1
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-Inflammatory Properties of the Citrus Flavonoid Diosmetin: An Updated Review of Experimental Models. Molecules 2024; 29:1521. [PMID: 38611801 PMCID: PMC11013832 DOI: 10.3390/molecules29071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.
Collapse
Affiliation(s)
- Yangyang Fang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Wei Xiang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Jinwei Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China;
| | - Xuesu Su
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| |
Collapse
|
3
|
An Y, Wang H, Gao A, Li S, Yang J, Li B, Lu H. Effects of Sophora alopecuroides in a High-Concentrate Diet on the Liver Immunity and Antioxidant Function of Lambs According to Transcriptome Analysis. Animals (Basel) 2024; 14:182. [PMID: 38254353 PMCID: PMC10812488 DOI: 10.3390/ani14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The purpose of this study was to determine the effects of Sophora alopecuroides (SA) on liver function, liver inflammatory factor levels, antioxidant indexes and transcriptome in sheep. Twenty-four 3-month-old healthy Dumont hybrid lambs weighing 25.73 ± 2.17 kg were randomly divided into three groups: C1 (the control group), fed a concentrate-to-forage ratio of 50:50; H2 (the high-concentration group), fed a concentrate-to-forage ratio of 70:30; and S3 (the SA group), fed a concentrate-to-forage ratio of 70:30 + 0.1% SA. The results showed that the rumen pH values of the C1 and S3 groups were significant or significantly higher than that of the H2 group (p < 0.05 or p < 0.01). The serum ALT, AST and LDH activities and the LPS and LBP concentrations in the sheep serum and liver in the H2 group were significantly or extremely significantly higher than those in the C1 and S3 groups (p < 0.01), and the IL-10 content and SOD, GPX-PX and T-AOC activities showed the opposite trend (p < 0.05 or p < 0.01). KEGG enrichment analysis showed that the differentially expressed genes were significantly enriched in the ECM-receptor interaction and focal adhesion pathways, which are closely related to immune and antioxidant functions (p-adjust < 0.1). In summary, SA could improve the immune and antioxidant functions of lamb livers under high-concentrate conditions and regulate the mechanism of damage on sheep livers, which is caused by high-concentrate diets and through the expression of related genes in the ECM/FAs pathway.
Collapse
Affiliation(s)
- Yawen An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| | - Hairong Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
- Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Science, Hohhot 010018, China
| | - Aiwu Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Shufang Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| | - Jinli Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
- Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Science, Hohhot 010018, China
| | - Boyang Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| | - Henan Lu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| |
Collapse
|
4
|
Katayama S, Yamazaki R, Umise H, Han HP, Mihara T, Uchiyama K, Takahashi H, Nakamura S. Lacticaseibacillus paracasei K71 Alleviates UVB-Induced Skin Barrier Dysfunction by Attenuating Inflammation via Increased IL-10 Production in Mice. Mol Nutr Food Res 2023; 67:e2200212. [PMID: 37471174 DOI: 10.1002/mnfr.202200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/05/2023] [Indexed: 07/22/2023]
Abstract
SCOPE Ultraviolet B (UVB) radiation causes skin barrier dysfunction, leading to decreased water-holding capacity, impaired epidermal barrier function, and increased skin thickness. This study investigates the protective effects of oral administration of Lacticaseibacillus paracasei K71 against skin barrier dysfunction in UVB-irradiated mice. METHODS AND RESULTS Mice are fed diets with or without K71 and irradiated with UVB three times a week for 12 weeks. Oral administration of K71 suppresses UVB-induced decrease in stratum corneum water content, mitigates the increase of transepidermal water loss, and decreases epidermal thickness of the dorsal skin. Treatment with K71 reverses the upregulation of inflammatory cytokines and the activation of nuclear factor-κB induced by UVB irradiation and upregulates the expression of anti-inflammatory IL-10 in the dorsal skin. Notable upregulation of IL-10 is observed in the spleens of K71-treated mice. K71 treatment enhances IL-10 production in J774.1 macrophages; however, this enhancement is diminished by inhibiting K71 phagocytosis and TLR3. Furthermore, transfection using K71 RNAs significantly increases IL-10 production. CONCLUSION These results indicate that K71 may alleviate UVB-induced skin barrier dysfunction by attenuating inflammation via increasing IL-10 production and that K71 RNAs may induce IL-10 production in macrophages. Therefore, K71 may be beneficial for preventing skin barrier dysfunction.
Collapse
Affiliation(s)
- Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Rio Yamazaki
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Hikaru Umise
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Hsu Pei Han
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Toshihiro Mihara
- Kameda Seika Co., Ltd., 3-1-1 Kameda-Kogyodanchi, Konan, Niigata, 950-0198, Japan
| | - Kimiko Uchiyama
- Kameda Seika Co., Ltd., 3-1-1 Kameda-Kogyodanchi, Konan, Niigata, 950-0198, Japan
| | - Hajime Takahashi
- Kameda Seika Co., Ltd., 3-1-1 Kameda-Kogyodanchi, Konan, Niigata, 950-0198, Japan
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| |
Collapse
|
5
|
Wang H, Ma T, Bao Q, Zhu L, Ying T, Yu Y. Knockdown of protein interacting with C α kinase 1 aggravates sepsis-induced acute liver injury by regulating the TLR4/NF-κB pathway. Sci Rep 2023; 13:11913. [PMID: 37488153 PMCID: PMC10366226 DOI: 10.1038/s41598-023-38852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
Acute liver injury (ALI) may manifest at any phase of sepsis, yet an explicit therapeutic approach remains elusive. In this study, LPS and cecum ligation and puncture (CLP) were utilized to establish an inflammatory cell model and a murine model of sepsis-induced liver injury, respectively, aiming to explore the potential protective effect of protein interacting with C α kinase 1 (PICK1) on sepsis-induced ALI and its underlying mechanisms. In both the cell supernatant and the murine whole blood, the concentrations of inflammatory factors were quantified by ELISA, while the protein and mRNA expressions of PICK1, cleaved-PARP-1, caspase1, TLR4, IκBα, and NF-κB were assessed via western blot and qRT-PCR. The outcomes revealed that the knockdown of PICK1 increased the levels of inflammatory factors and apoptosis, alongside activation of TLR4/NF-κB signaling pathway-related factors in both in vivo and in vitro models. Moreover, the murine liver samples were subjected to Hematoxylin-Eosin (HE) staining for assessment of histopathological morphology. The HE staining and liver injury scoring results manifested a markedly exacerbated hepatic damage in PICK1 knockout mice as compared to WT mice following CLP. Furthermore, the liver macrophages were isolated from murine livers, and the expression and activity of the factors associated with the TLR4/NF-κB signaling pathway were verified through RT-qPCR and western blot, and EMSA assay demonstrated an augmented NF-κB activity subsequent to PICK1 knockout. Finally, the expression and localization of PICK1 in macrophages were further scrutinized via immunofluorescence, and the interaction between PICK1 and TLR4 was identified through co-immunoprecipitation. In conclusion, the knockdown of PICK1 appeared to modulate inflammatory factors by activating the TLR4/NF-κB signaling pathway, thereby exacerbating hepatic damage induced by sepsis.
Collapse
Affiliation(s)
- Huijun Wang
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China
| | - Ting Ma
- Department of Anesthesia, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Qianqian Bao
- Department of Operating Room, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Lijun Zhu
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China
| | - Tingting Ying
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China
| | - Yulong Yu
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
6
|
Guilhon CC, Minho AS, Pouliot M, Boylan F, Fernandes PD. Tibouchina granulosa Leaves Present Anti-Inflammatory Effect. Pharmaceuticals (Basel) 2022; 15:ph15121458. [PMID: 36558909 PMCID: PMC9785533 DOI: 10.3390/ph15121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The ethanol extract (EE) prepared from the leaves of Tibouchina granulosa, and its fraction in ethyl acetate (fEA) were evaluated concerning their capacity to reduce inflammation in different experimental models. fEA was also studied concerning its chemical constituents. EE and fEA were assayed for their anti-inflammatory potential, using formalin-induced licking behavior and carrageenan-induced inflammation into the subcutaneous air pouch (SAP) models. Reduction in polymorphonuclear cells (PMN) activation was performed in freshly isolated PMN. Chromatographic analysis of fEA was performed by HPLC-DAD. Hispiduloside was isolated as the main constituent in fEA, and its quantity was estimated to be 39.3% in fEA. EE (30 mg/kg) significantly reduced the second phase of formalin-induced licking. fEA demonstrated a reduction in leukocyte migration into the SAP. EE and fEA drastically reduced cytokines (TNF-α, IL-1β, and IFN-γ), nitric oxide (NO) production, in vitro PMN migration induced by C5a and IL-8, and TNF-α and IL-1β gene expression. Taken together, our data indicate that either ethanol extract or its fEA fraction from leaves of T. granulosa present an anti-inflammatory effect, contributing to the pharmacological and chemical knowledge of this species and confirming the rationale behind its traditional use.
