1
|
Chen J, Hu ZY, Ma Y, Jiang S, Yin JY, Wang YK, Wu YG, Liu XQ. Rutaecarpine alleviates inflammation and fibrosis by targeting CK2α in diabetic nephropathy. Biomed Pharmacother 2024; 180:117499. [PMID: 39353318 DOI: 10.1016/j.biopha.2024.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the serious microvascular complications of diabetes mellitus. During the progression of DN, the proliferation of glomerular mesangial cells (GMCs) leads to the deposition of excessive extracellular matrix (ECM) in the mesangial region, eventually resulting in glomerulosclerosis. Rutaecarpine (Rut), an alkaloid found in the traditional Chinese medicinal herb Fructus Evodiae (Euodia rutaecarpa (Juss.) Benth.), has many biological activities. However, its mechanism of action in DN remains unknown. This study used db/db mice and high glucose (HG)-treated mouse mesangial cells (SV40 MES-13) to evaluate the protective effects of Rut and underlying mechanisms on GMCs in DN. We found that Rut alleviated urinary albumin and renal function and significantly relieved renal pathological damage. In addition, Rut decreased the ECM production, and renal inflammation and suppressed the activation of TGF-β1/Smad3 and NF-κB signaling pathways in vitro and in vivo. Protein kinase CK2α (CK2α) was identified as the target of Rut by target prediction, molecular docking, and cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR). Furthermore, Rut could not continue to play a protective role in HG-treated SV40 cells after silencing CK2α. In summary, this study is the first to find that Rut can suppress ECM production and inflammation in HG-treated SV40 cells by inhibiting the activation of TGF-β1/Smad3 and NF-κB signaling pathways and targeting CK2α. Thus, Rut can potentially become a novel treatment option for DN.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Zi-Yun Hu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yu Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Shan Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jiu-Yu Yin
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yu-Kai Wang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yong-Gui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Xue-Qi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
2
|
Ferreira Alves G, Aimaretti E, da Silveira Hahmeyer ML, Einaudi G, Porchietto E, Rubeo C, Marzani E, Aragno M, da Silva-Santos JE, Cifani C, Fernandes D, Collino M. Pharmacological inhibition of CK2 by silmitasertib mitigates sepsis-induced circulatory collapse, thus improving septic outcomes in mice. Biomed Pharmacother 2024; 178:117191. [PMID: 39079263 DOI: 10.1016/j.biopha.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Casein kinase II (CK2) has recently emerged as a pivotal mediator in the propagation of inflammation across various diseases. Nevertheless, its role in the pathogenesis of sepsis remains unexplored. Here, we investigated the involvement of CK2 in sepsis progression and the potential beneficial effects of silmitasertib, a selective and potent CK2α inhibitor, currently under clinical trials for COVID-19 and cancer. Sepsis was induced by caecal ligation and puncture (CLP) in four-month-old C57BL/6OlaHsd mice. One hour after the CLP/Sham procedure, animals were assigned to receive silmitasertib (50 mg/kg/i.v.) or vehicle. Plasma/organs were collected at 24 h for analysis. A second set of experiments was performed for survival rate over 120 h. Septic mice developed multiorgan failure, including renal dysfunction due to hypoperfusion (reduced renal blood flow) and increased plasma levels of creatinine. Renal derangements were associated with local overactivation of CK2, and downstream activation of the NF-ĸB-iNOS-NO axis, paralleled by a systemic cytokine storm. Interestingly, all markers of injury/inflammation were mitigated following silmitasertib administration. Additionally, when compared to sham-operated mice, sepsis led to vascular hyporesponsiveness due to an aberrant systemic and local release of NO. Silmitasertib restored sepsis-induced vascular abnormalities. Overall, these pharmacological effects of silmitasertib significantly reduced sepsis mortality. Our findings reveal, for the first time, the potential benefits of a selective and potent CK2 inhibitor to counteract sepsis-induced hyperinflammatory storm, vasoplegia, and ultimately prolonging the survival of septic mice, thus suggesting a pivotal role of CK2 in sepsis and silmitasertib as a novel powerful pharmacological tool for drug repurposing in sepsis.
Collapse
Affiliation(s)
- Gustavo Ferreira Alves
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil; Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Chiara Rubeo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Enrica Marzani
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy.
| |
Collapse
|
3
|
Papp B, Le Borgne M, Perret F, Marminon C, Józsa L, Pető Á, Kósa D, Nagy L, Kéki S, Ujhelyi Z, Pallér Á, Budai I, Bácskay I, Fehér P. Formulation and Investigation of CK2 Inhibitor-Loaded Alginate Microbeads with Different Excipients. Pharmaceutics 2023; 15:2701. [PMID: 38140042 PMCID: PMC10748227 DOI: 10.3390/pharmaceutics15122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to formulate and characterize CK2 inhibitor-loaded alginate microbeads via the polymerization method. Different excipients were used in the formulation to improve the penetration of an active agent and to stabilize our preparations. Transcutol® HP was added to the drug-sodium alginate mixture and polyvinylpyrrolidone (PVP) was added to the hardening solution, alone and in combination. To characterize the formulations, mean particle size, scanning electron microscopy analysis, encapsulation efficiency, swelling behavior, an enzymatic stability test and an in vitro dissolution study were performed. The cell viability assay and permeability test were also carried out on the Caco-2 cell line. The anti-oxidant and anti-inflammatory effects of the formulations were finally evaluated. The combination of Transcutol® HP and PVP in the formulation of sodium alginate microbeads could improve the stability, in vitro permeability, anti-oxidant and anti-inflammatory effects of the CK2 inhibitor.
Collapse
Affiliation(s)
- Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; (M.L.B.); (C.M.)
| | - Florent Perret
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE, ICBMS, 69622 Lyon, France;
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; (M.L.B.); (C.M.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary; (L.N.); (S.K.)
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary; (L.N.); (S.K.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ádám Pallér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Utca 2–4, H-4028 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Chen L, Zhang S, Li Q, Li J, Deng H, Zhang S, Meng R. Emerging role of Protein Kinase CK2 in Tumor immunity. Front Oncol 2022; 12:1065027. [DOI: 10.3389/fonc.2022.1065027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous in cells and regulates various intracellular processes, especially in tumor cells. As one of the earliest discovered protein kinases in humans, CK2 plays a crucial role in phosphorylating or associating with hundreds of substrates to modulate several signaling pathways. Excellent reviews have reported that the overexpression of CK2 could be observed in many cancers and was closely associated with tumor occurrence and development. The elevation of CK2 is also an indicator of a poor prognosis. Recently, increasing attention has been paid to the relationship between CK2 and tumor immunity. However, there is no comprehensive description of how CK2 regulates the immune cells in the tumor microenvironment (TME). Also, the underlying mechanisms are still not very clear. In this review, we systematically summarized the correlation between CK2 and tumor immunity, primarily the effects on various immune cells, both in innate and adaptive immunity in the TME. With the comprehensive development of immunotherapy and the mounting transformation research of CK2 inhibitors from the bench to the clinic, this review will provide vital information to find new treatment options for enhancing the efficacy of immunotherapy.
Collapse
|
5
|
Ikeda A, Tsuyuguchi M, Kitagawa D, Sawa M, Nakamura S, Nakanishi I, Kinoshita T. Bivalent binding mode of an amino-pyrazole inhibitor indicates the potentials for CK2α1-selective inhibitors. Biochem Biophys Res Commun 2022; 630:30-35. [PMID: 36130444 DOI: 10.1016/j.bbrc.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Casein kinase 2 (CK2) is a vital protein kinase that consists of two catalytic subunits (CK2α1 and/or CK2α2) and two regulatory subunits (CK2β). CK2α1 is a drug target for nephritis and cancers, while CK2α2 is a serious off-target because its inhibition causes testicular toxicity. High similarity between the isozymes CK2α1 and CK2α2 make it difficult to design CK2α1-specific inhibitors. Herein, the crystal structures of CK2α1 and CK2α2 complexed with a 3-amino-pyrazole inhibitor revealed the remarkable differences in the protein-inhibitor interaction modes. This inhibitor bound to the ATP binding sites of both isozymes in apparently distinct orientations. In addition, another molecule of this inhibitor bound to CK2α1, but not to CK2α2, at the CK2β protein-protein interface. Binding energy calculations and biochemical experiments suggested that this inhibitor possesses the conventional ATP-competitive characteristics with moderate allosteric function in a molecular glue mechanism. These results will assist the potential design of potent and selective CK2α1 inhibitors.
