1
|
Healy C, Ehrt S, Gouzy A. An exacerbated phosphate starvation response triggers Mycobacterium tuberculosis glycerol utilization at acidic pH. mBio 2025; 16:e0282524. [PMID: 39611843 PMCID: PMC11708021 DOI: 10.1128/mbio.02825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
The mechanisms controlling Mycobacterium tuberculosis (Mtb) replication and survival inside its human host remain ill-defined. Phagosome acidification and nutrient deprivation are common mechanisms used by macrophages to restrict the replication of intracellular bacteria. Mtb stops replicating at mildly acidic pH (
Collapse
Affiliation(s)
- Claire Healy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Kavanagh ME, McLean KJ, Gilbert SH, Amadi C, Snee M, Tunnicliffe RB, Arora K, Boshoff HI, Fanourakis A, Rebello-Lopez MJ, Ortega-Muro F, Levy CW, Munro AW, Leys D, Abell C, Coyne AG. Fragment-based development of small molecule inhibitors targeting Mycobacterium tuberculosis cholesterol metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620643. [PMID: 39803573 PMCID: PMC11722527 DOI: 10.1101/2024.10.28.620643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi- (MDR) and extensively- (XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for Mtb's long-term survival in vivo. Here, we report the development of antitubercular small molecules that inhibit the Mtb cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule 1a that can bind to the heme cofactor of both enzymes. A structure-guided fragment-linking strategy was used to optimize the binding affinity of 1a, yielding a potent dual CYP125/142 inhibitor 5m (KD CYP125/CYP142 = 0.04/0.16 μM). Compound 5m potently inhibits the catalytic activity of CYP125 and CYP142 in vitro (KI values < 0.1 μM), and rapidly depletes Mtb intracellular ATP (IC50 = 0.15 μM). The compound has antimicrobial activity against both drug susceptible and MDR Mtb (MIC99 values 0.4 - 1.5 μM) in extracellular assays, and inhibits the growth of Mtb in human macrophages (MIC = 1.7 μM) with good selectivity over mammalian cytotoxicity (LD50 ≥ 50 μM). The combination of small molecule inhibitors and structural data reported here provide useful tools to study the role of cholesterol metabolism in Mtb and are a promising step towards novel antibiotics targeting bioenergetic pathways, which could be used to help combat MDR-TB.
Collapse
Affiliation(s)
- Madeline E. Kavanagh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kirsty J. McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sophie H. Gilbert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cecilia Amadi
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew Snee
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Richard B. Tunnicliffe
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | - Colin W. Levy
- Manchester Protein Structure Facility (MPSF), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Andrew W. Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anthony G. Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
3
|
Xu X, Barriot R, Voisin B, Arrowsmith TJ, Usher B, Gutierrez C, Han X, Pagès C, Redder P, Blower TR, Neyrolles O, Genevaux P. Nucleotidyltransferase toxin MenT extends aminoacyl acceptor ends of serine tRNAs to control Mycobacterium tuberculosis growth. Nat Commun 2024; 15:9596. [PMID: 39505885 PMCID: PMC11541572 DOI: 10.1038/s41467-024-53931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Toxins of toxin-antitoxin systems use diverse mechanisms to inhibit bacterial growth. In this study, we characterize the translation inhibitor toxin MenT3 of Mycobacterium tuberculosis, the bacterium responsible for tuberculosis in humans. We show that MenT3 is a robust cytidine specific tRNA nucleotidyltransferase in vitro, capable of modifying the aminoacyl acceptor ends of most tRNA but with a marked preference for tRNASer, to which long stretches of cytidines are added. Furthermore, transcriptomic-wide analysis of MenT3 targets in M. tuberculosis identifies tRNASer as the sole target of MenT3 and reveals significant detoxification attempts by the essential CCA-adding enzyme PcnA in response to MenT3. Finally, under physiological conditions, only in the presence the native menAT3 operon, an active pool of endogenous MenT3 targeting tRNASer in M. tuberculosis is detected, likely reflecting the importance of MenT3 during infection.
Collapse
Affiliation(s)
- Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bertille Voisin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xue Han
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Pagès
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Zhen J, Abuliken Y, Yan Y, Gao C, Jiang Z, Huang T, Le TTT, Xiang L, Li P, Xie J. Mycobacterium LacI-type Transcription Regulator Rv3575c Affects Host Innate Immunity by Regulating Bacterial mce4 Operon-Mediated Cholesterol Transport. ACS Infect Dis 2024; 10:3618-3630. [PMID: 39236267 DOI: 10.1021/acsinfecdis.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Mycobacterium tuberculosis has evolved a highly specialized system to snatch essential nutrients from its host, among which host-derived cholesterol has been established as one main carbon source for M. tuberculosis to survive within granulomas. The uptake, catabolism, and utilization of cholesterol are important for M. tuberculosis to sustain within the host largely via remodeling of the bacterial cell walls. However, the regulatory mechanism of cholesterol uptake and its impact on bacterium fate within infected hosts remain elusive. Here, we found that M. tuberculosis LacI-type transcription regulator Rv3575c negatively regulates its mce4 family gene transcription. Overexpression of Rv3575c impaired the utilization of cholesterol as the sole carbon source by Mycobacterium smegmatis, activating the host's innate immune response and triggering cell pyroptosis. The M. smegmatis homologue of Rv3575c MSMEG6044 knockout showed enhanced hydrophobicity and permeability of the cell wall and resistance to ethambutol, suppressed the host innate immune response to M. smegmatis, and promoted the survival of M. smegmatis in macrophages and infected mouse lungs, leading to reduced transcriptional levels of TNFα and IL-6. In summary, these data indicate a role of Rv3575c in the pathogenesis of mycobacteria and reveal the key function of Rv3575c in cholesterol transport in mycobacteria.
Collapse
Affiliation(s)
- Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuerigu Abuliken
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chaoyun Gao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyong Jiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tingting Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thi Thu Thuy Le
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liying Xiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
5
|
Datta D, Jamwal S, Jyoti N, Patnaik S, Kumar D. Actionable mechanisms of drug tolerance and resistance in Mycobacterium tuberculosis. FEBS J 2024; 291:4433-4452. [PMID: 38676952 DOI: 10.1111/febs.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
The emergence of antimicrobial resistance (AMR) across bacterial pathogens presents a serious threat to global health. This threat is further exacerbated in tuberculosis (TB), mainly due to a protracted treatment regimen involving a combination of drugs. A diversity of factors contributes to the emergence of drug resistance in TB, which is caused by the pathogen Mycobacterium tuberculosis (Mtb). While the traditional genetic mutation-driven drug resistance mechanisms operate in Mtb, there are also several additional unique features of drug resistance in this pathogen. Research in the past decade has enriched our understanding of such unconventional factors as efflux pumps, bacterial heterogeneity, metabolic states, and host microenvironment. Given that the discovery of new antibiotics is outpaced by the emergence of drug resistance patterns displayed by the pathogen, newer strategies for combating drug resistance are desperately needed. In the context of TB, such approaches include targeting the efflux capability of the pathogen, modulating the host environment to prevent bacterial drug tolerance, and activating the host anti-mycobacterial pathways. In this review, we discuss the traditional mechanisms of drug resistance in Mtb, newer understandings and the shaping of a set of unconventional approaches to target both the emergence and treatment of drug resistance in TB.
Collapse
Affiliation(s)
- Dipanwita Datta
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shaina Jamwal
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nishant Jyoti
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Sałamaszyńska-Guz A, Murawska M, Bącal P, Ostrowska A, Kwiecień E, Stefańska I, Douthwaite S. Increased Motility in Campylobacter jejuni and Changes in Its Virulence, Fitness, and Morphology Following Protein Expression on Ribosomes with Altered RsmA Methylation. Int J Mol Sci 2024; 25:9797. [PMID: 39337285 PMCID: PMC11431728 DOI: 10.3390/ijms25189797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Infection with Campylobacter jejuni is the major cause of human gastroenteritis in the United States and Europe, leading to debilitating autoimmune sequelae in many cases. While considerable progress has been made in detailing the infectious cycle of C. jejuni, a full understanding of the molecular mechanisms responsible for virulence remains to be elucidated. Here, we apply a novel approach by modulating protein expression on the pathogen's ribosomes by inactivating a highly conserved rRNA methyltransferase. Loss of the RsmA methyltransferase results in a more motile strain with greater adhesive and cell-invasive properties. These phenotypical effects correlate with enhanced expression of specific proteins related to flagellar formation and function, together with enzymes involved in cell wall/membrane and amino acid synthesis. Despite the enhancement of certain virulent traits, the null strain grows poorly on minimal media and is rapidly out-competed by the wild-type strain. Complementation with an active copy of the rsmA gene rescues most of the traits changed in the mutant. However, the complemented strain overexpresses rsmA and displays new flaws, including loss of the spiral cell shape, which is distinctive for C. jejuni. Proteins linked with altered virulence and morphology are identified here by mass spectrometry proteomic analyses of the strains.