Collapse
Affiliation(s)
- Carolina Carvalho Guilhon
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alan Silva Minho
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marc Pouliot
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Patricia Dias Fernandes
- Laboratório de Farmacologia da Dor e da Inflamação, Programa de Pesquisa em Descoberta de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-21-3938-0388 (ext. 115)
| |
Collapse
|
7
|
Liu J, Ma Z, Li H, Li X. Chinese medicine in the treatment of autoimmune hepatitis: Progress and future opportunities. Animal Model Exp Med 2022; 5:95-107. [PMID: 35263512 PMCID: PMC9043711 DOI: 10.1002/ame2.12201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease occurring in individuals of all ages with a higher incidence in females and characterized by hypergammaglobulinemia, elevated serum autoantibodies and histological features of interface hepatitis. AIH pathogenesis remains obscure and still needs in‐depth study, which is likely associated with genetic susceptibility and the loss of immune homeostasis. Steroids alone and in combination with other immunosuppressant agents are the primary choices of AIH treatment in the clinic, whereas, in some cases, severe adverse effects and disease relapse may occur. Chinese medicine used for the treatment of AIH has proven its merits over many years and is well tolerated. To better understand the pathogenesis of AIH and to evaluate the efficacy of novel therapies, several animal models have been generated to recapitulate the immune microenvironment of patients with AIH. In the current review, we summarize recent advances in the study of animal models for AIH and their application in pharmacological research of Chinese medicine‐based therapies and also discuss current limitations. This review aims to provide novel insights into the discovery of Chinese medicine‐originated therapies for AIH using cutting‐edge animal models.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Zhi Ma
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Han Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
8
|
Vacani-Martins N, Meuser-Batista M, dos Santos CDLP, Hasslocher-Moreno AM, Henriques-Pons A. The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens 2021; 10:pathogens10091074. [PMID: 34578107 PMCID: PMC8465576 DOI: 10.3390/pathogens10091074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver's participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
Collapse
Affiliation(s)
- Natalia Vacani-Martins
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | - Marcelo Meuser-Batista
- Depto de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil;
| | - Carina de Lima Pereira dos Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | | | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
- Correspondence:
| |
Collapse
|
9
|
Jia F, Deng F, Xu P, Li S, Wang X, Hu P, Ren H, Tong S, Yin W. NOD1 Agonist Protects Against Lipopolysaccharide and D-Galactosamine-Induced Fatal Hepatitis Through the Upregulation of A20 Expression in Hepatocytes. Front Immunol 2021; 12:603192. [PMID: 33746949 PMCID: PMC7969647 DOI: 10.3389/fimmu.2021.603192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/17/2021] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence suggests that NODs are involved in liver diseases; however, the underlying mechanisms remain obscure. In the present study, we analyzed the effect of NOD1 agonist pretreatment on acute liver failure induced by lipopolysaccharide (LPS) in D-galactosamine (D-GalN)-sensitized mice. We found that pretreatment with the NOD1 agonist markedly reduced LPS/D-GalN-induced mortality, elevation of serum ALT levels, and hepatocyte apoptosis. The protective effect of NOD1 agonist was independent of tumor necrosis factor (TNF)-α inhibition. NOD1 agonist pretreatment also attenuated TNF-α/D-GalN-induced apoptotic liver damage. The anti-apoptotic protein A20 expression was more pronounced in NOD1 agonist pretreated mice than in controls, and knockdown of A20 abrogated the protective effect of NOD1 agonist on LPS/D-GalN-induced liver injury and hepatocyte apoptosis. Further experiments showed that NOD1 agonist-induced A20 upregulation required the presence of kupffer cells and TNF-α. Taken together, our data strongly indicate that NOD1 is involved in the regulation of liver injury and could be a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Fang Jia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an Jiaotong University, Xi'an, China
| | - Fuxue Deng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an Jiaotong University, Xi'an, China
| | - Pan Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiying Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefu Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwei Yin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Avni D, Harikumar KB, Sanyal AJ, Spiegel S. Deletion or inhibition of SphK1 mitigates fulminant hepatic failure by suppressing TNFα-dependent inflammation and apoptosis. FASEB J 2021; 35:e21415. [PMID: 33566377 PMCID: PMC8491138 DOI: 10.1096/fj.202002540r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) causes severe liver dysfunction that can lead to multi-organ failure and death. Previous studies suggest that sphingosine kinase 1 (SphK1) protects against hepatocyte injury, yet not much is still known about its involvement in ALF. This study examines the role of SphK1 in D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF, which is a well-established experimental mouse model that mimics the fulminant hepatitis. Here we report that deletion of SphK1, but not SphK2, dramatically decreased GalN/LPS-induced liver damage, hepatic apoptosis, serum alanine aminotransferase levels, and mortality rate compared to wild-type mice. Whereas GalN/LPS treatment-induced hepatic activation of NF-κB and JNK in wild-type and SphK2-/- mice, these signaling pathways were reduced in SphK1-/- mice. Moreover, repression of ALF in SphK1-/- mice correlated with decreased expression of the pro-inflammatory cytokine TNFα. Adoptive transfer experiments indicated that SphK1 in bone marrow-derived infiltrating immune cells but not in host liver-resident cells, contribute to the development of ALF. Interestingly, LPS-induced TNFα production was drastically suppressed in SphK1-deleted macrophages, whereas IL-10 expression was markedly enhanced, suggesting a switch to the anti-inflammatory phenotype. Finally, treatment with a specific SphK1 inhibitor ameliorated inflammation and protected mice from ALF. Our findings suggest that SphK1 regulates TNFα secretion from macrophages and inhibition or deletion of SphK1 mitigated ALF. Thus, a potent inhibitor of SphK1 could potentially be a therapeutic agent for fulminant hepatitis.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kuzhuvelil B. Harikumar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
11
|
Fan Y, Li Y, Chu Y, Liu J, Cui L, Zhang D. Toll-Like Receptors Recognize Intestinal Microbes in Liver Cirrhosis. Front Immunol 2021; 12:608498. [PMID: 33708204 PMCID: PMC7940369 DOI: 10.3389/fimmu.2021.608498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liver cirrhosis is one major cause of mortality in the clinic, and treatment of this disease is an arduous task. The scenario will be even getting worse with increasing alcohol consumption and obesity in the current lifestyle. To date, we have no medicines to cure cirrhosis. Although many etiologies are associated with cirrhosis, abnormal intestinal microbe flora (termed dysbiosis) is a common feature in cirrhosis regardless of the causes. Toll-like receptors (TLRs), one evolutional conserved family of pattern recognition receptors in the innate immune systems, play a central role in maintaining the homeostasis of intestinal microbiota and inducing immune responses by recognizing both commensal and pathogenic microbes. Remarkably, recent studies found that correction of intestinal flora imbalance could change the progress of liver cirrhosis. Therefore, correction of intestinal dysbiosis and targeting TLRs can provide novel and promising strategies in the treatment of liver cirrhosis. Here we summarize the recent advances in the related topics. Investigating the relationship among innate immunity TLRs, intestinal flora disorders, and liver cirrhosis and exploring the underlying regulatory mechanisms will assuredly have a bright future for both basic and clinical research.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunpeng Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
12
|
Keswani T, Delcroix-Genete D, Herbert F, Leleu I, Lambert C, Draheim M, Salome-Desnoulez S, Saliou JM, Cazenave PA, Silvie O, Roland J, Pied S. Plasmodium yoelii Uses a TLR3-Dependent Pathway to Achieve Mammalian Host Parasitism. THE JOURNAL OF IMMUNOLOGY 2020; 205:3071-3082. [PMID: 33148715 DOI: 10.4049/jimmunol.1901317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Malaria is associated with complicated immunopathogenesis. In this study, we provide evidence for an unexpected role of TLR3 in promoting the establishment of Plasmodium yoelii infection through delayed clearance of parasitemia in wild type C57BL/6jRj (B6) compared with TLR3 knockout mice. In this study, we confirmed an increased expression of Tlr3, Trif, Tbk1, and Irf7/Irf3 in the liver 42 h postinfection and the initiation of an early burst of proinflammatory response such as Ifng, NF-kB, and Tnfa in B6 mice that may promote parasite fitness. Interestingly, in the absence of TLR3, we showed the involvement of high IFN-γ and lower type I IFN response in the early clearance of parasitemia. In parallel, we observed an increase in splenic NK and NKT cells expressing TLR3 in infected B6 mice, suggesting a role for TLR sensing in the innate immune response. Finally, we find evidence that the increase in the frequency of CD19+TLR3+ B cells along with reduced levels of total IgG in B6 mice possibly suggests the initiation of TLR3-dependent pathway early during P. yoelii infection. Our results thus reveal a new mechanism in which a parasite-activated TLR3 pathway promotes blood stage infection along with quantitative and qualitative differences in Ab responses.
Collapse
Affiliation(s)
- Tarun Keswani
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Delphine Delcroix-Genete
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Fabien Herbert
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Ines Leleu
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Claire Lambert
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Marion Draheim
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | | | - Jean Michel Saliou
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Pierre-André Cazenave
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Olivier Silvie
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, 75013 Paris, France
| | - Jacques Roland
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Sylviane Pied
- Team 10: Tropical Biomes & Immunopathophysiology, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019 - UMR 9017 - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France;
| |
Collapse
|
13
|
Enzymatic Regulation and Biological Functions of Reactive Cysteine Persulfides and Polysulfides. Biomolecules 2020; 10:biom10091245. [PMID: 32867265 PMCID: PMC7563103 DOI: 10.3390/biom10091245] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 01/15/2023] Open
Abstract
Cysteine persulfide (CysSSH) and cysteine polysulfides (CysSSnH, n > 1) are cysteine derivatives that have sulfane sulfur atoms bound to cysteine thiol. Advances in analytical methods that detect and quantify persulfides and polysulfides have shown that CysSSH and related species such as glutathione persulfide occur physiologically and are prevalent in prokaryotes, eukaryotes, and mammals in vivo. The chemical properties and abundance of these compounds suggest a central role for reactive persulfides in cell-regulatory processes. CysSSH and related species have been suggested to act as powerful antioxidants and cellular protectants and may serve as redox signaling intermediates. It was recently shown that cysteinyl-tRNA synthetase (CARS) is a new cysteine persulfide synthase. In addition, we discovered that CARS is involved in protein polysulfidation that is coupled with translation. Mitochondrial activity in biogenesis and bioenergetics is supported and upregulated by CysSSH derived from mitochondrial CARS. In this review article, we discuss the mechanisms of the biosynthesis of CysSSH and related persulfide species, with a particular focus on the roles of CARS. We also review the antioxidative and anti-inflammatory actions of persulfides.
