1
|
Singh S, Dutta T. A virulence-associated small RNA MTS1338 activates an ABC transporter CydC for rifampicin efflux in Mycobacterium tuberculosis. Front Microbiol 2024; 15:1469280. [PMID: 39364170 PMCID: PMC11446857 DOI: 10.3389/fmicb.2024.1469280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
The efficacy of the tuberculosis treatment is restricted by innate drug resistance of Mycobacterial tuberculosis and its ability to acquire resistance to all anti-tuberculosis drugs in clinical use. A profound understanding of bacterial ploys that decrease the effectiveness of drugs would identify new mechanisms for drug resistance, which would subsequently lead to the development of more potent TB therapies. In the current study, we identified a virulence-associated small RNA (sRNA) MTS1338-driven drug efflux mechanism in M. tuberculosis. The treatment of a frontline antitubercular drug rifampicin upregulated MTS1338 by >4-fold. Higher intrabacterial abundance of MTS1338 increased the growth rate of cells in rifampicin-treated conditions. This fact was attributed by the upregulation of an efflux protein CydC by MTS1338. Gel-shift assay identified a stable interaction of MTS1338 with the coding region of cydC mRNA thereby potentially stabilizing it at the posttranscriptional level. The drug efflux measurement assays revealed that cells with higher MTS1338 abundance accumulate less drug in the cells. This study identified a new regulatory mechanism of drug efflux controlled by an infection-induced sRNA in M. tuberculosis.
Collapse
Affiliation(s)
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Henry SA, Webster CM, Shaw LN, Torres NJ, Jobson ME, Totzke BC, Jackson JK, McGreig JE, Wass MN, Robinson GK, Shepherd M. Steroid Drugs Inhibit Bacterial Respiratory Oxidases and Are Lethal Toward Methicillin-Resistant Staphylococcus aureus. J Infect Dis 2024; 230:e149-e158. [PMID: 39052707 PMCID: PMC11272085 DOI: 10.1093/infdis/jiad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.
Collapse
Affiliation(s)
- Samantha A Henry
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Calum M Webster
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Lindsey N Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa
| | | | | | - Brendan C Totzke
- Department of Molecular Biosciences, University of South Florida, Tampa
| | - Jessica K Jackson
- Department of Molecular Biosciences, University of South Florida, Tampa
| | - Jake E McGreig
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gary K Robinson
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
3
|
McKay LS, Spandrio AR, Johnson RM, Sobran MA, Marlatt SA, Mote KB, Dedloff MR, Nash ZM, Julio SM, Cotter PA. Cytochrome oxidase requirements in Bordetella reveal insights into evolution towards life in the mammalian respiratory tract. PLoS Pathog 2024; 20:e1012084. [PMID: 38976749 PMCID: PMC11257404 DOI: 10.1371/journal.ppat.1012084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.
Collapse
Affiliation(s)
- Liliana S. McKay
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexa R. Spandrio
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Ashley Sobran
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara A. Marlatt
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katlyn B. Mote
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Margaret R. Dedloff
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zachary M. Nash
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steven M. Julio
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
5
|
Buglino JA, Ozakman Y, Hatch C, Benjamin A, Tan D, Glickman MS. Chalkophore mediated respiratory oxidase flexibility controls M. tuberculosis virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589290. [PMID: 38645185 PMCID: PMC11030325 DOI: 10.1101/2024.04.12.589290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Oxidative phosphorylation has emerged as a critical therapeutic vulnerability of M. tuberculosis, but it is unknown how M. tuberculosis and other pathogens maintain respiration during infection. M. tuberculosis synthesizes diisonitrile lipopeptide chalkophores that chelate copper tightly, but their role in host-pathogen interactions is also unknown. We demonstrate that M. tuberculosis chalkophores maintain the function of the heme-copper bcc:aa3 respiratory oxidase under copper limitation. Chalkophore deficient M. tuberculosis cannot survive, respire to oxygen, or produce ATP under copper deprivation in culture. M. tuberculosis lacking chalkophore biosynthesis is attenuated in mice, a phenotype that is severely exacerbated by loss of the CytBD alternative respiratory oxidase (encoded by cydAB), revealing a multilayered flexibility of the respiratory chain that maintains oxidative phosphorylation during infection. Taken together, these data demonstrate that chalkophores counter host inflicted copper deprivation and highlight that protection of cellular respiration is a critical virulence function in M. tuberculosis.
Collapse
Affiliation(s)
- John A. Buglino
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Yaprak Ozakman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Chad Hatch
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Anna Benjamin
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Derek Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| |
Collapse
|
6
|
Nastasi MR, Caruso L, Giordano F, Mellini M, Rampioni G, Giuffrè A, Forte E. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Pseudomonas aeruginosa Aerobic Respiration. Antioxidants (Basel) 2024; 13:383. [PMID: 38539916 PMCID: PMC10968556 DOI: 10.3390/antiox13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Lorenzo Caruso
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Francesca Giordano
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Marta Mellini
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| |
Collapse
|
7
|
Zhang L, Cai M, Su B, Ma Y, Zhang Y. Mitochondrial Metabolism in Alveolar Macrophages of Patients Infected with HIV, Tuberculosis, and HIV/Tuberculosis. AIDS Res Hum Retroviruses 2024; 40:148-157. [PMID: 37885217 DOI: 10.1089/aid.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Tuberculosis (TB) is one of the most common opportunistic infections and is a leading cause of mortality in patients with HIV and AIDS. HIV infection causes serious defects in the host immune system and increases the risk of active TB. TB infection promotes HIV replication and aggravates host damage in patients with HIV/AIDS. Alveolar macrophages (AMs) are essential immune cells during TB and HIV infections. AMs undergo a shift in mitochondrial metabolism during TB or HIV infection, that is, metabolic reprogramming, allowing them to act in the form of classical activated macrophages (M1) and alternative activated macrophages (M2) at different stages of infection. We reviewed the alterations in the mitochondrial energy metabolism of AMs in patients with HIV, TB, and HIV/TB to provide ideas for further research on the role of metabolic reprogramming by AMs in the pathogeneses of HIV, TB, and HIV/TB coinfection.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
8
|
Werman J, Chen YC, Yuan T, Yang X, Sampson NS. A Chemoproteomic Approach to Elucidate the Mechanism of Action of 6-Azasteroids with Unique Activity in Mycobacteria. ACS Infect Dis 2023; 9:1993-2004. [PMID: 37774412 PMCID: PMC10580313 DOI: 10.1021/acsinfecdis.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 10/01/2023]
Abstract
By illuminating key 6-azasteroid-protein interactions in both Mycobacterium tuberculosis (Mtb) and the closely related model organism Mycobacterium marinum (Mm), we sought to improve the antimycobacterial potency of 6-azasteroids and further our understanding of the mechanisms responsible for their potentiation of the antituberculosis drug bedaquiline. We selected a newly developed 6-azasteroid analog and an analog reported previously (ACS Infect. Dis. 2019, 5 (7), 1239-1251) to study their phenotypic effects on Mtb and Mm, both alone and in combination with bedaquiline. The 6-azasteroid analog, 17β-[N-(4-trifluoromethoxy-diphenylmethyl)carbamoyl]-6-propyl-azaandrostan-3-one, robustly potentiated bedaquiline-mediated antimycobacterial activity, with a nearly 8-fold reduction in Mm bedaquiline minimal inhibitory concentration (85 nM alone versus 11 nM with 20 μM 6-azasteroid). This analog displayed minimal inhibitory activity against recombinant mycobacterial 3β-hydroxysteroid dehydrogenase, a previously identified target of several 6-azasteroids. Dose-dependent potentiation of bedaquiline by this analog reduced mycobacterial intracellular ATP levels and impeded the ability of Mtb to neutralize exogenous oxidative stress in culture. We developed two 6-azasteroid photoaffinity probes to investigate azasteroid-protein interactions in Mm whole cells. Using bottom-up mass spectrometric profiling of the cross-linked proteins, we identified eight potential Mm/Mtb protein targets for 6-azasteroids. The nature of these potential targets indicates that proteins related to oxidative stress resistance play a key role in the BDQ-potentiating activity of azasteroids and highlights the potential impact of inhibition of these targets on the generation of drug sensitivity.