Collapse
Affiliation(s)
- Agnieszka Sałamaszyńska-Guz
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Małgorzata Murawska
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Paweł Bącal
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewelina Kwiecień
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ilona Stefańska
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
7
|
Khan MZ, Hunt DM, Singha B, Kapoor Y, Singh NK, Prasad DVS, Dharmarajan S, Sowpati DT, de Carvalho LPS, Nandicoori VK. Divergent downstream biosynthetic pathways are supported by <sc>L</sc>-cysteine synthases of Mycobacterium tuberculosis. eLife 2024; 12:RP91970. [PMID: 39207917 PMCID: PMC11361707 DOI: 10.7554/elife.91970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mycobacterium tuberculosis's (Mtb) autarkic lifestyle within the host involves rewiring its transcriptional networks to combat host-induced stresses. With the help of RNA sequencing performed under various stress conditions, we identified that genes belonging to Mtb sulfur metabolism pathways are significantly upregulated during oxidative stress. Using an integrated approach of microbial genetics, transcriptomics, metabolomics, animal experiments, chemical inhibition, and rescue studies, we investigated the biological role of non-canonical L-cysteine synthases, CysM and CysK2. While transcriptome signatures of RvΔcysM and RvΔcysK2 appear similar under regular growth conditions, we observed unique transcriptional signatures when subjected to oxidative stress. We followed pool size and labelling (34S) of key downstream metabolites, viz. mycothiol and ergothioneine, to monitor L-cysteine biosynthesis and utilization. This revealed the significant role of distinct L-cysteine biosynthetic routes on redox stress and homeostasis. CysM and CysK2 independently facilitate Mtb survival by alleviating host-induced redox stress, suggesting they are not fully redundant during infection. With the help of genetic mutants and chemical inhibitors, we show that CysM and CysK2 serve as unique, attractive targets for adjunct therapy to combat mycobacterial infection.
Collapse
Affiliation(s)
- Mehak Zahoor Khan
- National Institute of ImmunologyNew DelhiIndia
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | | | - Biplab Singha
- National Institute of ImmunologyNew DelhiIndia
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Yogita Kapoor
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - D V Sai Prasad
- Department of Pharmacy, Birla Institute of Technology and Science-PilaniHyderabadIndia
| | - Sriram Dharmarajan
- Department of Pharmacy, Birla Institute of Technology and Science-PilaniHyderabadIndia
| | | | - Luiz Pedro S de Carvalho
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterUnited States
| | - Vinay Kumar Nandicoori
- National Institute of ImmunologyNew DelhiIndia
- CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
8
|
Maddipatla S, Bakchi B, Gadhave RR, Ammara A, Sau S, Rani B, Nanduri S, Kalia NP, Supuran CT, Yaddanapudi VM. Exploring rhodanine linked enamine-carbohydrazide derivatives as mycobacterial carbonic anhydrase inhibitors: Design, synthesis, biological evaluation, and molecular docking studies. Arch Pharm (Weinheim) 2024; 357:e2400064. [PMID: 38498883 DOI: 10.1002/ardp.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
With the rise of multidrug-resistant tuberculosis, the imperative for an alternative and superior treatment regimen, incorporating novel mechanisms of action, has become crucial. In pursuit of this goal, we have developed and synthesized a new series of rhodanine-linked enamine-carbohydrazide derivatives, exploring their potential as inhibitors of mycobacterial carbonic anhydrase. The findings reveal their efficacy, displaying notable selectivity toward the mycobacterial carbonic anhydrase 2 (mtCA 2) enzyme. While exhibiting moderate activity against human carbonic anhydrase isoforms, this series demonstrates promising selectivity, positioning these compounds as potential antitubercular agents. Compound 6d was the best one from the series with a Ki value of 9.5 µM toward mtCA 2. Most of the compounds displayed moderate to good inhibition against the Mtb H37Rv strain; compound 11k showed a minimum inhibitory concentration of 1 µg/mL. Molecular docking studies revealed that compounds 6d and 11k show metal coordination with the zinc ion, like classical CA inhibitors.
Collapse
Affiliation(s)
- Sarvan Maddipatla
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Bulti Bakchi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Rutuja Rama Gadhave
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Firenze, Italy
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Bandela Rani
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Firenze, Italy
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Fu X, Wan X, Memon AA, Fan XY, Sun Q, Chen H, Yao Y, Deng Z, Ma J, Ma W. Regulatory role of Mycobacterium tuberculosis MtrA on dormancy/resuscitation revealed by a novel target gene-mining strategy. Front Microbiol 2024; 15:1415554. [PMID: 38952446 PMCID: PMC11215152 DOI: 10.3389/fmicb.2024.1415554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction The unique dormancy of Mycobacterium tuberculosis plays a significant role in the major clinical treatment challenge of tuberculosis, such as its long treatment cycle, antibiotic resistance, immune escape, and high latent infection rate. Methods To determine the function of MtrA, the only essential response regulator, one strategy was developed to establish its regulatory network according to high-quality genome-wide binding sites. Results and discussion The complex modulation mechanisms were implied by the strong bias distribution of MtrA binding sites in the noncoding regions, and 32.7% of the binding sites were located inside the target genes. The functions of 288 potential MtrA target genes predicted according to 294 confirmed binding sites were highly diverse, and DNA replication and damage repair, lipid metabolism, cell wall component biosynthesis, cell wall assembly, and cell division were the predominant pathways. Among the 53 pathways shared between dormancy/resuscitation and persistence, which accounted for 81.5% and 93.0% of the total number of pathways, respectively, MtrA regulatory genes were identified not only in 73.6% of their mutual pathways, but also in 75.4% of the pathways related to dormancy/resuscitation and persistence respectively. These results suggested the pivotal roles of MtrA in regulating dormancy/resuscitation and the apparent relationship between dormancy/resuscitation and persistence. Furthermore, the finding that 32.6% of the MtrA regulons were essential in vivo and/or in vitro for M. tuberculosis provided new insight into its indispensability. The findings mentioned above indicated that MtrA is a novel promising therapeutic target for tuberculosis treatment since the crucial function of MtrA may be a point of weakness for M. tuberculosis.
Collapse
Affiliation(s)
- Xiang Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Aadil Ahmed Memon
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Qiuhong Sun
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yufeng Yao
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Pierce ES, Jindal C, Choi YM, Cassidy K, Efird JT. Pathogenic mechanisms and etiologic aspects of Mycobacterium avium subspecies paratuberculosis as an infectious cause of cutaneous melanoma. MEDCOMM - ONCOLOGY 2024; 3:e72. [PMID: 38831791 PMCID: PMC11145504 DOI: 10.1002/mog2.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infectious etiologies have previously been proposed as causes of both melanoma and non-melanoma skin cancer. This exploratory overview explains and presents the evidence for the hypothesis that a microorganism excreted in infected ruminant animal feces, Mycobacterium avium subspecies paratuberculosis (MAP), is the cause of some cases of cutaneous melanoma (CM). Occupational, residential, and recreational contact with MAP-contaminated feces, soil, sand, and natural bodies of water may confer a higher rate of CM. Included in our hypothesis are possible reasons for the differing rates and locations of CM in persons with white versus nonwhite skin, why CM develops underneath nails and in vulvar skin, why canine melanoma is an excellent model for human melanoma, and why the Bacille Calmette-Guérin (BCG) vaccine has demonstrated efficacy in the prevention and treatment of CM. The pathogenic mechanisms and etiologic aspects of MAP, as a transmittable agent underlying CM risk, are carefully deliberated in this paper. Imbalances in gut and skin bacteria, genetic risk factors, and vaccine prevention/therapy are also discussed, while acknowledging that the evidence for a causal association between MAP exposure and CM remains circumstantial.
Collapse
Affiliation(s)
- Ellen S. Pierce
- Independent Physician Researcher, Spokane Valley, Washington, USA
| | - Charulata Jindal
- School of Medicine and Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yuk Ming Choi
- Provider Services, Signify Health, Dallas, Texas, USA
| | - Kaitlin Cassidy
- VA Boston Healthcare System, Cooperative Studies Program Coordinating Center, Boston, Massachusetts, USA
| | - Jimmy T. Efird
- VA Boston Healthcare System, Cooperative Studies Program Coordinating Center, Boston, Massachusetts, USA
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Shivangi, Khan Y, Ekka MK, Meena LS. Structural and functional characterization of mycobacterial PhoH2 and identification of potential inhibitor of its enzymatic activity. Braz J Microbiol 2024; 55:1033-1051. [PMID: 38386260 PMCID: PMC11153397 DOI: 10.1007/s42770-024-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Mycobacterium tuberculosis is composed of a cumbersome signaling and protein network which partakes in bacterial survival and augments its pathogenesis. Mycobacterial PhoH2 (Mt-PhoH2) is a signaling element and a predictive phosphate starvation protein that works in an ATP-dependent manner. Here, we elaborated the characterization of Mt-PhoH2 through biophysical, biochemical, and computational methods. In addition to its intrinsic ATPase activity, the biochemical experiments revealed its GTPase activity and both activities are metal ion dependent. Magnesium, manganese, copper, iron, nickel, zinc, cesium, calcium, and lithium were examined for their effect on activity, and the optimum activity was found with 10 mM of Mg2+ ions. The kinetic parameters of 3 µM Mt-PhoH2 were observed as Km 4.873 ± 0.44 µM, Vmax 12.3817 ± 0.084 µM/min/mg, Kcat 0.0075 ± 0.00005 s-1, and Kcat/Km 0.0015 ± 0.000001 µM-1 s-1 with GTP. In the case of GTP as a substrate, a 20% decrease in enzymatic activity and a 50% increase in binding affinity of Mt-PhoH2 were observed. The substrates ADP and GDP inhibit the ATPase and GTPase activity of Mt-PhoH2. CD spectroscopy showed the dominance of alpha helix in the secondary structure of Mt-PhoH2, and this structural pattern was altered upon addition of ATP and GTP. In silico inhibitor screening revealed ML141 and NAV_2729 as two potential inhibitors of the catalytic activity of Mt-PhoH2. Mt-PhoH2 is essential for mycobacterial growth as its knockdown strain showed a decreased growth effect. Overall, the present article emphasizes the factors essential for the proper functioning of Mt-PhoH2 which is a participant in the toxin-antitoxin machinery and may also play an important role in phosphate starvation.