Collapse
|
14
|
Zhang T, Tsutsuki H, Ono K, Akaike T, Sawa T. Antioxidative and anti-inflammatory actions of reactive cysteine persulfides. J Clin Biochem Nutr 2020; 68:5-8. [PMID: 33536706 PMCID: PMC7844669 DOI: 10.3164/jcbn.20-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cysteine persulfide (CysSSH) and polysulfides (CysS[S]nH, n>1) are cysteine derivatives having sulfane sulfur atoms bound to cysteine thiol. Recent advances in the development of analytical methods for detection and quantification of persulfides and polysulfides have revealed the biological presence, in both prokaryotes and eukaryotes, of persulfide/polysulfide in diverse forms such as CysSSH, glutathione persulfide and protein persulfides. Accumulating evidence has suggested that persulfide/polysulfide species may involve in a variety of biological events such as biosyntheses of sulfur-containing molecules, tRNA modification, regulation of redox-dependent signal transduction, mitochondrial energy metabolism via sulfur respiration, cytoprotection from oxidative stress via their antioxidant activities, and anti-inflammation against Toll-like receptor-mediated inflammatory responses. Development of chemical sulfur donors may facilitate further understanding of physiological and pathophysiological roles of persulfide/polysulfide species, including regulatory roles of these species in immune responses.
Collapse
Affiliation(s)
- Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Katushiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
15
|
Combined Administration of TLR4 (LPS) and TLR3 (Poly I:C) Ligands to CBA Mice Elevates the Content of Osteogenic MSC by 1.6 Times and Increases Content of Bone Marrow MSC to Intermediate Level between Values Attained by Their Individual Administration. Bull Exp Biol Med 2020; 168:767-772. [PMID: 32328942 DOI: 10.1007/s10517-020-04798-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 12/22/2022]
Abstract
In 1 and 24 h after combined administration of TLR4 (LPS) and TLR3 (Poly I:C) ligands to CBA mice, the content of MSC in bone marrow increased to intermediate value between the levels attained by their individual injections. The content of osteogenic MSC assessed in 24 h postinjection corresponded to the control level in Poly I:C group, decreased in LPS group by 2.5 times relatively to the control, and increased by 1.6 times (relatively to control) after combined administration of the ligands. In 3 h after combined addition of LPS and Poly I:C in vitro to 12-day-old primary culture of mouse bone marrow stromal cells, the concentration of TNFα in culture medium was intermediate between the levels attained by their individual application. The data revealed dependence of activation of stromal tissue on intensity of innate immunity reactions; they also attested to marked elevation of osteogenicity of MSC pool after costimulation with Poly I:C and LPS, which can underlie augmented calcification of the tissues during combined viral and bacterial infections.
Collapse
|
16
|
Suresh MV, Dolgachev VA, Zhang B, Balijepalli S, Swamy S, Mooliyil J, Kralovich G, Thomas B, Machado-Aranda D, Karmakar M, Lalwani S, Subramanian A, Anantharam A, Moore BB, Raghavendran K. TLR3 absence confers increased survival with improved macrophage activity against pneumonia. JCI Insight 2019; 4:131195. [PMID: 31801911 DOI: 10.1172/jci.insight.131195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is a pathogen recognition molecule associated with viral infection with double-stranded RNA (dsRNA) as its ligand. We evaluated the role of TLR3 in bacterial pneumonia using Klebsiella pneumoniae (KP). WT and TLR3-/- mice were subjected to a lethal model of KP. Alveolar macrophage polarization, bactericidal activity, and phagocytic capacity were compared. RNA-sequencing was performed on alveolar macrophages from the WT and TLR3-/- mice. Adoptive transfers of alveolar macrophages from TLR3-/- mice to WT mice with KP were evaluated for survival. Expression of TLR3 in postmortem human lung samples from patients who died from gram-negative pneumonia and pathological grading of pneumonitis was determined. Mortality was significantly lower in TLR3-/-, and survival improved in WT mice following antibody neutralization of TLR3 and with TLR3/dsRNA complex inhibitor. Alveolar macrophages from TLR3-/- mice demonstrated increased bactericidal and phagocytic capacity. RNA-sequencing showed an increased production of chemokines in TLR3-/- mice. Adoptive transfer of alveolar macrophages from the TLR3-/- mice restored the survival in WT mice. Human lung samples demonstrated a good correlation between the grade of pneumonitis and TLR3 expression. These data represent a paradigm shift in understanding the mechanistic role of TLR3 in bacterial pneumonia.
Collapse
Affiliation(s)
| | | | - Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgia Kralovich
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Bivin Thomas
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Monita Karmakar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanjeev Lalwani
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Arulselvi Subramanian
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Bethany B Moore
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
17
|
Park CM, Song YS. Luteolin and luteolin-7- O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice. Nutr Res Pract 2019; 13:473-479. [PMID: 31814922 PMCID: PMC6883227 DOI: 10.4162/nrp.2019.13.6.473] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/OBJECTIVES Anti-inflammatory and antioxidative activities of luteolin and luteolin-7-O-glucoside were compared in galactosamine (GalN)/lipopolysaccharide (LPS)-induced hepatitic ICR mice. MATERIALS/METHODS Male ICR mice (6 weeks old) were divided into 4 groups: normal control, GalN/LPS, luteolin, and luteolin-7-O-glucoside groups. The latter two groups were administered luteolin or luteolin-7-O-glucoside (50 mg/kg BW) daily by gavage for 3 weeks after which hepatitis was induced by intraperitoneal injection of GalN and LPS (1 g/kg BW and 10 µg/kg BW, respectively). RESULTS GalN/LPS produced acute hepatic injury by a sharp increase in serum AST, ALT, and TNF-α levels, increases that were ameliorated in the experimental groups. In addition, markedly increased expressions of cyclooxygenase (COX)-2 and its transcription factors, nuclear factor (NF)-κB and activator protein (AP)-1, were also significantly attenuated in the experimental groups. Compared to luteolin-7-O-glucoside, luteolin more potently ameliorated the levels of inflammatory mediators. Phase II enzymes levels and NF-E2 p45-related factor (Nrf)-2 activation that were decreased by GalN/LPS were increased by luteolin and luteolin-7-O-glucoside administration. In addition, compared to luteolin, luteolin-7-O-glucoside acted as a more potent inducer of changes in phase II enzymes. Liver histopathology results were consistent with the mediator and enzyme results. CONCLUSION Luteolin and luteolin-7-O-glucoside protect against GalN/LPS-induced hepatotoxicity through the regulation of inflammatory mediators and phase II enzymes.
Collapse
Affiliation(s)
- Chung Mu Park
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Korea
| | - Young-Sun Song
- Department of Smart Foods and Drugs, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Korea
| |
Collapse
|
18
|
Huang C, Chen S, Zhang T, Li D, Huang Z, Huang J, Qin Y, Chen B, Cheng G, Ma F, Zhou M. TLR3 Ligand PolyI:C Prevents Acute Pancreatitis Through the Interferon-β/Interferon-α/β Receptor Signaling Pathway in a Caerulein-Induced Pancreatitis Mouse Model. Front Immunol 2019; 10:980. [PMID: 31130960 PMCID: PMC6509240 DOI: 10.3389/fimmu.2019.00980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a common and devastating inflammatory disorder of the pancreas. However, there are still no effective treatments available for the disease. Therefore, it is important to discover new therapeutic targets and strategies for better treatment and prognosis of AP patients. Toll-like receptor 3 (TLR3) ligand polyI:C is a double-stranded RNA mimic that can be used as an immune stimulant. Our current study indicates that polyI:C exerted excellent anti-inflammatory effects in a caerulein-induced AP mouse model and taurocholate-induced pancreatic acinar cell line injury model. We found that polyI:C triggers type I interferon (IFN) production and downstream IFN-α/β receptor (IFNAR)-dependent signaling, which play key roles in protecting the pancreas from inflammatory injury. Knockout of IFN-β and IFNAR in mice abolished the preventive effects of polyI:C on caerulein-induced AP symptoms, which include pancreatic edema, neutrophil infiltration, the accumulation of reactive oxygen species (ROS), and inflammatory gene expression. Treating pancreatic acinar 266-6 cells with an IFNAR inhibitor, which blocks the interaction between type I IFN and IFNAR, diminishes the downregulation of oxidative stress by polyI:C. Additionally, a subsequent transcriptome analysis on the role of polyI:C in treating pancreatitis suggested that chemotaxis of neutrophils and the production of ROS were inhibited by polyI:C in the pancreases damaged by caerulein injection. Thus, polyI:C may act as a type I IFN inducer to alleviate AP, and it has the potential to be a promising therapeutic agent used at the early stages of AP.
Collapse
Affiliation(s)
- Chaohao Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengchuan Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dapei Li
- Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhonglin Huang
- Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Huang
- Department of Emergency, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanghua Qin
- Department of Laboratory Diagnosis, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Genhong Cheng
- Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Ma
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengtao Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Zhang T, Ono K, Tsutsuki H, Ihara H, Islam W, Akaike T, Sawa T. Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock. Cell Chem Biol 2019; 26:686-698.e4. [DOI: 10.1016/j.chembiol.2019.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
|
20
|
Webb GJ, Hirschfield GM, Krawitt EL, Gershwin ME. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:247-292. [PMID: 29140756 DOI: 10.1146/annurev-pathol-020117-043534] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoimmune hepatitis is an uncommon idiopathic syndrome of immune-mediated destruction of hepatocytes, typically associated with autoantibodies. The disease etiology is incompletely understood but includes a clear association with human leukocyte antigen (HLA) variants and other non-HLA gene variants, female sex, and the environment. Pathologically, there is a CD4+ T cell-rich lymphocytic inflammatory infiltrate with variable hepatocyte necrosis and subsequent hepatic fibrosis. Attempts to understand pathogenesis are informed by several monogenetic syndromes that may include autoimmune liver injury, by several drug and environmental agents that have been identified as triggers in a minority of cases, by human studies that point toward a central role for CD4+ effector and regulatory T cells, and by animal models of the disease. Nonspecific immunosuppression is the current standard therapy. Further understanding of the disease's cellular and molecular mechanisms may assist in the design of better-targeted therapies, aid the limitation of adverse effects from therapy, and inform individualized risk assessment and prognostication.