Collapse
Affiliation(s)
- Joshua
M. Werman
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yu-Ching Chen
- Program
in Biochemistry and Structural Biology, Stony Brook University, Stony
Brook, New York 11794-5215, United States
| | - Tianao Yuan
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Xinxin Yang
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S. Sampson
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
9
|
Makarchuk I, Gerasimova T, Kägi J, Wohlwend D, Melin F, Friedrich T, Hellwig P. Mutating the environment of heme b 595 of E. coli cytochrome bd-I oxidase shifts its redox potential by 200 mV without inactivating the enzyme. Bioelectrochemistry 2023; 151:108379. [PMID: 36736178 DOI: 10.1016/j.bioelechem.2023.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome bd-I catalyzes the reduction of oxygen to water with the aid of hemes b558, b595 and d. Here, effects of a mutation of E445, a ligand of heme b595 and of R448, hydrogen bonded to E445 are studied electrochemically in the E. coli enzyme. The equilibrium potential of the three hemes are shifted by up to 200 mV in these mutants. Strikingly the E445D and the R448N mutants show a turnover of 41 ± 2 % and 20 ± 4 %, respectively. Electrocatalytic studies confirm that the mutants react with oxygen and bind and release NO. These results point towards the ability of cytochrome bd to react even if the electron transfer is less favorable.
Collapse
Affiliation(s)
- Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Jan Kägi
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Daniel Wohlwend
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
Temrikar ZH, Kodidela S, Kumar S, Liu J, Robertson GT, Lee RE, Hickey AJ, Gonzalez-Juarrero M, Meibohm B. Characterization of spectinamide 1599 efficacy against different mycobacterial phenotypes. Tuberculosis (Edinb) 2023; 140:102342. [PMID: 37120915 PMCID: PMC10247484 DOI: 10.1016/j.tube.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023]
Abstract
Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. The preclinical lead spectinamide 1599 is an antituberculosis drug that possesses robust in vivo efficacy, good pharmacokinetic properties, and excellent safety profiles in rodents. In individuals infected with Mycobacterium tuberculosis or Mycobacterium bovis, causative agents of tuberculosis, the host immune system is capable of restraining these mycobacteria within granulomatous lesions. The harsh microenvironmental conditions of these granuloma lead to phenotypic transformation of mycobacteria. Phenotypically transformed bacteria display suboptimal growth, or complete growth arrest and are frequently associated with drug tolerance. Here we quantified the effect of spectinamide 1599 on log-phase and phenotypically tolerant isoforms of Mycobacterium bovis BCG using various in vitro approaches as a first indicator of spectinamide 1599 activity against various mycobacterial isoforms. We also used the hollow fiber infection model to establish time-kill curves and deployed pharmacokinetic/pharmacodynamic modeling to characterize the activity differences of spectinamide 1599 towards the different phenotypic subpopulations. Our results indicate that spectinamide 1599 is more efficacious against log phase bacteria when compared to its activity against other phenotypically tolerant forms such as acid phase bacteria and hypoxic phase bacteria, a behavior similar to the established antituberculosis drug isoniazid.
Collapse
Affiliation(s)
- Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI International, Durham, NC, 27709, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
11
|
Makarchuk I, Kägi J, Gerasimova T, Wohlwend D, Friedrich T, Melin F, Hellwig P. pH-dependent kinetics of NO release from E. coli bd-I and bd-II oxidase reveals involvement of Asp/Glu58 B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148952. [PMID: 36535430 DOI: 10.1016/j.bbabio.2022.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.
Collapse
Affiliation(s)
- Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France.
| |
Collapse
|
12
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
13
|
Jeffreys LN, Ardrey A, Hafiz TA, Dyer LA, Warman AJ, Mosallam N, Nixon GL, Fisher NE, Hong WD, Leung SC, Aljayyoussi G, Bibby J, Almeida DV, Converse PJ, Fotouhi N, Berry NG, Nuermberger EL, Upton AM, O'Neill PM, Ward SA, Biagini GA. Identification of 2-Aryl-Quinolone Inhibitors of Cytochrome bd and Chemical Validation of Combination Strategies for Respiratory Inhibitors against Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:221-238. [PMID: 36606559 PMCID: PMC9926492 DOI: 10.1021/acsinfecdis.2c00283] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.
Collapse
Affiliation(s)
- Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - Alison Ardrey
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - Taghreed A Hafiz
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - Lauri-Anne Dyer
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - Ashley J Warman
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - Nada Mosallam
- Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K
| | - Gemma L Nixon
- Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K
| | - Nicholas E Fisher
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - W David Hong
- Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K
| | - Suet C Leung
- Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K
| | - Ghaith Aljayyoussi
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - Jaclyn Bibby
- Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K
| | - Deepak V Almeida
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland21205, United States
| | - Paul J Converse
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland21205, United States
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, New York10005, United States
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland21205, United States
| | - Anna M Upton
- Global Alliance for TB Drug Development, New York, New York10005, United States.,Evotec (US) Inc., 303B College Road East, Princeton, New Jersey08540, United States
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K
| | - Stephen A Ward
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K
| |
Collapse
|
14
|
Kushwaha N, Sahu A, Mishra J, Soni A, Dorwal D. An Insight on the Prospect of Quinazoline and Quinazolinone Derivatives as Anti-tubercular Agents. Curr Org Synth 2023; 20:838-869. [PMID: 36927421 DOI: 10.2174/1570179420666230316094435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 03/18/2023]
Abstract
Multiple potential drugs have been developed based on the heterocyclic molecules for the treatment of different symptoms. Among the existing heterocyclic molecules, quinazoline and quinazolinone derivatives have been found to exhibit extensive pharmacological and biological characteristics. One significant property of these molecules is their potency as anti-tubercular agents. Thus, both quinazoline and quinazolinone derivatives are modified using different functional groups as substituents for investigating their anti-tubercular activities. We present a summary of the reported anti-tubercular drugs, designed using quinazoline and quinazolinone derivatives, in this review.
