave irradiation (MW) for accurate HETE quantification and validated its application for chiral HETE analysis. Together, our data suggest that 12-LOX and HETE-releasing enzymes are promising targets for HETE level modulation upon brain ischemia.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA.
| | - Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Brennon Schofield
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Derek Besch
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Peddanna Kotha
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Anahita Mansouripour
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Shahram Solaymani-Mohammadi
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
8
|
Oliw EH. Thirty years with three-dimensional structures of lipoxygenases. Arch Biochem Biophys 2024; 752:109874. [PMID: 38145834 DOI: 10.1016/j.abb.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
9
|
Roigas S, Kakularam KR, Rothe M, Heydeck D, Aparoy P, Kuhn H. Bony Fish Arachidonic Acid 15-Lipoxygenases Exhibit Different Catalytic Properties than Their Mammalian Orthologs, Suggesting Functional Enzyme Evolution during Vertebrate Development. Int J Mol Sci 2023; 24:14154. [PMID: 37762455 PMCID: PMC10531496 DOI: 10.3390/ijms241814154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The human genome involves six functional arachidonic acid lipoxygenase (ALOX) genes and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. In other vertebrates, ALOX-isoforms have also been identified, but they occur less frequently. Since bony fish represent the most abundant subclass of vertebrates, we recently expressed and characterized putative ALOX15 orthologs of three different bony fish species (Nothobranchius furzeri, Pundamilia nyererei, Scleropages formosus). To explore whether these enzymes represent functional equivalents of mammalian ALOX15 orthologs, we here compared a number of structural and functional characteristics of these ALOX-isoforms with those of mammalian enzymes. We found that in contrast to mammalian ALOX15 orthologs, which exhibit a broad substrate specificity, a membrane oxygenase activity, and a special type of dual reaction specificity, the putative bony fish ALOX15 orthologs strongly prefer C20 fatty acids, lack any membrane oxygenase activity and exhibit a different type of dual reaction specificity with arachidonic acid. Moreover, mutagenesis studies indicated that the Triad Concept, which explains the reaction specificity of all mammalian ALOX15 orthologs, is not applicable for the putative bony fish enzymes. The observed functional differences between putative bony fish ALOX15 orthologs and corresponding mammalian enzymes suggest a targeted optimization of the catalytic properties of ALOX15 orthologs during vertebrate development.
Collapse
Affiliation(s)
- Sophie Roigas
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Kumar R. Kakularam
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany;
| | - Dagmar Heydeck
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Polamarasetty Aparoy
- Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, India;
| | - Hartmut Kuhn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| |
Collapse
|
10
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
11
|
Shin KC, Lee J, Oh DK. Characterization of Arachidonate 5S-Lipoxygenase from Danio rerio with High Activity for the Production of 5S- and 7S-Hydroxy Polyunsaturated Fatty Acids. Appl Biochem Biotechnol 2023; 195:958-972. [PMID: 36251113 DOI: 10.1007/s12010-022-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
A recombinant putative lipoxygenase (LOX) from Danio rerio (zebrafish), ALOX3c protein with 6-histidine tag, was purified using affinity chromatography, with a specific activity of 17.2 U mg-1 for arachidonic acid (AA). The molecular mass of the native ALOX3c was 156 kDa composed of a 78-kDa dimer by gel-filtration chromatography. The product obtained from the conversion of AA was identified as 5S-hydroxyeicosatetraenoic acid (5S-HETE) by HPLC and LC-MS/MS analyses. The specific activity and catalytic efficiency of the LOX from D. rerio for polyunsaturated fatty acids (PUFAs) followed the order AA (17.2 U mg-1, 1.96 s-1 μM-1) > docosahexaenoic acid (DHA, 13.6 U mg-1, 0.91 s-1 μM-1) > eicosapentaenoic acid (EPA, 10.5 U mg-1, 0.65 s-1 μM-1) and these values for AA were the highest among the 5S-LOXs reported to date. Based on identified products and substrate specificity, the enzyme is an AA 5S-LOX. The enzyme exhibited the maximal activity at pH 8.0 and 20 °C with 0.1 mM Zn2+ in the presence of 10 mM cysteine. Under these reaction conditions, 6.88 U mL-1 D. rerio 5S-LOX converted 1.0 mM of AA, EPA, and DHA to 0.91 mM 5S-HETE, 0.72 mM 5S-hydroxyeicosapentaenoic acid (5S-HEPE), and 0.68 mM 7S-hydroxydocosahexaenoic acid (7S-HDHA) in 25, 30, and 25 min, corresponding to molar conversion rates of 91, 72, and 68% and productivities of 2.18, 1.44, and 1.63 mM h-1, respectively. To the best of our knowledge, this study is the first to describe the bioconversion into 5S-HETE, 5S-HEPE, and 7S-HDHA for the application of biotechnological production.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea. .,Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
12
|
Quaranta A, Revol-Cavalier J, Wheelock CE. The octadecanoids: an emerging class of lipid mediators. Biochem Soc Trans 2022; 50:1569-1582. [PMID: 36454542 PMCID: PMC9788390 DOI: 10.1042/bst20210644] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023]
Abstract
Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated fatty acids that encompass potent lipid mediators including the eicosanoids and docosanoids. Previously considered of low interest and often dismissed as 'just fat', octadecanoid oxylipins have only recently begun to be recognized as lipid mediators in humans. In the last few years, these compounds have been found to be involved in the mediation of multiple biological processes related to nociception, tissue modulation, cell proliferation, metabolic regulation, inflammation, and immune regulation. At the same time, the study of octadecanoids is hampered by a lack of standardization in the field, a paucity of analytical standards, and a lack of domain expertise. These issues have collectively limited the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present an overview of the primary enzymatic pathways for the oxidative metabolism of 18-carbon fatty acids in humans and of the current knowledge of the major biological activity of the resulting octadecanoids. We also propose a systematic nomenclature system based upon that used for the eicosanoids in order to avoid ambiguities and resolve multiple designations for the same octadecanoid. The aim of this review is to provide an initial framework for the field and to assist in its standardization as well as to increase awareness of this class of compounds in order to stimulate research into this interesting group of lipid mediators.