Collapse
Affiliation(s)
- Shivangi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yasmeen Khan
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India.
- CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific & Innovative Research (AcSIR), Mall Road, Delhi, 110007, India.
| |
Collapse
|
12
|
Tao Y, Zheng D, Zou W, Guo T, Liao G, Zhou W. Targeting the cysteine biosynthesis pathway in microorganisms: Mechanism, structure, and drug discovery. Eur J Med Chem 2024; 271:116461. [PMID: 38691891 DOI: 10.1016/j.ejmech.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Owing to the global health crisis of resistant pathogenic infections, researchers are emphasizing the importance of novel prevention and control strategies. Existing antimicrobial drugs predominantly target a few pathways, and their widespread use has pervasively increased drug resistance. Therefore, it is imperative to develop new antimicrobial drugs with novel targets and chemical structures. The de novo cysteine biosynthesis pathway, one of the microbial metabolic pathways, plays a crucial role in pathogenicity and drug resistance. This pathway notably differs from that in humans, thereby representing an unexplored target for developing antimicrobial drugs. Herein, we have presented an overview of cysteine biosynthesis pathways and their roles in the pathogenicity of various microorganisms. Additionally, we have investigated the structure and function of enzymes involved in these pathways as well as have discussed drug design strategies and structure-activity relationships of the enzyme inhibitors. This review provides valuable insights for developing novel antimicrobials and offers new avenues to combat drug resistance.
Collapse
Affiliation(s)
- Ying Tao
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Dandan Zheng
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Wei Zou
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ting Guo
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Guojian Liao
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Wei Zhou
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Ensinck D, Gerhardt ECM, Rollan L, Huergo LF, Gramajo H, Diacovich L. The PII protein interacts with the Amt ammonium transport and modulates nitrate/nitrite assimilation in mycobacteria. Front Microbiol 2024; 15:1366111. [PMID: 38591044 PMCID: PMC11001197 DOI: 10.3389/fmicb.2024.1366111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways. In some organisms, PII proteins can also control carbon metabolism by interacting with the biotin carboxyl carrier protein (BCCP), a key component of the acetyl-CoA carboxylase (ACC) enzyme complex, inhibiting its activity with the consequent reduction of fatty acid biosynthesis. Most bacteria contain at least two PII proteins, named GlnB and GlnK, with different regulatory roles. In mycobacteria, only one PII protein was identified, and the three-dimensional structure was solved, however, its physiological role is unknown. In this study we purified the Mycobacterium tuberculosis (M. tb) PII protein, named GlnB, and showed that it weakly interacts with the AccA3 protein, the α subunit shared by the three different, and essential, Acyl-CoA carboxylase complexes (ACCase 4, 5, and 6) present in M. tb. A M. smegmatis deletion mutant, ∆MsPII, exhibited a growth deficiency on nitrate and nitrite as unique nitrogen sources, and accumulated nitrite in the culture supernatant. In addition, M. tb PII protein was able to interact with the C-terminal domain of the ammonium transporter Amt establishing the ancestral role for this PII protein as a GlnK functioning protein.
Collapse
Affiliation(s)
- Delfina Ensinck
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Edileusa C. M. Gerhardt
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lara Rollan
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano F. Huergo
- Setor Litoral, Federal University of Paraná, Universidade Federal do Paraná (UFPR), Matinhos, Paraná, Brazil
- Graduated Program in Sciences-Biochemistry, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
14
|
Sao Emani C, Reiling N. The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of Mycobacterium tuberculosis against chemical stress. Front Microbiol 2024; 15:1359188. [PMID: 38516013 PMCID: PMC10956863 DOI: 10.3389/fmicb.2024.1359188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background It was previously shown that GlnA3sc enabled Streptomyces coelicolor to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding Mycobacterium tuberculosis (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol. Rationale Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191. Approach To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆rv1877 and ∆rv0191 M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆rv1878 M.tb mutant. Results The ∆rv1877 mutant was sensitive to Spm stress, while the ∆rv0191 mutant was not. On the other hand, the ∆rv1878 mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆rv0191 mutant was the only mutant that was sensitive to oxidative stress. Conclusion The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆rv0191 mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.
Collapse
Affiliation(s)
- Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|
15
|
Beck IN, Arrowsmith TJ, Grobbelaar MJ, Bromley EC, Marles-Wright J, Blower TR. Toxin release by conditional remodelling of ParDE1 from Mycobacterium tuberculosis leads to gyrase inhibition. Nucleic Acids Res 2024; 52:1909-1929. [PMID: 38113275 PMCID: PMC10899793 DOI: 10.1093/nar/gkad1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a growing threat to global health, with recent efforts towards its eradication being reversed in the wake of the COVID-19 pandemic. Increasing resistance to gyrase-targeting second-line fluoroquinolone antibiotics indicates the necessity to develop both novel therapeutics and our understanding of M. tuberculosis growth during infection. ParDE toxin-antitoxin systems also target gyrase and are regulated in response to both host-associated and drug-induced stress during infection. Here, we present microbiological, biochemical, structural, and biophysical analyses exploring the ParDE1 and ParDE2 systems of M. tuberculosis H37Rv. The structures reveal conserved modes of toxin-antitoxin recognition, with complex-specific interactions. ParDE1 forms a novel heterohexameric ParDE complex, supported by antitoxin chains taking on two distinct folds. Curiously, ParDE1 exists in solution as a dynamic equilibrium between heterotetrameric and heterohexameric complexes. Conditional remodelling into higher order complexes can be thermally driven in vitro. Remodelling induces toxin release, tracked through concomitant inhibition and poisoning of gyrase activity. Our work aids our understanding of gyrase inhibition, allowing wider exploration of toxin-antitoxin systems as inspiration for potential therapeutic agents.
Collapse
Affiliation(s)
- Izaak N Beck
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | | | | | - Jon Marles-Wright
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
16
|
Bonjorno AF, Pavan AR, Fernandes GFS, Scarim CB, Castagnolo D, Dos Santos JL. BacPROTACs targeting Clp protease: a promising strategy for anti-mycobacterial drug discovery. Front Chem 2024; 12:1358539. [PMID: 38357296 PMCID: PMC10864484 DOI: 10.3389/fchem.2024.1358539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Tuberculosis (TB) has claimed more lives over the course of two millennia than any other infectious disease worldwide. In 2021, the World Health Organization (WHO) estimated that 10.6 million people were diagnosed with TB, resulting in the deaths of 1.4 million HIV-negative individuals. The emergence of multidrug-resistant TB (MDR-TB), defined as resistance to at least rifampicin (RIF) and isoniazid (INH), and extensively drug-resistant TB (XDR-TB), poses the primary challenge to overcome in the coming years. We have recently conducted an extensive analysis of investments and research endeavours in the field, with the overarching objective of achieving the established milestone of TB eradication by the year 2030. Over the past several years, there has been notable progress in advancing a multitude of promising compounds, each possessing distinct mechanisms of action, into clinical phases of development. However, it is worth noting that strains of mycobacteria resistant to current antitubercular drugs have already emerged for some of these compounds The exploration of the innovative Proteolytic Target Chimeras (PROTACs) protein degradation approach has emerged as a viable avenue for the discovery of novel antimicrobials. While the ubiquitin system is exclusive to eukaryotic cells, certain bacteria use a similar degradation system that relies on the recognition of phosphorylated arginine residues (pArg) by the ClpC:ClpP (ClpCP) protease, thereby leading to protein degradation. In this opinion article, we have described and analized the advances in the use of PROTACs that leverage bacterial proteolytic machinery (BacPROTACs) to design new antitubercular agents. Scope Statement. The development of novel pharmaceuticals for tuberculosis treatment is deemed urgently necessary due to the emergence of resistant strains. In this context, the introduction of new technologies capable of alleviating the disease and attaining the objectives outlined by the World Health Organization is imperative. Among the innovative strategies, the degradation of proteins that are crucial for the survival of the bacillus holds promise for generating new medications, particularly those that are effective at treating latent (non-replicating) Mycobacterium tuberculosis. Within this perspective, we present the advancements and obstacles encountered in the exploration of new BacPROTAC compounds, with the intention of encouraging research and illuminating challenges associated with the implementation of BacPROTACs to address to the global tuberculosis crisis.