Collapse
Affiliation(s)
- Asaka Ikeda
- Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Masato Tsuyuguchi
- Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | | | | | - Shinya Nakamura
- Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Isao Nakanishi
- Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan.
| |
Collapse
|
6
|
Mishra S, Kinoshita C, Axtman AD, Young JE. Evaluation of a Selective Chemical Probe Validates That CK2 Mediates Neuroinflammation in a Human Induced Pluripotent Stem Cell-Derived Microglial Model. Front Mol Neurosci 2022; 15:824956. [PMID: 35774866 PMCID: PMC9239073 DOI: 10.3389/fnmol.2022.824956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/20/2022] [Indexed: 01/11/2023] Open
Abstract
Novel treatments for neurodegenerative disorders are in high demand. It is imperative that new protein targets be identified to address this need. Characterization and validation of nascent targets can be accomplished very effectively using highly specific and potent chemical probes. Human induced pluripotent stem cells (hiPSCs) provide a relevant platform for testing new compounds in disease relevant cell types. However, many recent studies utilizing this platform have focused on neuronal cells. In this study, we used hiPSC-derived microglia-like cells (MGLs) to perform side-by-side testing of a selective chemical probe, SGC-CK2-1, compared with an advanced clinical candidate, CX-4945, both targeting casein kinase 2 (CK2), one of the first kinases shown to be dysregulated in Alzheimer's disease (AD). CK2 can mediate neuroinflammation in AD, however, its role in microglia, the innate immune cells of the central nervous system (CNS), has not been defined. We analyzed available RNA-seq data to determine the microglial expression of kinases inhibited by SGC-CK2-1 and CX-4945 with a reported role in mediating inflammation in glial cells. As proof-of-concept for using hiPSC-MGLs as a potential screening platform, we used both wild-type (WT) MGLs and MGLs harboring a mutation in presenilin-1 (PSEN1), which is causative for early-onset, familial AD (FAD). We stimulated these MGLs with pro-inflammatory lipopolysaccharides (LPS) derived from E. coli and observed strong inhibition of the expression and secretion of proinflammatory cytokines by simultaneous treatment with SGC-CK2-1. A direct comparison shows that SGC-CK2-1 was more effective at suppression of proinflammatory cytokines than CX-4945. Together, these results validate a selective chemical probe, SGC-CK2-1, in human microglia as a tool to reduce neuroinflammation.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Alison D. Axtman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
9
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Marzec E, Świtalska M, Winiewska-Szajewska M, Wójcik J, Wietrzyk J, Maciejewska AM, Poznański J, Mieczkowski A. The halogenation of natural flavonoids, baicalein and chrysin, enhances their affinity to human protein kinase CK2. IUBMB Life 2020; 72:1250-1261. [PMID: 32364671 DOI: 10.1002/iub.2298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
A series of halogenated derivatives of natural flavonoids: baicalein and chrysin were designed and investigated as possible ligands for the catalytic subunit of tumor-associated human kinase CK2. Thermal shift assay method, in silico modeling, and high-performance liquid chromatography-derived hydrophobicity together with IC50 values determined in biochemical assay were used to explain the ligand affinity to the catalytic subunit of human protein kinase CK2. Obtained results revealed that substitution of baicalein and chrysin with halogen atom increases their binding affinity to hCK2α, and for 8-chlorochrysin the observed effect is even stronger than for the reference CK2 inhibitor-4,5,6,7-tetrabromo-1H-benzotriazole. The cytotoxic activities of the baicalein and chrysin derivatives in the in vitro model have been evaluated for MV4-11 (human biphenotypic B myelomonocytic leukemia), A549 (human lung adenocarcinoma), LoVo (human colon cancer), and MCF-7 (human breast cancer) as well as on the nontumorigenic human breast epithelial MCF-10A cell lines. Among the baicalein derivatives, the strongest cytotoxic effect was observed for 8-bromobaicalein, which exhibited the highest activity against breast cancer cell line MCF-7 (IC50 10 ± 3 μM). In the chrysin series, the strongest cytotoxic effect was observed for unsubstituted chrysin, which exhibited the highest activity against leukemic cell line MV4-11 (IC50 10 ± 4 μM).
Collapse
Affiliation(s)
- Ewa Marzec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Maria Winiewska-Szajewska
- Department of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Wójcik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Wang Z, Hou Q, Wan K, Zhang R, Dong L, Zhang D, Yin H. Comparative analysis of two brine shrimps revealed differential expression pattern and functional characterization of CK2α under bacterial stimulation from different geographical distribution. FISH & SHELLFISH IMMUNOLOGY 2020; 99:631-640. [PMID: 32112892 DOI: 10.1016/j.fsi.2020.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Understanding how the brine shrimp responds to different geographical populations can provide novel insights on response to bacterial stimulation. In the paper, Artemia sinica from lower altitudes and Artemia parthenogenetica from higher altitudes of the Tibetan Plateau, were used to illustrate different defense against bacteria mechanisms that these organisms used to adapt to different geographical environments. Protein kinase CK2 is a serine/threonine kinase with a multitude of protein substrates. It is a ubiquitous enzyme essential for the viability of eukaryotic cells, where its functions in a variety of cellular processes, including cell cycle progression, apoptosis, transcription, and viral infection. The gene encodes the same mRNA sequence in A. sinica and A. parthenogenetica, named AsCK2α and ApCK2α, respectively. The open reading frame was obtained, a 1047-bp sequence encoding a predicted protein of 349 amino acids. To systematically analyze the expression of AsCK2α and ApCK2α during embryonic development and bacterial challenge, real-time PCR, Western blotting and immunohistochemistry were performed. The results showed that AsCK2α was higher than ApCK2α at different developmental stages. Under bacterial challenge, the expression of ApCK2α was significantly higher than AsCK2α. Protein localization analysis showed that AsCK2α and ApCK2α were mainly distributed in the head and chest. Our research revealed that CK2α plays a vital role in the growth, development and bacterial stimulation of the brine shrimp.
Collapse
Affiliation(s)
- Zhangping Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Qiru Hou
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Kun Wan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Rui Zhang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Lijun Dong
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, 071002, Baoding, PR China
| | - Daochuan Zhang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, 071002, Baoding, PR China.
| | - Hong Yin
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, 071002, Baoding, PR China.
| |
Collapse
|
12
|
Tsuyuguchi M, Nakaniwa T, Sawa M, Nakanishi I, Kinoshita T. A promiscuous kinase inhibitor delineates the conspicuous structural features of protein kinase CK2a1. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:515-519. [PMID: 31282872 DOI: 10.1107/s2053230x19008951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022]
Abstract
Protein kinase CK2a1 is a serine/threonine kinase that plays a crucial role in the growth, proliferation and survival of cells and is a well known target for tumour and glomerulonephritis therapies. Here, the crystal structure of the kinase domain of CK2a1 complexed with 5-iodotubercidin (5IOD), an ATP-mimetic inhibitor, was determined at 1.78 Å resolution. The structure shows distinct structural features and, in combination with a comparison of the crystal structures of five off-target kinases complexed with 5IOD, provides valuable information for the development of highly selective inhibitors.
