1
|
Wu J, Bell OH, Copland DA, Young A, Pooley JR, Maswood R, Evans RS, Khaw PT, Ali RR, Dick AD, Chu CJ. Gene Therapy for Glaucoma by Ciliary Body Aquaporin 1 Disruption Using CRISPR-Cas9. Mol Ther 2020; 28:820-829. [PMID: 31981492 PMCID: PMC7054720 DOI: 10.1016/j.ymthe.2019.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a common cause of blindness, yet current therapeutic options are imperfect. Clinical trials have invariably shown that reduction in intraocular pressure (IOP) regardless of disease subtype prevents visual loss. Reducing ciliary body aqueous humor production can lower IOP, and the adeno-associated virus ShH10 serotype was identified as able to transduce mouse ciliary body epithelium following intravitreal injection. Using ShH10 to deliver a single vector CRISPR-Cas9 system disrupting Aquaporin 1 resulted in reduced IOP in treated eyes (10.4 ± 2.4 mmHg) compared with control (13.2 ± 2.0 mmHg) or non-injected eyes (13.1 ± 2.8 mmHg; p < 0.001; n = 12). Editing in the aquaporin 1 gene could be detected in ciliary body, and no off-target increases in corneal or retinal thickness were identified. In experimental mouse models of corticosteroid and microbead-induced ocular hypertension, IOP could be reduced to prevent ganglion cell loss (32 ± 4 /mm2) compared with untreated eyes (25 ± 5/mm2; p < 0.01). ShH10 could transduce human ciliary body from post-mortem donor eyes in ex vivo culture with indel formation detectable in the Aquaporin 1 locus. Clinical translation of this approach to patients with glaucoma may permit long-term reduction of IOP following a single injection.
Collapse
Affiliation(s)
- Jiahui Wu
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Oliver H Bell
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Alison Young
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - John R Pooley
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Ryea Maswood
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachel S Evans
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Peng Tee Khaw
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Andrew D Dick
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK; UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Colin J Chu
- Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
2
|
Rivera MA, Fahey TD. Association Between aquaporin-1 and Endurance Performance: A Systematic Review. SPORTS MEDICINE-OPEN 2019; 5:40. [PMID: 31486928 PMCID: PMC6728102 DOI: 10.1186/s40798-019-0213-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
Background There is abundant and mounting information related to the molecular and biological structure and function of the Aquaporin-1 (AQP1) gene and the AQP1-Aquaporin channel. Regulation of water flow across cell membranes is essential for supporting inter- and intracellular fluid balance, which is critical for health and exercise performance. The transmembrane water channel AQP1 is important for cardiorespiratory endurance (CE) because it influences fluid transfers in erythrocytes, endothelial, and pulmonary cells and is vital for transport of ammonium, bicarbonate, carbon dioxide, glycerol, nitric oxide, potassium ion, water, and trans-epithelial and renal water. Very recent publications suggest the association between a DNA sequence variant, rs1049305 (C > G), in the 3′-untranslated region of the AQP1 gene and CE performance. Other reports indicate further significant associations between AQP1 channel and CE phenotypes. The purposes of this systematic review were to examine the extent of the associations between the AQP1 rs1049305 genotype and CE exercise performance and body fluid loss in long-distance runners and AQP1 channel associations with other CE phenotypes. Methods Data sources: A comprehensive review was conducted using PubMed, EMBASE, CINAHL, and Cochrane electronic databases. The search ranged from January 1, 1988, to December 31, 2018. Studies reported in English, French, and Spanish were considered. Eligibility criteria: The criteria for inclusion in the review were (a) case-control study; (b) unequivocal definition of cases and controls; (c) CE was defined as performance in endurance events, laboratory tests, and/or maximal oxygen consumption; (d) exclusion criteria of known causes; (e) genotyping performed by PCR or sequencing; (f) genotype frequencies reported; and (g) no deviation of genotype frequencies from Hardy-Weinberg equilibrium in the control group. Study appraisal: The systematic review included studies examining the AQP1 gene and AQP1 channel structure and function, associations between the AQP1 gene sequence variant rs1049305 (C > G) and CE performance, body fluid loss in long-distance runners, and other studies reporting on the AQP1 gene and channel CE phenotype associations. Synthesis methods: For each selected study, the following data were extracted: authors, year of publication, sample size and number of cases and controls, CE definition, exclusion criteria, inclusion criteria for cases and controls, methods used for genotyping, genotype, allele frequencies and HWE for genotype frequencies in cases and control groups, and method of AQP1 gene and AQP1 channel analysis. Results The initial databases search found 172 pertinent studies. Of those, 46 studies were utilized in the final synthesis of the systematic review. The most relevant findings were (a) the identification of an independent replication of the association between AQP1 gene sequence variant rs1049305 (C > G) and CE performance; (b) the association of the rs1049305 C-allele with faster CE running performance; (c) in knockout model, using a linear regression analysis of distance run as a function of Aqp1 status (Aqp1-null vs. wild-type mice) and conditions of hypoxia (ambient [O2] = 16%), normoxia (21%), and hyperoxia (40%) indicated that the Aqp1 knockout ran less distance than the wild-type mice (p < 0.001); (d) in vitro, a reduced AQP1 expression was associated with the presence of the rs1049305 G-allele; (e) AQP1 null humans led normal lives and were entirely unaware of any physical limitations. However, they could not support fluid homeostasis when exposed to chronic fluid overload. The limited number of studies with “adequate sample sizes” in various racial and ethnic groups precluding to perform proper in-depth statistical analysis. Conclusions The AQP1 gene and AQP1 channel seems to support homeostatic mechanisms, yet to be totally understood, that are auxiliary in achieving an advantage during endurance exercise. AQP1 functions are vital during exercise and have a profound influence on endurance running performance. AQP1s are underappreciated structures that play vital roles in cellular homeostasis at rest and during CE endurance running exercise. The outcome of the present systematic review provide support to the statement of hypotheses and further research endeavors on the likely influence of AQP1 gene and AQP1 channel on CE performance. Registration: The protocol is not registered.
Collapse
Affiliation(s)
- Miguel A Rivera
- Department of Physical Medicine, Rehabilitation & Sports Medicine, School of Medicine, University of Puerto Rico, Main Building Office A204, San Juan, PR, 00936, USA.
| | - Thomas D Fahey
- Department of Kinesiology, California State University, Chico, 95929-0330, CA, USA
| |
Collapse
|
3
|
Dingwell DA, Brown LS, Ladizhansky V. Structure of the Functionally Important Extracellular Loop C of Human Aquaporin 1 Obtained by Solid-State NMR under Nearly Physiological Conditions. J Phys Chem B 2019; 123:7700-7710. [DOI: 10.1021/acs.jpcb.9b06430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dylan Archer Dingwell
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Lussier Y, Fürst O, Fortea E, Leclerc M, Priolo D, Moeller L, Bichet DG, Blunck R, D'Avanzo N. Disease-linked mutations alter the stoichiometries of HCN-KCNE2 complexes. Sci Rep 2019; 9:9113. [PMID: 31235733 PMCID: PMC6591248 DOI: 10.1038/s41598-019-45592-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
The four hyperpolarization-activated cylic-nucleotide gated (HCN) channel isoforms and their auxiliary subunit KCNE2 are important in the regulation of peripheral and central neuronal firing and the heartbeat. Disruption of their normal function has been implicated in cardiac arrhythmias, peripheral pain, and epilepsy. However, molecular details of the HCN-KCNE2 complexes are unknown. Using single-molecule subunit counting, we determined that the number of KCNE2 subunits in complex with the pore-forming subunits of human HCN channels differs with each HCN isoform and is dynamic with respect to concentration. These interactions can be altered by KCNE2 gene-variants with functional implications. The results provide an additional consideration necessary to understand heart rhythm, pain, and epileptic disorders.