Collapse
Affiliation(s)
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Jyotika Mishra
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Ankit Soni
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| | - Dhawal Dorwal
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| |
Collapse
|
15
|
Unraveling antibiotic resistance mechanisms in Mycobacterium abscessus: the potential role of efflux pumps. J Glob Antimicrob Resist 2022; 31:345-352. [PMID: 36347496 DOI: 10.1016/j.jgar.2022.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Mycobacterium abscessus is an opportunistic respiratory pathogen in patients with underlying lung disease. It is infamously known for its low treatment success rates because of its resistance to multiple classes of antibiotics. Further insight into M. abscessus resistance mechanisms is needed to improve treatment options. In this in vitro study, the role of efflux pumps in reaction to antibiotic stress is explored, as well as the ability of the putative efflux inhibitors, thioridazine and verapamil, to potentiate the activity of guideline-recommended antibiotics. METHODS To evaluate the effects of antibiotic stress on mycobacterial efflux pumps, M. abscessus subspecies abscessus was exposed to amikacin, cefoxitin, clarithromycin, clofazimine, and tigecycline for 24 hours. Transcriptomic responses were measured by RNA sequencing to gain insight into upregulation of efflux pump encoding genes. Subsequently, in time-kill kinetics assays, the above-mentioned antibiotics were combined with thioridazine and verapamil to evaluate their potentiating capacity. RESULTS All five antibiotics led to a fold change of ≥2 Log2 in expression of one or more genes encoding transporter systems. This effect was most pronounced for the ribosome-targeting antibiotics amikacin, clarithromycin, and tigecycline. Time-kill kinetics assays demonstrated synergy between amikacin, tigecycline, clofazimine, cefoxitin, and both thioridazine and verapamil. CONCLUSION Antibiotic stressors induce expression of efflux pump encoding genes in M. abscessus, especially antibiotics that target the ribosome. Putative efflux inhibitors thioridazine and verapamil show synergy with various guideline-recommended antibiotics, making them interesting candidates for the improvement of M. abscessus treatment.
Collapse
|
16
|
McNeil MB, Cheung CY, Waller NJE, Adolph C, Chapman CL, Seeto NEJ, Jowsey W, Li Z, Hameed HMA, Zhang T, Cook GM. Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:980844. [PMID: 36093195 PMCID: PMC9461714 DOI: 10.3389/fcimb.2022.980844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Mycobacterial bioenergetics has emerged as a promising space for the development of novel therapeutics. Further to this, unique combinations of respiratory inhibitors have been shown to have synergistic or synthetic lethal interactions, suggesting that combinations of bioenergetic inhibitors could drastically shorten treatment times. Realizing the full potential of this unique target space requires an understanding of which combinations of respiratory complexes, when inhibited, have the strongest interactions and potential in a clinical setting. In this review, we discuss (i) chemical-interaction, (ii) genetic-interaction and (iii) chemical-genetic interaction studies to explore the consequences of inhibiting multiple mycobacterial respiratory components. We provide potential mechanisms to describe the basis for the strongest interactions. Finally, whilst we place an emphasis on interactions that occur with existing bioenergetic inhibitors, by highlighting interactions that occur with alternative respiratory components we envision that this information will provide a rational to further explore alternative proteins as potential drug targets and as part of unique drug combinations.
Collapse
Affiliation(s)
- Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cara Adolph
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cassandra L. Chapman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Noon E. J. Seeto
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| |
Collapse
|
17
|
Design, synthesis and biological evaluation of (Quinazoline 4-yloxy)acetamide and (4-oxoquinazoline-3(4H)-yl)acetamide derivatives as inhibitors of Mycobacterium tuberculosis bd oxidase. Eur J Med Chem 2022; 242:114639. [DOI: 10.1016/j.ejmech.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
18
|
Borisov VB, Forte E. Bioenergetics and Reactive Nitrogen Species in Bacteria. Int J Mol Sci 2022; 23:7321. [PMID: 35806323 PMCID: PMC9266656 DOI: 10.3390/ijms23137321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex, and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not yet available. However, this research area is developing very rapidly, and the knowledge gained should help us develop new methods of treating infectious diseases.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
19
|
Płocińska R, Wasik K, Płociński P, Lechowicz E, Antczak M, Błaszczyk E, Dziadek B, Słomka M, Rumijowska-Galewicz A, Dziadek J. The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Mycobacterium tuberculosis via Protein–Protein Interactions. Front Cell Infect Microbiol 2022; 12:909507. [PMID: 35837472 PMCID: PMC9274095 DOI: 10.3389/fcimb.2022.909507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component signal transduction systems enable mycobacterial cells to quickly adapt and adequately respond to adverse environmental conditions encountered at various stages of host infection. We attempted to determine the role of the Rv3143 “orphan” response regulator in the physiology of Mycobacterium tuberculosis and its orthologue Msmeg_2064 in Mycobacterium smegmatis. We identified the Rv3143 protein as an interaction partner for NuoD, a member of the type I NADH dehydrogenase complex involved in oxidative phosphorylation. The mutants Δrv3143 and Δmsmeg_2064 were engineered in M. tuberculosis and M. smegmatis cells, respectively. The Δmsmeg_2064 strain exhibited a significant reduction in growth and viability in the presence of reactive nitrogen species. The Rv3143-deficient strain was sensitive to valinomycin, which is known to reduce the electrochemical potential of the cell and overexpressed genes required for nitrate respiration. An increased level of reduction of the 2,3,5-triphenyltetrazolium chloride (TTC) electron acceptor in Δrv3143 and Δmsmeg_2064 cells was also evident. The silencing of ndh expression using CRISPRi/dCas9 affected cell survival under limited oxygen conditions. Oxygen consumption during entry to hypoxia was most severely affected in the double-mutant Δmsmeg_2064 ndhCRISPRi/dCas9. We propose that the regulatory protein Rv3143 is a component of the Nuo complex and modulates its activity.
Collapse
Affiliation(s)
- Renata Płocińska
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Karolina Wasik
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Przemysław Płociński
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Ewelina Lechowicz
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Magdalena Antczak
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Ewelina Błaszczyk
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Anna Rumijowska-Galewicz
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Jarosław Dziadek
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- *Correspondence: Jarosław Dziadek,
| |
Collapse
|
20
|
Duan C, Jiang Q, Jiang X, Zeng H, Wu Q, Yu Y, Yang X. Discovery of a Novel Inhibitor Structure of Mycobacterium tuberculosis Isocitrate Lyase. Molecules 2022; 27:molecules27082447. [PMID: 35458645 PMCID: PMC9026967 DOI: 10.3390/molecules27082447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis remains a global threat to public health, and dormant Mycobacterium tuberculosis leads to long-term medication that is harmful to the human body. M. tuberculosis isocitrate lyase (MtICL), which is absent in host cells, is a key rate-limiting enzyme of the glyoxylic acid cycle and is essential for the survival of dormant M. tuberculosis. The aim of this study was to evaluate natural compounds as potential MtICL inhibitors through docking and experimental verification. Screening of the TCMSP database library was done using Discovery Studio 2019 for molecular docking and interaction analysis, with the putative inhibitors of MtICL, 3-BP, and IA as reference ligands. Daphnetin (MOL005118), with a docking score of 94.8 and -CDOCKER interaction energy of 56 kcal/mol, was selected and verified on MtICL in vitro and M. smegmatis; daphnetin gave an IC50 of 4.34 μg/mL for the MtICL enzyme and an MIC value of 128 μg/mL against M. smegmatis, showing enhanced potential in comparison with 3-BP and IA. The interactions and essential amino acid residues of the protein were analyzed. In summary, natural daphnetin may be a promising new skeleton for the design of inhibitors of MtICL to combat dormant M. tuberculosis.