Collapse
Affiliation(s)
- Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Revol-Cavalier
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Larodan Research Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
13
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
14
|
Benatzy Y, Palmer MA, Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front Pharmacol 2022; 13:1042420. [PMID: 36438817 PMCID: PMC9682198 DOI: 10.3389/fphar.2022.1042420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 10/30/2023] Open
Abstract
As a lipoxygenase (LOX), arachidonate 15-lipoxygenase type B (ALOX15B) peroxidizes polyenoic fatty acids (PUFAs) including arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA) to their corresponding fatty acid hydroperoxides. Distinctive to ALOX15B, fatty acid oxygenation occurs with positional specificity, catalyzed by the non-heme iron containing active site, and in addition to free PUFAs, membrane-esterified fatty acids serve as substrates for ALOX15B. Like other LOX enzymes, ALOX15B is linked to the formation of specialized pro-resolving lipid mediators (SPMs), and altered expression is apparent in various inflammatory diseases such as asthma, psoriasis, and atherosclerosis. In primary human macrophages, ALOX15B expression is associated with cellular cholesterol homeostasis and is induced by hypoxia. Like in inflammation, the role of ALOX15B in cancer is inconclusive. In prostate and breast carcinomas, ALOX15B is attributed a tumor-suppressive role, whereas in colorectal cancer, ALOX15B expression is associated with a poorer prognosis. As the biological function of ALOX15B remains an open question, this review aims to provide a comprehensive overview of the current state of research related to ALOX15B.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
15
|
Oliw EH. Diversity of the manganese lipoxygenase gene family - A mini-review. Fungal Genet Biol 2022; 163:103746. [PMID: 36283615 DOI: 10.1016/j.fgb.2022.103746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/06/2023]
Abstract
Analyses of fungal genomes of escalate from biological and evolutionary investigations. The biochemical analyses of putative enzymes will inevitably lag behind and only a selection will be characterized. Plant-pathogenic fungi secrete manganese-lipoxygenases (MnLOX), which oxidize unsaturated fatty acids to hydroperoxides to support infection. Six MnLOX have been characterized so far including the 3D structures of these enzymes of the Rice blast and the Take-all fungi. The goal was to use this information to evaluate MnLOX-related gene transcripts to find informative specimens for further studies. Phylogenetic analysis, determinants of catalytic activities, and the C-terminal amino acid sequences divided 54 transcripts into three major subfamilies. The six MnLOX belonged to the same "prototype" subfamily with conserved residues in catalytic determinants and C-terminal sequences. The second subfamily retained the secretion mechanism, presumably necessary for uptake of Mn2+, but differed in catalytic determinants and by cysteine replacement of an invariant Leu residue for positioning ("clamping") of fatty acids. The third subfamily contrasted with alanine in the Gly/Ala switch for regiospecific oxidation and a minority contained unprecedented C-terminal sequences or lacked secretion signals. With these exceptions, biochemical analyses of transcripts of the three subfamilies appear to have reasonable prospects to find active enzymes.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
16
|
Maeda Y, Tanaka T. Molecular Insights into Lipoxygenases in Diatoms Based on Structure Prediction: a Pioneering Study on Lipoxygenases Found in Pseudo-nitzschia arenysensis and Fragilariopsis cylindrus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:468-479. [PMID: 35397048 DOI: 10.1007/s10126-022-10120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Diatoms produce a variety of oxylipins which are oxygenated polyunsaturated fatty acids and are involved in chemical defense and intercellular communication, among other roles. Although the chemistry of diatom oxylipins has long been studied, the enzymes involved in their production, in particular lipoxygenase (LOX), which catalyzes the initial reaction of the synthesis, have not been discovered in diatom genomes. Recently, diatom LOXs were found in two species, Pseudo-nitzschia arenysensis (PaLOX) and Fragilariopsis cylindrus (FcLOX); however, the enzymology of these LOXs is largely unknown. In this review article, we discuss the potential functions of the diatom LOXs based on previously reported structures of LOXs derived from various organisms other than diatoms. Since the structures of PaLOX and FcLOX have not yet been solved, we discussed their functions, such as regio- and stereospecificities, on the basis of their structures predicted using a computational tool based on deep learning technology. Both diatom LOXs were predicted to conserve common core domains with relatively wide substrate-binding pockets. The stereo-determinant residues in PaLOX and FcLOX suggest S specificity. We assume that the highly conserved common core domain can be a clue to reveal unidentified lox genes from the accumulated diatom genome information with the aid of high-throughput structure prediction tools and structure-based alignment tools in the near future.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
17
|
Oliw EH. Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates. Arch Biochem Biophys 2022; 722:109169. [PMID: 35276213 DOI: 10.1016/j.abb.2022.109169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Lipoxygenases (LOX) contain catalytic iron (FeLOX), but fungi also produce LOX with catalytic manganese (MnLOX). In this review, the 3D structures and properties of fungal LOX are compared and contrasted along with their associations with pathogenicity. The 3D structures and properties of two MnLOX (Magnaporthe oryzae, Geaumannomyces graminis) and the catalysis of five additional MnLOX have provided information on the metal center, substrate binding, oxygenation, tentative O2 channels, and biosynthesis of exclusive hydroperoxides. In addition, the genomes of other plant pathogens also code for putative MnLOX. Crystals of the 13S-FeLOX of Fusarium graminearum revealed an unusual altered geometry of the Fe ligands between mono- and dimeric structures, influenced by a wrapping sequence extension near the C-terminal of the dimers. In plants, the enzymes involved in jasmonate synthesis are well documented whereas the fungal pathway is yet to be fully elucidated. Conversion of deuterium-labeled 18:3n-3, 18:2n-6, and their 13S-hydroperoxides to jasmonates established 13S-FeLOX of F. oxysporum in the biosynthesis, while subsequent enzymes lacked sequence homologues in plants. The Rice-blast (M. oryzae) and the Take-all (G. graminis) fungi secrete MnLOX to support infection, invasive hyphal growth, and cell membrane oxidation, contributing to their devastating impact on world production of rice and wheat.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
18
|
Rhoda HM, Heyer AJ, Snyder BER, Plessers D, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis. Chem Rev 2022; 122:12207-12243. [PMID: 35077641 DOI: 10.1021/acs.chemrev.1c00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition-metal-exchanged zeolites perform remarkable chemical reactions from low-temperature methane to methanol oxidation to selective reduction of NOx pollutants. As with metalloenzymes, metallozeolites have impressive reactivities that are controlled in part by interactions outside the immediate coordination sphere. These second-sphere effects include activating a metal site through enforcing an "entatic" state, controlling binding and access to the metal site with pockets and channels, and directing radical rebound vs cage escape. This review explores these effects with emphasis placed on but not limited to the selective oxidation of methane to methanol with a focus on copper and iron active sites, although other transition-metal-ion zeolite reactions are also explored. While the actual active-site geometric and electronic structures are different in the copper and iron metallozeolites compared to the metalloenzymes, their second-sphere interactions with the lattice or the protein environments are found to have strong parallels that contribute to their high activity and selectivity.