Collapse
Affiliation(s)
| | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Cauê Benito Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Daniele Castagnolo
- Department of Chemistry, University College London, London, United Kingdom
| | | |
Collapse
|
17
|
Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol 2023; 18:1381-1398. [PMID: 37962486 DOI: 10.2217/fmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Collapse
Affiliation(s)
- María M Bigi
- Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Marina A Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Julia S García
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Cristina L Vázquez
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| |
Collapse
|
18
|
Xu C, Yue Y, Xiong S. Mycobacterium tuberculosis Rv0928 protein facilitates macrophage control of mycobacterium infection by promoting mitochondrial intrinsic apoptosis and ROS-mediated inflammation. Front Microbiol 2023; 14:1291358. [PMID: 38029102 PMCID: PMC10644093 DOI: 10.3389/fmicb.2023.1291358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages are the main target cells for Mycobacterium tuberculosis (Mtb) infection. Previous studies have shown that Mtb actively upregulates phosphorus transport proteins, such as Rv0928 protein (also known as PstS3), to increase inorganic phosphate uptake and promote their survival under low phosphorus culture conditions in vitro. However, it is unclear whether this upregulation of PstS3 affects the intracellular survival of Mtb, as the latter is also largely dependent on the immune response of infected macrophages. By using Rv0928-overexpressing Mycobacterium smegmatis (Ms::Rv0928), we unexpectedly found that Rv0928 not only increased apoptosis, but also augmented the inflammatory response of infected macrophages. These enhanced cellular defense mechanisms ultimately led to a dramatic reduction in intracellular bacterial load. By investigating the underlying mechanisms, we found that Rv0928 interacted with the macrophage mitochondrial phosphate carrier protein SLC25A3, reduced mitochondrial membrane potential and caused mitochondrial cytochrome c release, which ultimately activated caspase-9-mediated intrinsic apoptosis. In addition, Rv0928 amplified macrophage mitochondrial ROS production, further enhancing pro-inflammatory cytokine production by promoting activation of NF-κB and MAPK pathways. Our study suggested that Mtb Rv0928 up-regulation enhanced the immune defense response of macrophages. These findings may help us to better understand the complex process of mutual adaptation and mutual regulation between Mtb and macrophages during infection.
Collapse
Affiliation(s)
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Toyomoto T, Ono K, Shiba T, Momitani K, Zhang T, Tsutsuki H, Ishikawa T, Hoso K, Hamada K, Rahman A, Wen L, Maeda Y, Yamamoto K, Matsuoka M, Hanaoka K, Niidome T, Akaike T, Sawa T. Alkyl gallates inhibit serine O-acetyltransferase in bacteria and enhance susceptibility of drug-resistant Gram-negative bacteria to antibiotics. Front Microbiol 2023; 14:1276447. [PMID: 37965540 PMCID: PMC10641863 DOI: 10.3389/fmicb.2023.1276447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine O-acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form O-acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents. Here, we demonstrated that alkyl gallates such as octyl gallate (OGA) could act as potent CysE inhibitors in vitro and in bacteria. Mass spectrometry analyses indicated that OGA treatment markedly reduced intrabacterial levels of l-cysteine and its metabolites including glutathione and glutathione persulfide in Escherichia coli to a level similar to that found in E. coli lacking the cysE gene. Consistent with the reduction of those antioxidant molecules in bacteria, E. coli became vulnerable to hydrogen peroxide-mediated bacterial killing in the presence of OGA. More important, OGA treatment intensified susceptibilities of metallo-β-lactamase-expressing Gram-negative bacteria (E. coli and Klebsiella pneumoniae) to carbapenem. Structural analyses showed that alkyl gallate bound to the binding site for acetyl-CoA that limits access of acetyl-CoA to the active site. Our data thus suggest that CysE inhibitors may be used to treat infectious diseases caused by drug-resistant Gram-negative bacteria not only via direct antibacterial activity but also by enhancing therapeutic potentials of existing antibiotics.
Collapse
Affiliation(s)
- Touya Toyomoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kenta Momitani
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kanae Hoso
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koma Hamada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Azizur Rahman
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Liping Wen
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yamamoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
21
|
Salaemae W, Thompson AP, Gaiser BI, Lee KJ, Huxley MT, Sumby CJ, Polyak SW, Abell AD, Bruning JB, Wegener KL. Fortuitous In Vitro Compound Degradation Produces a Tractable Hit against Mycobacterium tuberculosis Dethiobiotin Synthetase: A Cautionary Tale of What Goes In Does Not Always Come Out. ACS Chem Biol 2023; 18:1985-1992. [PMID: 37651626 DOI: 10.1021/acschembio.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We previously reported potent ligands and inhibitors of Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS), a promising target for antituberculosis drug development (Schumann et al., ACS Chem Biol. 2021, 16, 2339-2347); here, the unconventional origin of the fragment compound they were derived from is described for the first time. Compound 1 (9b-hydroxy-6b,7,8,9,9a,9b-hexahydrocyclopenta[3,4]cyclobuta[1,2-c]chromen-6(6aH)-one), identified by an in silico fragment screen, was subsequently shown by surface plasmon resonance to have dose-responsive binding (KD = 0.6 mM). Clear electron density was revealed in the DAPA substrate binding pocket when 1 was soaked into MtDTBS crystals, but the density was inconsistent with the structure of 1. Here, we show that the lactone of 1 hydrolyzes to a carboxylic acid (2) under basic conditions, including those of the crystallography soak, with a subsequent ring opening of the component cyclobutane ring forming a cyclopentylacetic acid (3). Crystals soaked directly with authentic 3 produced an electron density that matched that of crystals soaked with presumed 1, confirming the identity of the bound ligand. The synthetic utility of fortuitously formed 3 enabled the subsequent compound development of nanomolar inhibitors. Our findings represent an example of chemical modification within drug discovery assays and demonstrate the value of high-resolution structural data in the fragment hit validation process.
Collapse
Affiliation(s)
- Wanisa Salaemae
- Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Andrew P Thompson
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Birgit I Gaiser
- Centre for Nanoscale BioPhotonics (CNBP), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kwang Jun Lee
- Centre for Nanoscale BioPhotonics (CNBP), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael T Huxley
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher J Sumby
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven W Polyak
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- Centre for Nanoscale BioPhotonics (CNBP), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kate L Wegener
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Matern WM, Harris HT, Danchik C, McDonald M, Patel G, Srivastava A, Ioerger TR, Bader JS, Karakousis PC. Functional Whole Genome Screen of Nutrient-Starved Mycobacterium tuberculosis Identifies Genes Involved in Rifampin Tolerance. Microorganisms 2023; 11:2269. [PMID: 37764112 PMCID: PMC10534295 DOI: 10.3390/microorganisms11092269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3, moeA1, rv0049, and rv2179c. These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens.
Collapse
Affiliation(s)
- William M. Matern
- Department of Biomedical Engineering, Institute for Computational Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (W.M.M.)
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Harley T. Harris
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Carina Danchik
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marissa McDonald
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gopi Patel
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Aashish Srivastava
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Institute for Computational Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (W.M.M.)
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
| | - Petros C. Karakousis
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Maxson ME, Das L, Goldberg MF, Porcelli SA, Chan J, Jacobs WR. Mycobacterium tuberculosis Central Metabolism Is Key Regulator of Macrophage Pyroptosis and Host Immunity. Pathogens 2023; 12:1109. [PMID: 37764917 PMCID: PMC10535942 DOI: 10.3390/pathogens12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysregulation in Mycobacterium tuberculosis results in increased macrophage apoptosis or pyroptosis. However, mechanistic links between Mycobacterium virulence and bacterial metabolic plasticity remain ill defined. In this study, we screened random transposon insertions of M. bovis BCG to identify mutants that induce pyroptotic death of the infected macrophage. Analysis of the transposon insertion sites identified a panel of fdr (functioning death repressor) genes, which were shown in some cases to encode functions central to Mycobacterium metabolism. In-depth studies of one fdr gene, fdr8 (BCG3787/Rv3727), demonstrated its important role in the maintenance of M. tuberculosis and M. bovis BCG redox balance in reductive stress conditions in the host. Our studies expand the subset of known Mycobacterium genes linking bacterial metabolic plasticity to virulence and also reveal that the broad induction of pyroptosis by an intracellular bacterial pathogen is linked to enhanced cellular immunity in vivo.
Collapse
Affiliation(s)
- Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Lahari Das
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | | | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | - John Chan
- Department of Medicine, New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA;
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| |
Collapse
|
24
|
Winkler KR, Mizrahi V, Warner DF, De Wet TJ. High-throughput functional genomics: A (myco)bacterial perspective. Mol Microbiol 2023; 120:141-158. [PMID: 37278255 PMCID: PMC10953053 DOI: 10.1111/mmi.15103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Advances in sequencing technologies have enabled unprecedented insights into bacterial genome composition and dynamics. However, the disconnect between the rapid acquisition of genomic data and the (much slower) confirmation of inferred genetic function threatens to widen unless techniques for fast, high-throughput functional validation can be applied at scale. This applies equally to Mycobacterium tuberculosis, the leading infectious cause of death globally and a pathogen whose genome, despite being among the first to be sequenced two decades ago, still contains many genes of unknown function. Here, we summarize the evolution of bacterial high-throughput functional genomics, focusing primarily on transposon (Tn)-based mutagenesis and the construction of arrayed mutant libraries in diverse bacterial systems. We also consider the contributions of CRISPR interference as a transformative technique for probing bacterial gene function at scale. Throughout, we situate our analysis within the context of functional genomics of mycobacteria, focusing specifically on the potential to yield insights into M. tuberculosis pathogenicity and vulnerabilities for new drug and regimen development. Finally, we offer suggestions for future approaches that might be usefully applied in elucidating the complex cellular biology of this major human pathogen.