Collapse
Affiliation(s)
- Yoann Lussier
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Oliver Fürst
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Eva Fortea
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Marc Leclerc
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Dimitri Priolo
- Department of Physics, Université de Montréal, Montréal, Canada
| | - Lena Moeller
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada
| | - Daniel G Bichet
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Rikard Blunck
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada.,Department of Physics, Université de Montréal, Montréal, Canada
| | - Nazzareno D'Avanzo
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
5
|
Liu D, Wang Y, Li L, Zhao H, Li L, Liu Y, Jiang H, Li X, Zhang R. Celecoxib Protects Hyperoxia-Induced Lung Injury via NF-κB and AQP1. Front Pediatr 2019; 7:228. [PMID: 31231624 PMCID: PMC6568051 DOI: 10.3389/fped.2019.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: There is an increasing incidence of bronchopulmonary dysplasia (BDP) in preterm infants in China, which is the key issue affecting their survival rate and life quality. This study was performed to better understand the mechanism of protective effect of celecoxib on hyperoxia induced injury. Methods: Hyperoxia BPD model was established using newborn Sprague-Dawley (SD) rats exposed to high O2 level (85%). Celecoxib treatment was also conducted. Histology of lung tissue samples were analyzed. Functional studies were systematically performed using the lung tissues and A549 cells. Results: Hyperoxia disrupted lung development in SD rats. Celecoxib alleviated the damaged lung development. NF-κB and Aquaporin (AQP) 1 were identified as the pathways in the hyperoxia-induced lung injury. We have shown that hyperoxia activated NF-κB pathway through increased nucleus translocation and repressed AQP1 expression. On the contrary, celecoxib inhibited NF-κB phosphorylation and nucleus translocation and increased AQP1 expression through inhibiting COX2 activity. Additionally, celecoxib also rescued apoptosis induced by hyperoxia. Conclusion: Our study identified NF-κB and AQP1 as the pathways in the hyperoxia-induced lung injury in the hyperoxia BPD model SD rats and it provided a better understanding of the protective effect of celecoxib. It suggests NF-κB and AQP1 may be as potential targets for treating newborns with BPD.
Collapse
Affiliation(s)
- Dongyun Liu
- Neonatal Intensive Care Unit, The Affiliated Hospital of QingDao University, Qingdao, China
| | - Yuguang Wang
- Pediatric Department, Liaocheng City People's Hospital, Liaocheng, China
| | - Lili Li
- Neonatal Intensive Care Unit, The Affiliated Hospital of QingDao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of QingDao University, Qingdao, China
| | - Liangliang Li
- Neonatal Intensive Care Unit, The Affiliated Hospital of QingDao University, Qingdao, China
| | - Yan Liu
- Neonatal Intensive Care Unit, The Affiliated Hospital of QingDao University, Qingdao, China
| | - Hong Jiang
- Neonatal Intensive Care Unit, The Affiliated Hospital of QingDao University, Qingdao, China
| | - Xianghong Li
- Neonatal Intensive Care Unit, The Affiliated Hospital of QingDao University, Qingdao, China
| | - Rui Zhang
- Neonatal Intensive Care Unit, The Affiliated Hospital of QingDao University, Qingdao, China
| |
Collapse
|
6
|
Mitra AK. Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age. Acta Crystallogr F Struct Biol Commun 2019; 75:3-11. [PMID: 30605120 PMCID: PMC6317457 DOI: 10.1107/s2053230x18015133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/26/2018] [Indexed: 11/11/2022] Open
Abstract
Structural biology is going through a revolution as a result of transformational advances in the field of cryo-electron microscopy (cryo-EM) driven by the development of direct electron detectors and ultrastable electron microscopes. High-resolution cryo-EM images of isolated biomolecules (single particles) suspended in a thin layer of vitrified buffer are subjected to powerful image-processing algorithms, enabling near-atomic resolution structures to be determined in unprecedented numbers. Prior to these advances, electron crystallography of two-dimensional crystals and helical assemblies of proteins had established the feasibility of atomic resolution structure determination using cryo-EM. Atomic resolution single-particle analysis, without the need for crystals, now promises to resolve problems in structural biology that were intractable just a few years ago.
Collapse
MESH Headings
- Algorithms
- Bibliometrics
- Cryoelectron Microscopy/history
- Cryoelectron Microscopy/instrumentation
- Cryoelectron Microscopy/methods
- Crystallography, X-Ray/history
- Crystallography, X-Ray/instrumentation
- Crystallography, X-Ray/methods
- Equipment Design/history
- History, 20th Century
- History, 21st Century
- Humans
- Image Processing, Computer-Assisted/statistics & numerical data
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Macromolecular Substances/chemistry
- Macromolecular Substances/ultrastructure
- Microscopy, Electron, Transmission/history
- Microscopy, Electron, Transmission/instrumentation
- Microscopy, Electron, Transmission/methods
- Specimen Handling/instrumentation
- Specimen Handling/methods
- Vitrification
Collapse
Affiliation(s)
- Alok K. Mitra
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
7
|
Calvanese L, D'Auria G, Vangone A, Falcigno L, Oliva R. Structural Basis for Mutations of Human Aquaporins Associated to Genetic Diseases. Int J Mol Sci 2018; 19:E1577. [PMID: 29799470 PMCID: PMC6032259 DOI: 10.3390/ijms19061577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) are among the best structural-characterized membrane proteins, fulfilling the role of allowing water flux across cellular membranes. Thus far, 34 single amino acid polymorphisms have been reported in HUMSAVAR for human aquaporins as disease-related. They affect AQP2, AQP5 and AQP8, where they are associated with nephrogenic diabetes insipidus, keratoderma and colorectal cancer, respectively. For half of these mutations, although they are mostly experimentally characterized in their dysfunctional phenotypes, a structural characterization at a molecular level is still missing. In this work, we focus on such mutations and discuss what the structural defects are that they appear to cause. To achieve this aim, we built a 3D molecular model for each mutant and explored the effect of the mutation on all of their structural features. Based on these analyses, we could collect the structural defects of all the pathogenic mutations (here or previously analysed) under few main categories, that we found to nicely correlate with the experimental phenotypes reported for several of the analysed mutants. Some of the structural analyses we present here provide a rationale for previously experimentally observed phenotypes. Furthermore, our comprehensive overview can be used as a reference frame for the interpretation, on a structural basis, of defective phenotypes of other aquaporin pathogenic mutants.
Collapse
MESH Headings
- Amino Acid Sequence
- Aquaporin 2/chemistry
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Aquaporin 5/chemistry
- Aquaporin 5/genetics
- Aquaporin 5/metabolism
- Aquaporins/chemistry
- Aquaporins/genetics
- Aquaporins/metabolism
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Databases, Protein
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/metabolism
- Diabetes Insipidus, Nephrogenic/pathology
- Gene Expression
- Genetic Predisposition to Disease
- Genotype
- Humans
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/metabolism
- Keratoderma, Palmoplantar/pathology
- Models, Molecular
- Mutation
- Phenotype
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
- Department of Pharmacy, University of Naples Federico II, Napoli I-80134, Italy.
- Institute of Biostructures and Bioimaging, CNR, Napoli I-80134, Italy.
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, Napoli I-80134, Italy.
- Department of Pharmacy, University of Naples Federico II, Napoli I-80134, Italy.
- Institute of Biostructures and Bioimaging, CNR, Napoli I-80134, Italy.
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Napoli I-80143, Italy.
| |
Collapse
|
8
|
Kourghi M, De Ieso ML, Nourmohammadi S, Pei JV, Yool AJ. Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011. Front Chem 2018; 6:142. [PMID: 29755973 PMCID: PMC5934433 DOI: 10.3389/fchem.2018.00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 μM) and AqB011 (IC50 14 μM). In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A), and mutants with proline substituted for single residues threonine (T157P), aspartate (D158P), arginine (R159P, R160P), or glycine (G165P) were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 μM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the role of the loop D as a gating domain for AQP1 ion channels, and identify the likely site of interaction of AqB011 in the proximal loop D sequence.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Saeed Nourmohammadi
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Guo H, Wei M, Liu Y, Zhu Y, Xu W, Meng L, Wang N, Shao C, Lu S, Gao F, Cui Z, Wei Z, Zhao F, Chen S. Molecular cloning and expression analysis of the aqp1aa gene in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 2017; 12:e0175033. [PMID: 28380032 PMCID: PMC5381947 DOI: 10.1371/journal.pone.0175033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
Aquaporin 1 (AQP1) is a member of the transmembrane water channel family of proteins with special structural features, and two AQP1 paralogous genes (aqp1aa and aqp1ab) are reported in teleosts. In the present study, the aqp1aa gene of half-smooth tongue sole (Cynoglossus semilaevis) was cloned and characterized. The full-length cDNA of aqp1aa is 1411 bp with a 786 bp open reading frame encoding a 261-amino acid putative protein with a characteristic structure consisting of 6 membrane-spanning α-helical domains and two highly conserved asparagine—proline—alanine motifs. Real-time quantitative PCR revealed that aqp1aa mRNA is expressed predominantly in the testis of males and pseudo-males, while its expression is low in the ovary and lowest in doublesex and mab-3-related transcription factor 1(DMRT1) knock out fish and triploid males. In situ hybridization indicated that aqp1aa mRNA is expressed mainly in the germ cells of males and pseudo-males, especially in spermatozoa and spermatids. These results suggest that the aqp1aa may play a role in spermatogenesis of C. semilaevis.