Collapse
Affiliation(s)
- Masato Tsuyuguchi
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tetsuko Nakaniwa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Isao Nakanishi
- Department of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
13
|
Charvet B, Reynaud JM, Gourru-Lesimple G, Perron H, Marche PN, Horvat B. Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Front Immunol 2018; 9:2803. [PMID: 30574140 PMCID: PMC6291489 DOI: 10.3389/fimmu.2018.02803] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of human endogenous retrovirus (HERV) elements of the HERV-W family has been associated with different diseases, including multiple sclerosis (MS). In particular, the expression of the envelope protein (Env) from the multiple sclerosis-associated retrovirus (MSRV), a member of HERV-W family and known for its potent proinflammatory activity, is repeatedly detected in the brain lesions and blood of MS patients. Furthermore, human herpesvirus 6 (HHV-6) infection has long been suspected to play a role in the pathogenesis of MS and neuroinflammation. We show here that both HHV-6A and stimulation of its receptor, transmembrane glycoprotein CD46, induce the expression of MSRV-Env. The engagement of extracellular domains SCR3 and SCR4 of CD46-Cyt1 isoform was required for MSRV-env transactivation, limiting thus the MSRV-Env induction to the CD46 ligands binding these domains, including C3b component of complement, specific monoclonal antibodies, and both infectious and UV-inactivated HHV-6A, but neither HHV-6B nor measles virus vaccine strain. Induction of MSRV-Env required CD46 Cyt-1 singling and was abolished by the inhibitors of protein kinase C. Finally, both membrane-expressed and secreted MSRV-Env trigger TLR4 signaling, displaying thus a proinflammatory potential, characteristic for this viral protein. These data expand the specter of HHV-6A effects in the modulation of the immune response and support the hypothesis that cross-talks between exogenous and endogenous viruses may contribute to inflammatory diseases and participate in neuroinflammation. Furthermore, they reveal a new function of CD46, known as an inhibitor of complement activation and receptor for several pathogens, in transactivation of HERV env genes, which may play an important role in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Benjamin Charvet
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,GeNeuro Innovation, Lyon, France
| | - Josephine M Reynaud
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Geraldine Gourru-Lesimple
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | | | - Patrice N Marche
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, IAPC, La Tronche, France
| | - Branka Horvat
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
14
|
Tsuyuguchi M, Nakaniwa T, Kinoshita T. Crystal structures of human CK2α2 in new crystal forms arising from a subtle difference in salt concentration. Acta Crystallogr F Struct Biol Commun 2018; 74:288-293. [PMID: 29717996 PMCID: PMC5931141 DOI: 10.1107/s2053230x18005204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/02/2018] [Indexed: 01/27/2023] Open
Abstract
The catalytic subunits of protein kinase CK2 are classified into two subtypes: CK2α1 and CK2α2. CK2α1 is an attractive drug-discovery target for various diseases such as cancers and nephritis. CK2α2 is defined as an off-target of CK2α1 and is a potential target in the development of male contraceptive drugs. High-resolution crystal structures of both isozymes are likely to provide crucial clues for the design of selective inhibitors of CK2α1 and/or CK2α2. To date, several crystal structures of CK2α1 have been solved at high resolutions of beyond 1.5 Å. However, crystal structures of CK2α2 have barely achieved a low resolution of around 3 Å because of the formation of needle-shaped crystals. In this study, new crystal forms were exploited and one provided a crystal structure of CK2α2 at 1.89 Å resolution. This result, together with the structure of CK2α1, will assist in the development of highly selective inhibitors for both isozymes.
Collapse
Affiliation(s)
- Masato Tsuyuguchi
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tetsuko Nakaniwa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
15
|
Suhas KS, Parida S, Gokul C, Srivastava V, Prakash E, Chauhan S, Singh TU, Panigrahi M, Telang AG, Mishra SK. Casein kinase 2 inhibition impairs spontaneous and oxytocin-induced contractions in late pregnant mouse uterus. Exp Physiol 2018; 103:621-628. [PMID: 29708304 DOI: 10.1113/ep086826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the inhibition of the protein kinase casein kinase 2 (CK2) alter the uterine contractility? What is the main finding and its importance? Inhibition of CK2 impaired the spontaneous and oxytocin-induced contractility in late pregnant mouse uterus. This finding suggests that CK2 is a novel pathway mediating oxytocin-induced contractility in the uterus and thus opens up the possibility for this class of drugs to be developed as a new class of tocolytics. ABSTRACT The protein kinase casein kinase 2 (CK2) is a ubiquitously expressed serine or threonine kinase known to phosphorylate a number of substrates. The aim of this study was to assess the effect of CK2 inhibition on spontaneous and oxytocin-induced uterine contractions in 19 day pregnant mice. The CK2 inhibitor CX-4945 elicited a concentration-dependent relaxation in late pregnant mouse uterus. CX-4945 and another selective CK2 inhibitor, apigenin, also inhibited the oxytocin-induced contractile response in late pregnant uterine tissue. Apigenin also blunted the prostaglandin F2α response, but CX-4945 did not. Casein kinase 2 was located in the lipid raft fractions of the cell membrane, and disruption of lipid rafts was found to reverse its effect. The results of the present study suggest that CK2, located in lipid rafts of the cell membrane, is an active regulator of spontaneous and oxytocin-induced uterine contractions in the late pregnant mouse.
Collapse
Affiliation(s)
- K S Suhas
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Chandrasekaran Gokul
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Srivastava
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - E Prakash
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sakshi Chauhan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Avinash G Telang
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Santosh K Mishra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
16
|
Gibson SA, Benveniste EN. Protein Kinase CK2: An Emerging Regulator of Immunity. Trends Immunol 2018; 39:82-85. [PMID: 29307449 DOI: 10.1016/j.it.2017.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023]
Abstract
Although it has historically been studied in the context of cancer, recent literature has highlighted the importance of the highly conserved serine/threonine kinase casein kinase II (CK2) in inflammatory disorders. Most strikingly, CK2 is a major regulator of the Th17-Treg axis relevant to many T cell-driven autoimmune disorders including multiple sclerosis (MS).
Collapse
Affiliation(s)
- Sara A Gibson
- University of Alabama at Birmingham, Department of Cell, Developmental and Integrative Biology, FOT 1220D, 510 20th Street South, Birmingham, AL 35294-3412, USA
| | - Etty N Benveniste
- University of Alabama at Birmingham, Department of Cell, Developmental and Integrative Biology, FOT 1220D, 510 20th Street South, Birmingham, AL 35294-3412, USA.
| |
Collapse
|
17
|
Chen Z, Chen Q, Huang J, Gong W, Zou Y, Zhang L, Liu P, Huang H. CK2α promotes advanced glycation end products-induced expressions of fibronectin and intercellular adhesion molecule-1 via activating MRTF-A in glomerular mesangial cells. Biochem Pharmacol 2017; 148:41-51. [PMID: 29223351 DOI: 10.1016/j.bcp.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/04/2017] [Indexed: 01/30/2023]
Abstract
Advanced glycation end products' (AGEs) modification of extracellular matrix proteins induces crosslinking, which results in thickening of the basement membrane and activating several intracellular signaling cascades, eventually promoting the pathological progression of diabetic nephropathy (DN). We have previously confirmed that casein kinase 2α (CK2α) activates the nuclear factor of kappaB (NF-κB) signaling pathway to enhance high glucose-induced expressions of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in glomerular mesangial cells (GMCs). However, to date, the mechanism by which CK2α regulates diabetic renal fibrosis is not fully understood. In view of the regulation of inflammation and fibrosis by myocardin-related transcription factor A (MRTF-A), we are highly concerned whether CK2α promotes AGEs-induced expressions of FN and ICAM-1 in glomerular mesangial cells via activation of MRTF-A, thus affecting the pathogenesis of DN. We found that CK2α and MRTF-A proteins were overexpressed in AGEs-induced diabetic kidneys. Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed the upregulation of FN and ICAM-1 expressions in GMCs induced by AGEs. MRTF-A knockdown compromised the expressions of FN and ICAM-1 in GMCs induced by AGEs. Moreover, inhibition of CK2α kinase activity or knockdown of CK2α protein expression restrained the protein expression and nuclear aggregation of MRTF-A. CK2α interacted with MRTF-A. Furthermore, knockdown of MRTF-A while overexpression of CK2α blocked the upregulation effect of CK2α on the protein expressions of FN and ICAM-1. These findings suggest that CK2α promotes diabetic renal fibrosis via activation of MRTF-A and upregulation of inflammatory genes.
Collapse
Affiliation(s)
- Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuhong Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yezi Zou
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Wang Z, Zhu Q, Wang W, Yi F, Li PL, Boini KM, Li N. Infusion of Valproic Acid Into the Renal Medulla Activates Stem Cell Population and Attenuates Salt-Sensitive Hypertension in Dahl S Rats. Cell Physiol Biochem 2017; 42:1264-1273. [PMID: 28693025 DOI: 10.1159/000478955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Our previous study has detected a stem cell deficiency in the renal medulla in Dahl salt-sensitive (S) rats. This study determined whether infusion of valproic acid (VA), an agent known to stimulate the stem cell function, attenuated salt-sensitive hypertension in Dahl S rats. METHODS Uninephrectomized Dahl S rats were infused with vehicle or VA (50mg/kg/d) into the renal medulla and fed with a low (LS) or high salt diet (HS). Stem cell marker and number were analyzed by immunohistochemistry, Real-time RT-PCR and Western blot. Sodium excretion and blood pressure were measured. RESULTS VA significantly increased the mRNA and protein levels of FGF2, a stem cell niche factor, and CD133, a stem cell marker. The number of CD133+ cells was significantly increased in the renal medulla in VA-treated rats. Meanwhile, high salt-induced increases in the mRNA level of proinflammatory factors interleukin-1β and interleukin-6 were blocked in VA-treated rats. Functionally, sodium excretion in response to the blood pressure increase and acute sodium loading was significantly enhanced, sodium retention attenuated, high salt-induced increase of blood pressure reduced in VA-treated rats. CONCLUSION Activation of stem cell function by VA inhibits the activation of proinflammatory factors and attenuates salt-sensitive hypertension in Dahl S rats.