Collapse
Affiliation(s)
- Changyuan Duan
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China; (C.D.); (X.J.); (H.Z.); (Q.W.); (Y.Y.)
| | - Qihua Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Xue Jiang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China; (C.D.); (X.J.); (H.Z.); (Q.W.); (Y.Y.)
| | - Hongwei Zeng
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China; (C.D.); (X.J.); (H.Z.); (Q.W.); (Y.Y.)
| | - Qiaomin Wu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China; (C.D.); (X.J.); (H.Z.); (Q.W.); (Y.Y.)
| | - Yang Yu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China; (C.D.); (X.J.); (H.Z.); (Q.W.); (Y.Y.)
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China; (C.D.); (X.J.); (H.Z.); (Q.W.); (Y.Y.)
- Correspondence: ; Tel.: +86-23-6848-5240
| |
Collapse
|
21
|
Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium tuberculosis Cells Exposed to Nitrosative Stress. ACS OMEGA 2022; 7:3470-3482. [PMID: 35128256 PMCID: PMC8811941 DOI: 10.1021/acsomega.1c05923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Reactive nitrogen species (RNS) are secreted by human cells in response to infection by Mycobacterium tuberculosis (Mtb). Although RNS can kill Mtb under some circumstances, Mtb can adapt and survive in the presence of RNS by a process that involves modulation of gene expression. Previous studies focused primarily on stress-related changes in the Mtb transcriptome. This study unveils changes in the Mtb proteome in response to a sub-lethal dose of nitric oxide (NO) over several hours of exposure. Proteins were identified using liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). A total of 2911 Mtb proteins were identified, of which 581 were differentially abundant (DA) after exposure to NO in at least one of the four time points (30 min, 2 h, 6 h, and 20 h). The proteomic response to NO was marked by two phases, with few DA proteins in the early phase and a multitude of DA proteins in the later phase. The efflux pump Rv1687 stood out as being the only protein more abundant at all the time points and might play a role in the early protection of Mtb against nitrosative stress. These changes appeared to be compensatory in nature, contributing to iron homeostasis, energy metabolism, and other stress responses. This study thereby provides new insights into the response of Mtb to NO at the level of proteomics.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Institute
of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Marta Gómez-Muñoz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Shewit Kalayou
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- International
Center of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100 Nairobi, Kenya
| | - Tahira Riaz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Timo Lutter
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Coalition
for Epidemic Preparedness Innovations (CEPI), P.O. Box 123, Torshov, 0412 Oslo, Norway
| | - Markos Abebe
- Armauer
Hansen Research Institute, Jimma Road, P.O. Box 1005 Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
22
|
Baloyi NN, Tugizimana F, Sitole LJJ. Metabolomics assessment of vitamin D impact in Pam3CSK4 stimulation. Mol Omics 2022; 18:397-407. [DOI: 10.1039/d1mo00377a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis, a causative agent of tuberculosis, is amongst the leading causes of mycobacterial mortality worldwide. Although several studies have proposed the possible therapeutic role of vitamin D in antimycobacterial...
Collapse
|
23
|
Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100037. [PMID: 34909667 PMCID: PMC8663960 DOI: 10.1016/j.crphar.2021.100037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Despite decades of research driving advancements in drug development and discovery against TB, it still leads among the causes of deaths due to infectious diseases. We are yet to develop an effective treatment course or a vaccine that could help us eradicate TB. Some key issues being prolonged treatment courses, inadequate drug intake, and the high dropout rate of patients during the treatment course. Hence, we require drugs that could accelerate the elimination of bacteria, shortening the treatment duration. It is high time we evaluate the probable lacunas in research holding us back in coming up with a treatment regime and/or a vaccine that would help control TB spread. Years of dedicated and focused research provide us with a lead molecule that goes through several tests, trials, and modifications to transform into a ‘drug’. The transformation from lead molecule to ‘drug’ is governed by several factors determining its success or failure. In the present review, we have discussed drugs that are part of the currently approved treatment regimen, their limitations, vaccine candidates under trials, and current issues in research that need to be addressed. While we are waiting for the path-breaking treatment for TB, these factors should be considered during the ongoing quest for novel yet effective anti-tubercular. If these issues are addressed, we could hope to develop a more effective treatment that would cure multi/extremely drug-resistant TB and help us meet the WHO's targets for controlling the global TB pandemic within the prescribed timeline. Despite numerous drugs and vaccines undergoing clinical trials, we have not been able to control TB. Majority of articles list the advancements in the TB drug-discovery; here we review the limitations of existing treatments. Brief description of aspects to be considered for the development of one but effective drug/preventive vaccine. A glance at pediatric tuberculosis: the most neglected area of TB research which requires dedicated research efforts. A concise narrative for research aspects to be re-evaluated by both academia and pharmaceutical R&D teams.
Collapse
Key Words
- BCG, Bacille Calmette-Guérin
- BDQ, Bedaquiline
- BSL, Biosafety level
- CDC, Center for Disease Control and Prevention
- Drug discovery
- Drug resistance
- EMB, Ethambutol
- ESX, ESAT-6 secretion system
- ETC, Electron transport chain
- ETH, Ethionamide
- FAS-1, Fatty acid synthase 1
- FDA, Food and Drug Administration
- INH, Isoniazid
- LPZ, Lansoprazole
- MDR, Multidrug-resistant
- Mtb, Mycobacterium tuberculosis
- POA, pyrazinoic acid
- PZA, Pyrazinamide
- RD, the region of differences
- RIF, Rifampicin
- T7SS, Type 7 secretion system
- TB treatment
- TB, Tuberculosis
- TST, Tuberculin skin test
- Tuberculosis
- WHO, World health organization
- XDR, Extremely drug-resistant
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| |
Collapse
|
24
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
25
|
Wani MA, Dhaked DK. Targeting the cytochrome bc 1 complex for drug development in M. tuberculosis: review. Mol Divers 2021; 26:2949-2965. [PMID: 34762234 DOI: 10.1007/s11030-021-10335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The terminal oxidases of the oxidative phosphorylation pathway play a significant role in the survival and growth of M. tuberculosis, targeting these components lead to inhibition of M. tuberculosis. Many drug candidates targeting various components of the electron transport chain in M. tuberculosis have recently been discovered. The cytochrome bc1-aa3 supercomplex is one of the most important components of the electron transport chain in M. tuberculosis, and it has emerged as the novel target for several promising candidates. There are two cryo-electron microscopy structures (PDB IDs: 6ADQ and 6HWH) of the cytochrome bc1-aa3 supercomplex that aid in the development of effective and potent inhibitors for M. tuberculosis. In recent years, a number of potential candidates targeting the QcrB subunit of the cytochrome bc1 complex have been developed. In this review, we describe the recently identified inhibitors that target the electron transport chain's terminal oxidase enzyme in M. tuberculosis, specifically the QcrB subunit of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
26
|
Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D. Nat Commun 2021; 12:6498. [PMID: 34764272 PMCID: PMC8585947 DOI: 10.1038/s41467-021-26835-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome bd quinol:O2 oxidoreductases are respiratory terminal oxidases so far only identified in prokaryotes, including several pathogenic bacteria. Escherichia coli contains two bd oxidases of which only the bd-I type is structurally characterized. Here, we report the structure of the Escherichia coli cytochrome bd-II type oxidase with the bound inhibitor aurachin D as obtained by electron cryo-microscopy at 3 Å resolution. The oxidase consists of subunits AppB, C and X that show an architecture similar to that of bd-I. The three heme cofactors are found in AppC, while AppB is stabilized by a structural ubiquinone-8 at the homologous positions. A fourth subunit present in bd-I is lacking in bd-II. Accordingly, heme b595 is exposed to the membrane but heme d embedded within the protein and showing an unexpectedly high redox potential is the catalytically active centre. The structure of the Q-loop is fully resolved, revealing the specific aurachin binding. Terminal bd oxidases endow bacterial pathogens with resistance to cellular stressors. The authors report the structure of E. coli bd-II type oxidase with the bound inhibitor aurachin D, providing a structural basis for the design of specifically binding antibiotics.