Collapse
Affiliation(s)
- Kristy R. Winkler
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
| | - Timothy J. De Wet
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
- Department of Integrative Biomedical SciencesUniversity of Cape TownRondeboschSouth Africa
| |
Collapse
|
25
|
Veyron-Churlet R, Lecher S, Lacoste AS, Saliou JM, Locht C. Proximity-dependent biotin identification links cholesterol catabolism with branched-chain amino acid degradation in Mycobacterium smegmatis. FASEB J 2023; 37:e23036. [PMID: 37331005 DOI: 10.1096/fj.202202018rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Cholesterol is a crucial component in Mycobacterium tuberculosis virulence as it is required for phagocytosis of mycobacteria by macrophages. In addition, the tubercle bacilli can grow using cholesterol as the sole carbon source. Thus, cholesterol catabolism represents a valuable target for the development of new antitubercular drugs. However, the molecular partners of cholesterol catabolism remain elusive in mycobacteria. Here, we focused on HsaC and HsaD, enzymes involved in two consecutive steps of cholesterol ring degradation and identified putative partners, using a BirA-based proximity-dependent biotin identification (BioID) approach in Mycobacterium smegmatis. In rich medium, the fusion protein BirA-HsaD was able to fish the endogenous cognate HsaC, thus validating this approach to study protein-protein interactions and to infer metabolic channeling of cholesterol ring degradation. In chemically defined medium, both HsaC and HsaD interacted with four proteins, BkdA, BkdB, BkdC, and MSMEG_1634. BkdA, BkdB, and BkdC are enzymes that participate in the degradation of branched-chain amino acids. As cholesterol and branched-chain amino acid catabolism both generate propionyl-CoA, which is a toxic metabolite for mycobacteria, this interconnection suggests a compartmentalization to avoid dissemination of propionyl-CoA into the mycobacterial cytosol. Moreover, the BioID approach allowed us to decipher the interactome of MSMEG_1634 and MSMEG_6518, two proteins of unknown function, which are proximal to the enzymes involved in cholesterol and branched-chain amino acid catabolism. In conclusion, BioID is a powerful tool to characterize protein-protein interactions and to decipher the interconnections between different metabolic pathways, thereby facilitating the identification of new mycobacterial targets.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Sophie Lecher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Anne-Sophie Lacoste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, F-59000, Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, F-59000, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|
26
|
Villemagne B, Faion L, Tangara S, Willand N. Recent advances in Fragment-based strategies against tuberculosis. Eur J Med Chem 2023; 258:115569. [PMID: 37423127 DOI: 10.1016/j.ejmech.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Tuberculosis remains one of the world's leading infectious disease killers, causing more than 1.5 million of deaths each year. It is therefore a priority to discover and develop new classes of anti-tuberculosis drugs to design new treatments in order to fight the increasing burden of resistant-tuberculosis. Fragment-based drug discovery (FBDD) relies on the identification of small molecule hits, further improved to high-affinity ligands through three main approaches: fragment growing, merging and linking. The aim of this review is to highlight the recent progresses made in fragment-based approaches for the discovery and development of Mycobacterium tuberculosis inhibitors in a wide range of pathways. Hit discovery, hit-to-lead optimization, SAR and binding mode when available are discussed.
Collapse
Affiliation(s)
- Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France.
| | - Léo Faion
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Salia Tangara
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| |
Collapse
|
27
|
Adefisayo OO, Curtis ER, Smith CM. Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment. Infect Immun 2023; 91:e0043022. [PMID: 37249448 PMCID: PMC10269127 DOI: 10.1128/iai.00430-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the oldest and most successful pathogens in the world. Diverse selective pressures encountered within host cells have directed the evolution of unique phenotypic traits, resulting in the remarkable evolutionary success of this largely obligate pathogen. Despite centuries of study, the genetic repertoire utilized by Mtb to drive virulence and host immune evasion remains to be fully understood. Various genetic approaches have been and continue to be developed to tackle the challenges of functional gene annotation and validation in an intractable organism such as Mtb. In vitro and ex vivo systems remain the primary approaches to generate and confirm hypotheses that drive a general understanding of mycobacteria biology. However, it remains of great importance to characterize genetic requirements for successful infection within a host system as in vitro and ex vivo studies fail to fully replicate the complex microenvironment experienced by Mtb. In this review, we evaluate the employment of the mycobacterial genetic toolkit to probe the host-pathogen interface by surveying the current state of mycobacterial genetic studies within host systems, with a major focus on the murine model. Specifically, we discuss the different ways that these tools have been utilized to examine various aspects of infection, including bacterial survival/virulence, bacterial evasion of host immunity, and development of novel antibacterial/vaccine strategies.
Collapse
Affiliation(s)
| | - Erin R. Curtis
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Clare M. Smith
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
28
|
Niemand Wolhuter N, Ngakane L, de Wet TJ, Warren RM, Williams MJ. The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis. Microorganisms 2023; 11:1573. [PMID: 37375075 DOI: 10.3390/microorganisms11061573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth.
Collapse
Affiliation(s)
- Nandi Niemand Wolhuter
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Lerato Ngakane
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Robin M Warren
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Monique J Williams
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
29
|
Matern WM, Harris HT, Danchik C, McDonald M, Patel G, Srivastava A, Ioerger TR, Bader JS, Karakousis PC. Functional whole genome screen of nutrient-starved Mycobacterium tuberculosis identifies genes involved in antibiotic tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536593. [PMID: 37090629 PMCID: PMC10120713 DOI: 10.1101/2023.04.12.536593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mycobacterium tuberculosis ( Mtb ), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3 , moeA1 , rv0049 , and rv2179c . These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens. Importance Treatment of Mtb infection requires a long course of combination antibiotics, likely due to subpopulations of tolerant bacteria exhibiting decreased susceptibility to antibiotics. Identifying and characterizing the genetic pathways involved in antibiotic tolerance is expected to yield therapeutic targets for the development of novel TB treatment-shortening regimens.
Collapse
|
30
|
Barelier S, Avellan R, Gnawali GR, Fourquet P, Roig-Zamboni V, Poncin I, Point V, Bourne Y, Audebert S, Camoin L, Spilling CD, Canaan S, Cavalier JF, Sulzenbacher G. Direct capture, inhibition and crystal structure of HsaD (Rv3569c) from M. tuberculosis. FEBS J 2023; 290:1563-1582. [PMID: 36197115 DOI: 10.1111/febs.16645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.
Collapse
Affiliation(s)
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Giri Raj Gnawali
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, MO, USA
| | - Patrick Fourquet
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | - Vanessa Point
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Yves Bourne
- CNRS, AFMB, Aix-Marseille University, France
| | - Stéphane Audebert
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | - Luc Camoin
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | | | | |
Collapse
|
31
|
Del Rio Flores A, Narayanamoorthy M, Cai W, Zhai R, Yang S, Shen Y, Seshadri K, De Matias K, Xue Z, Zhang W. Biosynthesis of Isonitrile Lipopeptide Metallophores from Pathogenic Mycobacteria. Biochemistry 2023; 62:824-834. [PMID: 36638317 PMCID: PMC9905339 DOI: 10.1021/acs.biochem.2c00611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Isonitrile lipopeptides (INLPs) are known to be related to the virulence of pathogenic mycobacteria by mediating metal transport, but their biosynthesis remains obscure. In this work, we use in vitro biochemical assays, site-directed mutagenesis, chemical synthesis, and spectroscopy techniques to scrutinize the activity of core enzymes required for INLP biosynthesis in mycobacteria. Compared to environmental Streptomyces, pathogenic Mycobacterium employ a similar chemical logic and enzymatic machinery in INLP biosynthesis, differing mainly in the fatty-acyl chain length, which is controlled by multiple enzymes in the pathway. Our in-depth study on the non-heme iron(II) and α-ketoglutarate-dependent dioxygenase for isonitrile generation, including Rv0097 from Mycobacterium tuberculosis (Mtb), demonstrates that it recognizes a free-standing small molecule substrate, different from the recent hypothesis that a carrier protein is required for Rv0097 in Mtb. A key residue in Rv0097 is further identified to dictate the varied fatty-acyl chain length specificity between Streptomyces and Mycobacterium.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Maanasa Narayanamoorthy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Siyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Kyle De Matias
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Zhaoqiang Xue
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Brown KL, Wilburn KM, Montague CR, Grigg JC, Sanz O, Pérez-Herrán E, Barros D, Ballell L, VanderVen BC, Eltis LD. Cyclic AMP-Mediated Inhibition of Cholesterol Catabolism in Mycobacterium tuberculosis by the Novel Drug Candidate GSK2556286. Antimicrob Agents Chemother 2023; 67:e0129422. [PMID: 36602336 PMCID: PMC9872607 DOI: 10.1128/aac.01294-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Despite the deployment of combination tuberculosis (TB) chemotherapy, efforts to identify shorter, nonrelapsing treatments have resulted in limited success. Recent evidence indicates that GSK2556286 (GSK286), which acts via Rv1625c, a membrane-bound adenylyl cyclase in Mycobacterium tuberculosis, shortens treatment in rodents relative to standard of care drugs. Moreover, GSK286 can replace linezolid in the three-drug, Nix-TB regimen. Given its therapeutic potential, we sought to better understand the mechanism of action of GSK286. The compound blocked growth of M. tuberculosis in cholesterol media and increased intracellular cAMP levels ~50-fold. GSK286 did not inhibit growth of an rv1625c transposon mutant in cholesterol media and did not induce cyclic AMP (cAMP) production in this mutant, suggesting that the compound acts on this adenylyl cyclase. GSK286 also induced cAMP production in Rhodococcus jostii RHA1, a cholesterol-catabolizing actinobacterium, when Rv1625c was heterologously expressed. However, these elevated levels of cAMP did not inhibit growth of R. jostii RHA1 in cholesterol medium. Mutations in rv1625c conferred cross-resistance to GSK286 and the known Rv1625c agonist, mCLB073. Metabolic profiling of M. tuberculosis cells revealed that elevated cAMP levels, induced using either an agonist or a genetic tool, did not significantly affect pools of steroid metabolites in cholesterol-incubated cells. Finally, the inhibitory effect of agonists was not dependent on the N-acetyltransferase MtPat. Together, these data establish that GSK286 is an Rv1625c agonist and sheds light on how cAMP signaling can be manipulated as a novel antibiotic strategy to shorten TB treatments. Nevertheless, the detailed mechanism of action of these compounds remains to be elucidated.