Collapse
Affiliation(s)
- Zhengchao Wang
- Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Krishna M Boini
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
19
|
Sepsis Patients Display a Reduced Capacity to Activate Nuclear Factor-κB in Multiple Cell Types. Crit Care Med 2017; 45:e524-e531. [PMID: 28240686 DOI: 10.1097/ccm.0000000000002294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Sepsis is a complex clinical condition associated with high morbidity and mortality. A distinctive feature of sepsis is the reduced capacity of leukocytes to release proinflammatory cytokines in response to ex vivo stimulation. Cellular signaling events leading to immunosuppression in sepsis are not well defined. We investigated cell-specific signaling events underlying the immunosuppressed phenotype in sepsis. DESIGN Ex vivo study. SETTING ICU of an academic hospital. PATIENTS Nineteen patients with sepsis and 19 age-matched healthy controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The phosphorylation state of p38 mitogen activated protein kinase and nuclear factor kappa-light-chain-enhancer of activated B cells were determined in ex vivo stimulated CD4 T cells, CD8 T cells, B cells, monocytes, and neutrophils. Messenger RNA expression levels of p38 mitogen activated protein kinase and nuclear factor kappa-light-chain-enhancer of activated B cells and negative regulators tumor necrosis factor-α-induced protein 3 (A20) and mitogen activated protein kinase phosphatase-1 were determined in neutrophils and peripheral blood mononuclear cells. Upon ex vivo stimulation, monocytes of sepsis patients were less capable in phosphorylating nuclear factor kappa-light-chain-enhancer of activated B cells. Sepsis was also associated with reduced phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells in stimulated B cells, CD4 and CD8 T cells. Messenger RNA expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells and A20 were diminished in peripheral blood mononuclear cells of sepsis patients, whereas p38 mitogen activated protein kinase messenger RNA was up-regulated. In neutrophils of sepsis patients, mitogen activated protein kinase phosphatase-1 messenger RNA levels were down-regulated. CONCLUSIONS Sepsis-induced immunosuppression associates with a defect in the capacity to phosphorylate nuclear factor kappa-light-chain-enhancer of activated B cells in lymphoid cells and monocytes.
Collapse
|
20
|
Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-κB signaling pathway. Biochem Pharmacol 2017; 132:102-117. [PMID: 28237649 DOI: 10.1016/j.bcp.2017.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
|
21
|
The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design. Pharmaceuticals (Basel) 2017; 10:ph10010026. [PMID: 28230762 PMCID: PMC5374430 DOI: 10.3390/ph10010026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by "trial and error testing". In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.
Collapse
|
22
|
Abstract
The European League Against Rheumatism (EULAR)'s guidelines for lupus state that mycophenolate mofetil has at least equivalent efficacy to and less toxicity than cyclophosphamide for the short-and medium-term treatment of lupus nephritis but that long-term data are available only for cyclophosphamide. New therapies are needed to reduce toxicity and the need for steroids and to offer the possibility of cure. Therapies under investigation include other immunosuppressive agents, anticellular therapies, drugs that modify cell-cell interactions, (anti-)cytokine therapy, hormone therapy and lupus-specific immunomodulation. Rituximab has shown promise in patients refractory to conventional immunosuppression, which suggests that targeting B cells may be successful. Other anti-cell therapies include epratuzumab, belimumab and alemtuzumab. Anti-cytokine approaches include tumour necrosis factor alpha blockade with infliximab, anti-interleukin 6-receptor therapy with tocilizumab and interferon-α blockade. As anti-double-stranded DNA antibodies correlate with flares of lupus nephritis, they may represent another therapeutic target – as do monocyte chemoattractant protein-1 and protein kinase CK2. Therapeutic options to prevent damage in lupus nephritis include non-immunosuppressive treatments aimed at reducing cardiovascular risk (such as statins, angiotensin-converting enzyme inhibitors and aspirin). As was the case with rheumatoid arthritis, a change in therapeutic aims – from survival through prevention of renal failure to induction of remission – may modify outcomes. EULAR's guidelines state that renal biopsy is the best monitor of clinical outcome in lupus nephritis, as immunological tests have limited predictive value. Measurement of urinary mRNA for cytokine and growth factor genes may provide a more sensitive, non-invasive method of monitoring therapeutic response.
Collapse
Affiliation(s)
- M Schneider
- Clinic for Endocrinology, Diabetology and Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
23
|
Shi J, Liu N, Xiao Y, Takei Y, Yasue M, Suzuki Y, Hou Z, Ohno H, Yamada M, Fuchi N, Oshida K, Miyamoto Y, Tsujimoto G, Hirasawa A. The Effects of a Selective CK2 Inhibitor on Anti-glomerular Basement Membrane Glomerulonephritis in Rats. Biol Pharm Bull 2016; 38:1345-51. [PMID: 26328489 DOI: 10.1248/bpb.b15-00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase CK2 ("casein kinase II") is a protein serine/threonine kinase that plays critical roles in biological processes such as cell growth, cell cycle progression, and apoptosis. So far, we have identified that one catalytic isozyme of CK2, CK2α, is over-expressed in the kidney during the progression of glomerulonephritis (GN). Moreover, we have shown that in vivo inhibition of CK2 by administration of CK2 inhibitors was effective in the treatment of experimental GN. Hence the development of potent CK2 inhibitors should be considered in therapeutic strategies for GN. In the present study we identified compound 13, a pyrazine derivative, as a potent CK2 inhibitor. By performing enzyme kinetics analysis in vitro, we characterized the inhibition of compound 13 toward each CK2 catalytic isozyme. Furthermore, in vivo, we demonstrated that compound 13 is effective in attenuating proteinuria, decreasing the enhanced level of blood urea nitrogen and serum creatinine, and ameliorating glomerular crescent formation in an experimental GN rat model. On the other hand, cellular apoptosis was detected in the rat testis following administration of compound 13. This study provides clues for new strategies for developing applicable compounds into CK2-targeted GN treatments.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Structure-activity relationship study of 4-(thiazol-5-yl)benzoic acid derivatives as potent protein kinase CK2 inhibitors. Bioorg Med Chem 2016; 24:1136-41. [PMID: 26850376 DOI: 10.1016/j.bmc.2016.01.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Two classes of modified analogs of 4-(thiazol-5-yl)benzoic acid-type CK2 inhibitors were designed. The azabenzene analogs, pyridine- and pyridazine-carboxylic acid derivatives, showed potent protein kinase CK2 inhibitory activities [IC50 (CK2α)=0.014-0.017μM; IC50 (CK2α')=0.0046-0.010μM]. Introduction of a 2-halo- or 2-methoxy-benzyloxy group at the 3-position of the benzoic acid moiety maintained the potent CK2 inhibitory activities [IC50 (CK2α)=0.014-0.016μM; IC50 (CK2α')=0.0088-0.014μM] and led to antiproliferative activities [CC50 (A549)=1.5-3.3μM] three to six times higher than those of the parent compound.