Collapse
Affiliation(s)
- Hua Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, PR China
| | - Min Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Ying Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
| | - Liang Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
| | - Sheng Lu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
| | - Fengtao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
| | - Zhongkai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, PR China
| | - Zhanfei Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, PR China
| | - Fazhen Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, PR China
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
10
|
Wang S, Ing C, Emami S, Jiang Y, Liang H, Pomès R, Brown LS, Ladizhansky V. Structure and Dynamics of Extracellular Loops in Human Aquaporin-1 from Solid-State NMR and Molecular Dynamics. J Phys Chem B 2016; 120:9887-902. [DOI: 10.1021/acs.jpcb.6b06731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shenlin Wang
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Christopher Ing
- Molecular
Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Sanaz Emami
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
- Biophysics
Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Yunjiang Jiang
- Department
of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Hongjun Liang
- Department
of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Régis Pomès
- Molecular
Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Leonid S. Brown
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
- Biophysics
Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Vladimir Ladizhansky
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
- Biophysics
Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
11
|
Patil RV, Xu S, van Hoek AN, Rusinko A, Feng Z, May J, Hellberg M, Sharif NA, Wax MB, Irigoyen M, Carr G, Brittain T, Brown P, Colbert D, Kumari S, Varadaraj K, Mitra AK. Rapid Identification of Novel Inhibitors of the Human Aquaporin-1 Water Channel. Chem Biol Drug Des 2016; 87:794-805. [PMID: 26685080 DOI: 10.1111/cbdd.12713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 11/28/2015] [Accepted: 12/04/2015] [Indexed: 01/26/2023]
Abstract
Aquaporins (AQPs) are a family of membrane proteins that function as channels facilitating water transport in response to osmotic gradients. These play critical roles in several normal physiological and pathological states and are targets for drug discovery. Selective inhibition of the AQP1 water channel may provide a new approach for the treatment of several disorders including ocular hypertension/glaucoma, congestive heart failure, brain swelling associated with a stroke, corneal and macular edema, pulmonary edema, and otic disorders such as hearing loss and vertigo. We developed a high-throughput assay to screen a library of compounds as potential AQP1 modulators by monitoring the fluorescence dequenching of entrapped calcein in a confluent layer of AQP1-overexpressing CHO cells that were exposed to a hypotonic shock. Promising candidates were tested in a Xenopus oocyte-swelling assay, which confirmed the identification of two lead classes of compounds belonging to aromatic sulfonamides and dihydrobenzofurans with IC50 s in the low micromolar range. These selected compounds directly inhibited water transport in AQP1-enriched stripped erythrocyte ghosts and in proteoliposomes reconstituted with purified AQP1. Validation of these lead compounds, by the three independent assays, establishes a set of attractive AQP1 blockers for developing novel, small-molecule functional modulators of human AQP1.
Collapse
Affiliation(s)
- Rajkumar V Patil
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Shouxi Xu
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Alfred N van Hoek
- Department of Nephrology, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Andrew Rusinko
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Zixia Feng
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Jesse May
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Mark Hellberg
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Najam A Sharif
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Martin B Wax
- Department of Ophthalmology and Visual Sciences, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | | | - Grant Carr
- AMRI Bothell Research Center, Bothell, WA, 98021, USA
| | - Tom Brittain
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Peter Brown
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Damon Colbert
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sindhu Kumari
- Department of Physiology & Biophysics, Health Sciences Center, State University of New York, Stony Brook, NY, 11794, USA
| | - Kulandaiappan Varadaraj
- Department of Physiology & Biophysics, Health Sciences Center, State University of New York, Stony Brook, NY, 11794, USA
| | - Alok K Mitra
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
12
|
Ercius P, Alaidi O, Rames MJ, Ren G. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5638-63. [PMID: 26087941 PMCID: PMC4710474 DOI: 10.1002/adma.201501015] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated.
Collapse
Affiliation(s)
- Peter Ercius
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Osama Alaidi
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Matthew J. Rames
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Gang Ren
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Song Z, Wang L, Liu Y, Xiao W. A novel nonsense mutation in the MIP gene linked to congenital posterior polar cataracts in a Chinese family. PLoS One 2015; 10:e0119296. [PMID: 25803033 PMCID: PMC4372439 DOI: 10.1371/journal.pone.0119296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
Purpose To detect the causative mutation for congenital posterior polar cataracts in a five-generation Chinese family and further explore the potential pathogenesis of this disease. Methods Coding exons, with flanking sequences of five candidate genes, were screened using direct DNA sequencing. The identified mutations were confirmed by restriction fragment length polymorphism (RFLP) analysis. A full-length wild-type or an Y219* mutant aquaporin0 (AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected. Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were performed to determine protein expression levels and sub-cellular localization, respectively. Results We identified a novel nonsense mutation in MIP (c.657 C>G; p.Y219*) (major intrinsic protein gene) that segregates with congenital posterior polar cataract in a Chinese family. This mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected into HEK 293T cells, mRNA expression showed no significant difference between the wild-type and the mutant, while Y219*-AQP0 protein expression was significantly lower than that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane, while the mutated protein was abundant within the cytoplasm of HEK293T cells. However, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high fluorescence in the cytoplasm. Conclusions The novel nonsense mutation in the MIP gene (c.657 C>G) identified in a Chinese family may cause posterior polar cataracts. The dominant negative effect of the mutated protein on the wild-type protein interfered with the trafficking of wild-type protein to the cell membrane and both the mutant and wild-type protein were trapped in the cytoplasm. Consequently, both wild-type and mutant protein lost their function as a water channel on the cell membrane, and may result in a cataract phenotype. Our data also expands the spectrum of known MIP mutations.
Collapse
Affiliation(s)
- Zixun Song
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Lianqing Wang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Yaping Liu
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Wei Xiao
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
- * E-mail:
| |
Collapse
|
14
|
Ricanek P, Lunde LK, Frye SA, Støen M, Nygård S, Morth JP, Rydning A, Vatn MH, Amiry-Moghaddam M, Tønjum T. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin Exp Gastroenterol 2015; 8:49-67. [PMID: 25624769 PMCID: PMC4296881 DOI: 10.2147/ceg.s70119] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn’s disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology.
Collapse
Affiliation(s)
- Petr Ricanek
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Lisa K Lunde
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital and University of Oslo, Norway
| | - Jens P Morth
- Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, Norway ; Institute for Experimental Research, Oslo University Hospital (Ullevaal), Oslo, Norway
| | - Andreas Rydning
- Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Morten H Vatn
- EpiGen Institute, Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway ; Section of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Rames M, Yu Y, Ren G. Optimized negative staining: a high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. J Vis Exp 2014:e51087. [PMID: 25145703 PMCID: PMC4710468 DOI: 10.3791/51087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Collapse
Affiliation(s)
- Matthew Rames
- Lawrence Berkeley National Laboratory, The Molecular Foundry
| | - Yadong Yu
- Lawrence Berkeley National Laboratory, The Molecular Foundry
| | - Gang Ren
- Lawrence Berkeley National Laboratory, The Molecular Foundry;
| |
Collapse
|
16
|
Janosi L, Ceccarelli M. The gating mechanism of the human aquaporin 5 revealed by molecular dynamics simulations. PLoS One 2013; 8:e59897. [PMID: 23565173 PMCID: PMC3614956 DOI: 10.1371/journal.pone.0059897] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/19/2013] [Indexed: 11/29/2022] Open
Abstract
Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins). The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5) shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Physics, University of Cagliari, Cagliari, Italy.
| | | |
Collapse
|
17
|
Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. JOURNAL OF BIOMOLECULAR NMR 2013; 55:147-155. [PMID: 23344971 DOI: 10.1007/s10858-013-9710-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ((13)C/(15)N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.