Collapse
Affiliation(s)
- Hannah M Rhoda
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander J Heyer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Benjamin E R Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Max L Bols
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
19
|
Kakularam KR, Karst F, Polamarasetty A, Ivanov I, Heydeck D, Kuhn H. Paralog- and ortholog-specificity of inhibitors of human and mouse lipoxygenase-isoforms. Biomed Pharmacother 2021; 145:112434. [PMID: 34801853 DOI: 10.1016/j.biopha.2021.112434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023] Open
Abstract
Lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes, which have been implicated in cell differentiation and maturation but also in the biosynthesis of lipid mediators playing important roles in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. In mammals these enzymes are widely distributed and the human genome involves six functional genes encoding for six distinct human ALOX paralogs. In mice, there is an orthologous enzyme for each human ALOX paralog but the catalytic properties of human and mouse ALOX orthologs show remarkable differences. ALOX inhibitors are frequently employed for deciphering the biological role of these enzymes in mouse models of human diseases but owing to the functional differences between mouse and human ALOX orthologs the uncritical use of such inhibitors is sometimes misleading. In this study we evaluated the paralog- and ortholog-specificity of 13 frequently employed ALOX-inhibitors against four recombinant human and mouse ALOX paralogs (ALOX15, ALOX15B, ALOX12, ALOX5) under different experimental conditions. Our results indicated that except for zileuton, which exhibits a remarkable paralog-specificity for mouse and human ALOX5, no other inhibitor was strictly paralog specific but some compounds exhibit an interesting ortholog-specificity. Because of the variable isoform specificities of the currently available ALOX inhibitors care must be taken when the biological effects of these compounds observed in complex in vitro and in vivo systems are interpreted.
Collapse
Affiliation(s)
- Kumar Reddy Kakularam
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Felix Karst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Aparoy Polamarasetty
- Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
20
|
Gilbert NC, Newcomer ME, Werz O. Untangling the web of 5-lipoxygenase-derived products from a molecular and structural perspective: The battle between pro- and anti-inflammatory lipid mediators. Biochem Pharmacol 2021; 193:114759. [PMID: 34487716 PMCID: PMC8865081 DOI: 10.1016/j.bcp.2021.114759] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
Arachidonic acid (AA) is the precursor to leukotrienes (LT), potent mediators of the inflammatory response. In the 35 + years since cysteinyl-LTs were reported to mediate antigen-induced constriction of bronchi in tissue from asthma patients, numerous cellular responses evoked by the LTs, such as chemoattraction and G protein-coupled receptor (GPCR) activation, have been elucidated and revealed a potential for 5-lipoxygenase (5-LOX) as a promising drug target that goes beyond asthma. We describe herein early work identifying 5-LOX as the key enzyme that initiates LT biosynthesis and the discovery of its membrane-embedded helper protein required to execute the two-step reaction that transforms AA to the progenitor leukotriene A4 (LTA4). 5-LOX must traffic to the nuclear membrane to interact with its partner and undergo a conformational change so that AA can enter the active site. Additionally, the enzyme must retain the hydroperoxy-reaction intermediate for its final transformation to LTA4. Each of these steps provide a unique target for inhibition. Next, we describe the recent structures of GPCRs that recognize metabolites of the 5-LOX pathway and thus provide target alternatives. We also highlight the role of 5-LOX in the biosynthesis of anti-inflammatory lipid mediators (LM), the so-called specialized pro-resolving mediators (SPM). The involvement of 5-LOX in the biosynthesis of LM with opposing functions undoubtedly complicates the continuing search for 5-LOX inhibitors as therapeutic leads. Finally, we address the recent discovery of how some allosteric 5-LOX inhibitors promote oxygenation at the 12/15 carbon on AA to generate mediators that resolve, rather than promote, inflammation.
Collapse
Affiliation(s)
- Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
21
|
An JU, Kim SE, Oh DK. Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Prog Lipid Res 2021; 83:101110. [PMID: 34144023 DOI: 10.1016/j.plipres.2021.101110] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Oxylipins derived mainly from C20- and C22-polyunsaturated fatty acids (PUFAs), termed lipid mediators (LMs), are essential signalling messengers involved in human physiological responses associated with homeostasis and healing process for infection and inflammation. Some LMs involved in the resolution of inflammation and infection are termed specialized pro-resolving mediators (SPMs), which are generated by human M2 macrophages or polymorphonuclear leukocytes and have the potential to protect and treat hosts from bacterial and viral infections by phagocytosis activation. Lipoxygenases (LOXs) biosynthesize regio- and stereoselective LMs. Thus, understanding the regio- and stereoselectivities of LOXs for PUFAs at a molecular level is important for the biocatalytic synthesis of diverse LMs. Here, we elucidate the catalytic mechanisms and discuss regio- and stereoselectivities and their changes of LOXs determined by insertion direction and position of the substrate and oxygen at a molecular level for the biosynthesis of diverse human LMs. Recently, the biocatalytic synthesis of PUFAs to human LMs or analogues has been conducted using microbial LOXs. Such microbial LOXs involved in the biosynthesis of LMs are expected to exert significantly higher activity and stability than human LOXs. Diverse regio- and stereoselective LOXs can be obtained from microorganisms, which represent a wealth of genomic sources. We reconstruct the biosynthetic pathways of LOX-catalyzed LMs in humans and other organisms. Furthermore, we suggest the effective methods of biocatalytic synthesis of diverse human LMs from PUFAs or glucose by using microbial LOXs, increasing the stability and activity of LOXs, combining the reactions of LOXs, and constructing metabolic pathways.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
22
|
Ivanov I, Kakularam KR, Shmendel EV, Rothe M, Aparoy P, Heydeck D, Kuhn H. Oxygenation of endocannabinoids by mammalian lipoxygenase isoforms. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158918. [PMID: 33662546 DOI: 10.1016/j.bbalip.2021.158918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Endocannabinoids, such as anandamide (ANA) and 2-arachidonoylglycerol (2AG), are lipid-signaling molecules that can be oxidized by lipid-peroxidizing enzymes, and this oxidation alters the bioactivity of these lipid mediators. Here, under strictly comparable experimental conditions, we explored whether ANA and 2AG function as substrates for four human (ALOX15, ALOX15B, ALOX12, ALOX5) and three mice Alox isoforms (Alox15, Alox12, Alox5) and compared the rates of product formation with those of arachidonic acid oxygenation. Except for ALOX5, the two endocannabinoids were more efficiently oxygenated than arachidonic acid by human ALOX isoforms. Mice Alox15 oxygenated ANA more efficiently than arachidonic acid, but the other mice Alox isoforms exhibited reduced reaction rates for endocannabinoid conversion. Like its human ortholog, mice Alox5 did not oxygenate ANA, but the formation of 5-HETE-containing 2AG derivatives was observed for this enzyme. 1AG and 2AG were similarly effective substrates for human ALOX isoforms. Molecular docking studies, the pattern of oxygenation products, and site-directed mutagenesis experiments suggested a similar substrate alignment of arachidonic acid and endocannabinoids at the active site of ALOX15 orthologs. The product specificity of arachidonic acid oxygenation was conserved for endocannabinoid metabolization, and the triad concept describing the molecular basis for the reaction specificity of ALOX15 orthologs is applicable for endocannabinoid oxygenation. Taken together, these data indicate that, except for ALOX5 orthologs, endocannabinoids are suitable substrates for most mammalian ALOX isoforms.