Collapse
|
25
|
Zhu Q, Li XX, Wang W, Hu J, Li PL, Conley S, Li N. Mesenchymal stem cell transplantation inhibited high salt-induced activation of the NLRP3 inflammasome in the renal medulla in Dahl S rats. Am J Physiol Renal Physiol 2016; 310:F621-F627. [PMID: 26764201 DOI: 10.1152/ajprenal.00344.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes activate caspase-1 to produce interleukin (IL)-1β. Activation of the NLRP3 inflammasome is involved in various renal pathological conditions. It remains unknown whether the NLRP3 inflammasome activation participates in the abnormal renal response to high-salt (HS) diet in Dahl salt-sensitive (S) rats. In addition, our lab recently showed that transplantation of mesenchymal stem cells (MSCs) attenuated HS-induced inflammation in the renal medulla in Dahl S rat. However, it is unclear whether the anti-inflammatory action of MSCs is associated with inhibition of the NLRP3 inflammasome. The present study determined the response of the NLRP3 inflammasome to HS intake and the effect of MSC transplantation on the NLRP3 inflammasome in the renal medulla in Dahl S rats. Immunostaining showed that the inflammasome components NLRP3, ASC, and caspase-1 were mainly present in distal tubules and collecting ducts. Interestingly, the renal medullary levels of these inflammasome components were remarkably increased after a HS diet in Dahl S rats, while remaining unchanged in normal rats. This HS-induced activation of the NLRP3 inflammasome was significantly blocked by MSC transplantation into the renal medulla in Dahl S rats. Furthermore, infusion of a caspase-1 inhibitor into the renal medulla significantly attenuated HS-induced hypertension in Dahl S rats. These data suggest that HS-induced activation of the NLRP3 inflammasome may contribute to renal medullary dysfunction in Dahl S rats and that inhibition of inflammasome activation may be one of the mechanisms for the anti-inflammatory and anti-hypertensive effects of stem cells in the renal medulla in Dahl S rats.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Xiao-Xue Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Junping Hu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Sabena Conley
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
26
|
Hennek J, Alves J, Yao E, Goueli SA, Zegzouti H. Bioluminescent kinase strips: A novel approach to targeted and flexible kinase inhibitor profiling. Anal Biochem 2015; 495:9-20. [PMID: 26628096 DOI: 10.1016/j.ab.2015.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022]
Abstract
In addition to target efficacy, drug safety is a major requirement during the drug discovery process and is influenced by target specificity. Therefore, it is imperative that every new drug candidate be profiled against various liability panels that include protein kinases. Here, an effective methodology to streamline kinase inhibitor profiling is described. An accessible standardized profiling system for 112 protein kinases covering all branches of the kinome was developed. This approach consists of creating different sets of kinases and their corresponding substrates in multi-tube strips. The kinase stocks are pre-standardized for optimal kinase activity and used for inhibitor profiling using a bioluminescent ADP detection assay. We show that these strips can routinely generate inhibitor selectivity profiles for small or broad kinase family panels. Lipid kinases were also assembled in strip format and profiled together with protein kinases. We identified two specific PI3K inhibitors that have off-target effects on CK2 that were not reported before and would have been missed if compounds were not profiled against lipid and protein kinases simultaneously. To validate the accuracy of the data generated by this method, we confirmed that the inhibition potencies observed are consistent with published values produced by more complex technologies such as radioactivity assays.
Collapse
Affiliation(s)
- J Hennek
- R&D Department, Promega Corporation, Madison, WI 53711, USA
| | - J Alves
- R&D Department, Promega Corporation, Madison, WI 53711, USA
| | - E Yao
- SignalChem Pharmaceuticals, Richmond, British Columbia V6V 2J2, Canada
| | - S A Goueli
- R&D Department, Promega Corporation, Madison, WI 53711, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - H Zegzouti
- R&D Department, Promega Corporation, Madison, WI 53711, USA.
| |
Collapse
|
27
|
The protein kinase 2 inhibitor tetrabromobenzotriazole protects against renal ischemia reperfusion injury. Sci Rep 2015; 5:14816. [PMID: 26423352 PMCID: PMC4589787 DOI: 10.1038/srep14816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Protein kinase 2 (CK2) activation was reported to enhance reactive oxygen species production and activate the nuclear factor κB (NF-κB) pathway. Because oxidative stress and inflammation are critical events for tissue destruction during ischemia reperfusion (I/R), we sought to determine whether CK2 was important in the renal response to I/R. Mice underwent 25 min of renal ischemia and were then reperfused. We confirmed an increased expression of CK2α during the reperfusion period, while expression of CK2β remained consistent. We administered tetrabromobenzotriazole (TBBt), a selective CK2α inhibitor before inducing I/R injury. Mice subjected to I/R injury showed typical patterns of acute kidney injury; blood urea nitrogen and serum creatinine levels, tubular necrosis and apoptosis, inflammatory cell infiltration and proinflammatory cytokine production, and oxidative stress were markedly increased when compared to sham mice. However, pretreatment with TBBt abolished these changes and improved renal function and architecture. Similar renoprotective effects of CK2α inhibition were observed for emodin. Renoprotective effects of CK2α inhibition were associated with suppression of NF-κB and mitogen activated protein kinase (MAPK) pathways. Taken together, these results suggest that CK2α mediates proapoptotic and proinflammatory signaling, thus the CK2α inhibitor may be used to prevent renal I/R injuries observed in clinical settings.
Collapse
|
28
|
Kunz M, König IR, Schillert A, Kruppa J, Ziegler A, Grallert H, Müller-Nurasyid M, Lieb W, Franke A, Ranki A, Panelius J, Koskenmies S, Hasan T, Kere J, Rönn AC, Simon JC, Schmidt E, Wenzel J, Tüting T, Landsberg J, Zeller T, Blankenberg S, Gläser R, Patsinakidis N, Kuhn A, Ibrahim SM. Genome-wide association study identifies new susceptibility loci for cutaneous lupus erythematosus. Exp Dermatol 2015; 24:510-5. [PMID: 25827949 DOI: 10.1111/exd.12708] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 12/11/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune disease of the skin with typical clinical manifestations. Here, we genotyped 906 600 single nucleotide polymorphisms (SNPs) in 183 CLE cases and 1288 controls of Central European ancestry. Replication was performed for 13 SNPs in 219 case subjects and 262 controls from Finland. Association was particularly pronounced at 4 loci, all with genomewide significance (P < 5 × 10(-8) ): rs2187668 (PGWAS = 1.4 × 10(-12) ), rs9267531 (PGWAS = 4.7 × 10(-10) ), rs4410767 (PGWAS = 1.0 × 10(-9) ) and rs3094084 (PGWAS = 1.1 × 10(-9) ). All mentioned SNPs are located within the major histocompatibility complex (MHC) region of chromosome 6 and near genes of known immune functions or associations with other autoimmune diseases such as HLA-DQ alpha chain 1 (HLA-DQA1), MICA, MICB, MSH5, TRIM39 and RPP21. For example, TRIM39/RPP21 read through transcript is a known mediator of the interferon response, a central pathway involved in the pathogenesis of CLE and systemic lupus erythematosus (SLE). Taken together, this genomewide analysis of disease association of CLE identified candidate genes and genomic regions that may contribute to pathogenic mechanisms in CLE via dysregulated antigen presentation (HLA-DQA1), apoptosis regulation, RNA processing and interferon response (MICA, MICB, MSH5, TRIM39 and RPP21).
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Arne Schillert
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Jochen Kruppa
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Andreas Ziegler
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Harald Grallert
- Research unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Department of Medicine I, Ludwig Maximilian University Munich, Munich, Germany.,German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Wolfgang Lieb
- Institute for Epidemiology and Biobank popgen, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Annamari Ranki
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Jaana Panelius
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Sari Koskenmies
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Taina Hasan
- Department of Dermatology, Tampere University Central Hospital, University of Tampere, Tampere, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.,Department of Medical Genetics, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Ann-Charlotte Rönn
- Clinical Research Center, Karolinska University Hospital, Huddinge, Sweden
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergology and Venereology, University of Schleswig-Holstein, Lübeck, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Thomas Tüting
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Tanja Zeller
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Stefan Blankenberg
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Regine Gläser
- Department of Dermatology and Allergology, University of Schleswig-Holstein, Kiel, Germany
| | - Nikolaos Patsinakidis
- Department of Dermatology, Venereology and Allergology, Ruhr-University of Bochum, Bochum, Germany
| | - Annegret Kuhn
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany
| | - Saleh M Ibrahim
- Department of Dermatology, Allergology and Venereology, University of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
29
|
Liu N, Shi J, Xiao Y, Yasue M, Takei Y, Sanefuji H, Tsujimoto G, Hirasawa A. Effects of a Tricaprylin Emulsion on Anti-glomerular Basement Membrane Glomerulonephritis in Rats: In Vivo and in Silico Studies. Biol Pharm Bull 2015; 38:1175-84. [DOI: 10.1248/bpb.b15-00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ning Liu
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Junfeng Shi
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Ying Xiao
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Misato Yasue
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yoshinori Takei
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | - Gozoh Tsujimoto
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
- Institute for Integrated Medical Sciences, Tokyo Women’s Medical University
| |
Collapse
|
30
|
Iori E, Ruzzene M, Zanin S, Sbrignadello S, Pinna LA, Tessari P. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 2015; 33:259-66. [PMID: 26340273 DOI: 10.3109/08977194.2015.1073725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CK2 is a multifunctional, pleiotropic protein kinase involved in the regulation of cell proliferation and survival. Since fibroblasts from Type 1 Diabetes patients (T1DM) with Nephropathy exhibit increased proliferation, we studied cell viability, basal CK2 expression and activity, and response to specific CK2 inhibitors TBB (4,5,6,7-tetrabenzotriazole) and CX4945, in fibroblasts from T1DM patients either with (T1DM+) or without (T1DM-) Nephropathy, and from healthy controls (N). We tested expression and phosphorylation of CK2-specific molecular targets. In untreated fibroblasts from T1DM+, the cell viability was higher than in both N and T1DM-. CK2 inhibitors significantly reduced cell viability in all groups, but more promptly and with a larger effect in T1DM+. Differences in CK2-dependent phosphorylation sites were detected. In conclusion, our results unveil a higher dependence of T1DM+ cells on CK2 for their survival, despite a similar expression and a lower activity of this kinase compared with those of normal cells.