Collapse
Affiliation(s)
- G J Webb
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - G M Hirschfield
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - E L Krawitt
- Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA; .,Department of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, California 95817, USA;
| |
Collapse
|
21
|
Role of macrophages in experimental liver injury and repair in mice. Exp Ther Med 2019; 17:3835-3847. [PMID: 31007731 DOI: 10.3892/etm.2019.7450] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Liver macrophages make up the largest proportion of tissue macrophages in the host and consist of two dissimilar groups: Kupffer cells (KCs) and monocyte-derived macrophages (MoMø). As the liver is injured, KCs sense the injury and initiate inflammatory cascades mediated by the release of inflammatory cytokines and chemokines. Subsequently, inflammatory monocytes accumulate in the liver via chemokine-chemokine receptor interactions, resulting in massive inflammatory MoMø infiltration. When live r injury ceases, restorative macrophages, derived from recruited inflammatory monocytes (lymphocyte antigen 6 complex, locus Chi monocytes), promote the resolution of hepatic damage and fibrosis. Consequently, a large number of studies have assessed the mechanisms by which liver macrophages exert their opposing functions at different time-points during liver injury. The present review primarily focuses on the diverse functions of macrophages in experimental liver injury, fibrosis and repair in mice and illustrates how macrophages may be targeted to treat liver disease.
Collapse
|
22
|
Xu ZY, Zhou C, Zhang KF, Zheng YP. Identification of key genes in Ankylosing spondylitis. Immunol Lett 2018; 204:60-66. [PMID: 30321561 DOI: 10.1016/j.imlet.2018.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 11/24/2022]
Abstract
Ankylosing spondylitis (AS) is a common form of seronegative spondyloarthritis. We had identified differentially expressed genes (DEGs) in AS based on our previous RNA-sequencing results. Our study aimed to identify key genes in AS by integrated microarray analysis. In this present study, we identified 1328 DEGs between AS and normal control by using integrated analysis of two datasets derived from the Gene Expression Omnibus (GEO) database. Functional annotation of DEGs were performed. Pathways in cancer, Pancreatic cancer and Natural killer cell mediated cytotoxicity were significantly enriched pathways for DEGs. Based on the shared DEGs of AS in both integrated analysis and our previous RNA-sequencing results, we constructed the protein and protein interaction (PPI) network. BIRC2, MAPILC3A and MAGED1 were hub proteins. Validation of gene expression by qRT-PCR were performed and the results were consistent with our integrated analysis generally. Our finding provided new clues for understanding the mechanism of AS.
Collapse
Affiliation(s)
- Zhong-Yang Xu
- Department of Orthopaedics, Jining NO.1 People's Hospital, China; Department of Orthopaedics, Sandong University Qilu Hospital, China
| | - Chao Zhou
- Department of Orthopaedics, Sandong University Qilu Hospital, China
| | - Ke-Feng Zhang
- Department of Orthopaedics, Jining NO.1 People's Hospital, China
| | - Yan-Ping Zheng
- Department of Orthopaedics, Sandong University Qilu Hospital, China.
| |
Collapse
|
23
|
Zheng XF, Hu XY, Ma B, Fang H, Zhang F, Mao YF, Yang FY, Xiao SC, Xia ZF. Interleukin-35 Attenuates D-Galactosamine/Lipopolysaccharide-Induced Liver Injury via Enhancing Interleukin-10 Production in Kupffer Cells. Front Pharmacol 2018; 9:959. [PMID: 30197594 PMCID: PMC6117388 DOI: 10.3389/fphar.2018.00959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL) -35 is an anti-inflammatory cytokine which exerts various beneficial effects on autoimmune diseases. However, whether IL-35 plays a role in endotoxin induced hepatitis demands clarification. This study aims to reveal the effect and mechanism of IL-35 on endotoxin induced liver injury. Acute hepatic injury was induced by D-galactosamine (D-GalN, 400 mg/kg) and lipopolysaccharide (LPS, 5 μg/kg) administration in mice. IL-35 treatment ameliorated D-GalN/LPS induced liver injury in a dose dependent manner as shown by histological examination, ALT determination and Caspase-3 activity assay. It also reduced production of pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, IL-1β, and IL-6, and increased production of anti-inflammatory cytokines, IL-4, IL-10, and transforming growth factor (TGF)-β. This hepato-protective effect was proved mainly mediated by Kupffer cells (KC) via gadolinium chloride depletion and cell adoptive transfer experiment. In addition, IL-35 emolliated the cytotoxicity of LPS-triggered KCs to hepatocytes, suppressed nitric oxide (NO) and TNF-α production, and elevated IL-10 production in LPS stimulated KCs. Furthermore, IL-35 could not exert hepato-protective effect in IL-10-deficient mice in vivo and it could not suppress LPS induced NO and TNF-α production in IL-10-deficient KCs in vitro. In conclusion, IL-35 protects endotoxin-induced acute liver injury, which mainly acts thought increasing IL-10 production in KCs. This finding demonstrates a role of IL-35 in anti-infectious immunity and provides a potential therapeutic target in treating fulminant hepatitis.
Collapse
Affiliation(s)
- Xing-Feng Zheng
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao-Yan Hu
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bing Ma
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - He Fang
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Fang Zhang
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yong Yang
- Intensive Care Unit, The People's Hospital of Laiwu City, Laiwu, China
| | - Shi-Chu Xiao
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhao-Fan Xia
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Wang Y, Song L, Liu M, Ge R, Zhou Q, Liu W, Li R, Qie J, Zhen B, Wang Y, He F, Qin J, Ding C. A proteomics landscape of circadian clock in mouse liver. Nat Commun 2018; 9:1553. [PMID: 29674717 PMCID: PMC5908788 DOI: 10.1038/s41467-018-03898-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
As a circadian organ, liver executes diverse functions in different phase of the circadian clock. This process is believed to be driven by a transcription program. Here, we present a transcription factor (TF) DNA-binding activity-centered multi-dimensional proteomics landscape of the mouse liver, which includes DNA-binding profiles of different TFs, phosphorylation, and ubiquitylation patterns, the nuclear sub-proteome, the whole proteome as well as the transcriptome, to portray the hierarchical circadian clock network of this tissue. The TF DNA-binding activity indicates diurnal oscillation in four major pathways, namely the immune response, glucose metabolism, fatty acid metabolism, and the cell cycle. We also isolate the mouse liver Kupffer cells and measure their proteomes during the circadian cycle to reveal a cell-type resolved circadian clock. These comprehensive data sets provide a rich data resource for the understanding of mouse hepatic physiology around the circadian clock. As a circadian organ, liver functions are regulated by circadian clock. Here, the authors present a comprehensive proteomics landscape of the mouse liver, including transcription factor binding profiles, phosphorylation and ubiquitylation patterns, nuclear and whole proteome, and the transcriptome.
Collapse
Affiliation(s)
- Yunzhi Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Song
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Rui Ge
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Wanlin Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Ruiyang Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingbo Qie
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fuchu He
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China.
| | - Jun Qin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Inducible disruption of the c-myb gene allows allogeneic bone marrow transplantation without irradiation. J Immunol Methods 2018; 457:66-72. [PMID: 29630967 DOI: 10.1016/j.jim.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Allogeneic bone marrow (BM) transplantation enables the in vivo functional assessment of hematopoietic cells. As pre-conditioning, ionizing radiation is commonly applied to induce BM depletion, however, it exerts adverse effects on the animal and can limit experimental outcome. Here, we provide an alternative method that harnesses conditional gene deletion to ablate c-myb and thereby deplete BM cells, hence allowing BM substitution without other pre-conditioning. The protocol results in a high level of blood chimerism after allogeneic BM transplantation, whereas immune cells in peripheral tissues such as resident macrophages are not replaced. Further, mice featuring a low chimerism after initial transplantation can undergo a second induction cycle for efficient deletion of residual BM cells without the necessity to re-apply donor cells. In summary, we present an effective c-myb-dependent genetic technique to generate BM chimeras in the absence of irradiation or other methods for pre-conditioning.
Collapse
|
26
|
Wu XT, Yang Z, Ansari AR, Xiao K, Pang XX, Luo Y, Song H. Visfatin regulates the production of lipopolysaccharide-induced inflammatory cytokines through p38 signaling in murine macrophages. Microb Pathog 2018; 117:55-59. [DOI: 10.1016/j.micpath.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/02/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
|
27
|
Yang Y, Gong XB, Huang LG, Wang ZX, Wan RZ, Zhang P, Zhang QY, Chen Z, Zhang BS. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget 2018; 8:30723-30733. [PMID: 28430612 PMCID: PMC5458162 DOI: 10.18632/oncotarget.15413] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
To investigate the effects and mechanism of diosmetin on acute hepatic failure (AHF), an AHF murine model was established through administration of lipopolysaccharides/D-galactosamine (LPS/D-GalN). In vitro, diosmetin scavenged free radicals. In vivo, diosmetin decreased mortality among mice, blocked the development of histopathological changes and hepatic damage, and suppressed levels of inflammatory mediators and cytokines. In addition, diosmetin prevented the expression of phosphorylated IKK, IκBα, and NF-κB p65 in the NF-κB signaling pathway, and JNK and p38 in the MAPK signaling pathway. Diosmetin also inhibited hepatocyte apoptosis. Thus, diosmetin exerts protective effects against endotoxin-induced acute hepatic failure in mice. The underlying mechanisms are antioxidation, NF-κB signaling inhibition, inflammatory mediator/cytokine attenuation, and hepatocyte apoptosis suppression. Diosmetin is thus a potential drug candidate for use in the treatment of acute hepatic failure.