Collapse
Affiliation(s)
- Igor Ivanov
- MIREA Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, Vernadskogo pr. 86, 119571 Moscow, Russia.
| | - Kumar R Kakularam
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Elena V Shmendel
- MIREA Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, Vernadskogo pr. 86, 119571 Moscow, Russia
| | - Michael Rothe
- Lipidomix GmbH, Robert-Roessle-Str., 10, 13125 Berlin, Germany
| | - Polamarasetty Aparoy
- Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
23
|
Kim TH, Lee J, Kim SE, Oh DK. Biocatalytic synthesis of dihydroxy fatty acids as lipid mediators from polyunsaturated fatty acids by double dioxygenation of the microbial 12S-lipoxygenase. Biotechnol Bioeng 2021; 118:3094-3104. [PMID: 33990936 DOI: 10.1002/bit.27820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Leukotrienes (LTs) and maresins (MaRs) are human lipid mediators (LMs) involved in immune response and anti-inflammation, respectively. These compounds and their isomers are generated in trace amounts by lipoxygenases (LOXs) in human macrophages and neutrophils. These LMs have been synthesized using nonenvironmentally benign synthetic protocols, which are expensive. 8S- and 15S-LOXs with double dioxygenating activities have previously been reported, whereas 12S-LOX with double dioxygenating activity have not been reported to date. Here, we discovered a wild-type 12S-LOX with double dioxygenating activity from the bacterium Endozoicomonas numazuensis, which produced dihydroxy fatty acids (DiHFAs) as LMs from polyunsaturated fatty acids via double dioxygenation. The enzyme activity for producing DiHFA was approximately 550-fold higher than that of mammalian LOX with double dioxygenating activity. The microbial 12S-LOX converted 3.00 mM of arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid to 2.37 mM (797 mg/L) 6-trans-8-cis-12S-epimer of LTB4, 1.59 mM (532 mg/L) 6-trans-8-cis-12S-epimer of LTB5, 1.35 mM (498 mg/L) 10-cis-12-trans-7S-epimer of MaR1n-3 DPA , and 1.54 mM (555 mg/L) 10-cis-12-trans-7S-epimer of MaR1 within 2 h, which were 5.3-, 7.6-, 3.1-, and 5.5-fold higher than those biosynthesized by the previously reported microbial engineered 12S-LOX with double dioxygenating activity, respectively. These findings contribute to the efficient and environmentally friendly biosynthesis of LMs and stimulate physiological study on LMs.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Su-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Yi JJ, Heo SY, Ju JH, Oh BR, Son WS, Seo JW. Synthesis of two new lipid mediators from docosahexaenoic acid by combinatorial catalysis involving enzymatic and chemical reaction. Sci Rep 2020; 10:18849. [PMID: 33139849 PMCID: PMC7606508 DOI: 10.1038/s41598-020-76005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) have been known to have beneficial effects in the prevention of various diseases. Recently, it was identified that the bioactivities of omega-3 are related to lipid mediators, called pro-resolving lipid mediators (SPMs), converted from PUFAs, so they have attracted much attention as potential pharmaceutical targets. Here, we aimed to build an efficient production system composed of enzymatic and chemical catalysis that converts docosahexaenoic acid (DHA) into lipid mediators. The cyanobacterial lipoxygenase, named Osc-LOX, was identified and characterized, and the binding poses of enzyme and substrates were predicted by ligand docking simulation. DHA was converted into three lipid mediators, a 17S-hydroxy-DHA, a 7S,17S-dihydroxy-DHA (RvD5), and a 7S,15R-dihydroxy-16S,17S-epoxy-DPA (new type), by an enzymatic reaction and deoxygenation. Also, two lipid mediators, 7S,15R,16S,17S-tetrahydroxy-DPA (new type) and 7S,16R,17S-trihydroxy-DHA (RvD2), were generated from 7S,15R-dihydroxy-16S,17S-epoxy-DPA by a chemical reaction. Our study suggests that discovering new enzymes that have not been functionally characterized would be a powerful strategy for producing various lipid mediators. Also, this combination catalysis approach including biological and chemical reactions could be an effective production system for the manufacturing lipid mediators.
Collapse
Affiliation(s)
- Jong-Jae Yi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea
| | - Jung-Hyun Ju
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea.