Collapse
Affiliation(s)
| | - Maria Ruzzene
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | - Sofia Zanin
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | | | - Lorenzo Alberto Pinna
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
- c Venetian Institute of Molecular Medicine , Padova , Italy
| | | |
Collapse
|
31
|
Discovery and characterization of synthetic 4′-hydroxyflavones—New CK2 inhibitors from flavone family. Bioorg Med Chem 2013; 21:6681-9. [DOI: 10.1016/j.bmc.2013.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
|
32
|
Kinoshita T, Nakaniwa T, Sekiguchi Y, Sogabe Y, Sakurai A, Nakamura S, Nakanishi I. Crystal structure of human CK2α at 1.06 Å resolution. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:974-9. [PMID: 24121351 PMCID: PMC3795567 DOI: 10.1107/s0909049513020785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/25/2013] [Indexed: 05/24/2023]
Abstract
The Ser/Thr kinase CK2 consists of two catalytic subunits (CK2α) and a dimer of the regulatory subunits (CK2β), and is a ubiquitous enzyme that regulates growth, proliferation and the survival of cells. CK2 is a remarkable drug target for potentially treating a wide variety of tumours and glomerulonephritis. The purified CK2α protein was crystallized using ethylene glycol as a precipitant. The crystal structure of CK2α with 21 loci of alternative conformations, including a niacin, 19 ethylene glycols and 346 waters, was determined at 1.06 Å resolution to an Rwork of 14.0% (Rfree = 16.5%). The alternative ensemble in the internal hydrophobic core underpins the plasticity of the αD-helix responsible for the regulation of ATP/GTP binding. The clear density map indicates that a niacin molecule, contained in the Escherichia coli culture medium, binds to the ATP binding site. An ethylene glycol molecule binds in the hydrophobic pocket lateral to the αD-helix forming the rim of the active site. The other ethylene glycol molecules occupy physiologically significant sites, including the CK2β binding interface and substrate binding site, as well as the gap in the crystal packing. Together with water molecules in the active site, these structural insights should facilitate drug discovery.
Collapse
Affiliation(s)
- Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tetsuko Nakaniwa
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Sekiguchi
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuri Sogabe
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Sakurai
- Department of Pharmaceutical Sciences, Kinki Univeristy, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shinya Nakamura
- Department of Pharmaceutical Sciences, Kinki Univeristy, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Isao Nakanishi
- Department of Pharmaceutical Sciences, Kinki Univeristy, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
33
|
Xia Z, Jiang K, Liu T, Zheng H, Liu X, Zheng X. The protective effect of Cold-inducible RNA-binding protein (CIRP) on testicular torsion/detorsion: an experimental study in mice. J Pediatr Surg 2013; 48:2140-7. [PMID: 24094970 DOI: 10.1016/j.jpedsurg.2013.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the expression of Cold-inducible RNA-binding protein (CIRP) in torsion/detorsion of the testes in different phases and demonstrate the protective effect of CIRP on testicular injury after torsion/detorsion (T/D) in an experimental mouse model. METHODS Twenty-four male BALB/c mice were divided randomly into 8 groups: normal control group (N), sham-operated group (S), torsion 2 h group (T2h), torsion/detorsion 12 h group (T/D12h), and T/D24h, T/D48h, T/D72h, and T/D96h groups. The testes were examined for the expression levels of CIRP. Another 32 male BALB/c mice were divided randomly in to 4 groups: normal control group (N), T/D group, T/D+pcDNA3.1 group, and T/D + pcDNA3.1-CIRP group. The plasmids were transfected into testes with in vivo-jetPEI. After 3 days, morphological changes, mean seminiferous tubule diameter (MSTD), and the number of the germ cell layers were observed. Superoxide dismutase (SOD) activity, the levels of malondialdehyde (MDA), and Bcl-2/Bax ratios were studied in the different groups. RESULTS Compared with the N and S groups, the expression of CIRP in the T2h group was down-regulated. In T/D groups, the levels of CIRP were reduced in a time dependent manner. Compared to T/D and T/D+pcDNA3.1 group, the MSTD, number of the germ cell layers, SOD activity, and Bcl-2/Bax ratio increased in T/D + pcDNA3.1-CIRP group, while the level of MDA decreased. CONCLUSIONS The results of our study have shown that down-regulated CIRP is involved in testicular injury after testicular torsion/detorsion. Up-regulation of the expression of CIRP may reduce the damage caused by torsion/detorsion, possibly by preventing germ cell oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhiping Xia
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P.R. China
| | | | | | | | | | | |
Collapse
|
34
|
Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BKH, Ahn KS, Sethi G. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 2013; 341:139-49. [PMID: 23962559 DOI: 10.1016/j.canlet.2013.08.023] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal, leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer. This review summarizes reported anti-inflammatory and anti-cancer effects of emodin, and re-emphasizes its potential therapeutic role in the treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Deepti Shrimali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | |
Collapse
|
35
|
The Role of Protein Kinase CK2 in Cyclosporine-Induced Nephropathy in Rats. Transplant Proc 2013; 45:756-62. [DOI: 10.1016/j.transproceed.2012.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/13/2012] [Indexed: 11/24/2022]
|
36
|
Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol 2013; 6:136-45. [PMID: 22763408 PMCID: PMC3517934 DOI: 10.1038/mi.2012.57] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The molecular mechanisms that restore intestinal epithelial homeostasis during colitis are incompletely understood. Here, we report that during intestinal inflammation, multiple inflammatory cytokines promote the activity of a master regulator of cell proliferation and apoptosis, serine/threonine kinase CK2. Enhanced mucosal CK2 protein expression and activity were observed in animal models of chronic colitis, particularly within intestinal epithelial cells (IECs). The in vitro treatment of intestinal epithelial cell lines with cytokines resulted in increased CK2 expression and nuclear translocation of its catalytic α subunit. Similarly, nuclear translocation of CK2α was a prominent feature observed in colonic crypts from individuals with ulcerative colitis and Crohn's disease. Further in vitro studies revealed that CK2 activity promotes epithelial restitution, and protects normal IECs from cytokine-induced apoptosis. These observations identify CK2 as a key regulator of homeostatic properties of the intestinal epithelium that serves to promote wound healing, in part through inhibition of apoptosis under conditions of inflammation.