Collapse
Affiliation(s)
- Sanaz Emami
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
18
|
Zhang L, Tong H, Garewal M, Ren G. Optimized negative-staining electron microscopy for lipoprotein studies. Biochim Biophys Acta Gen Subj 2012; 1830:2150-9. [PMID: 23032862 DOI: 10.1016/j.bbagen.2012.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Negative-staining (NS), a rapid, simple and conventional technique of electron microscopy (EM), has been commonly used to initially study the morphology and structure of proteins for half a century. Certain NS protocols however can cause artifacts, especially for structurally flexible or lipid-related proteins, such as lipoproteins. Lipoproteins were often observed in the form of rouleau as lipoprotein particles appeared to be stacked together by conventional NS protocols. The flexible components of lipoproteins, i.e. lipids and amphipathic apolipoproteins, resulted in the lipoprotein structure being sensitive to the NS sample preparation parameters, such as operational procedures, salt concentrations, and the staining reagents. SCOPE OF REVIEW The most popular NS protocols that have been used to examine lipoprotein morphology and structure were reviewed. MAJOR CONCLUSIONS The comparisons show that an optimized NS (OpNS) protocol can eliminate the rouleau artifacts of lipoproteins, and that the lipoproteins are similar in size and shape as statistically measured from two EM methods, OpNS and cryo-electron microscopy (cryo-EM). OpNS is a high-throughput, high-contrast and high-resolution (near 1nm, but rarely better than 1nm) method which has been used to discover the mechanics of a small protein, 53kDa cholesterol ester transfer protein (CETP), and the structure of an individual particle of a single protein by individual-particle electron tomography (IPET), i.e. a 14Å-resolution IgG antibody three-dimensional map. GENERAL SIGNIFICANCE It is suggested that OpNS can be used as a general protocol to study the structure of proteins, especially highly dynamic proteins with equilibrium-fluctuating structures.
Collapse
Affiliation(s)
- Lei Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | |
Collapse
|
19
|
Zhang L, Ren G. High-Resolution Single-Molecule Structure Revealed by Electron Microscopy and Individual Particle Electron Tomography. JOURNAL OF PHYSICAL CHEMISTRY & BIOPHYSICS 2012; 2:1000e103. [PMID: 37772199 PMCID: PMC10538445 DOI: 10.4172/2161-0398.1000e103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The protein is naturally dynamic and heterogeneous in solution. Protein dynamics involves both equilibrium fluctuations that regulate biological function and other non-equilibrium effects of biological motors, which convert chemical energy to mechanical energy. However, a single, unique structure of protein determined from X-ray crystal and conventional single-particle electron microscopy is insufficient to encompass the dynamic nature of proteins in solution. Structure determination of dynamic and heterogeneous protein is essentially required the determination of each individual particle of protein. Recently, Drs. Gang Ren and Lei Zhan published the first single molecule three-dimensional (3D) EM images of individual proteins ever obtained with enough clarity to determine their structure, an IgG antibody (14 Å resolution) and a 17nm HDL (36 Å resolution). These results depended upon four innovations: i) improved cryo-electron microscopy (cryoEM) sample preparation and Electron microscopy (EM) operation conditions resulted in the successful imaging of a 17 nm HDL particle (120-200kDa) by cryo-electron tomography (cryoET); ii) developed an optimized NS (OpNS) protocol that eliminates the rouleau artifact that has plagued EM research for three decades. This OpNS protocol provides high-contrast single lipoprotein images with similar size (<5%) and shape (<5%) to that seen by cryoEM; iii) developed a high-resolution and high contrast sample preparation protocol, cryo-positive-staining (cryoPS) that allows direct visualization of the secondary structure of a small protein, such as the β-strands in CETP and the helical double belt of apoA-I in spherical HDL; iv) developed a robust tomography reconstruction method, Individual Particle Electron Tomography (IPET) that is a high-resolution, high throughput reconstruction method that, to the best of our knowledge, is the only method for determining an individual protein structure. Remarkably, IPET went against the conventional wisdom that a single protein can NOT be reconstructed by EM and this opens a door for the study of protein dynamics via a particle-by-particle structural comparison.
Collapse
Affiliation(s)
- Lei Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
20
|
Pope CR, Unger VM. Electron crystallography--the waking beauty of structural biology. Curr Opin Struct Biol 2012; 22:514-9. [PMID: 22525160 DOI: 10.1016/j.sbi.2012.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 12/24/2022]
Abstract
Since its debut in the mid 1970s, electron crystallography has been a valuable alternative in the structure determination of biological macromolecules. Its reliance on single-layered or double-layered two-dimensionally ordered arrays and the ability to obtain structural information from small and disordered crystals make this approach particularly useful for the study of membrane proteins in a lipid bilayer environment. Despite its unique advantages, technological hurdles have kept electron crystallography from reaching its full potential. Addressing the issues, recent initiatives developed high-throughput pipelines for crystallization and screening. Adding progress in automating data collection, image analysis and phase extension methods, electron crystallography is poised to raise its profile and may lead the way in exploring the structural biology of macromolecular complexes.
Collapse
Affiliation(s)
- Christopher R Pope
- Department of Molecular Biosciences, Northwestern University, 2205 Campus Drive, Evanston, IL 60208, USA
| | | |
Collapse
|
21
|
Zhang L, Yan F, Zhang S, Lei D, Charles MA, Cavigiolio G, Oda M, Krauss RM, Weisgraber KH, Rye KA, Pownall HJ, Qiu X, Ren G. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat Chem Biol 2012; 8:342-9. [PMID: 22344176 DOI: 10.1038/nchembio.796] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/02/2011] [Indexed: 01/17/2023]
Abstract
Human cholesteryl ester transfer protein (CETP) mediates the net transfer of cholesteryl ester mass from atheroprotective high-density lipoproteins to atherogenic low-density lipoproteins by an unknown mechanism. Delineating this mechanism would be an important step toward the rational design of new CETP inhibitors for treating cardiovascular diseases. Using EM, single-particle image processing and molecular dynamics simulation, we discovered that CETP bridges a ternary complex with its N-terminal β-barrel domain penetrating into high-density lipoproteins and its C-terminal domain interacting with low-density lipoprotein or very-low-density lipoprotein. In our mechanistic model, the CETP lipoprotein-interacting regions, which are highly mobile, form pores that connect to a hydrophobic central cavity, thereby forming a tunnel for transfer of neutral lipids from donor to acceptor lipoproteins. These new insights into CETP transfer provide a molecular basis for analyzing mechanisms for CETP inhibition.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang L, Ren G. IPET and FETR: experimental approach for studying molecular structure dynamics by cryo-electron tomography of a single-molecule structure. PLoS One 2012; 7:e30249. [PMID: 22291925 PMCID: PMC3265479 DOI: 10.1371/journal.pone.0030249] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/14/2011] [Indexed: 02/06/2023] Open
Abstract
The dynamic personalities and structural heterogeneity of proteins are essential for proper functioning. Structural determination of dynamic/heterogeneous proteins is limited by conventional approaches of X-ray and electron microscopy (EM) of single-particle reconstruction that require an average from thousands to millions different molecules. Cryo-electron tomography (cryoET) is an approach to determine three-dimensional (3D) reconstruction of a single and unique biological object such as bacteria and cells, by imaging the object from a series of tilting angles. However, cconventional reconstruction methods use large-size whole-micrographs that are limited by reconstruction resolution (lower than 20 Å), especially for small and low-symmetric molecule (<400 kDa). In this study, we demonstrated the adverse effects from image distortion and the measuring tilt-errors (including tilt-axis and tilt-angle errors) both play a major role in limiting the reconstruction resolution. Therefore, we developed a “focused electron tomography reconstruction” (FETR) algorithm to improve the resolution by decreasing the reconstructing image size so that it contains only a single-instance protein. FETR can tolerate certain levels of image-distortion and measuring tilt-errors, and can also precisely determine the translational parameters via an iterative refinement process that contains a series of automatically generated dynamic filters and masks. To describe this method, a set of simulated cryoET images was employed; to validate this approach, the real experimental images from negative-staining and cryoET were used. Since this approach can obtain the structure of a single-instance molecule/particle, we named it individual-particle electron tomography (IPET) as a new robust strategy/approach that does not require a pre-given initial model, class averaging of multiple molecules or an extended ordered lattice, but can tolerate small tilt-errors for high-resolution single “snapshot” molecule structure determination. Thus, FETR/IPET provides a completely new opportunity for a single-molecule structure determination, and could be used to study the dynamic character and equilibrium fluctuation of macromolecules.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gang Ren
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wisedchaisri G, Gonen T. Fragment-based phase extension for three-dimensional structure determination of membrane proteins by electron crystallography. Structure 2011; 19:976-87. [PMID: 21742264 DOI: 10.1016/j.str.2011.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/18/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
Abstract
In electron crystallography, membrane protein structure is determined from two-dimensional crystals where the protein is embedded in a membrane. Once large and well-ordered 2D crystals are grown, one of the bottlenecks in electron crystallography is the collection of image data to directly provide experimental phases to high resolution. Here, we describe an approach to bypass this bottleneck, eliminating the need for high-resolution imaging. We use the strengths of electron crystallography in rapidly obtaining accurate experimental phase information from low-resolution images and accurate high-resolution amplitude information from electron diffraction. The low-resolution experimental phases were used for the placement of α helix fragments and extended to high resolution using phases from the fragments. Phases were further improved by density modifications followed by fragment expansion and structure refinement against the high-resolution diffraction data. Using this approach, structures of three membrane proteins were determined rapidly and accurately to atomic resolution without high-resolution image data.