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea.
| |
Collapse
|
25
|
Hernandez-Perez M, Kulkarni A, Samala N, Sorrell C, El K, Haider I, Aleem AM, Holman TR, Rai G, Tersey SA, Mirmira RG, Anderson RM. A 12-lipoxygenase-Gpr31 signaling axis is required for pancreatic organogenesis in the zebrafish. FASEB J 2020; 34:14850-14862. [PMID: 32918516 PMCID: PMC7606739 DOI: 10.1096/fj.201902308rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
12-Lipoxygenase (12-LOX) is a key enzyme in arachidonic acid metabolism, and alongside its major product, 12-HETE, plays a key role in promoting inflammatory signaling during diabetes pathogenesis. Although 12-LOX is a proposed therapeutic target to protect pancreatic islets in the setting of diabetes, little is known about the consequences of blocking its enzymatic activity during embryonic development. Here, we have leveraged the strengths of the zebrafish-genetic manipulation and pharmacologic inhibition-to interrogate the role of 12-LOX in pancreatic development. Lipidomics analysis during zebrafish development demonstrated that 12-LOX-generated metabolites of arachidonic acid increase sharply during organogenesis stages, and that this increase is blocked by morpholino-directed depletion of 12-LOX. Furthermore, we found that either depletion or inhibition of 12-LOX impairs both exocrine pancreas growth and unexpectedly, the generation of insulin-producing β cells. We demonstrate that morpholino-mediated knockdown of GPR31, a purported G-protein-coupled receptor for 12-HETE, largely phenocopies both the depletion and the inhibition of 12-LOX. Moreover, we show that loss of GPR31 impairs pancreatic bud fusion and pancreatic duct morphogenesis. Together, these data provide new insight into the requirement of 12-LOX in pancreatic organogenesis and islet formation, and additionally provide evidence that its effects are mediated via a signaling axis that includes the 12-HETE receptor GPR31.
Collapse
Affiliation(s)
- Marimar Hernandez-Perez
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abhishek Kulkarni
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Niharika Samala
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cody Sorrell
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimberly El
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Isra Haider
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ansari Mukhtar Aleem
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sarah A Tersey
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Ryan M Anderson
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Yi JJ, Heo SY, Ju JH, Oh BR, Son WS, Seo JW. Synthesis of 13R,20-dihydroxy-docosahexaenoic acid by site-directed mutagenesis of lipoxygenase derived from Oscillatoria nigro-viridis PCC 7112. Biochem Biophys Res Commun 2020; 533:893-898. [PMID: 33008591 DOI: 10.1016/j.bbrc.2020.09.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Lipoxygenases (LOXs) are implicated in the biosynthesis of pro- and anti-inflammatory lipid mediators involved in immune cell signaling, most of which catalyze peroxidation of polyunsaturated fatty acids by distinct regio- and stereoselectivity. Current reports suggested that conserved amino acid, Gly in R-LOXs and Ala in S-LOXs, in the catalytic domain play an important role in determining the position as well as the stereochemistry of the functional group. Recently, we have confirmed that the catalytic specificity of cyanobacterial lipoxygenase, named Osc-LOX, with alanine at 296 was 13S-type toward linoleic acid, and producing a 17S- hydroxy-docosahexaenoic acid from docosahexaenoic acid (DHA). Here, we aimed to change the catalytic property of LOX from13S-LOX to 9R-LOX by replacing Ala with Gly and to produce a lipid mediators different from the wild-type using DHA. Finally, we succeeded in generating human endogenous a 13R-hydroxy-docosahexaenoic acid and a 13R,20-dihydroxy-docosahexaenoic acid from DHA through an enzymatic reaction using the Osc-LOX-A296G. Our study could enable physiological studies and pharmaceutical research for the 13R,20-dihydroxy-docosahexaenoic acid.
Collapse
Affiliation(s)
- Jong-Jae Yi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea; Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea
| | - Jung-Hyun Ju
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si, 56212, Republic of Korea.
| |
Collapse
|
27
|
Structural considerations on lipoxygenase function, inhibition and crosstalk with nitric oxide pathways. Biochimie 2020; 178:170-180. [PMID: 32980463 DOI: 10.1016/j.biochi.2020.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Lipoxygenases (LOX) are non-heme iron-containing enzymes that catalyze regio- and stereo-selective dioxygenation of polyunsaturated fatty acids (PUFA). Mammalian LOXs participate in the eicosanoid cascade during the inflammatory response, using preferentially arachidonic acid (AA) as substrate, for the synthesis of leukotrienes (LT) and other oxidized-lipid intermediaries. This review focus on lipoxygenases (LOX) structural and kinetic implications on both catalysis selectivity, as well as the basic and clinical implications of inhibition and interactions with nitric oxide (•NO) and nitroalkenes pathways. During inflammation •NO levels are increasingly favoring the formation of reactive nitrogen species (RNS). •NO may act itself as an inhibitor of LOX-mediated lipid oxidation by reacting with lipid peroxyl radicals. Besides, •NO may act as an O2 competitor in the LOX active site, thus displaying a protective role on lipid-peroxidation. Moreover, RNS such as nitrogen dioxide (•NO2) may react with lipid-derived species formed during LOX reaction, yielding nitroalkenes (NO2FA). NO2FA represents electrophilic compounds that could exert anti-inflammatory actions through the interaction with critical LOX nucleophilic amino acids. We will discuss how nitro-oxidative conditions may limit the availability of common LOX substrates, favoring alternative routes of PUFA metabolization to anti-inflammatory or pro-resolutive pathways.
Collapse
|
28
|
Song W, Xu X, Gao C, Zhang Y, Wu J, Liu J, Chen X, Luo Q, Liu L. Open Gate of Corynebacterium glutamicum Threonine Deaminase for Efficient Synthesis of Bulky α-Keto Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01672] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Yuxuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
29
|
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020; 25:molecules25153374. [PMID: 32722330 PMCID: PMC7436259 DOI: 10.3390/molecules25153374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the (per) oxidation of fatty acids that serve as important mediators for cell signaling and inflammation. These reactions are initiated by a C-H activation step that is allosterically regulated in plant and animal enzymes. LOXs from higher eukaryotes are equipped with an N-terminal PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain that has been implicated to bind to small molecule allosteric effectors, which in turn modulate substrate specificity and the rate-limiting steps of catalysis. Herein, the kinetic and structural evidence that describes the allosteric regulation of plant and animal lipoxygenase chemistry by fatty acids and their derivatives are summarized.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
30
|
Reisch F, Kakularam KR, Stehling S, Heydeck D, Kuhn H. Eicosanoid biosynthesis in marine mammals. FEBS J 2020; 288:1387-1406. [PMID: 32627384 DOI: 10.1111/febs.15469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
After 300 million years of evolution, the first land-living mammals reentered the marine environment some 50 million years ago. The driving forces for this dramatic lifestyle change are still a matter of discussion but the struggle for food resources and the opportunity to escape predators probably contributed. Reentering the oceans requires metabolic adaption putting evolutionary pressure on a number of genes. To explore whether eicosanoid signaling has been part of this adaptive response, we first explored whether the genomes of marine mammals involve functional genes encoding for key enzymes of eicosanoid biosynthesis. Cyclooxygenase (COX) and lipoxygenase (ALOX) genes are present in the genome of all marine mammals tested. Interestingly, ALOX12B, which has been implicated in skin development of land-living mammals, is lacking in whales and dolphins and genes encoding for its sister enzyme (ALOXE3) involve premature stop codons and/or frameshifting point mutations, which interrupt the open reading frames. ALOX15 orthologs have been detected in all marine mammals, and the recombinant enzymes exhibit similar catalytic properties as those of land-living species. All marine mammals express arachidonic acid 12-lipoxygenating ALOX15 orthologs, and these data are consistent with the Evolutionary Hypothesis of ALOX15 specificity. These enzymes exhibit membrane oxygenase activity and introduction of big amino acids at the triad positions altered the reaction specificity in favor of arachidonic acid 15-lipoxygenation. Thus, the ALOX15 orthologs of marine mammals follow the Triad concept explaining their catalytic specificity.