Collapse
|
37
|
Discovery and structure–activity relationship of 2,6-disubstituted pyrazines, potent and selective inhibitors of protein kinase CK2. Bioorg Med Chem Lett 2012; 22:4358-61. [DOI: 10.1016/j.bmcl.2012.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/17/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022]
|
38
|
Zhu Q, Wang Z, Xia M, Li PL, Zhang F, Li N. Overexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats. Biochim Biophys Acta Mol Basis Dis 2012; 1822:936-41. [PMID: 22349312 DOI: 10.1016/j.bbadis.2012.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia inducible factor (HIF)-1α-mediated gene activation in the renal medulla in response to high salt intake plays an important role in the control of salt sensitivity of blood pressure. High salt-induced activation of HIF-1α in the renal medulla is blunted in Dahl S rats. The present study determined whether the impairment of the renal medullary HIF-1α pathway was responsible for salt sensitive hypertension in Dahl S rats. Renal medullary HIF-1α levels were induced by either transfection of HIF-1α expression plasmid or chronic infusion of CoCl₂ into the renal medulla, which was accompanied by increased expressions of anti-hypertensive genes, cyclooxygenase-2 and heme oxygenase-1. Overexpression of HIF-1α transgenes in the renal medulla enhanced the pressure natriuresis, promoted the sodium excretion and reduced sodium retention after salt overload. As a result, hypertension induced by 2-week high salt was significantly attenuated in rats treated with HIF-1α plasmid or CoCl₂. These results suggest that an abnormal HIF-1α in the renal medulla may represent a novel mechanism mediating salt-sensitive hypertension in Dahl S rats and that induction of HIF-1α levels in the renal medulla could be a therapeutic approach for the treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richnond VA 23298, USA
| | | | | | | | | | | |
Collapse
|
39
|
Moucadel V, Prudent R, Sautel CF, Teillet F, Barette C, Lafanechere L, Receveur-Brechot V, Cochet C. Antitumoral activity of allosteric inhibitors of protein kinase CK2. Oncotarget 2011; 2:997-1010. [PMID: 22184283 PMCID: PMC3282105 DOI: 10.18632/oncotarget.361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Due to its physiological role into promoting cell survival and its dysregulation in most cancer cells, protein kinase CK2 is a relevant physiopathological target for development of chemical inhibitors. We report the discovery of azonaphthalene derivatives, as a new family of highly specific CK2 inhibitors. First, we demonstrated that CK2 inhibition (IC50= 0.4 µM) was highly specific, reversible and non ATP-competitive. Small Angle X-ray Scattering experiments showed that this inhibition was due to large conformational change of CK2α upon binding of these inhibitors. We showed that several compounds of the family were cell-potent CK2 inhibitors promoting cell cycle arrest of human glioblastoma U373 cells. Finally, in vitro and in vivo assays showed that these compounds could decrease U373 cell tumor mass by 83 % emphasizing their efficacy against these apoptosis-resistant tumors. In contrast, Azonaphthalene derivatives inactive on CK2 activity showed no effect in colony formation and tumor regression assays. These findings illustrate the emergence of nonclassical CK2 inhibitors and provide exciting opportunities for the development of novel allosteric CK2 inhibitors. BACKGROUND CK2 is an emerging therapeutic target and ATP-competitive inhibitors have been identified. CK2 is endowed with specific structural features providing alternative strategies for inhibition. RESULTS Azonaphthalene compounds are allosteric CK2 inhibitors showing antitumor activity. CONCLUSION CK2 may be targeted allosterically. SIGNIFICANCE These inhibitors provide a foundation for a new paradigm for specific CK2 inhibition.
Collapse
Affiliation(s)
- Virginie Moucadel
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | - Renaud Prudent
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | - Céline F. Sautel
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | - Florence Teillet
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | | | | | | | - Claude Cochet
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| |
Collapse
|
40
|
Nishioka J, Iwahara C, Kawasaki M, Yoshizaki F, Nakayama H, Takamori K, Ogawa H, Iwabuchi K. Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflamm Res 2011; 61:69-78. [PMID: 22005928 DOI: 10.1007/s00011-011-0390-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 10/02/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVE AND DESIGN To investigate whether di-(2-ethylhexyl) phthalate (DEHP) affects the production of inflammatory cytokines by human macrophages. MATERIALS AND METHODS Differentiated macrophage-like THP-1 cells were exposed to 200 μM DEHP for 3 h, followed by incubation in the presence or absence of opsonized zymosan A, and the concentrations of TNF-α, IL-1β, IL-8, and IL-6 in the culture media were determined by ELISA. DNA microarray and quantitative real-time RT-PCR analyses were performed to identify genes that showed changes in expression in response to DEHP. RESULTS DEHP treatment increased the concentrations of TNF-α, IL-1β, IL-8, and IL-6 in the media, regardless of whether the cells phagocytosed zymosan. DNA microarray analysis showed that DEHP increased the levels of expression of IL-8, CXCL1, CXCL2, CXCL3, CXCL6, CCL3, MMP3, MMP10, MMP14, and CSF2 mRNA, and real-time RT-PCR showed that DEHP significantly enhanced the levels of expression of IL-8, CXCL1, CXCL2, CXCL3, CXCL6, CCL3, MMP10, CSF2, TNF-α, IL-1β, and IL-6 mRNA in THP-1 cells. DEHP significantly induced translocation of p65 NF-κB into the nucleus. CONCLUSION DEHP enhances the production of inflammatory cytokines and chemokines by macrophages, and exacerbates their inflammatory response.
Collapse
Affiliation(s)
- Junko Nishioka
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu-shi, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cozza G, Gianoncelli A, Bonvini P, Zorzi E, Pasquale R, Rosolen A, Pinna LA, Meggio F, Zagotto G, Moro S. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: design of potent protein kinase CK2 inhibitors. ChemMedChem 2011; 6:2273-86. [PMID: 21972104 DOI: 10.1002/cmdc.201100338] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Indexed: 11/12/2022]
Abstract
Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase; its abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other relevant diseases. Previously, using different in silico screening approaches, two potent and selective CK2 inhibitors were identified by our group: ellagic acid, a naturally occurring tannic acid derivative (K(i)=20 nM) and 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC, K(i)=60 nM). Comparing the crystallographic binding modes of both ellagic acid and DBC, an X-ray structure-driven merging approach was taken to design novel CK2 inhibitors with improved target affinity. A urolithin moiety is proposed as a possible bridging scaffold between the two known CK2 inhibitors, ellagic acid and DBC. Optimization of urolithin A as the bridging moiety led to the identification of 4-bromo-3,8-dihydroxy-benzo[c]chromen-6-one as a novel, potent and selective CK2 inhibitor, which shows a K(i) value of 7 nM against the protein kinase, representing a significant improvement in affinity for the target compared with the two parent fragments.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biological Chemistry, University of Padova, Viale Giuseppe Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol Cell Biochem 2011; 356:107-15. [DOI: 10.1007/s11010-011-0945-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/25/2022]
|
43
|
Kinoshita T, Sekiguchi Y, Fukada H, Nakaniwa T, Tada T, Nakamura S, Kitaura K, Ohno H, Suzuki Y, Hirasawa A, Nakanishi I, Tsujimoto G. A detailed thermodynamic profile of cyclopentyl and isopropyl derivatives binding to CK2 kinase. Mol Cell Biochem 2011; 356:97-105. [PMID: 21735094 DOI: 10.1007/s11010-011-0960-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 06/24/2011] [Indexed: 12/12/2022]
Abstract
The detailed understanding of the molecular features of a ligand binding to a target protein, facilitates the successful design of potent and selective inhibitors. We present a case study of ATP-competitive kinase inhibitors that include a pyradine moiety. These compounds have similar chemical structure, except for distinct terminal hydrophobic cyclopentyl or isopropyl groups, and block kinase activity of casein kinase 2 subunit α (CK2α), which is a target for several diseases, such as cancer and glomerulonephritis. Although these compounds display similar inhibitory potency against CK2α, the crystal structures reveal that the cyclopentyl derivative gains more favorable interactions compared with the isopropyl derivative, because of the additional ethylene moiety. The structural observations and biological data are consistent with the thermodynamic profiles of these inhibitors in binding to CK2α, revealing that the enthalpic advantage of the cyclopentyl derivative is accompanied with a lower entropic loss. Computational analyses indicated that the relative enthalpic gain of the cyclopentyl derivative arises from an enhancement of a wide range of van der Waals interactions from the whole complex. Conversely, the relative entropy loss of the cyclopentyl derivative arises from a decrease in the molecular fluctuation and higher conformational restriction in the active site of CK2α. These structural insights, in combination with thermodynamic and computational observations, should be helpful in developing potent and selective CK2α inhibitors.
Collapse
Affiliation(s)
- Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Golub AG, Bdzhola VG, Briukhovetska NV, Balanda AO, Kukharenko OP, Kotey IM, Ostrynska OV, Yarmoluk SM. Synthesis and biological evaluation of substituted (thieno[2,3-d]pyrimidin-4-ylthio)carboxylic acids as inhibitors of human protein kinase CK2. Eur J Med Chem 2011; 46:870-6. [DOI: 10.1016/j.ejmech.2010.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 11/30/2022]
|
45
|
Oshida K, Hirakata M, Maeda A, Miyoshi T, Miyamoto Y. Toxicological effect of emodin in mouse testicular gene expression profile. J Appl Toxicol 2011; 31:790-800. [PMID: 21319176 DOI: 10.1002/jat.1637] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 11/08/2022]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a herbal medicine extracted from the rhizomes of Rheum palmatum, and is known as an inhibitor of casein kinase II (CK2). The CK2α' knockout mice are known to be male-infertile; however, there have been no reports on the toxicity of emodin in male reproductive organs/tissues. To evaluate the toxicological effects of emodin on differential gene expression profiles of the testis as compared with acrylamide, mice were orally administered emodin and acrylamide for 5 days at a dose of 1000 and 50 mg kg(-1) per day, respectively, and euthanized 24 h after the final administration. Both chemicals induced hypospermatogenesis, eosinophilic change and apoptosis of germ cell. A DNA microarray analysis showed that the IGF-1 receptor signaling was most closely related to the above testicular toxicity induced by emodin, and the RhoA regulation, TGF/WNT and cytoskeletal remodeling, TNFR1 signaling and adenosine A2A receptor signaling were commonly associated with the two chemicals. We selected 36 genes associated with CK2, apoptosis and spermatogenesis and determined their expression by quantitative reverse transcription-polymerase chain reaction (qPCR). Both chemicals perturbed the expression of genes associated with CK2. Genes related to spermatogenesis were also affected, as evidenced by hypospermatogenesis, and eosinophilic change and apoptosis of germ cell. The results suggest that emodin causes testicular toxicity, including apoptosis with related the IGF-1 receptor signaling pathway, and the two chemicals commonly affect CK2, spermatogenesis and sperm motility via four pathways, such as TNFR1 signaling.