Collapse
Affiliation(s)
- You Yang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xiao-Bao Gong
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Li-Gua Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Zhen-Xu Wang
- Chongqing Institute for Food and Drug Control, Chongqing, P. R. China
| | - Rong-Zhen Wan
- The Ninth People's Hospital of Chongqing, Chongqing, P. R. China
| | - Peng Zhang
- The Ninth People's Hospital of Chongqing, Chongqing, P. R. China
| | - Qing-Yan Zhang
- The Ninth People's Hospital of Chongqing, Chongqing, P. R. China
| | - Zhu Chen
- Chongqing Institute for Food and Drug Control, Chongqing, P. R. China
| | - Bao-Shun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| |
Collapse
|
28
|
Lee YS, Kim DY, Kim TJ, Kim SY, Jeong JM, Jeong WI, Jung JK, Choi JK, Yi HS, Byun JS. Loss of toll-like receptor 3 aggravates hepatic inflammation but ameliorates steatosis in mice. Biochem Biophys Res Commun 2018; 497:957-962. [PMID: 29410095 DOI: 10.1016/j.bbrc.2018.01.191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/26/2022]
Abstract
The importance of toll-like receptor (TLR) 4 in the pathogenesis of steatohepatitis has been well documented; however, little is known about the role of TLR3. In this study, we determined whether the depletion of TLR3 modulated hepatic injury in mice and further aimed to provide mechanistic insights into the TLR3-mediated modulation of diet-induced hepatic inflammation and fat accumulation. Hepatic steatosis and inflammatory response were induced by feeding wild-type (WT) or TLR3 knockout mice a high-fat diet for 8 weeks. Primary liver resident cells, including hepatocytes, Kupffer cells, and hepatic stellate cells (HSCs), were treated with palmitic acid. TLR3 knockout mice fed a high-fat diet showed severe hepatic inflammation accompanied by nuclear factor-κB and IRF3 activation, which is mainly induced by the activation of Kupffer cells. Decreased TLR4 expression was restored in hepatic mononuclear cells and Kupffer cells in TLR3 knockout mice compared to that in the WT. Moreover, hepatic steatosis was decreased in TLR3 knockout mice. Hepatocytes from TLR3 knockout mice exhibited reduced expression of cannabinoid receptors. HSCs from TLR3 knockout mice showed decreased expression of the enzymes involved in endocannabinoid synthesis. In conclusion, this study suggests that the selective modulation of TLR3 could be a novel therapeutic target for the treatment of hepatic inflammation and steatosis.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jong-Min Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jae-Kap Choi
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 305-764, Republic of Korea.
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
29
|
Mahadik K, Prakhar P, Rajmani RS, Singh A, Balaji KN. c-Abl-TWIST1 Epigenetically Dysregulate Inflammatory Responses during Mycobacterial Infection by Co-Regulating Bone Morphogenesis Protein and miR27a. Front Immunol 2018; 9:85. [PMID: 29449840 PMCID: PMC5799226 DOI: 10.3389/fimmu.2018.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Mycobacteria propelled modulation of host responses is of considerable interest in the face of emerging drug resistance. Although it is known that Abl tyrosine kinases affect entry and persistence of mycobacteria, mechanisms that couple c-Abl to proximal signaling pathways during immunity are poorly understood. Loss-of-function of c-Abl through Imatinib, in a mouse model of tuberculosis or RNA interference, identified bone morphogenesis protein (BMP) signaling as its cellular target. We demonstrate that c-Abl promotes mycobacterial survival through epigenetic modification brought about by KAT5-TWIST1 at Bmp loci. c-Abl-BMP signaling deregulated iNOS, aggravating the inflammatory balance. Interestingly, BMP signaling was observed to have far-reaching effects on host immunity, as it attenuated TLR3 pathway by engaging miR27a. Significantly, these events were largely mediated via WhiB3 and DosR/S/T but not SecA signaling pathway of mycobacteria. Our findings suggest molecular mechanisms of host pathways hijacked by mycobacteria and expand our understanding of c-Abl inhibitors in potentiating innate immune responses.
Collapse
Affiliation(s)
- Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - R S Rajmani
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
30
|
Toll-Like Receptor Ligand-Induced Liver Injury in D-Galactosamine-Sensitized Mice: Differences between TLR7/8 and TLR9 Ligands, Cytokine Patterns, and Cross-Tolerance Induction by TLR2 Ligand Pretreatment. J Immunol Res 2017; 2017:9653793. [PMID: 29181417 PMCID: PMC5664326 DOI: 10.1155/2017/9653793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022] Open
Abstract
Administration of Toll-like receptor ligands (TLRLs) is known to cause liver injury in D-galN-sensitized mice. In the present study, we aimed to complement preceding reports on the TLRL/D-galN system by analyzing comparisons among TLRLs, mouse strain dependence, effects on serum levels of cytokines, and effects of sequential administrations of different TLRLs. In a preliminary set of analyses, we first confirmed that liver failure can be induced by diverse TLRLs, including LTA and R848 in combination with D-galN. Analysis using TLR4-deficient mice excluded potential confounding effects of endogenous TLR4Ls that include those referred to as DAMPs in CpG DNA/D-galN hepatotoxicity. Subsequently, we showed that LTA pretreatment could prevent mortality in both CpG DNA/D-galN- and R848/D-galN-treated mice compared to without pretreatment. Incidentally, we observed that without the LTA pretreatment, CpG DNA/D-galN showed relatively higher liver-specific toxicity whereas R848/D-galN showed more symptoms of multiple organ failure. These findings suggest that, in D-galN-sensitized mice, different TLRLs not only show similarity in the ability to induce hepatic injury but also exhibit distinctive abilities in inducing systemic inflammation and multiple organ failure. These findings also suggest the potential usefulness of cross-tolerance induction using LTA in the prevention of organ failure in TLRL-mediated acute inflammation.
Collapse
|
31
|
Li XQ, Chen FS, Tan WF, Fang B, Zhang ZL, Ma H. Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway. J Neuroinflammation 2017; 14:205. [PMID: 29061187 PMCID: PMC5654055 DOI: 10.1186/s12974-017-0977-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Background Ischemia-reperfusion (IR) affects microRNA (miR) expression and causes substantial inflammation. Multiple roles of the tumor suppressor miR-129-5p in cerebral IR have recently been reported, but its functions in the spinal cord are unclear. Here, we investigated the role of miR-129-5p after spinal cord IR, particularly in regulating high-mobility group box-1 (HMGB1) and the Toll-like receptor (TLR)-3 pathway. Methods Ischemia was induced via 5-min occlusion of the aortic arch. The relationship between miR-129-5p and HMGB1 was elucidated via RT-PCR, western blotting, and luciferase assays. The cellular distribution of HMGB1 was determined via double immunofluorescence. The effect of miR-129-5p on the expression of HMGB1, TLR3, and downstream cytokines was evaluated using synthetic miRs, rHMGB1, and the TLR3 agonist Poly(I:C). Blood-spinal cord barrier (BSCB) permeability was examined by measuring Evans blue (EB) dye extravasation and the water content. Results The temporal miR-129-5p and HMGB1 expression profiles and luciferase assay results indicated that miR-129-5p targeted HMGB1. Compared with the Sham group, the IR group had higher HMGB1 immunoreactivity, which was primarily distributed in neurons and microglia. Intrathecal injection of the miR-129-5p mimic significantly decreased the HMGB1, TLR3, interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels and the double-labeled cell count 48 h post-surgery, whereas rHMGB1 and Poly(I:C) reversed these effects. Injection of miR-129-5p mimic preserved motor function and prevented BSCB leakage based on increased Basso Mouse Scale scores and decreased EB extravasation and water content, whereas injection rHMGB1 and Poly(I:C) aggravated these injuries. Conclusions Increasing miR-129-5p levels protect against IR by ameliorating inflammation-induced neuronal and BCSB damage by inhibiting HMGB1 and TLR3-associated cytokines.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Wen-Fei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
32
|
Preventive effects of interleukin-6 in lipopolysaccharide/ d -galactosamine induced acute liver injury via regulating inflammatory response in hepatic macrophages. Int Immunopharmacol 2017; 51:99-106. [DOI: 10.1016/j.intimp.2017.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 01/04/2023]
|
33
|
A positive-feedback loop between tumour infiltrating activated Treg cells and type 2-skewed macrophages is essential for progression of laryngeal squamous cell carcinoma. Br J Cancer 2017; 117:1631-1643. [PMID: 28949956 PMCID: PMC5729431 DOI: 10.1038/bjc.2017.329] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/08/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Foxp3+ regulatory T (Treg) cells and M2 macrophages are associated with increased tumour progression. However, the interaction between Treg cells and M2 macrophages remains unclear. METHODS The expression of FoxP3 and CD163 was detected by immunohistochemistry in 65 cases of laryngeal squamous cell carcinoma (LSCC). In vitro, the generation of activated Treg (aTreg) cells and M2 macrophages by interactions with their precursor cells were analysed by flow cytometry and ELISA. In vivo, the antitumour effects were assessed by combined targeting aTreg cells and M2 macrophages, and intratumoural immunocytes were analysed by flow cytometry. RESULTS In LSCC tissue, accumulation of aTreg cells and M2 macrophages predicted a poor prognosis and were positively associated with each other. In vitro, aTreg cells were induced from CD4+CD25- T cells by cancer cell-activated M2-like macrophages. Consequently, these aTreg cells skewed the differentiation of monocytes towards an M2-like phenotype, thereby forming a positive-feedback loop. Combined targeting aTreg cells and M2 macrophages led to potent antitumour immunity in vivo. CONCLUSIONS The positive-feedback loop between aTreg cells and M2 macrophages is essential to maintain or promote immunosuppression in the tumour microenvironment and may be a potential therapeutic target to inhibit tumour progression.