Collapse
|
27
|
RNA-sequencing elucidates drug-specific mechanisms of antibiotic tolerance and resistance in M. abscessus. Antimicrob Agents Chemother 2021; 66:e0150921. [PMID: 34633851 PMCID: PMC8765290 DOI: 10.1128/aac.01509-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium abscessus is an opportunistic pathogen notorious for its resistance to most classes of antibiotics and low cure rates. M. abscessus carries an array of mostly unexplored defense mechanisms. A deeper understanding of antibiotic resistance and tolerance mechanisms is pivotal in development of targeted therapeutic regimens. We provide the first description of all major transcriptional mechanisms of tolerance to all antibiotics recommended in current guidelines, using RNA sequencing-guided experiments. M. abscessus ATCC 19977 bacteria were subjected to subinhibitory concentrations of clarithromycin (CLR), amikacin (AMK), tigecycline (TIG), cefoxitin (FOX), and clofazimine (CFZ) for 4 and 24 h, followed by RNA sequencing. To confirm key mechanisms of tolerance suggested by transcriptomic responses, we performed time-kill kinetic analysis using bacteria after preexposure to CLR, AMK, or TIG for 24 h and constructed isogenic knockout and knockdown strains. To assess strain specificity, pan-genome analysis of 35 strains from all three subspecies was performed. Mycobacterium abscessus shows both drug-specific and common transcriptomic responses to antibiotic exposure. Ribosome-targeting antibiotics CLR, AMK, and TIG elicit a common response characterized by upregulation of ribosome structural genes, the WhiB7 regulon and transferases, accompanied by downregulation of respiration through NuoA-N. Exposure to any of these drugs decreases susceptibility to ribosome-targeting drugs from multiple classes. The cytochrome bd-type quinol oxidase contributes to CFZ tolerance in M. abscessus, and the sigma factor sigH but not antisigma factor MAB_3542c is involved in TIG resistance. The observed transcriptomic responses are not strain-specific, as all genes involved in tolerance, except erm(41), are found in all included strains.
Collapse
|
28
|
Patil V, Jain V. Understanding Metabolic Remodeling in Mycobacterium smegmatis to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State. Front Microbiol 2021; 12:722229. [PMID: 34539614 PMCID: PMC8440910 DOI: 10.3389/fmicb.2021.722229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Mycobacteria such as Mycobacterium tuberculosis, the causative agent of tuberculosis that annually kills several million people worldwide, and Mycobacterium smegmatis, the non-pathogenic fast-growing mycobacteria, require oxidative phosphorylation to meet their energy requirements. We have previously shown that deletion of one of the two copies of atpD gene that codes for the ATP synthase β-subunit establishes an energy-compromised state in M. smegmatis. Here we report that upon such deletion, a major routing of electron flux occurs through the less energy-efficient complexes of its respiratory chain. ΔatpD bacterium also shows an increased reduced state which is further confirmed by the overexpression of WhiB3, a major redox sensor. We show a substantial modulation of the biosynthesis of cell wall associated lipids and triacylglycerol (TAG). An accumulation of TAG-containing lipid bodies is further confirmed by using 14C oleate incorporation. Interestingly, the mutant also shows an overexpression of TAG-degrading lipase genes, and the intracellular lipolytic enzymes mediate TAG hydrolysis for their utilization as energy source. We believe that our in vitro energy-depleted model will allow us to explore the critical link between energy metabolism, redox homeostasis, and lipid biosynthesis during ATP-depleted state, which will enhance our understanding of the bacterial adaptation, and will allow us to identify novel drug targets to counter mycobacterial infections.
Collapse
Affiliation(s)
- Varsha Patil
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
29
|
HflX is a GTPase that controls hypoxia-induced replication arrest in slow-growing mycobacteria. Proc Natl Acad Sci U S A 2021; 118:2006717118. [PMID: 33723035 DOI: 10.1073/pnas.2006717118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GTPase high frequency of lysogenization X (HflX) is highly conserved in prokaryotes and acts as a ribosome-splitting factor as part of the heat shock response in Escherichia coli. Here we report that HflX produced by slow-growing Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a GTPase that plays a critical role in the pathogen's transition to a nonreplicating, drug-tolerant state in response to hypoxia. Indeed, HflX-deficient M. bovis BCG (KO) replicated markedly faster in the microaerophilic phase of a hypoxia model that resulted in premature entry into dormancy. The KO mutant displayed hallmarks of nonreplicating mycobacteria, including phenotypic drug resistance, altered morphology, low intracellular ATP levels, and overexpression of Dormancy (Dos) regulon proteins. Mice nasally infected with HflX KO mutant displayed increased bacterial burden in the lungs, spleen, and lymph nodes during the chronic phase of infection, consistent with the higher replication rate observed in vitro in microaerophilic conditions. Unlike fast growing mycobacteria, M. bovis BCG HlfX was not involved in antibiotic resistance under aerobic growth. Proteomics, pull-down, and ribo-sequencing approaches supported that mycobacterial HflX is a ribosome-binding protein that controls translational activity of the cell. With HflX fully conserved between M. bovis BCG and M. tuberculosis, our work provides further insights into the molecular mechanisms deployed by pathogenic mycobacteria to adapt to their hypoxic microenvironment.