Collapse
Affiliation(s)
- Keiyu Oshida
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa, 248-8555, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
CK2 is a pleiotropic, ubiquitous, and constitutively active protein kinase (PK), with both cytosolic and nuclear localization in most mammalian cells. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. CK2 catalyzes the phosphorylation of more than 300 substrates characterized by multiple acidic residues surrounding the phosphor-acceptor amino acid, and, consequently, it plays a key role in several physiological and pathological processes. But how can one kinase orchestrate all these tasks faithfully? How is it possible that one kinase can, despite all pleiotropic characteristics of PKs in general, be involved in so many different biochemical events? Is CK2 a druggable target? Several questions are still to be clearly answered, and this review is an occasion for a fruitful discussion.
Collapse
Affiliation(s)
- Giorgio Cozza
- Molecular Modeling Section, Dipartimento di Scienze Farmaceutiche, Università di Padova, via Marzolo 5, Padova, Italy
| | | | | |
Collapse
|
47
|
Nishihara K, Masuda S, Nakagawa S, Yonezawa A, Ichimura T, Bonventre JV, Inui KI. Impact of Cyclin B2 and Cell division cycle 2 on tubular hyperplasia in progressive chronic renal failure rats. Am J Physiol Renal Physiol 2010; 298:F923-34. [PMID: 20071461 DOI: 10.1152/ajprenal.00567.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the specific molecular events of progressive tubular damage in chronic renal failure (CRF), we conducted microarray analyses using isolated proximal tubules from subtotally nephrectomized (Nx) rats as a model of CRF. Our results clearly demonstrated time-dependent changes in gene expression profiles localized to proximal tubules. The expression of mitosis-specific genes Cyclin B2 and Cell division cycle 2 (Cdc2) was significantly and selectively increased in the proximal tubules during the compensated period but decreased to basal level in the end-stage period. Administration of everolimus, a potent inhibitor of mammalian target of rapamycin, markedly reduced compensatory hypertrophy and hyperplasia of epithelial cells, which was accompanied by complete abolishment of the expression of Cyclin B2 and Cdc2 enhancement; renal function was then severely decreased. Treatment with the Cdc2 inhibitor 2-cyanoethyl alsterpaullone clearly decreased epithelial cell hyperplasia, based on staining of phosphorylated histone H3 and Ki-67, while hypertrophy was not inhibited. In conclusion, we have demonstrated roles of Cyclin B2 and Cdc2 in the epithelial hyperplasia in response to Nx. These results advance the knowledge of the contribution of cell cycle regulators, especially M phase, in pathophysiology of tubular restoration and/or degeneration, and these two molecules are suggested to be a marker for the proliferation of proximal tubular cells in CRF.
Collapse
Affiliation(s)
- Kumiko Nishihara
- Department of Pharmacy, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Ali S, Singh NN, Yildirim H, Ramji DP. Requirement for nuclear factor kappa B signalling in the interleukin-1-induced expression of the CCAAT/enhancer binding protein-delta gene in hepatocytes. Int J Biochem Cell Biol 2009; 42:113-9. [PMID: 19800021 PMCID: PMC2827769 DOI: 10.1016/j.biocel.2009.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 11/18/2022]
Abstract
Elevated circulating levels of acute phase proteins (APP) are associated with inflammation and inflammatory disorders such as cardiovascular disease. APP are mainly synthesised by hepatocytes and their transcription is induced by pro-inflammatory cytokines such as interleukin-1 (IL-1). The molecular mechanisms underlying the IL-1-induced expression of key transcription factors implicated in the regulation of APP are poorly understood. We have investigated this aspect using the CCAAT/enhancer binding protein-delta (C/EBPdelta) as a model gene. IL-1 induced the expression of C/EBPdelta mRNA and protein in the human hepatoma Hep3B cell line, a widely employed model system for studies on cytokine signalling in relation to the expression of APP. The IL-1-mediated induction of C/EBPdelta expression was attenuated in the presence of pharmacological inhibitors against c-Jun N-terminal kinase (JNK) (curcumin and SP600125), casein kinase 2 (CK2) (apigenin) and nuclear factor-kappaB (NF-kappaB) (NF-kappaB activation inhibitor). RNA interference assays showed significant attenuation of the IL-1-induced expression of C/EBPdelta following knockdown of the p50 and p65 subunits of NF-kappaB. IL-1 induced NF-kappaB DNA binding and activation by this transcription factor and this was attenuated by curcumin and apigenin. Taken together, these results suggest a potentially crucial role for NF-kappaB in the IL-1-induced expression of C/EBPdelta, and thereby downstream APP genes regulated by this transcription factor.
Collapse
Affiliation(s)
| | | | | | - Dipak P. Ramji
- Corresponding author. Tel.: +44 029 20876753; fax: +44 029 20876753.
| |
Collapse
|
49
|
Sekiguchi Y, Nakaniwa T, Kinoshita T, Nakanishi I, Kitaura K, Hirasawa A, Tsujimoto G, Tada T. Structural insight into human CK2alpha in complex with the potent inhibitor ellagic acid. Bioorg Med Chem Lett 2009; 19:2920-3. [PMID: 19414254 DOI: 10.1016/j.bmcl.2009.04.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
We determined the 2.35-A crystal structure of a human CK2 catalytic subunit (referred to as CK2alpha complexed with the ATP-competitive, potent CK2 inhibitor ellagic acid. The inhibitor binds to CK2alpha with a novel binding mode, including water-mediated hydrogen bonds. This structural information may support discovery of potent CK2 inhibitors.
Collapse
Affiliation(s)
- Yusuke Sekiguchi
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakaniwa T, Kinoshita T, Sekiguchi Y, Tada T, Nakanishi I, Kitaura K, Suzuki Y, Ohno H, Hirasawa A, Tsujimoto G. Structure of human protein kinase CK2 alpha 2 with a potent indazole-derivative inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:75-9. [PMID: 19193990 PMCID: PMC2635861 DOI: 10.1107/s1744309108043194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/18/2008] [Indexed: 04/24/2023]
Abstract
Casein kinase 2 (CK2) is a serine/threonine kinase that functions as a heterotetramer composed of two catalytic subunits (CK2alpha1 or CK2alpha2) and two regulatory subunits (CK2beta). The two isozymes CK2alpha1 and CK2alpha2 play distinguishable roles in healthy subjects and in patients with diseases such as cancer, respectively. In order to develop novel CK2alpha1-selective inhibitors, the crystal structure of human CK2alpha2 (hCK2alpha2) complexed with a potent CK2alpha inhibitor which binds to the active site of hCK2alpha2 was determined and compared with that of human CK2alpha1. While the two isozymes exhibited a high similarity with regard to the active site, the largest structural difference between the isoforms occurred in the beta4-beta5 loop responsible for the CK2alpha-CK2beta interface. The top of the N-terminal segment interacted with the beta4-beta5 loop via a hydrogen bond in hCK2alpha2 but not in hCK2alpha1. Thus, the CK2alpha-CK2beta interface is a likely target candidate for the production of selective CK2alpha1 inhibitors.
Collapse
Affiliation(s)
- Tetsuko Nakaniwa
- Graduate School of Sciences, Osaka Prefecture University, Osaka 599-8530, Japan
| | - Takayoshi Kinoshita
- Graduate School of Sciences, Osaka Prefecture University, Osaka 599-8530, Japan
| | - Yusuke Sekiguchi
- Graduate School of Sciences, Osaka Prefecture University, Osaka 599-8530, Japan
| | - Toshiji Tada
- Graduate School of Sciences, Osaka Prefecture University, Osaka 599-8530, Japan
| | - Isao Nakanishi
- Department of Pharmaceutical Sciences, Kinki University, Osaka 577-8502, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuo Kitaura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Suzuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Gozoh Tsujimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|