Collapse
|
24
|
Characterization of Leishmania donovani aquaporins shows presence of subcellular aquaporins similar to tonoplast intrinsic proteins of plants. PLoS One 2011; 6:e24820. [PMID: 21969862 PMCID: PMC3182166 DOI: 10.1371/journal.pone.0024820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 08/18/2011] [Indexed: 11/19/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, resides in the macrophages of the mammalian host. The aquaporin family of proteins form important components of the parasite-host interface. The parasite-host interface could be a potential target for chemotherapy. Analysis of L. major and L. infantum genomes showed the presence of five aquaporins (AQPs) annotated as AQP9 (230aa), AQP putative (294aa), AQP-like protein (279aa), AQP1 (314aa) and AQP-like protein (596aa). We report here the structural modeling, localization and functional characterization of the AQPs from L. donovani. LdAQP1, LdAQP9, LdAQP2860 and LdAQP2870 have the canonical NPA-NPA motifs, whereas LdAQP putative has a non-canonical NPM-NPA motif. In the carboxyl terminal to the second NPA box of all AQPs except AQP1, a valine/alanine residue was found instead of the arginine. In that respect these four AQPs are similar to tonoplast intrinsic proteins in plants, which are localized to intracellular organelles. Confocal microscopy of L. donovani expressing GFP-tagged AQPs showed an intracellular localization of LdAQP9 and LdAQP2870. Real-time PCR assays showed expression of all aquaporins except LdAQP2860, whose level was undetectable. Three-dimensional homology modeling of the AQPs showed that LdAQP1 structure bears greater topological similarity to the aquaglyceroporin than to aquaporin of E. coli. The pore of LdAQP1 was very different from the rest in shape and size. The cavity of LdAQP2860 was highly irregular and undefined in geometry. For functional characterization, four AQP proteins were heterologously expressed in yeast. In the fps1Δ yeast cells, which lacked the key aquaglyceroporin, LdAQP1 alone displayed an osmosensitive phenotype indicating glycerol transport activity. However, expression of LdAQP1 and LdAQP putative in a yeast gpd1Δ strain, deleted for glycerol production, conferred osmosensitive phenotype indicating water transport activity or aquaporin function. Our analysis for the first time shows the presence of subcellular aquaporins and provides structural and functional characterization of aquaporins in Leishmania donovani.
Collapse
|
25
|
Chiu PL, Kelly DF, Walz T. The use of trehalose in the preparation of specimens for molecular electron microscopy. Micron 2011; 42:762-72. [PMID: 21752659 DOI: 10.1016/j.micron.2011.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/29/2022]
Abstract
Biological specimens have to be prepared for imaging in the electron microscope in a way that preserves their native structure. Two-dimensional (2D) protein crystals to be analyzed by electron crystallography are best preserved by sugar embedding. One of the sugars often used to embed 2D crystals is trehalose, a disaccharide used by many organisms for protection against stress conditions. Sugars such as trehalose can also be added to negative staining solutions used to prepare proteins and macromolecular complexes for structural studies by single-particle electron microscopy (EM). In this review, we describe trehalose and its characteristics that make it so well suited for preparation of EM specimens and we review specimen preparation methods with a focus on the use of trehalose.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Wang H, Downing KH. Specimen preparation for electron diffraction of thin crystals. Micron 2010; 42:132-40. [PMID: 20561794 DOI: 10.1016/j.micron.2010.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/29/2010] [Accepted: 05/05/2010] [Indexed: 11/26/2022]
Abstract
Electron crystallography has become a powerful approach for structural characterization of two-dimensional (2-D) protein crystals. The crystallographic approach provides the simplest route to the type of averaging that is essential for obtaining high resolution structural information from radiation-sensitive samples such as organic molecules. Several atomic or near atomic resolution protein structures have been solved by using cryo-electron crystallography and most of them involved using both image and electron diffraction data. An essential step in either type of work is preparation of specimens suitable for electron microscopy which retain their native state and high degree of order. Methods for preserving samples in a near-native, hydrated state have been developed, with minor variations for different specimens. The major challenge of collecting electron diffraction data particularly at high tilt angle is the blurring of diffraction spots due to imperfect flatness of the crystals. This paper discusses specimen preparation methods for electron crystallographic data collection of 2-D protein crystals with particular emphasis on the factors which affect the flatness of crystals. We also discuss some of the aspects of the data collection protocols which are particular to work with crystals.
Collapse
Affiliation(s)
- Huaibin Wang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Donner Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | | |
Collapse
|
27
|
Zhang L, Song J, Newhouse Y, Zhang S, Weisgraber KH, Ren G. An optimized negative-staining protocol of electron microscopy for apoE4 POPC lipoprotein. J Lipid Res 2009; 51:1228-36. [PMID: 19965615 PMCID: PMC2853450 DOI: 10.1194/jlr.d002493] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein E (apoE), one of the major protein components of lipoproteins in the peripheral and central nervous systems, regulates cholesterol metabolism through its interaction with members of the low density lipoprotein receptor family. One key to understanding apoE function is determining the structure of lipid-bound forms of apoE. Negative-staining (NS) electron microscopy (EM) is an easy and rapid approach for studying the structure and morphology of lipid-bound forms of apoE. However, an artifact of using the conventional NS protocol is that the apoE•phospholipid particles form rouleaux. In this study, we used cryo-electron microscopy (cryo-EM) to examine apoE4•palmitoyl-oleoylphosphatidylcholine (POPC) particles in a frozen-hydrated native state. By comparing the particle sizes and shapes produced by different NS protocols to those produced by cryo-EM, we propose an optimized protocol to examine apoE4•POPC particles. Statistical analysis demonstrated that the particle sizes differ by less than 5% between the optimized protocol and the cryo-EM method, with similar shapes. The high contrast and fine detail of particle images produced using this optimized protocol lend themselves to the structural study of lipid-bound forms of apoE.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | | | |
Collapse
|
28
|
Yukutake Y, Yasui M. Regulation of water permeability through aquaporin-4. Neuroscience 2009; 168:885-91. [PMID: 19850109 DOI: 10.1016/j.neuroscience.2009.10.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/04/2009] [Accepted: 10/13/2009] [Indexed: 11/20/2022]
Abstract
Aquaporin-4 (AQP4) is a predominant water channel protein in mammalian brains that is distributed with the highest density in the perivascular and subpial astrocyte end-feet. AQP4 is a critical component of an integrated water and potassium homeostasis. Expression and regulation of AQP4 have been studied to understand the roles of AQP4 in physiology and several pathological conditions. Indeed, AQP4 has been implicated in several neurological conditions, such as brain edema and seizure. AQP4 is dynamically regulated at different levels: channel gating, subcellular distribution, phosphorylation, protein-protein interactions and orthogonal array formation. In this review, we focus on the short-term regulation of AQP4. Phosphorylation of AQP4 is important; AQP4 is inhibited when Ser180 is phosphorylated and activated when Ser111 is phosphorylated. AQP4 is also regulated by several metal ions. These metal ions inhibit AQP4 by interacting with the Cys178 residue located in the cytoplasmic loop D, suggesting that AQP4 is regulated by intracellular signaling pathways in response to extracellular stimuli. Recently, it was demonstrated that AQP4 may be inhibited by arylsulfonamides, antiepileptic drugs and other related chemical compounds. Structural analysis of AQP4 may guide a drug design for AQP4.
Collapse
Affiliation(s)
- Y Yukutake
- Department of Pharmacology, School of Medicine, Keio University, Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | | |
Collapse
|
29
|
Raunser S, Walz T. Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Annu Rev Biophys 2009; 38:89-105. [PMID: 19416061 DOI: 10.1146/annurev.biophys.050708.133649] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The native environment of integral membrane proteins is a lipid bilayer. The structure of a membrane protein is thus ideally studied in a lipidic environment. In the first part of this review we describe some membrane protein structures that revealed the surrounding lipids and provide a brief overview of the techniques that can be used to study membrane proteins in a lipidic environment. In the second part of this review we focus on electron crystallography of two-dimensional crystals as potentially the most suitable technique for such studies. We describe the individual steps involved in the electron crystallographic determination of a membrane protein structure and discuss current challenges that need to be overcome to transform electron crystallography into a technique that can be routinely used to analyze the structure of membrane proteins embedded in a lipid bilayer.