Collapse
Affiliation(s)
- Kirstin L. Brown
- Microbiology and Immunology, The Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Kaley M. Wilburn
- Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | | | - Jason C. Grigg
- Microbiology and Immunology, The Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Olalla Sanz
- Diseases of the Developing World, GlaxoSmithKline R1D, Ltd., Tres Cantos, Madrid, Spain
| | - Esther Pérez-Herrán
- Diseases of the Developing World, GlaxoSmithKline R1D, Ltd., Tres Cantos, Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline R1D, Ltd., Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- Diseases of the Developing World, GlaxoSmithKline R1D, Ltd., Tres Cantos, Madrid, Spain
| | | | - Lindsay D. Eltis
- Microbiology and Immunology, The Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Xue S, Ma J, Li SS, Fan S, Cai Y, Li J, Fu X, Deng Z, Sun QH, Sun YC, Ma W. Mining of the Novel Virulent ATP-Binding Cassette Importers in Mycobacterium abscessus by Comparative Genomic Strategy. Microb Drug Resist 2022; 28:1057-1064. [DOI: 10.1089/mdr.2021.0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Song Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jian Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmony Hospital, Shanghai, P.R. China
| | - Si-Shang Li
- MOH Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Pathogen Biology, Beijing, P.R. China
| | - Shuxuan Fan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - YiChun Cai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiahao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiang Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - ZiXin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qiu Hong Sun
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmony Hospital, Shanghai, P.R. China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Pathogen Biology, Beijing, P.R. China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
34
|
Fang J, Dong C, Xiong S. Mycobacterium tuberculosis Rv0790c inhibits the cellular autophagy at its early stage and facilitates mycobacterial survival. Front Cell Infect Microbiol 2022; 12:1014897. [DOI: 10.3389/fcimb.2022.1014897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Rv0790c is predicted to be a conserved hypothetical protein encoded by Mycobacterium tuberculosis (Mtb). However, its function in Mtb infection remains largely unknown. In this study, we found that Rv0790c promoted bacillary survival of M. smegmatis (Ms), both in vitro and in vivo. The bacillary burden of Ms exogenously expressing Rv0790c increased, whereas in Rv0790c-knockouts the bacillary burden decreased in infected macrophages. Multiple cellular processes were analyzed to explore the underlying mechanisms. We found that neither inflammatory regulation nor apoptotic induction were responsible for the promotion of bacillary survival mediated by Rv0790c. Interestingly, we found that Rv0790c facilitates mycobacterial survival through cellular autophagy at its early stage. Immunoprecipitation assay of autophagy initiation-related proteins indicated that Rv0790c interacted with mTOR and enhanced its activity, as evidenced by the increased phosphorylation level of mTOR downstream substrates, ULK-1, at Ser757 and P70S6K, at Thr389. Our study uncovers a novel autophagy suppressor encoded by mycobacterial Rv0790c, which inhibits the early stage of cellular autophagy induction upon Mtb infection and takes an important role in maintaining intracellular mycobacterial survival. It may aid in understanding the mechanism of Mtb evasion of host cellular degradation, as well as hold the potential to develop new targets for the prevention and treatment of tuberculosis.
Collapse
|
35
|
Eshraghisamani R, Mirto AJ, Wang J, Behr MA, Barkema HW, De Buck J. Identification of essential genes in Mycobacterium avium subsp. paratuberculosis genome for persistence in dairy calves. Front Microbiol 2022; 13:994421. [PMID: 36338087 PMCID: PMC9631821 DOI: 10.3389/fmicb.2022.994421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2023] Open
Abstract
To cause disease Mycobacterium avium subsp. paratuberculosis needs to enter mammalian cells, arrest phagosomal maturation and manipulate the host immune system. The genetic basis of the bacterial capacity to achieve these outcomes remains largely unknown. Identifying these genes would allow us to gain a deeper understanding of MAP's pathogenesis and potentially develop a live attenuated Johne's disease vaccine by knocking out these genes. MAP genes demonstrated to be essential for colonization in the natural host, ruminants, are unknown. Genome-wide transposon mutagenesis and high-throughput sequencing were combined to evaluate the essentiality of each coding region in the bacterial genome to survive in dairy calves. A saturated library of 3,852 MAP Tn mutants, with insertions in 56% of TA sites, interrupting 88% of genes, was created using a MycoMarT7 phagemid containing a mariner transposon. Six calves were inoculated with a high dose of a library of MAP mutants, 1011 CFUs, (input) at 2 weeks of age. Following 2 months of incubation, MAP cells were isolated from the ileum, jejunum, and their associated lymph nodes of calves, resulting in approximately 100,000 colonies grown on solid media across 6 animals (output). Targeted next-generation sequencing was used to identify the disrupted genes in all the mutants in the input pool and the output pool recovered from the tissues to identify in vivo essential genes. Statistical analysis for the determination of essential genes was performed by a Hidden Markov Model (HMM), categorizing genes into essential genes that are devoid of insertions and growth-defect genes whose disruption impairs the growth of the organism. Sequence analysis identified 430 in vivo essential and 260 in vivo growth-defect genes. Gene ontology enrichment analysis of the in vivo essential and growth-defect genes with the highest reduction in the tissues revealed a high representation of genes involved in metabolism and respiration, cell wall and cell processing, virulence, and information pathway processes. This study has systematically identified essential genes for the growth and persistence of MAP in the natural host body.
Collapse
Affiliation(s)
- Razieh Eshraghisamani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Amanda J. Mirto
- Environmental Health and Safety, University of Wisconsin-Madison, Madison, WI, United States
| | - Joyce Wang
- Department of Medicine, Faculty of Medicine, Health Centre, McGill University, Montréal, QC, Canada
| | - Marcel A. Behr
- Department of Medicine, Faculty of Medicine, Health Centre, McGill University, Montréal, QC, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Moorey AR, Besra GS. The role of triacylglycerols and repurposing DGAT1 inhibitors for the treatment of Mycobacterium tuberculosis. Cell Surf 2022; 8:100083. [PMID: 36277080 PMCID: PMC9578982 DOI: 10.1016/j.tcsw.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Latent tuberculosis poses a significant threat to global health through the incubation of undiagnosed infections within the community, and through its tolerance to antibiotics. This Special Features article explores the mechanisms by which the dormant Mycobacterium tuberculosis pathogen can store energy in the form of lipid inclusion bodies and triacylglycerols, which may be key in the development of novel therapeutics to treat TB.
Collapse
|
37
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
38
|
Calkilic NM, Alici H, Direkel Ş, Tahtaci H. Synthesis, Characterization, Theoretical Analyses, and Investigation of Their Biological Activities of Acetovanillone-Derived Novel Benzyl Ethers. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1950782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Hakan Alici
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Şahin Direkel
- Department of Medical Microbiology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabuk University, Karabuk, Turkey
| |
Collapse
|
39
|
Brooks CL, Ostrov DA, Schumann NC, Kakkad S, Li D, Peña K, Williams BP, Goldfarb NE. 2.1 Å crystal structure of the Mycobacterium tuberculosis serine hydrolase, Hip1, in its anhydro-form (Anhydrohip1). Biochem Biophys Res Commun 2022; 630:57-63. [PMID: 36148729 DOI: 10.1016/j.bbrc.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
The 2.6 Å crystal structure of the apo form of Hip1 (hydrolase important for pathogenesis) has been previously reported. However, very little is known about the active site architecture of this M. tuberculosis (Mtb), serine hydrolase drug target. To begin mapping the active site of Hip1, we cocrystallized Hip1 with the irreversible serine protease inhibitor, 4-(2-aminoethyl)-benzenesulfonylfluoride (AEBSF). We chose AEBSF for cocrystallization with Hip1 since the similar inhibitor, phenylmethylsulfonyl fluoride (PMSF), interestingly exhibited no activity against Hip1. We obtained crystals that diffracted to 2.1 Å but to our bewilderment, we did not observe any electron density for the inhibitor in the omit map for the Hip1-AEBSF complex. Rather, in the active site, dehydroalanine (dAla) was found to occupy the expected position of the catalytic Ser228, thus yielding anhydrohip1. Here we present a comparative analysis of the crystal structures of anhydrohip1 and Hip1 and provide a mechanism for the conversion of the enzyme to the anhydro-form through reaction with AEBSF. With the aid of molecular docking, we propose an explanation for the differential inhibition of Hip1 by AEBSF and PMSF. We also present a preliminary definition of the S1 and S2 pockets of the protease's active site and propose a mechanism for a ligand-induced conformational change within the S2 pocket. Finally, we expand upon the previous demarcation of the putative lipid binding pocket in the α-domain of the enzyme. We believe that this detailed analysis of the structures of anhydrohip1 and Hip1 provides valuable information useful for the structure-based drug design of novel Hip1-directed Mtb therapeutics.