Collapse
|
34
|
Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Dis Int 2017; 16:245-256. [PMID: 28603092 PMCID: PMC7172563 DOI: 10.1016/s1499-3872(17)60014-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay of these inflammatory mediators and switching of immune responses during hepatotoxic, viral, drug-induced and immune cell-mediated hepatitis decide the fate of liver pathology. The present review aimed to describe the mechanisms of liver injury, its relevance to human liver pathology and insights for the future therapeutic interventions. DATA SOURCES The data of mouse hepatic models and relevant human liver diseases presented in this review are systematically collected from PubMed, ScienceDirect and the Web of Science databases published in English. RESULTS The hepatotoxic liver injury in mice induced by the metabolites of CCl4, acetaminophen or alcohol represent necrotic cell death with activation of cytochrome pathway, formation of reactive oxygen species (ROS) and mitochondrial damage. The Fas or TNF-alpha induced apoptotic liver injury was dependent on activation of caspases, release of cytochrome c and apoptosome formation. The ConA-hepatitis demonstrated the involvement of TRAIL-dependent necrotic/necroptotic cell death with activation of RIPK1/3. The alpha-GalCer-induced liver injury was mediated by TNF-alpha. The LPS-induced hepatitis involved TNF-alpha, Fas/FasL, and perforin/granzyme cell death pathways. The MHV3 or Poly(I:C) induced liver injury was mediated by natural killer cells and TNF-alpha signaling. The necrotic ischemia-reperfusion liver injury was mediated by hypoxia, ROS, and pro-inflammatory cytokines; however, necroptotic cell death was found in partial hepatectomy. The crucial role of immune cells and cell death mediators in viral hepatitis (HBV, HCV), drug-induced liver injury, non-alcoholic fatty liver disease and alcoholic liver disease in human were discussed. CONCLUSIONS The mouse animal models of hepatitis provide a parallel approach for the study of human liver pathology. Blocking or stimulating the pathways associated with liver cell death could unveil the novel therapeutic strategies in the management of liver diseases.
Collapse
|
35
|
Huang J, Yuan Q, Zhu H, Yin L, Hong S, Dong Z, Jin W, Dong C. IL-17C/IL-17RE Augments T Cell Function in Autoimmune Hepatitis. THE JOURNAL OF IMMUNOLOGY 2016; 198:669-680. [PMID: 27956525 DOI: 10.4049/jimmunol.1600977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/12/2016] [Indexed: 02/01/2023]
Abstract
Autoimmune hepatitis is a worldwide health problem and significant cause of mortality. However, the disease etiology is largely unknown, which accounts for ineffective treatment and uncontrolled disease progression. In this study, we demonstrated the functional importance of the IL-17C/IL-17RE axis in Con A-induced hepatitis. Elevated IL-17C expression was detected in liver samples of both human and mouse autoimmune hepatitis. IL-17C, produced by hepatocytes, and its specific receptor IL-17RE on liver-resident T cells were both found to be required in Con A-induced liver damage. Mechanistically, IL-17C augmented the expression of IL-2 by intrahepatic CD4+ T cells to promote NK cell activation and liver damage. To our knowledge, our findings thus for the first time defined the indispensable role of IL-17C/IL-17RE in autoimmune hepatitis; this axis may serve as a novel drug target for the treatment of this disease.
Collapse
Affiliation(s)
- Jinling Huang
- Institute for Immunology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qing Yuan
- Organ Transplantation Center, Organ Transplantation Institute, 309th Hospital, Beijing 100091, China
| | - Hui Zhu
- Shanghai Public Health Clinical Center, Shanghai 201058, China; and
| | - Lan Yin
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Shanjuan Hong
- Institute for Immunology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhongjun Dong
- Institute for Immunology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Jin
- Institute for Immunology, Tsinghua University, Beijing 100084, China; .,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology, Tsinghua University, Beijing 100084, China; .,School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Ren C, Chen T, Jiang X, Sun H, Qian J, Hu C, Wang Y. Two proprotein convertase subtilisin/kexin type 9 (PCSK9) paralogs from the tropical sea cucumber (Stichopus monotuberculatus): Molecular characterization and inducible expression with immune challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 56:255-262. [PMID: 27426522 DOI: 10.1016/j.fsi.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a multifunctional protein that widely exists in eukaryotic species. In this study, two PCSK9 paralogs, named StmPCSK9-1 and StmPCSK9-2, were identified from the tropical sea cucumber (Stichopus monotuberculatus). The cDNAs of StmPCSK9-1 and StmPCSK9-2 are 1330 kb and 1508 kb in size, respectively. The open reading frames (ORF) for StmPCSK9-1 and StmPCSK9-2 cDNAs are 1128 and 1167 bp in length, encoding the proteins of 375 and 388 amino acids with the deduced molecular weights of 38.76 and 41.07 kDa, respectively. In accord with other members in PCSK9 family, the two StmPCSK9 paralogs possessed the inhibitor_I9 and peptidase_S8 functional domains, seven active sites, a catalytic triad and two calcium binding sites. For the gene structure, the splicing of the two StmPCSK9 paralogs was relatively conserved. In addition, the mRNA expression of StmPCSK9-1 and StmPCSK9-2 was only detected in the sea cucumber intestine and coelomocytes, and the expression levels of both the two StmPCSK9 paralogs were higher in intestine. Moreover, StmPCSK9-2 was found to be a cytoplasm protein without signal peptide, and show no response to the immune challenge. On the contrary, StmPCSK9-1 was a secreted protein and the transcriptional expression of StmPCSK9-1 was significantly up-regulated by lipopolysaccharides (LPS) treatment and slightly down-regulated by polyriboinosinic polyribocytidylic acid [Poly (I:C)] challenge in in vitro experiments performed in the cultural primary coelomocytes, suggesting that the StmPCSK9-1 may play critical roles in the innate immune defense of sea cucumber, S. monotuberculatus, against bacterial and/or viral infections.
Collapse
Affiliation(s)
- Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Hongyan Sun
- College of Animal Science, South China Agricultural University, Guangzhou, PR China.
| | - Jing Qian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| |
Collapse
|
37
|
Ramnath D, Powell EE, Scholz GM, Sweet MJ. The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair. Semin Cell Dev Biol 2016; 61:22-30. [PMID: 27552920 DOI: 10.1016/j.semcdb.2016.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
In addition to their established roles in host defence, Toll-like Receptors (TLRs) have emerging roles in control of homeostasis, injury and wound repair. The dsRNA-sensing receptor, TLR3, has been particularly implicated in such processes in several different tissues including the skin, intestine and liver, as well as in the control of reparative mechanisms in the brain, heart and kidneys, following ischemia reperfusion injury. In this review, we provide an overview of TLR3 signalling and functions in inflammation, tissue damage and repair processes, as well as therapeutic opportunities that may arise in the future from knowledge of such pathways.
Collapse
Affiliation(s)
- Divya Ramnath
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Qld 4072, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Qld 4072, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld 4102, Australia
| | - Glen M Scholz
- Melbourne Dental School and Oral Health Cooperative Research Centre, The University of Melbourne, Parkville 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3010, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Qld 4072, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Qld 4072, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
38
|
Peng J, Lin X, Lin H, Chen S, Liu J, Guo Z, Liang Y, Huang S, Lu F. Up-regulated TLR2 and TLR4 expressions in liver and spleen during acute murine T. gondii infection. Parasitol Res 2016; 115:4681-4686. [DOI: 10.1007/s00436-016-5226-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
|
39
|
Huang YQ, Li PY, Wang JB, Zhou HQ, Yang ZR, Yang RC, Bai ZF, Wang LF, Li JY, Liu HH, Zhao YL, Xiao XH. Inhibition of Sophocarpine on Poly I: C/D-GalN-Induced Immunological Liver Injury in Mice. Front Pharmacol 2016; 7:256. [PMID: 27570511 PMCID: PMC4981750 DOI: 10.3389/fphar.2016.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has suggested that natural killer (NK) cells contribute to the pathogenesis of human immunological liver injury (ILI). Previous studies have demonstrated that Sophocarpine exerts activity in immune modulation. It also has a therapeutic effect on liver protection in that it can alleviate liver fibrosis by suppressing both the activation of hepatic stellate cells and the proliferation of the activated hepatic stellate cells. However, whether Sophocarpine protects the liver by regulating NK cell activity remains unclear. In this study, the modulating effect of Sophocarpine on NK cells in the liver was investigated. The results showed that Sophocarpine dramatically decreased the production of pro-inflammatory cytokines and attenuated the liver injury induced by Poly I: C/D-GalN in C57BL/6- mice. More importantly, Sophocarpine pre-treatment significantly suppressed NK cell activation and downregulated the expression of NKG2D, a receptor responsible for NK cell activation. Moreover, the protein levels of DAP12, ZAP76 and Syk decreased, as did their corresponding mRNA levels. Overall, our study demonstrates that Sophocarpine inhibits NK cell activity, thus making it a promising therapy for ILI.