Collapse
Affiliation(s)
- Florian Reisch
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kumar Reddy Kakularam
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
31
|
Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum – Modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genet Biol 2020; 139:103383. [DOI: 10.1016/j.fgb.2020.103383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
|
32
|
Pangopoulos MK, Nolsøe JMN, Antonsen SG, Colas RA, Dalli J, Aursnes M, Stenstrøm Y, Hansen TV. Enzymatic studies with 3-oxa n-3 DPA. Bioorg Chem 2020; 96:103653. [PMID: 32062066 DOI: 10.1016/j.bioorg.2020.103653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
Cyclooxygenase-2 and several lipoxygenases convert polyunsaturated fatty acids into a large variety of products. During inflammatory processes, these enzymes form several distinct families of specialized pro-resolving lipid mediators possessing potent anti-inflammatory and pro-resolving effects. These mediators have attracted a great interest as leads in drug discovery and have recently been the subject of biosynthetic pathway studies using docosahexaenoic and n-3 docosapentaenoic acid as substrates. Herein we present enzymatic studies with cyclooxygenase-2 and 5-, 12- and 15-lipoxygenase enzymes using 3-oxa n-3 DPA as a synthetic mimic of n-3 docosapentaenoic acid. Structural elucidation based on data from RP-HPLC UV and LC/MS-MS experiments enabled the identification of novel enzymatically formed products. These findings constitute the basis for further biosynthetic studies towards understanding the mechanisms regulating substrate utilization in the biosynthesis of specialized pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Maria K Pangopoulos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Jens M N Nolsøe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Simen G Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Romain A Colas
- Lipid Mediator Unit, Center for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jesmond Dalli
- Lipid Mediator Unit, Center for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Marius Aursnes
- Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Trond Vidar Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway; Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
33
|
Mishra VK, Mishra S. Flipped regiospecificity in L434F mutant of 8-lipoxygenase. Phys Chem Chem Phys 2020; 22:16013-16022. [DOI: 10.1039/d0cp02351e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conformational change of Phe434 controls regio- and stereospecificity of L434F lipoxygenase catalysis.
Collapse
Affiliation(s)
- Vipin Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
34
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
35
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
36
|
Mishra VK, Mishra S. Origin of Regio- and Stereospecific Catalysis by 8-Lipoxygenase. J Phys Chem B 2019; 123:10605-10621. [PMID: 31775504 DOI: 10.1021/acs.jpcb.9b07917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
37
|
Snodgrass RG, Brüne B. Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Front Pharmacol 2019; 10:719. [PMID: 31333453 PMCID: PMC6620526 DOI: 10.3389/fphar.2019.00719] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the stereo-specific peroxidation of polyunsaturated fatty acids (PUFAs) to their corresponding hydroperoxy derivatives. Human macrophages express two arachidonic acid (AA) 15-lipoxygenating enzymes classified as ALOX15 and ALOX15B. ALOX15, which was first described in 1975, has been extensively characterized and its biological functions have been investigated in a number of cellular systems and animal models. In macrophages, ALOX15 functions to generate specific phospholipid (PL) oxidation products crucial for orchestrating the nonimmunogenic removal of apoptotic cells (ACs) as well as synthesizing precursor lipids required for production of specialized pro-resolving mediators (SPMs) that facilitate inflammation resolution. The discovery of ALOX15B in 1997 was followed by comprehensive analyses of its structural properties and reaction specificities with PUFA substrates. Although its enzymatic properties are well described, the biological functions of ALOX15B are not fully understood. In contrast to ALOX15 whose expression in human monocyte-derived macrophages is strictly dependent on Th2 cytokines IL-4 and IL-13, ALOX15B is constitutively expressed. This review aims to summarize the current knowledge on the regulation and functions of ALOX15 and ALOX15B in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
38
|
Tasaki Y, Kobayashi D, Sato R, Hayashi S, Joh T. Variations in 1-octen-3-ol and lipoxygenase gene expression in the oyster mushroom Pleurotus ostreatus according to fruiting body development, tissue specificity, maturity, and postharvest storage. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2019.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Pakhomova S, Boeglin WE, Neau DB, Bartlett SG, Brash AR, Newcomer ME. An ensemble of lipoxygenase structures reveals novel conformations of the Fe coordination sphere. Protein Sci 2019; 28:920-927. [PMID: 30861228 PMCID: PMC6459989 DOI: 10.1002/pro.3602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
The regio- and stereo-specific oxygenation of polyunsaturated fatty acids is catalyzed by lipoxygenases (LOX); both Fe and Mn forms of the enzyme have been described. Structural elements of the Fe and Mn coordination spheres and the helical catalytic domain in which the metal center resides are highly conserved. However, animal, plant, and microbial LOX each have distinct features. We report five crystal structures of a LOX from the fungal plant pathogen Fusarium graminearum. This LOX displays a novel amino terminal extension that provides a wrapping domain for dimerization. Moreover, this extension appears to interfere with the iron coordination sphere, as the typical LOX configuration is not observed at the catalytic metal when the enzyme is dimeric. Instead novel tetra-, penta-, and hexa-coordinate Fe2+ ligations are apparent. In contrast, a monomeric structure indicates that with repositioning of the amino terminal segment, the enzyme can assume a productive conformation with the canonical Fe2+ coordination sphere.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - William E. Boeglin
- Department of Pharmacology VanderbiltUniversity School of MedicineNashvilleTennessee, 37232
| | - David B. Neau
- Northeastern Collaborative Access Team, Argonne National LaboratoryCornell UniversityArgonneIllinois
| | - Sue G. Bartlett
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Alan R. Brash
- Department of Pharmacology VanderbiltUniversity School of MedicineNashvilleTennessee, 37232
| | - Marcia E. Newcomer
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
40
|
Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv 2019; 37:107386. [PMID: 31026496 DOI: 10.1016/j.biotechadv.2019.04.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Enzymes are efficient and specific catalysts for many essential reactions in biotechnological and pharmaceutical industries. Many times, the natural enzymes do not display the catalytic efficiency, stability or specificity required for these industrial processes. The current enzyme engineering methods offer solutions to this problem, but they mainly target the buried active site where the chemical reaction takes place. Despite being many times ignored, the tunnels and channels connecting the environment with the active site are equally important for the catalytic properties of enzymes. Changes in the enzymatic tunnels and channels affect enzyme activity, specificity, promiscuity, enantioselectivity and stability. This review provides an overview of the emerging field of enzyme access tunnel engineering with case studies describing design of all the aforementioned properties. The software tools for the analysis of geometry and function of the enzymatic tunnels and channels and for the rational design of tunnel modifications will also be discussed. The combination of new software tools and enzyme engineering strategies will provide enzymes with access tunnels and channels specifically tailored for individual industrial processes.