Collapse
Affiliation(s)
- Cory L Brooks
- Department of Chemistry and Biochemistry, California State University, Fresno, CA, USA
| | - David A Ostrov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Nicholas C Schumann
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Schuchi Kakkad
- Department of Chemistry and Biochemistry, California State University, Fresno, CA, USA
| | - Danmeng Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Karla Peña
- Department of Chemistry, Utah Valley University, Orem, UT, USA
| | | | | |
Collapse
|
40
|
Boeck L, Burbaud S, Skwark M, Pearson WH, Sangen J, Wuest AW, Marshall EKP, Weimann A, Everall I, Bryant JM, Malhotra S, Bannerman BP, Kierdorf K, Blundell TL, Dionne MS, Parkhill J, Andres Floto R. Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. Nat Microbiol 2022; 7:1431-1441. [PMID: 36008617 PMCID: PMC9418003 DOI: 10.1038/s41564-022-01204-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
The medical and scientific response to emerging and established pathogens is often severely hampered by ignorance of the genetic determinants of virulence, drug resistance and clinical outcomes that could be used to identify therapeutic drug targets and forecast patient trajectories. Taking the newly emergent multidrug-resistant bacteria Mycobacterium abscessus as an example, we show that combining high-dimensional phenotyping with whole-genome sequencing in a phenogenomic analysis can rapidly reveal actionable systems-level insights into bacterial pathobiology. Through phenotyping of 331 clinical isolates, we discovered three distinct clusters of isolates, each with different virulence traits and associated with a different clinical outcome. We combined genome-wide association studies with proteome-wide computational structural modelling to define likely causal variants, and employed direct coupling analysis to identify co-evolving, and therefore potentially epistatic, gene networks. We then used in vivo CRISPR-based silencing to validate our findings and discover clinically relevant M. abscessus virulence factors including a secretion system, thus illustrating how phenogenomics can reveal critical pathways within emerging pathogenic bacteria.
Collapse
Affiliation(s)
- Lucas Boeck
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sophie Burbaud
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Marcin Skwark
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Will H Pearson
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Jasper Sangen
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Andreas W Wuest
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eleanor K P Marshall
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, Cambridge, UK
| | | | - Josephine M Bryant
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Scientific Computing Department, Science and Technology Facilities Council, Harwell, UK
| | - Bridget P Bannerman
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Katrin Kierdorf
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Centre for AI in Medicine, Cambridge, UK.
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK.
| |
Collapse
|
41
|
Chen TT, Lin Y, Zhang S, Han A. Structural basis for the acetylation mechanism of the Legionella effector VipF. Acta Crystallogr D Struct Biol 2022; 78:1110-1119. [DOI: 10.1107/s2059798322007318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022] Open
Abstract
The pathogen Legionella pneumophila, which is the causative agent of Legionnaires' disease, secrets hundreds of effectors into host cells via its Dot/Icm secretion system to subvert host-cell pathways during pathogenesis. VipF, a conserved core effector among Legionella species, is a putative acetyltransferase, but its structure and catalytic mechanism remain unknown. Here, three crystal structures of VipF in complex with its cofactor acetyl-CoA and/or a substrate are reported. The two GNAT-like domains of VipF are connected as two wings by two β-strands to form a U-shape. Both domains bind acetyl-CoA or CoA, but only in the C-terminal domain does the molecule extend to the bottom of the U-shaped groove as required for an active transferase reaction; the molecule in the N-terminal domain folds back on itself. Interestingly, when chloramphenicol, a putative substrate, binds in the pocket of the central U-shaped groove adjacent to the N-terminal domain, VipF remains in an open conformation. Moreover, mutations in the central U-shaped groove, including Glu129 and Asp251, largely impaired the acetyltransferase activity of VipF, suggesting a unique enzymatic mechanism for the Legionella effector VipF.
Collapse
|
42
|
Theriault ME, Pisu D, Wilburn KM, Lê-Bury G, MacNamara CW, Michael Petrassi H, Love M, Rock JM, VanderVen BC, Russell DG. Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Commun Biol 2022; 5:685. [PMID: 35810253 PMCID: PMC9271047 DOI: 10.1038/s42003-022-03650-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the cause of the human pulmonary disease tuberculosis (TB), contributes to approximately 1.5 million deaths every year. Prior work has established that lipids are actively catabolized by Mtb in vivo and fulfill major roles in Mtb physiology and pathogenesis. We conducted a high-throughput screen to identify inhibitors of Mtb survival in its host macrophage. One of the hit compounds identified in this screen, sAEL057, demonstrates highest activity on Mtb growth in conditions where cholesterol was the primary carbon source. Transcriptional and functional data indicate that sAEL057 limits Mtb’s access to iron by acting as an iron chelator. Furthermore, pharmacological and genetic inhibition of iron acquisition results in dysregulation of cholesterol catabolism, revealing a previously unappreciated linkage between these pathways. Characterization of sAEL057’s mode of action argues that Mtb’s metabolic regulation reveals vulnerabilities in those pathways that impact central carbon metabolism. An inhibitor of Mycobacterium tuberculosis (Mtb) survival acts as an iron chelator, demonstrating that iron deprivation alters Mtb cholesterol and central carbon metabolism.
Collapse
Affiliation(s)
- Monique E Theriault
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gabrielle Lê-Bury
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Case W MacNamara
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - H Michael Petrassi
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Melissa Love
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Jeremy M Rock
- Department of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
43
|
Morreale FE, Kleine S, Leodolter J, Junker S, Hoi DM, Ovchinnikov S, Okun A, Kley J, Kurzbauer R, Junk L, Guha S, Podlesainski D, Kazmaier U, Boehmelt G, Weinstabl H, Rumpel K, Schmiedel VM, Hartl M, Haselbach D, Meinhart A, Kaiser M, Clausen T. BacPROTACs mediate targeted protein degradation in bacteria. Cell 2022; 185:2338-2353.e18. [PMID: 35662409 PMCID: PMC9240326 DOI: 10.1016/j.cell.2022.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
Hijacking the cellular protein degradation system offers unique opportunities for drug discovery, as exemplified by proteolysis-targeting chimeras. Despite their great promise for medical chemistry, so far, it has not been possible to reprogram the bacterial degradation machinery to interfere with microbial infections. Here, we develop small-molecule degraders, so-called BacPROTACs, that bind to the substrate receptor of the ClpC:ClpP protease, priming neo-substrates for degradation. In addition to their targeting function, BacPROTACs activate ClpC, transforming the resting unfoldase into its functional state. The induced higher-order oligomer was visualized by cryo-EM analysis, providing a structural snapshot of activated ClpC unfolding a protein substrate. Finally, drug susceptibility and degradation assays performed in mycobacteria demonstrate in vivo activity of BacPROTACs, allowing selective targeting of endogenous proteins via fusion to an established degron. In addition to guiding antibiotic discovery, the BacPROTAC technology presents a versatile research tool enabling the inducible degradation of bacterial proteins.
Collapse
Affiliation(s)
- Francesca E Morreale
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Stefan Kleine
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Julia Leodolter
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Sabryna Junker
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - David M Hoi
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Stepan Ovchinnikov
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Anastasia Okun
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Juliane Kley
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Lukas Junk
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - Somraj Guha
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - David Podlesainski
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Uli Kazmaier
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | | | - Markus Hartl
- Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Markus Kaiser
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany.
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria; Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
44
|
Melzer ES, Kado T, García-Heredia A, Gupta KR, Meniche X, Morita YS, Sassetti CM, Rego EH, Siegrist MS. Cell Wall Damage Reveals Spatial Flexibility in Peptidoglycan Synthesis and a Nonredundant Role for RodA in Mycobacteria. J Bacteriol 2022; 204:e0054021. [PMID: 35543537 PMCID: PMC9210966 DOI: 10.1128/jb.00540-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/06/2022] [Indexed: 12/28/2022] Open
Abstract
Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacterium from internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan synthesis for normal growth is achieved by two distinct pathways: the Rod complex, comprised of MreB, RodA, and a cognate class B penicillin-binding protein (PBP), and the class A PBPs (aPBPs). In contrast to laterally growing bacteria, pole-growing mycobacteria do not encode an MreB homolog and do not require SEDS protein RodA for in vitro growth. However, RodA contributes to the survival of Mycobacterium tuberculosis in some infection models, suggesting that the protein could have a stress-dependent role in maintaining cell wall integrity. Under basal conditions, we find here that the subcellular distribution of RodA largely overlaps that of the aPBP PonA1 and that both RodA and the aPBPs promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies Mycobacterium smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase MurG. Our results support a model in which mycobacteria balance polar growth and cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion. IMPORTANCE Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has been extensively studied in model organisms under laboratory-optimized conditions. In natural environments, bacteria are frequently under attack. Moreover, the vast majority of bacterial species are unlikely to fit a single paradigm of cell wall assembly because of differences in growth mode and/or envelope structure. Studying cell wall synthesis under nonoptimal conditions and in nonstandard species may improve our understanding of pathway function and suggest new inhibition strategies. Mycobacterium smegmatis, a relative of several notorious human and animal pathogens, has an unusual polar growth mode and multilayered envelope. In this work, we challenged M. smegmatis with cell wall-damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack.