Collapse
Affiliation(s)
- Yin-Qiu Huang
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China; Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Peng-Yan Li
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| | - Hou-Qin Zhou
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China; Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Zhi-Rui Yang
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China; Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Rui-Chuang Yang
- Research Center for Clinical and Translational Medicine, 302 Hospital of People's Liberation Army Beijing, China
| | - Zhao-Fang Bai
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| | - Li-Fu Wang
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army Beijing, China
| | - Jian-Yu Li
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army Beijing, China
| | - Hong-Hong Liu
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army Beijing, China
| | - Yan-Ling Zhao
- Department of Pharmacy, 302 Military Hospital of China Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| |
Collapse
|
40
|
Li Y, Xu XL, Zhao D, Pan LN, Huang CW, Guo LJ, Lu Q, Wang J. TLR3 ligand Poly IC Attenuates Reactive Astrogliosis and Improves Recovery of Rats after Focal Cerebral Ischemia. CNS Neurosci Ther 2016; 21:905-13. [PMID: 26494128 DOI: 10.1111/cns.12469] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/06/2015] [Accepted: 09/13/2015] [Indexed: 01/08/2023] Open
Abstract
AIMS Brain ischemia activates astrocytes in a process known as astrogliosis. Although this process has beneficial effects, excessive astrogliosis can impair neuronal recovery. Polyinosinic-polycytidylic acid (Poly IC) has shown neuroprotection against cerebral ischemia-reperfusion injury, but whether it regulates reactive astrogliosis and glial scar formation is not clear. METHODS We exposed cultured astrocytes to oxygen-glucose deprivation/reoxygenation (OGD/R) and used a rat middle cerebral artery occlusion (MCAO)/reperfusion model to investigate the effects of Poly IC. Astrocyte proliferation and proliferation-related molecules were evaluated by immunostaining and Western blotting. Neurological deficit scores, infarct volumes and neuroplasticity were evaluated in rats after transient MCAO. RESULTS In vitro, Poly IC inhibited astrocyte proliferation, upregulated Toll-like receptor 3 (TLR3) expression, upregulated interferon-β, and downregulated interleukin-6 production. These changes were blocked by a neutralizing antibody against TLR3, suggesting that Poly IC function is TLR3-dependent. Moreover, in the MCAO model, Poly IC attenuated reactive astrogliosis, reduced brain infarction volume, and improved neurological function. In addition, Poly IC prevented MCAO-induced reductions in soma size, dendrite length, and number of dendritic bifurcations in cortical neurons of the infarct penumbra. CONCLUSIONS By ameliorating astrogliosis-related damage, Poly IC is a potential therapeutic agent for attenuating neuronal damage and promoting recovery after brain ischemia.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Lin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Dan Zhao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Na Pan
- Medical Department of Neurology, The Second Hospital of Nanchang, Nanchang, China
| | - Chun-Wei Huang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian-Jun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Zhang L, Xiang W, Wang G, Yan Z, Zhu Z, Guo Z, Sengupta R, Chen AF, Loughran PA, Lu B, Wang Q, Billiar TR. Interferon β (IFN-β) Production during the Double-stranded RNA (dsRNA) Response in Hepatocytes Involves Coordinated and Feedforward Signaling through Toll-like Receptor 3 (TLR3), RNA-dependent Protein Kinase (PKR), Inducible Nitric Oxide Synthase (iNOS), and Src Protein. J Biol Chem 2016; 291:15093-107. [PMID: 27226571 DOI: 10.1074/jbc.m116.717942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
The sensing of double-stranded RNA (dsRNA) in the liver is important for antiviral defenses but can also contribute to sterile inflammation during liver injury. Hepatocytes are often the target of viral infection and are easily injured by inflammatory insults. Here we sought to establish the pathways involved in the production of type I interferons (IFN-I) in response to extracellular poly(I:C), a dsRNA mimetic, in hepatocytes. This was of interest because hepatocytes are long-lived and, unlike most immune cells that readily die after activation with dsRNA, are not viewed as cells with robust antimicrobial capacity. We found that poly(I:C) leads to rapid up-regulation of inducible nitric oxide synthase (iNOS), double-stranded RNA-dependent protein kinase (PKR), and Src. The production of IFN-β was dependent on iNOS, PKR, and Src and partially dependent on TLR3/Trif. iNOS and Src up-regulation was partially dependent on TLR3/Trif but entirely dependent on PKR. The phosphorylation of TLR3 on tyrosine 759 was shown to increase in parallel to IFN-β production in an iNOS- and Src-dependent manner, and Src was found to directly interact with TLR3 in the endosomal compartment of poly(I:C)-treated cells. Furthermore, we identified a robust NO/cGMP/PKG-dependent feedforward pathway for the amplification of iNOS expression. These data identify iNOS/NO as an integral component of IFN-β production in response to dsRNA in hepatocytes in a pathway that involves the coordinated activities of TLR3/Trif and PKR.
Collapse
Affiliation(s)
- Liyong Zhang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Wenpei Xiang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhengzheng Yan
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhaowei Zhu
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhong Guo
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rajib Sengupta
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Alex F Chen
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Patricia A Loughran
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and
| | - Ben Lu
- the Xiangya Third Hospital and Central South University School of Medicine, Changsha, China
| | - Qingde Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Timothy R Billiar
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
42
|
Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, Du J, Zhang J. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis 2016; 7:e2176. [PMID: 27054331 PMCID: PMC4855679 DOI: 10.1038/cddis.2016.9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/20/2023]
Abstract
The severity of acute liver failure (ALF) induced by bacterial lipopolysaccharide (LPS) is associated with the hepatic innate immune response. The core circadian molecular clock modulates the innate immune response by controlling rhythmic pathogen recognition by the innate immune system and daily variations in cytokine gene expression. However, the molecular link between circadian genes and the innate immune system has remained unclear. Here, we showed that mice lacking the clock gene Per1 (Period1) are more susceptible to LPS/d-galactosamine (LPS/GalN)-induced macrophage-dependent ALF compared with wild-type (WT) mice. Per1 deletion caused a remarkable increase in the number of Kupffer cells (KCs) in the liver, resulting in an elevation of the levels of pro-inflammatory cytokines after LPS treatment. Loss of Per1 had no effect on the proliferation or apoptosis of macrophages; however, it enhanced the recruitment of macrophages, which was associated with an increase in CC chemokine receptor 2 (Ccr2) expression levels in monocytes/macrophages. Deletion of Ccr2 rescued d-GalN/LPS-induced liver injury in Per1−/− mice. We demonstrated that the upregulation of Ccr2 expression by Per1 deletion could be reversed by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist GW9662. Further analysis indicated that PER1 binds to PPAR-γ on the Ccr2 promoter and enhanced the inhibitory effect of PPAR-γ on Ccr2 expression. These results reveal that Per1 reduces hepatic macrophage recruitment through interaction with PPAR-γ and prevents an excessive innate immune response in endotoxin-induced liver injury.
Collapse
Affiliation(s)
- T Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China.,Cambridge Suda Genome Resource Center, Soochow University, Suzhou, China
| | - Z Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - P Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - L Xia
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - M Zhou
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - S Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Du
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - J Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
43
|
Wang J, Qin Y, Mi X. The protective effects of bone marrow-derived mesenchymal stem cell (BMSC) on LPS-induced acute lung injury via TLR3-mediated IFNs, MAPK and NF-κB signaling pathways. Biomed Pharmacother 2016; 79:176-87. [PMID: 27044826 DOI: 10.1016/j.biopha.2016.02.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/29/2022] Open
Abstract
The study attempted to clarify the protective role of bone marrow-derived mesenchymal stem cell (BMSC) transplantation on LPS-induced acute lung injury (ALI) of rats. BMSC were obtained from bone marrow of rat, cultured and proliferated in vitro. Rats of ALI were established through lipopolysaccharide (LPS) administration. Male rats were allocated to control group, ALI group and BMSC, transplantation group. Rats were sacrificed after BMSC injection after 12h, 24h and 48h. Here we investigated the role of BMSC in LPS-induced alveolar macrophages to further demonstrate the mechanism of BMSC to lung injury. TLR3, a member of Toll-like receptor family, has been found in macrophages and the cell surface. In our study, first BMSC successfully reversed LPS-induced lung injury by hematoxylin-eosin (H&E) staining, ameliorated apoptosis via TUNEL and flow cytometer analysis, as well as improved cell structure. And then, western blot, quantitative real-time PCR, immunohistochemistry and immunofluorescence analysis were used to confirm that TLR3 was significantly down-regulated for BMSC treatment. Subsequently, TRIF and RIP1, down-streaming signals of TLR3, were inhibited greatly, leading to TRAF3, MAPK as well as NF-κB inactivity. Our results indicated that BMSC transplantation group displayed inhibitory effects on interferon (IFNs) levels via TLR3 in LPS-induced ALI and preventive effects on inflammation response via TLR3-regualted MAPK and NF-κB signaling pathway in LPS-induced lung injury. The present study indicated that BMSC could display protective effects on LPS-induced ALI and provide an experimental basis for clinical therapy.
Collapse
Affiliation(s)
- Jingcai Wang
- Department of Pediatrics, People's Hospital of Liaocheng, Shandong 252000, China
| | - Ying Qin
- General Hospital of Jinan Iron and Steel Group Co., Ltd., Shandong 252000, China.
| | - Xiuju Mi
- Department of Pediatrics, People's Hospital of Liaocheng, Shandong 252000, China
| |
Collapse
|
44
|
Abstract
As an oncogene, over-activated signal transducer and activator of transcription 3 (STAT3) has been detected in many tumors. STAT3 controls cell differentiation, proliferation, and survival, and is associated with angiogenesis and immune dysfunction during tumorigenesis. Double-stranded decoy oligodeoxynucleotide (ODN) targeting over-activated STAT3 in tumor cells have shown significant antitumor efficiency. Here, we describe the materials and methods involved in STAT3 decoy ODN therapy for cancer including both the antitumor effect directly and immunotherapy indirectly.