Collapse
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
41
|
Djian B, Hornung E, Ischebeck T, Feussner I. The green microalga Lobosphaera incisa harbours an arachidonate 15S-lipoxygenase. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:131-142. [PMID: 30277010 PMCID: PMC6587457 DOI: 10.1111/plb.12920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
The green microalga Lobosphaera incisa is an oleaginous eukaryotic alga that is rich in arachidonic acid (20:4). Being rich in this polyunsaturated fatty acid (PUFA), however, makes it sensitive to oxidation. In plants, lipoxygenases (LOXs) are the major enzymes that oxidise these molecules. Here, we describe, to our best knowledge, the first characterisation of a cDNA encoding a LOX (LiLOX) from a green alga. To obtain first insights into its function, we expressed it in E. coli, purified the recombinant enzyme and analysed its enzyme activity. The protein sequence suggests that LiLOX and plastidic LOXs from bryophytes and flowering plants may share a common ancestor. The fact that LiLOX oxidises all PUFAs tested with a consistent oxidation on the carbon n-6, suggests that PUFAs enter the substrate channel through their methyl group first (tail first). Additionally, LiLOX form the fatty acid hydroperoxide in strict S configuration. LiLOX may represent a good model to study plastid LOX, because it is stable after heterologous expression in E. coli and highly active in vitro. Moreover, as the first characterised LOX from green microalgae, it opens the possibility to study endogenous LOX pathways in these organisms.
Collapse
Affiliation(s)
- B. Djian
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
| | - E. Hornung
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
| | - T. Ischebeck
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
- Goettingen Metabolomics and Lipidomics LaboratoryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
| | - I. Feussner
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
- Goettingen Metabolomics and Lipidomics LaboratoryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
- Department of Plant BiochemistryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
- Department of Plant BiochemistryUniversity of GoettingenInternational Center for Advanced Studies of Energy Conversion (ICASEC)GoettingenGermany
| |
Collapse
|
42
|
Goloshchapova K, Stehling S, Heydeck D, Blum M, Kuhn H. Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns. Microbiologyopen 2018; 8:e00775. [PMID: 30560563 PMCID: PMC6612559 DOI: 10.1002/mbo3.775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
Lipoxygenases are lipid peroxidizing enzymes, which frequently occur in higher plants and mammals. These enzymes are also expressed in lower multicellular organisms but here they are not widely distributed. In bacteria, lipoxygenases rarely occur and evaluation of the currently available bacterial genomes suggested that <0.5% of all sequenced bacterial species carry putative lipoxygenase genes. We recently rescreened the public bacterial genome databases for lipoxygenase-like sequences and identified two novel lipoxygenase isoforms (MF-LOX1 and MF-LOX2) in the halotolerant Myxococcus fulvus. Both enzymes share a low degree of amino acid conservation with well-characterized eukaryotic lipoxygenase isoforms but they involve the catalytically essential iron cluster. Here, we cloned the MF-LOX1 cDNA, expressed the corresponding enzyme as N-terminal hexa-his-tag fusion protein, purified the recombinant enzyme to electrophoretic homogeneity, and characterized it with respect to its protein-chemical and enzymatic properties. We found that M. fulvus expresses a catalytically active intracellular lipoxygenase that converts arachidonic acid and other polyunsaturated fatty acids enantioselectively to the corresponding n-9 hydroperoxy derivatives. The enzyme prefers C20 - and C22 -polyenoic fatty acids but does not exhibit significant membrane oxygenase activity. The possible biological relevance of MF-LOX1 will be discussed in the context of the suggested concepts of other bacterial lipoxygenases.
Collapse
Affiliation(s)
- Kateryna Goloshchapova
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Sabine Stehling
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dagmar Heydeck
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Hartmut Kuhn
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
43
|
Sarde SJ, Kumar A, Remme RN, Dicke M. Genome-wide identification, classification and expression of lipoxygenase gene family in pepper. PLANT MOLECULAR BIOLOGY 2018; 98:375-387. [PMID: 30317456 PMCID: PMC6244800 DOI: 10.1007/s11103-018-0785-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/05/2018] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE Lipoxygenases mediate important biological processes. Through comparative genomics, domain-scan analysis, sequence analysis, phylogenetic analysis, homology modelling and transcriptional analysis the lipoxygenase gene family of pepper (Capsicum annuum) has been identified. Lipoxygenases (LOXs) are non-heme, iron-containing dioxygenases playing a pivotal role in diverse biological processes in plants, including defence and development. Here, we exploited the recent sequencing of the pepper genome to investigate the LOX gene family in pepper. Two LOX classes are recognized, the 9- and 13-LOXs that oxygenate lipids at the 9th and 13th carbon atom, respectively. Using two main in-silico approaches, we identified a total of eight LOXs in pepper. Phylogenetic analysis classified four LOXs (CaLOX1, CaLOX3, CaLOX4 and CaLOX5) as 9-LOXs and four (CaLOX2, CaLOX6, CaLOX7 and CaLOX8) as 13-LOXs. Furthermore, sequence similarity/identity and subcellular localization analysis strengthen the classification predicted by phylogenetic analysis. Pivotal amino acids together with all domains and motifs are highly conserved in all pepper LOXs. Expression of 13-LOXs appeared to be more dynamic compared to 9-LOXs both in response to exogenous JA application and to thrips feeding. Bioinformatic and expression analyses predict the putative functions of two 13-LOXs, CaLOX6 and CaLOX7, in the biosynthesis of Green Leaf Volatiles, involved in indirect defence. The data are discussed in the context of LOX families in solanaceous plants and plants of other families.