Collapse
Affiliation(s)
- Stefan Raunser
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| | | |
Collapse
|
30
|
Abstract
Progress in the structure determination of AQPs has led to a deep understanding of water and solute permeation by these small integral membrane proteins. The atomic structures now available have allowed the water permeation and exclusion of protons to be monitored by molecular dynamics simulations, and have provided a framework for assessing the water and solute permeation in great detail by site-directed mutations. In spite of this, further structural and molecular dynamics analyses are required to elucidate the basis for regulation as well as for gas permeation, processes that are still to be deciphered.
Collapse
Affiliation(s)
- Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Reichow SL, Gonen T. Noncanonical binding of calmodulin to aquaporin-0: implications for channel regulation. Structure 2008; 16:1389-98. [PMID: 18786401 DOI: 10.1016/j.str.2008.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/14/2008] [Accepted: 06/10/2008] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of ubiquitous membrane channels that conduct water across cell membranes. AQPs form homotetramers containing four functional and independent water pores. Aquaporin-0 (AQP0) is expressed in the eye lens, where its water permeability is regulated by calmodulin (CaM). Here we use a combination of biochemical methods and NMR spectroscopy to probe the interaction between AQP0 and CaM. We show that CaM binds the AQP0 C-terminal domain in a calcium-dependent manner. We demonstrate that only two CaM molecules bind a single AQP0 tetramer in a noncanonical fashion, suggesting a form of cooperativity between AQP0 monomers. Based on these results, we derive a structural model of the AQP0/CaM complex, which suggests CaM may be inhibitory to channel permeability by capping the vestibules of two monomers within the AQP0 tetramer. Finally, phosphorylation within AQP0's CaM binding domain inhibits the AQP0/CaM interaction, suggesting a temporal regulatory mechanism for complex formation.
Collapse
Affiliation(s)
- Steve L Reichow
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
32
|
Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomes. Biol Cell 2008; 100:355-63. [PMID: 18167118 DOI: 10.1042/bc20070132] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Mercurials inhibit AQPs (aquaporins), and site-directed mutagenesis has identified Cys(189) as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury-insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys(189) of AQP1. Indeed, the osmotic water permeability (P(f)) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His-tagged rAQP4 [corrected] (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+-nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. RESULTS The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped-flow apparatus. Surprisingly, the P(f) of AQP4 proteoliposomes was significantly decreased by 5 microM HgCl2 within 30 s, and this effect was completely reversed by 2-mercaptoethanol. The dose- and time-dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site-directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys(178), which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. CONCLUSIONS Our results suggest that mercury inhibits the P(f) of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.
Collapse
|
33
|
Abstract
This article discusses three largely unrecognized aspects related to fluid movement in ocular tissues; namely, (a) the dynamic changes in water permeability observed in corneal and conjunctival epithelia under anisotonic conditions, (b) the indications that the fluid transport rate exhibited by the ciliary epithelium is insufficient to explain aqueous humor production, and (c) the evidence for fluid movement into and out of the lens during accommodation. We have studied each of these subjects in recent years and present an evaluation of our data within the context of the results of others who have also worked on electrolyte and fluid transport in ocular tissues. We propose that (1) the corneal and conjunctival epithelia, with apical aspects naturally exposed to variable tonicities, are capable of regulating their water permeabilities as part of the cell-volume regulatory process, (2) fluid may directly enter the anterior chamber of the eye across the anterior surface of the iris, thereby representing an additional entry pathway for aqueous humor production, and (3) changes in lens volume occur during accommodation, and such changes are best explained by a net influx and efflux of fluid.
Collapse
Affiliation(s)
- Oscar A Candia
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
34
|
Nyblom M, Oberg F, Lindkvist-Petersson K, Hallgren K, Findlay H, Wikström J, Karlsson A, Hansson O, Booth PJ, Bill RM, Neutze R, Hedfalk K. Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 2007; 56:110-20. [PMID: 17869538 DOI: 10.1016/j.pep.2007.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/02/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.
Collapse
Affiliation(s)
- Maria Nyblom
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hite RK, Raunser S, Walz T. Revival of electron crystallography. Curr Opin Struct Biol 2007; 17:389-95. [PMID: 17723294 PMCID: PMC2040057 DOI: 10.1016/j.sbi.2007.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/13/2007] [Indexed: 11/21/2022]
Abstract
Since the structure determination of bacteriorhodopsin in 1990, much progress has been made in the further development and use of electron crystallography. In this review, we provide a concise overview of the new developments in electron crystallography concerning 2D crystallization, data collection and data processing. Based on electron crystallographic work on bacteriorhodopsin, the acetylcholine receptor and aquaporins, we highlight the unique advantages and future perspectives of electron crystallography for the structural study of membrane proteins. These advantages include the visualization of membrane proteins in their native environment without detergent-induced artifacts, the trapping of different states in a reaction pathway by time-resolved experiments, the study of non-specific protein-lipid interactions and the characterization of the charge state of individual residues in membrane proteins.
Collapse
Affiliation(s)
- Richard K Hite
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Zeng X, Gipson B, Zheng ZY, Renault L, Stahlberg H. Automatic lattice determination for two-dimensional crystal images. J Struct Biol 2007; 160:353-61. [PMID: 17904383 PMCID: PMC2265636 DOI: 10.1016/j.jsb.2007.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/06/2007] [Accepted: 08/13/2007] [Indexed: 11/23/2022]
Abstract
Electron crystallography determines the structure of membrane proteins and other periodic samples by recording either images or diffraction patterns. Computer processing of recorded images requires the determination of the reciprocal lattice parameters in the Fourier transform of the image. We have developed a set of three programs 2dx_peaksearch, 2dx_findlat and 2dx_getlat, which can determine the reciprocal lattice from a Fourier transformation of a 2D crystal image automatically. 2dx_peaksearch determines a list of Fourier peak coordinates from a processed calculated diffraction pattern. These coordinates are evaluated by 2dx_findlat to determine one or more lattices, using a-priori knowledge of the real-space crystal unit cell dimensions, and the sample tilt geometry. If these are unknown, then the program 2dx_getlat can be used to obtain a guess for the unit cell dimensions. These programs are available as part of the 2dx software package for the image processing of 2D crystal images at http://2dx.org.
Collapse
Affiliation(s)
| | | | | | | | - Henning Stahlberg
- *Corresponding author: Henning Stahlberg, Molecular & Cellular Biology, Briggs Hall, College of Biological Sciences, University of California at Davis, 1 Shields Ave., Davis, CA 95616, USA, Tel.: +1 (530) 752 8282 Fax: +1 (530) 752 3085,
| |
Collapse
|
37
|
Hashido M, Kidera A, Ikeguchi M. Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 2007; 93:373-85. [PMID: 17449664 PMCID: PMC1896254 DOI: 10.1529/biophysj.106.101170] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
Single-channel osmotic water permeability (p(f)) is a key quantity for investigating the transport capability of the water channel protein, aquaporin. However, the direct connection between the single scalar quantity p(f) and the channel structure remains unclear. In this study, based on molecular dynamics simulations, we propose a p(f)-matrix method, in which p(f) is decomposed into contributions from each local region of the channel. Diagonal elements of the p(f) matrix are equivalent to the local permeability at each region of the channel, and off-diagonal elements represent correlated motions of water molecules in different regions. Averaging both diagonal and off-diagonal elements of the p(f) matrix recovers p(f) for the entire channel; this implies that correlated motions between distantly-separated water molecules, as well as adjacent water molecules, influence the osmotic permeability. The p(f) matrices from molecular dynamics simulations of five aquaporins (AQP0, AQP1, AQP4, AqpZ, and GlpF) indicated that the reduction in the water correlation across the Asn-Pro-Ala region, and the small local permeability around the ar/R region, characterize the transport efficiency of water. These structural determinants in water permeation were confirmed in molecular dynamics simulations of three mutants of AqpZ, which mimic AQP1.