Collapse
|
30
|
Cryo-EM structure of mycobacterial cytochrome bd reveals two oxygen access channels. Nat Commun 2021; 12:4621. [PMID: 34330928 PMCID: PMC8324918 DOI: 10.1038/s41467-021-24924-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Cytochromes bd are ubiquitous amongst prokaryotes including many human-pathogenic bacteria. Such complexes are targets for the development of antimicrobial drugs. However, an understanding of the relationship between the structure and functional mechanisms of these oxidases is incomplete. Here, we have determined the 2.8 Å structure of Mycobacterium smegmatis cytochrome bd by single-particle cryo-electron microscopy. This bd oxidase consists of two subunits CydA and CydB, that adopt a pseudo two-fold symmetrical arrangement. The structural topology of its Q-loop domain, whose function is to bind the substrate, quinol, is significantly different compared to the C-terminal region reported for cytochromes bd from Geobacillus thermodenitrificans (G. th) and Escherichia coli (E. coli). In addition, we have identified two potential oxygen access channels in the structure and shown that similar tunnels also exist in G. th and E. coli cytochromes bd. This study provides insights to develop a framework for the rational design of antituberculosis compounds that block the oxygen access channels of this oxidase. Cytochromes bd oxidase (Cyt-bd) catalyzes the reduction of oxygen to water and is the terminal oxidase in the respiratory chain of prokaryotes. Here, the authors present the 2.8 Å cryo-EM structure of Mycobacterium smegmatis Cyt-bd and identify two potential oxygen access channels in the structure, which is of interest for the development of novel antituberculosis drugs.
Collapse
|
31
|
Cai Y, Jaecklein E, Mackenzie JS, Papavinasasundaram K, Olive AJ, Chen X, Steyn AJC, Sassetti CM. Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase. PLoS Pathog 2021; 17:e1008911. [PMID: 34320028 PMCID: PMC8351954 DOI: 10.1371/journal.ppat.1008911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/09/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.
Collapse
Affiliation(s)
- Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | | | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
32
|
Identification and optimization of quinolone-based inhibitors against cytochrome bd oxidase using an electrochemical assay. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
34
|
Nikolaev A, Safarian S, Thesseling A, Wohlwend D, Friedrich T, Michel H, Kusumoto T, Sakamoto J, Melin F, Hellwig P. Electrocatalytic evidence of the diversity of the oxygen reaction in the bacterial bd oxidase from different organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148436. [PMID: 33940039 DOI: 10.1016/j.bbabio.2021.148436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Cytochrome bd oxidase is a bacterial terminal oxygen reductase that was suggested to enable adaptation to different environments and to confer resistance to stress conditions. An electrocatalytic study of the cyt bd oxidases from Escherichia coli, Corynebacterium glutamicum and Geobacillus thermodenitrificans gives evidence for a different reactivity towards oxygen. An inversion of the redox potential values of the three hemes is found when comparing the enzymes from different bacteria. This inversion can be correlated with different protonated glutamic acids as evidenced by reaction induced FTIR spectroscopy. The influence of the microenvironment of the hemes on the reactivity towards oxygen is discussed.
Collapse
Affiliation(s)
- Anton Nikolaev
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France
| | - Schara Safarian
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tomoichirou Kusumoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Fukuoka, Japan
| | - Junshi Sakamoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Fukuoka, Japan
| | - Frederic Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France.
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France; USIAS, University of Strasbourg Institute for Advanced Studies, Strasbourg, France.
| |
Collapse
|
35
|
Gautam K, Negi S, Saini V. Targeting endogenous gaseous signaling molecules as novel host-directed therapies against tuberculosis infection. Free Radic Res 2021; 55:655-670. [PMID: 33641567 DOI: 10.1080/10715762.2021.1892091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tuberculosis (TB) is a chronic pulmonary disease caused by Mycobacterium tuberculosis which is a major cause of morbidity and mortality worldwide. Due to the complexity of disease and its continuous global spread, there is an urgent need to improvise the strategies for prevention, diagnosis, and treatment. The current anti-TB regimen lasts for months and warrants strict compliance to clear infection and to minimize the risk of development of multi drug-resistant tuberculosis. This underscores the need to have new and improved therapeutics for TB treatment. Several studies have highlighted the unique ability of Mycobacterium tuberculosis to exploit host factors to support its survival inside the intracellular environment. One of the key players to mycobacterial disease susceptibility and infection are endogenous gases such as oxygen, nitric oxide, carbon monoxide and hydrogen sulfide. Nitric oxide and carbon monoxide as the physiological gaseous messengers are considered important to the outcome of Mycobacterium tuberculosis infection. The role of hydrogen sulfide in human tuberculosis is yet not fully elucidated, but this gas has been shown to play a significant role in bacterial respiration, growth and pathogenesis. This review will focus on the host factors majorly endogenous gaseous signaling molecules which contributes to Mycobacterium tuberculosis survival inside the intracellular environment and highlight the potential therapeutic targets.
Collapse
Affiliation(s)
- Kamini Gautam
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
36
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
37
|
Hopfner SM, Lee BS, Kalia NP, Miller MJ, Pethe K, Moraski GC. Structure guided generation of thieno[3,2- d]pyrimidin-4-amine Mycobacterium tuberculosis bd oxidase inhibitors. RSC Med Chem 2021; 12:73-77. [PMID: 34046599 PMCID: PMC8130631 DOI: 10.1039/d0md00398k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
Cytochrome bd oxidase (Cyt-bd) is an attractive drug target in Mycobacterium tuberculosis, especially in the context of developing a drug combination targeting energy metabolism. However, currently few synthetically assessable scaffolds target Cyt-bd. Herein, we report that thieno[3,2-d]pyrimidin-4-amines inhibit Cyt-bd, and report an initial structure-activity-relationship (SAR) of 13 compounds in three mycobacterial strains: Mycobacterium bovis BCG, Mycobacterium tuberculosis H37Rv and Mycobacterium tuberculosis clinical isolate N0145 in an established ATP depletion assay with or without the cytochrome bcc : aa 3 (QcrB) inhibitor Q203. All compounds displayed activity against M. bovis BCG and the M. tuberculosis clinical isolate strain N0145 with ATP IC50 values from 6 to 54 μM in the presence of Q203 only, as expected from a Cyt-bd inhibitor. All derivatives were much less potent against M. tuberculosis H37Rv compared to N0145 (IC50's from 24 to >100 μM and 9-52 μM, respectively), an observation that may be attributed to the higher expression of the Cyt-bd-encoding genes in the laboratory-adapted M. tuberculosis H37Rv strain. N-(4-(tert-butyl)phenethyl)thieno[3,2-d]pyrimidin-4-amine (19) was the most active compound with ATP IC50 values from 6 to 18 μM against all strains in the presence of Q203, making it a good chemical probe for interrogation the function of the mycobacterial Cyt-bd under various physiological conditions.