Collapse
Affiliation(s)
- Emily S. Melzer
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
45
|
Comín J, Madacki J, Rabanaque I, Zúñiga-Antón M, Ibarz D, Cebollada A, Viñuelas J, Torres L, Sahagún J, Klopp C, Gonzalo-Asensio J, Brosch R, Iglesias MJ, Samper S. The MtZ Strain: Molecular Characteristics and Outbreak Investigation of the Most Successful Mycobacterium tuberculosis Strain in Aragon Using Whole-Genome Sequencing. Front Cell Infect Microbiol 2022; 12:887134. [PMID: 35685752 PMCID: PMC9173592 DOI: 10.3389/fcimb.2022.887134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2004, a tuberculosis surveillance protocol has been carried out in Aragon, thereby managing to detect all tuberculosis outbreaks that take place in the community. The largest outbreak was caused by a strain named Mycobacterium tuberculosis Zaragoza (MtZ), causing 242 cases as of 2020. The main objective of this work was to analyze this outbreak and the molecular characteristics of this successful strain that could be related to its greater transmission. To do this, we first applied whole-genome sequencing to 57 of the isolates. This revealed two principal transmission clusters and six subclusters arising from them. The MtZ strain belongs to L4.8 and had eight specific single nucleotide polymorphisms (SNPs) in genes considered to be virulence factors [ptpA, mc3D, mc3F, VapB41, pks15 (two SNPs), virS, and VapC50]. Second, a transcriptomic study was carried out to better understand the multiple IS6110 copies present in its genome. This allowed us to observe three effects of IS6110: the disruption of the gene in which the IS6110 is inserted (desA3), the overexpression of a gene (ppe38), and the absence of transcription of genes (cut1:Rv1765c) due to the recombination of two IS6110 copies. Finally, because of the disruption of ppe38 and ppe71 genes by an IS6110, a study of PE_PGRS secretion was carried out, showing that MtZ secretes these factors in higher amounts than the reference strain, thereby differing from the hypervirulent phenotype described for the Beijing strains. In conclusion, MtZ consists of several SNPs in genes related to virulence, pathogenesis, and survival, as well as other genomic polymorphisms, which may be implicated in its success among our population.
Collapse
Affiliation(s)
- Jessica Comín
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jan Madacki
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - Isabel Rabanaque
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - María Zúñiga-Antón
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Daniel Ibarz
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Alberto Cebollada
- Unidad de Biocomputación, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jesús Viñuelas
- Hospital Universitario Miguel Servet, Zaragoza, Spain.,Grupo de Estudio de Infecciones por Micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica, Madrid, Spain
| | | | - Juan Sahagún
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - María-José Iglesias
- Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
46
|
Babin BM, Keller LJ, Pinto Y, Li VL, Eneim AS, Vance SE, Terrell SM, Bhatt AS, Long JZ, Bogyo M. Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism. Cell Chem Biol 2022; 29:897-909.e7. [PMID: 34599874 PMCID: PMC9252067 DOI: 10.1016/j.chembiol.2021.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
The increasing incidence of antibiotic-resistant Mycobacterium tuberculosis infections is a global health threat necessitating the development of new antibiotics. Serine hydrolases (SHs) are a promising class of targets because of their importance for the synthesis of the mycobacterial cell envelope. We screen a library of small molecules containing serine-reactive electrophiles and identify narrow-spectrum inhibitors of M. tuberculosis growth. Using these lead molecules, we perform competitive activity-based protein profiling and identify multiple SH targets, including enzymes with uncharacterized functions. Lipidomic analyses of compound-treated cultures reveal an accumulation of free lipids and a substantial decrease in lipooligosaccharides, linking SH inhibition to defects in cell envelope biogenesis. Mutant analysis reveals a path to resistance via the synthesis of mycocerates, but not through mutations to SH targets. Our results suggest that simultaneous inhibition of multiple SH enzymes is likely to be an effective therapeutic strategy for the treatment of M. tuberculosis infections.
Collapse
Affiliation(s)
- Brett M Babin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura J Keller
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yishay Pinto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Andrew S Eneim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Summer E Vance
- Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
48
|
Shanmuga Priya VG, Bhandare V, Muddapur UM, Swaminathan P, Fandilolu PM, Sonawane KD. Molecular modeling approach to identify inhibitors of Rv2004c (rough morphology and virulent strain gene), a DosR (dormancy survival regulator) regulon protein from Mycobacterium tuberculosis. J Biomol Struct Dyn 2022; 40:3242-3257. [DOI: 10.1080/07391102.2020.1846620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- V. G. Shanmuga Priya
- Department of Biotechnology, KLE Dr.M.S.Sheshgiri College of Engineering and Technology, Belagavi, India
| | - Vishwambhar Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, India
| | - Uday M. Muddapur
- Department of Biotechnology, B.V.B College of Engineering and Technology, KLE Technological University, Hubballi, India
| | - Priya Swaminathan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Prayagraj M. Fandilolu
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, India
- Department of Microbiology, Shivaji University, Kolhapur, India
| |
Collapse
|
49
|
Yokoyama K, Li D, Pang H. Resolving the Multidecade-Long Mystery in MoaA Radical SAM Enzyme Reveals New Opportunities to Tackle Human Health Problems. ACS BIO & MED CHEM AU 2022; 2:94-108. [PMID: 35480226 PMCID: PMC9026282 DOI: 10.1021/acsbiomedchemau.1c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023]
Abstract
![]()
MoaA is one of the
most conserved radical S-adenosyl-l-methionine
(SAM) enzymes, and is found in most organisms in
all three kingdoms of life. MoaA contributes to the biosynthesis of
molybdenum cofactor (Moco), a redox enzyme cofactor used in various
enzymes such as purine and sulfur catabolism in humans and anaerobic
respiration in bacteria. Unlike many other cofactors, in most organisms,
Moco cannot be taken up as a nutrient and requires de novo biosynthesis.
Consequently, Moco biosynthesis has been linked to several human health
problems, such as human Moco deficiency disease and bacterial infections.
Despite
the medical and biological significance, the biosynthetic mechanism
of Moco’s characteristic pyranopterin structure remained elusive
for more than two decades. This transformation requires the actions
of the MoaA radical SAM enzyme and another protein, MoaC. Recently,
MoaA and MoaC functions were elucidated as a radical SAM GTP 3′,8-cyclase
and cyclic pyranopterin monophosphate (cPMP) synthase, respectively.
This finding resolved the key mystery in the field and revealed new
opportunities in studying the enzymology and chemical biology of MoaA
and MoaC to elucidate novel mechanisms in enzyme catalysis or to address
unsolved questions in Moco-related human health problems. Here, we
summarize the recent progress in the functional and mechanistic studies
of MoaA and MoaC and discuss the field’s future directions.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Di Li
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Haoran Pang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
50
|
Lata S, Mahatha AC, Mal S, Gupta UD, Kundu M, Basu J. Unravelling novel roles of the Mycobacterium tuberculosis transcription factor Rv0081 in regulation of the nucleoid-associated proteins Lsr2 and EspR, cholesterol utilization and subversion of lysosomal trafficking in macrophages. Mol Microbiol 2022; 117:1104-1120. [PMID: 35304930 DOI: 10.1111/mmi.14895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
The transcriptional network of Mycobacterium tuberculosis is designed to enable the organism to withstand host-associated stresses and to exploit the host milieu for its own survival and multiplication. Rv0081 (MT0088) is a transcriptional regulator whose interplay with other gene regulatory proteins and role in enabling M. tuberculosis to thrive within its host is incompletely understood. M. tuberculosis utilizes cholesterol within the granuloma. We show that deletion of Rv0081 compromises the ability of M. tuberculosis to utilize cholesterol as sole carbon source, to subvert lysosomal trafficking, and to form granulomas in vitro. Rv0081 downregulates expression of the nucleoid associated repressor Lsr2, leading to increased expression of the cholesterol catabolism-linked gene kshA and genes of the cholesterol importing operon, accounting for the requirement of Rv0081 in cholesterol utilization. Further, Rv0081 activates EspR which is required for secretion of ESX-1 substrates, which in turn are involved in subversion of lysosomal traffickingof M. tuberculosisand granuloma expansion. These results provide new insight into the role of Rv0081 under conditions which resemble the environment encountered by M. tuberculosis within its host. Rv0081 emergesas a central regulator of genes linked to various pathways which are crucial for the survival of the bacterium in vivo.
Collapse
Affiliation(s)
- Suruchi Lata
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Amar Chandra Mahatha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Umesh D Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| |
Collapse
|