Collapse
Affiliation(s)
- Masanori Hashido
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | | | | |
Collapse
|
38
|
Gipson B, Zeng X, Zhang ZY, Stahlberg H. 2dx—User-friendly image processing for 2D crystals. J Struct Biol 2007; 157:64-72. [PMID: 17055742 DOI: 10.1016/j.jsb.2006.07.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/25/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
Electron crystallography determines the structure of two-dimensional (2D) membrane protein crystals and other 2D crystal systems. Cryo-transmission electron microscopy records high-resolution electron micrographs, which require computer processing for three-dimensional structure reconstruction. We present a new software system 2dx, which is designed as a user-friendly, platform-independent software package for electron crystallography. 2dx assists in the management of an image-processing project, guides the user through the processing of 2D crystal images, and provides transparence for processing tasks and results. Algorithms are implemented in the form of script templates reminiscent of c-shell scripts. These templates can be easily modified or replaced by the user and can also execute modular stand-alone programs from the MRC software or from other image processing software packages. 2dx is available under the GNU General Public License at 2dx.org.
Collapse
Affiliation(s)
- Bryant Gipson
- Molecular and Cellular Biology, University of California at Davis, CA 95616, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Electron crystallography studies the structure of two-dimensional crystals of membrane proteins or other crystalline arrays. This method has been used to determine the atomic structures of six membrane proteins and tubulin, as well as several other structures at a slightly lower resolution, where secondary structure motifs could be identified. To preserve the high-resolution structure of 2D crystals, the meticulous sample preparation for electron crystallography is of outmost importance. Charge-induced specimen drift and lack of specimen flatness can severely affect the resolution of images for tilted samples. However, sample preparations that sandwich the two-dimensional crystals between symmetrical carbon films reduce the charge-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol. Data collection in the cryoelectron microscope using either the imaging or the electron diffraction mode has to be performed after low-dose procedures. Spot scanning further reduces the charge-induced specimen drift.
Collapse
Affiliation(s)
- Hui-Ting Chou
- Molecular & Cellular Biology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
40
|
Viadiu H, Gonen T, Walz T. Projection map of aquaporin-9 at 7 A resolution. J Mol Biol 2006; 367:80-8. [PMID: 17239399 PMCID: PMC1839870 DOI: 10.1016/j.jmb.2006.12.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 11/21/2022]
Abstract
Aquaporin-9, an aquaglyceroporin present in diverse tissues, is unique among aquaporins because it is not only permeable to water, urea and glycerol, but also allows passage of larger uncharged solutes. Single particle analysis of negatively stained recombinant rat aquaporin-9 revealed a particle size characteristic of the tetrameric organization of all members of the aquaporin family. Reconstitution of aquaporin-9 into two-dimensional crystals enabled us to calculate a projection map at 7 A resolution. The projection structure indicates a tetrameric structure, similar to GlpF, with each square-like monomer forming a pore. A comparison of the pore-lining residues between the crystal structure of GlpF and a homology model of aquaporin-9 locates substitutions in these residues predominantly to the hydrophobic edge of the tripathic pore of GlpF, providing first insights into the structural basis for the broader substrate specificity of aquaporin-9.
Collapse
Affiliation(s)
- Hector Viadiu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Renault L, Chou HT, Chiu PL, Hill RM, Zeng X, Gipson B, Zhang ZY, Cheng A, Unger V, Stahlberg H. Milestones in electron crystallography. J Comput Aided Mol Des 2006; 20:519-27. [PMID: 17103018 PMCID: PMC2194810 DOI: 10.1007/s10822-006-9075-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
Electron crystallography determines the structure of membrane embedded proteins in the two-dimensionally crystallized state by cryo-transmission electron microscopy imaging and computer structure reconstruction. Milestones on the path to the structure are high-level expression, purification of functional protein, reconstitution into two-dimensional lipid membrane crystals, high-resolution imaging, and structure determination by computer image processing. Here we review the current state of these methods. We also created an Internet information exchange platform for electron crystallography, where guidelines for imaging and data processing method are maintained. The server (http://2dx.org) provides the electron crystallography community with a central information exchange platform, which is structured in blog and Wiki form, allowing visitors to add comments or discussions. It currently offers a detailed step-by-step introduction to image processing with the MRC software program. The server is also a repository for the 2dx software package, a user-friendly image processing system for 2D membrane protein crystals.
Collapse
Affiliation(s)
- Ludovic Renault
- Molecular and Cellular Biology, College of Biological Sciences, University of California at Davis, Briggs Hall, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The identification of members of the aquaporin family as the primary water channels of cell membranes has been followed up by an intense effort to determine how these channels work. Specifically, investigators have sought to learn why these channels are selective for water and how they exclude proton trafficking. Molecular-dynamics studies using elegant, extremely detailed computer models based on accurate crystallographic maps of the channels show the basis for the selectivity of the channel. Channel size, the location of hydrophobic amino-acid side chains, and specific interactions of water dipoles with a charged residue near the most constricted point of the channel indicate that water molecules travel in single file through the center of the channel, and that the orientation of water molecules is manipulated to prevent the formation of a water wire spanning the channel. Finally, the number of water molecules calculated to be aligned in single file in the channel constriction fits predictions based on classic studies of the osmotic permeability: diffusive permeability ratios in water-permeable membranes.
Collapse
Affiliation(s)
- Melvin E Laski
- Department of Internal Medicine and Physiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
43
|
Daniels MJ, Wood MR, Yeager M. In vivo functional assay of a recombinant aquaporin in Pichia pastoris. Appl Environ Microbiol 2006; 72:1507-14. [PMID: 16461705 PMCID: PMC1392912 DOI: 10.1128/aem.72.2.1507-1514.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The water channel protein PvTIP3;1 (alpha-TIP) is a member of the major intrinsic protein (MIP) membrane channel family. We overexpressed this eukaryotic aquaporin in the methylotrophic yeast Pichia pastoris, and immunogold labeling of cellular cryosections showed that the protein accumulated in the plasma membrane, as well as vacuolar and other intracellular membranes. We then developed an in vivo functional assay for water channel activity that measures the change in optical absorbance of spheroplasts following an osmotic shock. Spheroplasts of wild-type P. pastoris displayed a linear relationship between absorbance and osmotic shock level. However, spheroplasts of P. pastoris expressing PvTIP3;1 showed a break in this linear relationship corresponding to hypo-osmotically induced lysis. It is the difference between control and transformed spheroplasts under conditions of hypo-osmotic shock that forms the basis of our aquaporin activity assay. The aquaporin inhibitor mercury chloride blocked water channel activity but had no effect on wild-type yeast. Osmotically shocked yeast cells were affected only slightly by expression of the Escherichia coli glycerol channel GlpF, which belongs to the MIP family but is a weak water channel. The important role that aquaporins play in human physiology has led to a growing interest in their potential as drug targets for treatment of hypertension and congestive heart failure, as well as other fluid overload states. The simplicity of this assay that is specific for water channel activity should enable rapid screening for compounds that modulate water channel activity.
Collapse
Affiliation(s)
- Mark J Daniels
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
44
|
Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in corn roots. PLANT, CELL & ENVIRONMENT 2006; 29:459-70. [PMID: 17080599 DOI: 10.1111/j.1365-3040.2005.01423.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An oxidative gating of water channels (aquaporins: AQPs) was observed in roots of corn seedlings as already found for the green alga Chara corallina. In the presence of 35 mM hydrogen peroxide (H2O2)--a precursor of hydroxyl radicals (*OH)--half times of water flow (as measured with the aid of pressure probes) increased at the level of both entire roots and individual cortical cells by factors of three and nine, respectively. This indicated decreases in the hydrostatic hydraulic conductivity of roots (Lp(hr)) and of cells (Lp(h)) by the same factors. Unlike other stresses, the plant hormone abscisic acid (ABA) had no ameliorative effect either on root LP(hr) or on cell Lp(h) when AQPs were inhibited by oxidative stress. Closure of AQPs reduced the permeability of acetone by factors of two in roots and 1.5 in cells. This indicated that AQPs were not ideally selective for water but allowed the passage of the organic solute acetone. In the presence of H2O2, channel closure caused anomalous (negative) osmosis at both the root and the cell level. This was interpreted by the fact that in the case of the rapidly permeating solute acetone, channel closure caused the solute to move faster than the water and the reflection coefficient (sigma s) reversed its sign. When H2O2 was removed from the medium, the effects were reversible, again at both the root and the cell level. The results provide evidence of oxidative gating of AQPs, which leads on to inhibition of water uptake by the roots. Possible mechanisms of the oxidative gating of AQPs induced by H2O2 (*OH) are discussed.