Collapse
Affiliation(s)
- Sarah M Hopfner
- Department of Chemistry and Biochemistry, Montana State University 103 Chemistry and Biochemistry Building Bozeman Montana 59717 USA
| | - Bei Shi Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Experimental Medicine Building, 59 Nanyang Drive 636921 Singapore
| | - Nitin P Kalia
- School of Biological Sciences, Nanyang Technological University Experimental Medicine Building, 59 Nanyang Drive 636921 Singapore
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall, Notre Dame Indiana 46556 USA
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University Experimental Medicine Building, 59 Nanyang Drive 636921 Singapore
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, Montana State University 103 Chemistry and Biochemistry Building Bozeman Montana 59717 USA
| |
Collapse
|
38
|
Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis. Eur J Med Chem 2020; 212:113139. [PMID: 33422979 DOI: 10.1016/j.ejmech.2020.113139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
Causing approximately 10 million incident cases and 1.3-1.5 million deaths every year, Mycobacterium tuberculosis remains a global health problem. The risk is further exacerbated with latent tuberculosis (TB) infection, the HIV pandemic, and increasing anti-TB drug resistance. Therefore, unexplored chemical scaffolds directed towards new molecular targets are increasingly desired. In this context, mycobacterial energy metabolism, particularly the oxidative phosphorylation (OP) pathway, is gaining importance. Mycobacteria possess primary dehydrogenases to fuel electron transport; aa3-type cytochrome c oxidase and bd-type menaquinol oxidase to generate a protonmotive force; and ATP synthase, which is essential for both growing mycobacteria as well as dormant mycobacteria because ATP is produced under both aerobic and hypoxic conditions. Small organic molecules targeting OP are active against latent TB as well as resistant TB strains. FDA approval of the ATP synthase inhibitor bedaquiline and the discovery of clinical candidate Q203, which both interfere with the cytochrome bc1 complex, have already confirmed mycobacterial energy metabolism to be a valuable anti-TB drug target. This review highlights both preferable molecular targets within mycobacterial OP and promising small organic molecules targeting OP. Progressive research in the area of mycobacterial OP revealed several highly potent anti-TB compounds with nanomolar-range MICs as low as 0.004 μM against Mtb H37Rv. Therefore, we are convinced that targeting the OP pathway can combat resistant TB and latent TB, leading to more efficient anti-TB chemotherapy.
Collapse
|
39
|
Ko EM, Oh JI. Induction of the cydAB Operon Encoding the bd Quinol Oxidase Under Respiration-Inhibitory Conditions by the Major cAMP Receptor Protein MSMEG_6189 in Mycobacterium smegmatis. Front Microbiol 2020; 11:608624. [PMID: 33343552 PMCID: PMC7739888 DOI: 10.3389/fmicb.2020.608624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
The respiratory electron transport chain (ETC) of Mycobacterium smegmatis is terminated with two terminal oxidases, the aa 3 cytochrome c oxidase and the cytochrome bd quinol oxidase. The bd quinol oxidase with a higher binding affinity for O2 than the aa 3 oxidase is known to play an important role in aerobic respiration under oxygen-limiting conditions. Using relevant crp1 (MSMEG_6189) and crp2 (MSMEG_0539) mutant strains of M. smegmatis, we demonstrated that Crp1 plays a predominant role in induction of the cydAB operon under ETC-inhibitory conditions. Two Crp-binding sequences were identified upstream of the cydA gene, both of which are necessary for induction of cydAB expression under ETC-inhibitory conditions. The intracellular level of cAMP in M. smegmatis was found to be increased under ETC-inhibitory conditions. The crp2 gene was found to be negatively regulated by Crp1 and Crp2, which appears to lead to significantly low cellular abundance of Crp2 relative to Crp1 in M. smegmatis. Our RNA sequencing analyses suggest that in addition to the SigF partner switching system, Crp1 is involved in induction of gene expression in M. smegmatis exposed to ETC-inhibitory conditions.
Collapse
Affiliation(s)
- Eon-Min Ko
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
40
|
Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 2020; 10:589318. [PMID: 33330134 PMCID: PMC7719681 DOI: 10.3389/fcimb.2020.589318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Collapse
Affiliation(s)
- Sapna Bajeli
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Navin Baid
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Manjot Kaur
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
41
|
Campaniço A, Harjivan SG, Warner DF, Moreira R, Lopes F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int J Mol Sci 2020; 21:ijms21228854. [PMID: 33238468 PMCID: PMC7700174 DOI: 10.3390/ijms21228854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Despite being discovered and isolated more than one hundred years ago, tuberculosis (TB) remains a global public health concern arch. Our inability to eradicate this bacillus is strongly related with the growing resistance, low compliance to current drugs, and the capacity of the bacteria to coexist in a state of asymptomatic latency. This last state can be sustained for years or even decades, waiting for a breach in the immune system to become active again. Furthermore, most current therapies are not efficacious against this state, failing to completely clear the infection. Over the years, a series of experimental methods have been developed to mimic the latent state, currently used in drug discovery, both in vitro and in vivo. Most of these methods focus in one specific latency inducing factor, with only a few taking into consideration the complexity of the granuloma and the genomic and proteomic consequences of each physiological factor. A series of targets specifically involved in latency have been studied over the years with promising scaffolds being discovered and explored. Taking in account that solving the latency problem is one of the keys to eradicate the disease, herein we compile current therapies and diagnosis techniques, methods to mimic latency and new targets and compounds in the pipeline of drug discovery.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Shrika G. Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa;
- Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Welcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
- Correspondence:
| |
Collapse
|
42
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
43
|
Sun J, Hang Y, Han Y, Zhang X, Gan L, Cai C, Chen Z, Yang Y, Song Q, Shao C, Yang Y, Zhou Y, Wang X, Cheng C, Song H. Deletion of glutaredoxin promotes oxidative tolerance and intracellular infection in Listeria monocytogenes. Virulence 2020; 10:910-924. [PMID: 31680614 PMCID: PMC6844310 DOI: 10.1080/21505594.2019.1685640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thiol-disulfide glutaredoxin systems of bacterial cytoplasm favor reducing conditions for the correct disulfide bonding of functional proteins, and therefore were employed by bacteria to defend against oxidative stress. Listeria monocytogenes has been shown to encode a putative glutaredoxin, Grx (encoded by lmo2344), while the underlying roles remain unknown. Here we suggest an unexpected role of L. monocytogenes Grx in oxidative tolerance and intracellular infection. The recombinant Grx was able to efficiently catalyze the thiol-disulfide oxidoreduction of insulin in the presence of DTT as an election donor. Unexpectedly, the deletion of grx resulted in a remarkably increased tolerance and survival ability of this bacteria when exposed to various oxidizing agents, including diamide, and copper and cadmium ions. Furthermore, loss of grx significantly promoted bacterial invasion and proliferation in human epithelial Caco-2 cells and murine macrophages, as well as a notably increasing invasion but not cell-to-cell spread in the murine fibroblasts L929 cells. More importantly, L. monocytogenes lacking the glutaredoxin exhibited more efficient proliferation and recovery in the spleens and livers of the infected mice, and hence became more virulent by upregulating the virulence factors, InlA and InlB. In summary, we here for the first time demonstrated that L. monocytogenes glutaredoxin plays a counterintuitive role in bacterial oxidative resistance and intracellular infection, which is the first report to provide valuable evidence for the role of glutaredoxins in bacterial infection, and more importantly suggests a favorable model to illustrate the functional diversity of bacterial Grx systems during environmental adaption and host infection.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Yi Hang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Li Gan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Chang Cai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | - Zhongwei Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Quanjiang Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Chunyan Shao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Yongchun Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P. R. China