Collapse
|
45
|
Yoon HJ, Cha BS. Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease. World J Hepatol 2014; 6:800-811. [PMID: 25429318 PMCID: PMC4243154 DOI: 10.4254/wjh.v6.i11.800] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/27/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease affects approximately one-third of the population worldwide, and its incidence continues to increase with the increasing prevalence of other metabolic disorders such as type 2 diabetes. As non-alcoholic fatty liver disease can progress to liver cirrhosis, its treatment is attracting greater attention. The pathogenesis of non-alcoholic fatty liver disease is closely associated with insulin resistance and dyslipidemia, especially hypertriglyceridemia. Increased serum levels of free fatty acid and glucose can cause oxidative stress in the liver and peripheral tissue, leading to ectopic fat accumulation, especially in the liver. In this review, we summarize the mechanism underlying the progression of hepatic steatosis to steatohepatitis and cirrhosis. We also discuss established drugs that are already being used to treat non-alcoholic fatty liver disease, in addition to newly discovered agents, with respect to their mechanisms of drug action, focusing mainly on hepatic insulin resistance. As well, we review clinical data that demonstrate the efficacy of these drugs, together with improvements in biochemical or histological parameters.
Collapse
|
46
|
Kim SJ, Cho HI, Kim SJ, Kim JS, Kwak JH, Lee DU, Lee SK, Lee SM. Protective effects of lupeol against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. JOURNAL OF NATURAL PRODUCTS 2014; 77:2383-2388. [PMID: 25325613 DOI: 10.1021/np500296b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study examined the hepatoprotective effects of lupeol (1, a major active triterpenoid isolated from Adenophora triphylla var. japonica) against d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were orally administered 1 (25, 50, and 100 mg/kg; dissolved in olive oil) 1 h before GalN (800 mg/kg)/LPS (40 μg/kg) treatment. Treatment with GalN/LPS resulted in increased levels of serum alanine aminotransferase, tumor necrosis factor (TNF)-α, and interleukin (IL)-6, as well as increased mortality, all of which were attenuated by treatment with 1. In addition, levels of toll-like receptor (TLR)4, myeloid differentiation primary response gene 88, TIR-domain-containing adapter-inducing interferon-β (TRIF), IL-1 receptor-associated kinase (IRAK)-1, and TNF receptor associated factor 6 protein expression were increased by GalN/LPS. These increases, except TRIF, were attenuated by 1. Interestingly, 1 augmented GalN/LPS-mediated increases in the protein expression of IRAK-M, a negative regulator of TLR signaling. Following GalN/LPS treatment, nuclear translocation of nuclear factor-κB and the levels of TNF-α and IL-6 mRNA expression increased, which were attenuated by 1. Together, the present findings suggest that lupeol (1) ameliorates GalN/LPS-induced liver injury, which may be due to inhibition of IRAK-mediated TLR inflammatory signaling.
Collapse
Affiliation(s)
- So-Jin Kim
- School of Pharmacy, Sungkyunkwan University , Suwon, 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakamoto N, Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol 2014; 5:221. [PMID: 24904576 PMCID: PMC4032908 DOI: 10.3389/fimmu.2014.00221] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Liver has a unique vascular system receiving the majority of the blood supply from the gastrointestinal tract through the portal vein and faces continuous exposure to foreign pathogens and commensal bacterial products. These gut-derived antigens stimulate liver cells and result in a distinctive immune response via a family of pattern recognition receptors, the Toll-like receptors (TLRs). TLRs are expressed on Kupffer cells, dendritic cells, hepatic stellate cells, endothelial cells, and hepatocytes in the liver. The crosstalk between gut-derived antigens and TLRs on immune cells trigger a distinctive set of mechanisms to induce immunity, contributing to various acute and chronic liver diseases including liver cirrhosis and hepatocellular carcinoma. Accumulating evidence has shown that TLRs stimulation by foreign antigens induces the production of immunoactivating and immunoregulatory cytokines. Furthermore, the immunoregulatory arm of TLR stimulation can also control excessive tissue damage. With this knowledge at hand, it is important to clarify the dual role of disease-specific TLRs as activators and regulators, especially in the liver. We will review the current understanding of TLR signaling and subsequent immune activation and tolerance by the innate immune system in the liver.
Collapse
Affiliation(s)
- Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine , Tokyo , Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine , Tokyo , Japan
| |
Collapse
|
48
|
Kay E, Scotland RS, Whiteford JR. Toll-like receptors: Role in inflammation and therapeutic potential. Biofactors 2014; 40:284-94. [PMID: 24375529 DOI: 10.1002/biof.1156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/13/2013] [Accepted: 11/24/2013] [Indexed: 01/09/2023]
Abstract
Inflammation is an essential process in response to injury and infection. However, under certain circumstances dis-regulation of this process can lead to pathologies such as rheumatoid arthritis, atherosclerosis, lupus, and is a contributory factor in the progression of many cancers. The Toll-like family of receptors (TLRs) has major roles in the initiation of the inflammatory response and as such has attracted much focus for their potential as therapeutic targets. Here we review the role of TLRs in the inflammatory response and associated disease and examine how this important family of molecules might be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Emma Kay
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
49
|
Wang PF, Fang H, Chen J, Lin S, Liu Y, Xiong XY, Wang YC, Xiong RP, Lv FL, Wang J, Yang QW. Polyinosinic-polycytidylic acid has therapeutic effects against cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via TLR3. THE JOURNAL OF IMMUNOLOGY 2014; 192:4783-94. [PMID: 24729619 DOI: 10.4049/jimmunol.1303108] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent reports have shown that preconditioning with the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)) protects against cerebral ischemia/reperfusion (I/R) injury. However, it is unclear whether poly(I:C) treatment after cerebral I/R injury is also effective. We used mouse/rat middle cerebral artery occlusion and cell oxygen-glucose deprivation models to evaluate the therapeutic effects and mechanisms of poly(I:C) treatment. Poly(I:C) was i.p. injected 3 h after ischemia (treatment group). Cerebral infarct volumes and brain edemas were significantly reduced, and neurologic scores were significantly increased. TNF-α and IL-1β levels were markedly decreased, whereas IFN-β levels were greatly increased, in the ischemic brain tissues, cerebral spinal fluid, and serum. Injuries to hippocampal neurons and mitochondria were greatly reduced. The numbers of TUNEL-positive and Fluoro-Jade B(+) cells also decreased significantly in the ischemic brain tissues. Poly(I:C) treatment increased the levels of Hsp27, Hsp70, and Bcl2 and decreased the level of Bax in the ischemic brain tissues. Moreover, poly(I:C) treatment attenuated the levels of TNF-α and IL-1β in serum and cerebral spinal fluid of mice stimulated by LPS. However, the protective effects of poly(I:C) against cerebral ischemia were abolished in TLR3(-/-) and TLR4(-/-)mice. Poly(I:C) downregulated TLR4 signaling via TLR3. Poly(I:C) treatment exhibited obvious protective effects 14 d after ischemia and was also effective in the rat permanent middle cerebral artery occlusion model. The results suggest that poly(I:C) exerts therapeutic effects against cerebral I/R injury through the downregulation of TLR4 signaling via TLR3. Poly(I:C) is a promising new drug candidate for the treatment of cerebral infarcts.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 40037, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhu J, Xu Z, Chen X, Zhou S, Zhang W, Chi Y, Li W, Song X, Liu F, Su C. Parasitic antigens alter macrophage polarization during Schistosoma japonicum infection in mice. Parasit Vectors 2014; 7:122. [PMID: 24666892 PMCID: PMC3975460 DOI: 10.1186/1756-3305-7-122] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/11/2014] [Indexed: 11/15/2022] Open
Abstract
Background Schistosome eggs are trapped in host liver and elicit severe hepatic granulomatous inflammation, which can lead to periportal fibrosis, portal hypertension, hemorrhage, or even death in the host. It was reported that the macrophage plays an important role in host immune responses to schistosome infection. Nitric oxide (NO) produced by classically activated macrophages (M1 macrophages) is cytotoxic to schistosomula and can prevent hepatic schistosomal fibrosis, while arginase-1 (Arg-1) expressed by alternatively activated macrophages (M2 macrophages) promotes hepatic schistosomal fibrosis. However, the dynamics of macrophage polarization, as well as the possible factors that regulate macrophage polarization, during schistosome infection remain unclear. Methods We first analyzed M1 and M2-phenotypic markers of peritoneal macrophages from mice infected with Schistosoma japonicum (S. japonicum) at indicated time points using flow cytometry (FCM) analysis and real-time PCR. Then we treated peritoneal macrophages from normal mice with schistosome worm antigen (SWA) or schistosome soluble egg antigen (SEA) and determined M1 and M2-phenotypic markers, in order to identify macrophage polarization in responding to schistosomal antigens. Results In this study, we showed that macrophages were preferentially differentiated into the M1 subtype during the acute stage of S. japonicum infection. However, the level of M1 macrophages decreased and M2 macrophages significantly increased during the chronic stage of infection. Furthermore, we showed that SWA favors the generation of M1 macrophages, whereas SEA preferentially promotes M2-polarized phenotype. Conclusion These findings not only reveal the parasite antigen-driven dynamic changes in macrophage polarization, but also suggest that manipulation of macrophage polarization may be of therapeutic benefit in controlling excessive hepatic granulomas and fibrosis in the host with schistosomiasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|