Collapse
Affiliation(s)
- Qing Ye
- Department of Plant Ecology, University of Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
45
|
Jensen MØ, Mouritsen OG. Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophys J 2006; 90:2270-84. [PMID: 16399837 PMCID: PMC1403167 DOI: 10.1529/biophysj.105.073965] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022] Open
Abstract
From equilibrium molecular dynamics simulations we have determined single-channel water permeabilities for Escherichia coli aquaporin Z (AqpZ) and aquaglyceroporin GlpF with the channels embedded in lipid bilayers. GlpF's osmotic water permeability constant pf exceeds by 2-3 times that of AqpZ and the diffusive permeability constant (pd) of GlpF is found to exceed that of AqpZ 2-9-fold. Achieving complete water selectivity in AqpZ consequently implies lower transport rates overall relative to the less selective, wider channel of GlpF. For AqpZ, the ratio pf/pd congruent with 12 is close to the average number of water molecules in the channel lumen, whereas for GlpF, pf/pd congruent with 4. This implies that single-file structure of the luminal water is more pronounced for AqpZ, the narrower channel of the two. Electrostatics profiles across the pore lumens reveal that AqpZ significantly reinforces water-channel interactions, and weaker water-water interactions in turn suppress water-water correlations relative to GlpF. Consequently, suppressed water-water correlations across the narrow selectivity filter become a key structural determinant for water permeation causing luminal water to permeate slower across AqpZ.
Collapse
Affiliation(s)
- Morten Ø Jensen
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
46
|
Law RJ, Capener C, Baaden M, Bond PJ, Campbell J, Patargias G, Arinaminpathy Y, Sansom MSP. Membrane protein structure quality in molecular dynamics simulation. J Mol Graph Model 2006; 24:157-65. [PMID: 16102990 DOI: 10.1016/j.jmgm.2005.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Our goal was to assess the relationship between membrane protein quality, output from protein quality checkers and output from molecular dynamics (MD) simulations. Membrane transport proteins are essential for a wide range of cellular processes. Structural features of integral membrane proteins are still under-explored due to experimental limitations in structure determination. Computational techniques can be used to exploit biochemical and medium resolution structural data, as well as sequence homology to known structures, and enable us to explore the structure-function relationships in several transmembrane proteins. The quality of the models produced is vitally important to obtain reliable predictions. An examination of the relationship between model stability in molecular dynamics (MD) simulations derived from RMSD (root mean squared deviation) and structure quality assessment from various protein quality checkers was undertaken. The results were compared to membrane protein structures, solved at various resolution, by either X-ray or electron diffraction techniques. The checking programs could predict the potential success of MD in making functional conclusions. MD stability was shown to be a good indicator for the quality of structures. The quality was also shown to be dependent on the resolution at which the structures were determined.
Collapse
Affiliation(s)
- Richard J Law
- Laboratory of Molecular Biophysics, Department of Biochemistry, The University of Oxford, The Rex Richards Building, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 2005; 438:633-8. [PMID: 16319884 PMCID: PMC1350984 DOI: 10.1038/nature04321] [Citation(s) in RCA: 494] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 10/12/2005] [Indexed: 11/09/2022]
Abstract
Lens-specific aquaporin-0 (AQP0) functions as a specific water pore and forms the thin junctions between fibre cells. Here we describe a 1.9 A resolution structure of junctional AQP0, determined by electron crystallography of double-layered two-dimensional crystals. Comparison of junctional and non-junctional AQP0 structures shows that junction formation depends on a conformational switch in an extracellular loop, which may result from cleavage of the cytoplasmic amino and carboxy termini. In the centre of the water pathway, the closed pore in junctional AQP0 retains only three water molecules, which are too widely spaced to form hydrogen bonds with each other. Packing interactions between AQP0 tetramers in the crystalline array are mediated by lipid molecules, which assume preferred conformations. We were therefore able to build an atomic model for the lipid bilayer surrounding the AQP0 tetramers, and we describe lipid-protein interactions.
Collapse
Affiliation(s)
- Tamir Gonen
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Dang TX, Milligan RA, Tweten RK, Wilson-Kubalek EM. Helical crystallization on nickel-lipid nanotubes: perfringolysin O as a model protein. J Struct Biol 2005; 152:129-39. [PMID: 16242343 DOI: 10.1016/j.jsb.2005.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/28/2005] [Accepted: 07/29/2005] [Indexed: 11/23/2022]
Abstract
To facilitate purification and subsequent structural studies of recombinant proteins the most widely used genetically encoded tag is the histidine tag (His-tag) which specifically binds to N-nitrilotriacetic-acid-chelated nickel ions. Lipids derivatized with a nickel-chelating head group can be mixed with galactosylceramide glycolipids to prepare lipid nanotubes that bind His-tagged proteins. In this study, we use His-tagged perfringolysin O (PFO), a soluble toxin secreted by the bacterial pathogen Clostridium perfringens, as a model protein to test the utility of nickel-lipid nanotubes as a tool for structural studies of His-tagged proteins. PFO is a member of the cholesterol dependent cytolysin family (CDC) of oligomerizing, pore-forming toxins found in a variety of Gram-positive bacterial pathogens. CDC pores have been difficult to study by X-ray crystallography because they are membrane associated and vary in size. We demonstrate that both a wild-type and a mutant form of PFO form helical arrays on nickel-lipid containing nanotubes. Cryo-electron microscopy and image analysis of the helical arrays were used to reconstruct a 3D density map of wild-type PFO. This study suggests that the use of nickel-lipid nanotubes may offer a general approach for structural studies of recombinant proteins and may provide insights into the molecular interactions of proteins that have a natural affinity for a membrane surface.
Collapse
Affiliation(s)
- Thanh X Dang
- The Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
49
|
Jensen MØ, Röthlisberger U, Rovira C. Hydroxide and proton migration in aquaporins. Biophys J 2005; 89:1744-59. [PMID: 15951380 PMCID: PMC1366678 DOI: 10.1529/biophysj.104.058206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 05/10/2005] [Indexed: 11/18/2022] Open
Abstract
Hypothetical hydroxide and proton migration along the linear water chain in Aquaporin GlpF from Escherichia coli are studied by ab initio Car-Parrinello molecular dynamics simulations. It is found that the protein stabilizes a bipolar single file of water. The single file features a contiguous set of water-water hydrogen bonds in which polarization of the water molecules vary with position along the channel axis. Deprotonation of the water chain promotes the reorientation of water molecules while the hydroxide ion rapidly migrates by sequentially accepting protons from the neighboring water molecules. The hydroxide ion is not attracted by a conserved, channel-lining arginine residue, but is immobilized at two centrally located, conserved Asparagine-Proline-Alanine motifs where fourfold coordination stabilizes the ion. Hydroxide transition from the channel vestibules into the channel lumen is strongly influenced by electrostatic coupling to two conserved oppositely aligned macrodipoles. This suggests that the macrodipole's negative poles play a role in preventing hydroxide ions from entering into the channel's inner vestibules. Water protonation within the lumen facilitates water reorientation and subsequent proton expelling occurs. In the periplasmic half-channel, expelling occurs via the Grotthuss mechanism. Protonation within the cytoplasmic half-channel implies wire-breakage at the Asn-Pro-Ala motifs. The proton is here diffusively rejected as (H(5)O(2))(+).
Collapse
Affiliation(s)
- Morten Ø Jensen
- MEMPHYS Center for Biomembrane Physics, Department of Physics, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
50
|
Schenk AD, Werten PJL, Scheuring S, de Groot BL, Müller SA, Stahlberg H, Philippsen A, Engel A. The 4.5Å Structure of Human AQP2. J Mol Biol 2005; 350:278-89. [PMID: 15922355 DOI: 10.1016/j.jmb.2005.04.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 04/02/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Located in the principal cells of the collecting duct, aquaporin-2 (AQP2) is responsible for the regulated water reabsorption in the kidney and is indispensable for the maintenance of body water balance. Disregulation or malfunctioning of AQP2 can lead to severe diseases such as nephrogenic diabetes insipidus, congestive heart failure, liver cirrhosis and pre-eclampsia. Here we present the crystallization of recombinantly expressed human AQP2 into two-dimensional protein-lipid arrays and their structural characterization by atomic force microscopy and electron crystallography. These crystals are double-layered sheets that have a diameter of up to 30 microm, diffract to 3 A(-1) and are stacked by contacts between their cytosolic surfaces. The structure determined to 4.5 A resolution in the plane of the membrane reveals the typical aquaporin fold but also a particular structure between the stacked layers that is likely to be related to the cytosolic N and C termini.
Collapse
Affiliation(s)
- Andreas D Schenk
- M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|