Collapse
Affiliation(s)
- Sandeep J Sarde
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Rahima N Remme
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
44
|
An JU, Oh DK. Stabilization and improved activity of arachidonate 11 S-lipoxygenase from proteobacterium Myxococcus xanthus. J Lipid Res 2018; 59:2153-2163. [PMID: 30257932 DOI: 10.1194/jlr.m088823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Indexed: 12/26/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the dioxygenation of PUFAs to produce regio- and stereospecific oxygenated fatty acids. The identification of regio- and stereospecific LOXs is important because their specific products are involved in different physiological activities in various organisms. Bacterial LOXs are found only in some proteobacteria and cyanobacteria, and they are not stable in vitro. Here, we used C20 and C22 PUFAs such as arachidonic acid (ARA), eicosapentaenoic acid, and docosahexaenoic acid to identify an 11S-specific LOX from the proteobacterium Myxococcus xanthus and explore its in vitro stability and activity. The activity and stability of M. xanthus ARA 11S-LOX as well as the production of 11S-hydroxyeicosatetraenoic acid from ARA were significantly increased by the addition of phosphatidylcholine, Ca2+, and coactosin-like protein (newly identified in the yeast Rhodosporidium toluroides) as stimulatory factors; in fact, LOX activity in the presence of all three factors increased approximately 3-fold. Our results indicate that these stimulatory factors can be used to increase the activity and stability of bacterial LOX and the production of bioactive hydroxy fatty acids, which can contribute to new academic research.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
45
|
Kuhn H, Humeniuk L, Kozlov N, Roigas S, Adel S, Heydeck D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res 2018; 72:55-74. [PMID: 30237084 DOI: 10.1016/j.plipres.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Lia Humeniuk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Nikita Kozlov
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Sophie Roigas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Susan Adel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine, Division of Hepathology and Gastroenterology, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
46
|
Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:823-833. [DOI: 10.1016/j.bbalip.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022]
|
47
|
Affiliation(s)
- Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, 17487 Greifswald, Germany
| |
Collapse
|
48
|
An JU, Song YS, Kim KR, Ko YJ, Yoon DY, Oh DK. Biotransformation of polyunsaturated fatty acids to bioactive hepoxilins and trioxilins by microbial enzymes. Nat Commun 2018; 9:128. [PMID: 29317615 PMCID: PMC5760719 DOI: 10.1038/s41467-017-02543-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022] Open
Abstract
Hepoxilins (HXs) and trioxilins (TrXs) are involved in physiological processes such as inflammation, insulin secretion and pain perception in human. They are metabolites of polyunsaturated fatty acids (PUFAs), including arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, formed by 12-lipoxygenase (LOX) and epoxide hydrolase (EH) expressed by mammalian cells. Here, we identify ten types of HXs and TrXs, produced by the prokaryote Myxococcus xanthus, of which six types are new, namely, HXB5, HXD3, HXE3, TrXB5, TrXD3 and TrXE3. We succeed in the biotransformation of PUFAs into eight types of HXs (>35% conversion) and TrXs (>10% conversion) by expressing M. xanthus 12-LOX or 11-LOX with or without EH in Escherichia coli. We determine 11-hydroxy-eicosatetraenoic acid, HXB3, HXB4, HXD3, TrXB3 and TrXD3 as potential peroxisome proliferator-activated receptor-γ partial agonists. These findings may facilitate physiological studies and drug development based on lipid mediators. Hepoxilins (HXs) and trioxilins (TrXs) are lipid metabolites with roles in inflammation and insulin secretion. Here, the authors discover a prokaryotic source of HXs and TrXs, identify the biosynthetic enzymes and heterologously express HXs and TrXs in E. coli.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yong-Seok Song
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyoung-Rok Kim
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities (NCIRF), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Do-Young Yoon
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
49
|
Understanding the Molecular Mechanism of the Ala-versus-Gly Concept Controlling the Product Specificity in Reactions Catalyzed by Lipoxygenases: A Combined Molecular Dynamics and QM/MM Study of Coral 8R-Lipoxygenase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Newie J, Neumann P, Werner M, Mata RA, Ficner R, Feussner I. Lipoxygenase 2 from Cyanothece sp. controls dioxygen insertion by steric shielding and substrate fixation. Sci Rep 2017; 7:2069. [PMID: 28522865 PMCID: PMC5437038 DOI: 10.1038/s41598-017-02153-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
The biological function of lipoxygenases depends on the regio and stereo specific formation of fatty acid-derived hydroperoxides and different concepts exist to explain the mechanism that directs dioxygen to a specific carbon atom within the substrate. Here, we report the 1.8 Å resolution crystal structure of a cyanobacterial lipoxygenase that produces bis-allylic hydroperoxides (CspLOX2). Site directed mutagenesis experiments combined with computational approaches reveal that residues around the active site direct dioxygen to a preferred carbon atom and stereo configuration in the substrate fatty acid. Modulating the cavity volume around the pentadiene system of linoleic acid shifted the product formation towards 9S-, 9R-, 13S- or 13R-hydroperoxides in correlation with the site of mutation, thus decreasing the amount of the bis-allylic 11R-hydroperoxide. Decreasing the channel size of a 9R-lipoxygenase (CspLOX1) on the other hand could in turn induce formation of the bis-allylic 11R-hydroperoxide. Together this study suggests that an active site clamp fixing the pentadiene system of the substrate together with steric shielding controls the stereo and regio specific positioning of dioxygen at all positions of the reacting pentadiene system of substrate fatty acids.
Collapse
Affiliation(s)
- Julia Newie
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Piotr Neumann
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Martin Werner
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ricardo A Mata
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ralf Ficner
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| |
Collapse
|