| |
Collapse
|
44
|
|
45
|
Mavi PS, Singh S, Kumar A. Reductive Stress: New Insights in Physiology and Drug Tolerance of Mycobacterium. Antioxid Redox Signal 2020; 32:1348-1366. [PMID: 31621379 DOI: 10.1089/ars.2019.7867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance:Mycobacterium tuberculosis (Mtb) encounters reductive stress during its infection cycle. Notably, host-generated protective responses, such as acidic pH inside phagosomes and lysosomes, exposure to glutathione in alveolar hypophase (i.e., a thin liquid lining consisting of surfactant and proteins in the alveolus), and hypoxic environments inside granulomas are associated with the accumulation of reduced cofactors, such as nicotinamide adenine dinucleotide (reduced form), nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide (reduced form), and nonprotein thiols (e.g., mycothiol), leading to reductive stress in Mtb cells. Dissipation of this reductive stress is important for survival of the bacterium. If reductive stress is not dissipated, it leads to generation of reactive oxygen species, which may be fatal for the cells. Recent Advances: This review focuses on mechanisms utilized by mycobacteria to sense and respond to reductive stress. Importantly, exposure of Mtb cells to reductive stress leads to growth inhibition, altered metabolism, modulation of virulence, and drug tolerance. Mtb is equipped with thiol buffering systems of mycothiol and ergothioneine to protect itself from various redox stresses. These systems are complemented by thioredoxin and thioredoxin reductase (TR) systems for maintaining cellular redox homeostasis. A diverse array of sensors is used by Mycobacterium for monitoring its intracellular redox status. Upon sensing reductive stress, Mtb uses a flexible and robust metabolic system for its dissipation. Branched electron transport chain allows Mycobacterium to function with different terminal electron acceptors and modulate proton motive force to fulfill energy requirements under diverse scenarios. Interestingly, Mtb utilizes variations in the tricarboxylic cycle and a number of dehydrogenases to dissipate reductive stress. Upon prolonged exposure to reductive stress, Mtb utilizes biosynthesis of storage and virulence lipids as a dissipative mechanism. Critical Issues: The mechanisms utilized by Mycobacterium for sensing and tackling reductive stress are not well characterized. Future Directions: The precise role of thiol buffering and TR systems in neutralizing reductive stress is not well defined. Genetic systems that respond to metabolic reductive stress and thiol reductive stress need to be mapped. Genetic screens could aid in identification of such systems. Given that management of reductive stress is critical for both actively replicating and persister mycobacteria, an improved understanding of the mechanisms used by mycobacteria for dissipation of reductive stress may lead to identification of vulnerable choke points that could be targeted for killing Mtb in vivo.
Collapse
Affiliation(s)
- Parminder Singh Mavi
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Shweta Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashwani Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
46
|
Hu J, Jin K, He ZG, Zhang H. Citrate lyase CitE in Mycobacterium tuberculosis contributes to mycobacterial survival under hypoxic conditions. PLoS One 2020; 15:e0230786. [PMID: 32302313 PMCID: PMC7164622 DOI: 10.1371/journal.pone.0230786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/08/2020] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis and has evolved an ability to survive in hostile host environments. M. tuberculosis is thought to utilize the rTCA cycle to sustain its latent growth during infection, but the enzymatic characteristics and physiological function for the key citrate lyase of the rTCA cycle, MtbCitE, in the important pathogen remain unclear. In this study, we investigated the function of MtbCitE based on its structural properties and sequence comparisons with other bacterial citrate lyase subunits. We showed that several amino acid residues were important for the citrate cleavage activity of MtbCitE. Strikingly, the citrate cleavage activity of MtbCitE was inhibited by ATP, indicating that energy metabolism might couple with the regulation of MtbCitE activity, which differed from other CitEs. More interestingly, deletion of citE from Mycobacterium bovis BCG decreased the mycobacterial survival rate under hypoxic conditions, whereas complementation with citE restored the phenotype to wild-type levels. Consistently, three key rTCA cycle enzymes were positively regulated under hypoxic conditions in mycobacteria. Therefore, we characterized a unique citrate lyase MtbCitE from M. tuberculosis and found that the CitE protein significantly contributed to mycobacterial survival under hypoxic conditions.
Collapse
Affiliation(s)
- Jialing Hu
- College of Life Science and Technology, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Kaixi Jin
- College of Life Science and Technology, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Guo He
- College of Life Science and Technology, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhang
- College of Life Science and Technology, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
47
|
Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072339] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New drugs with new mechanisms of action are urgently required to tackle the global tuberculosis epidemic. Following the FDA-approval of the ATP synthase inhibitor bedaquiline (Sirturo®), energy metabolism has become the subject of intense focus as a novel pathway to exploit for tuberculosis drug development. This enthusiasm stems from the fact that oxidative phosphorylation (OxPhos) and the maintenance of the transmembrane electrochemical gradient are essential for the viability of replicating and non-replicating Mycobacterium tuberculosis (M. tb), the etiological agent of human tuberculosis (TB). Therefore, new drugs targeting this pathway have the potential to shorten TB treatment, which is one of the major goals of TB drug discovery. This review summarises the latest and key findings regarding the OxPhos pathway in M. tb and provides an overview of the inhibitors targeting various components. We also discuss the potential of new regimens containing these inhibitors, the flexibility of this pathway and, consequently, the complexity in targeting it. Lastly, we discuss opportunities and future directions of this drug target space.
Collapse
|
48
|
Schurig-Briccio LA, Parraga Solorzano PK, Lencina AM, Radin JN, Chen GY, Sauer JD, Kehl-Fie TE, Gennis RB. Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence. EMBO Rep 2020; 21:e45832. [PMID: 32202364 DOI: 10.15252/embr.201845832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
The success of Staphylococcus aureus as a pathogen is due to its capability of fine-tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy-yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH-dependent aerobic respiration on the physiology of S. aureus. Differing from many pathogens, S. aureus has two type-2 respiratory NADH dehydrogenases (NDH-2s) but lacks the respiratory ion-pumping NDHs. Here, we show that the NDH-2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α-toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two-component system, which responds to fatty acids regulation, is responsible for the link between NADH-dependent respiration and virulence in S. aureus.
Collapse
Affiliation(s)
| | - Paola K Parraga Solorzano
- Department of Microbiology, University of Illinois, Urbana, IL, USA.,Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armada ESPE, Sangolquí, Ecuador
| | - Andrea M Lencina
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - Grischa Y Chen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
49
|
Hade MD, Sethi D, Datta H, Singh S, Thakur N, Chhaya A, Dikshit KL. Truncated Hemoglobin O Carries an Autokinase Activity and Facilitates Adaptation of Mycobacterium tuberculosis Under Hypoxia. Antioxid Redox Signal 2020; 32:351-362. [PMID: 31218881 DOI: 10.1089/ars.2018.7708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Although the human pathogen, Mycobacterium tuberculosis (Mtb), is strictly aerobic and requires efficient supply of oxygen, it can survive long stretches of severe hypoxia. The mechanism responsible for this metabolic flexibility is unknown. We have investigated a novel mechanism by which hemoglobin O (HbO), operates and supports its host under oxygen stress. Results: We discovered that the HbO exists in a phospho-bound state in Mtb and remains associated with the cell membrane under hypoxia. Deoxy-HbO carries an autokinase activity that disrupts its dimeric assembly into monomer and facilitates its association with the cell membrane, supporting survival and adaptation of Mtb under low oxygen conditions. Consistent with these observations, deletion of the glbO gene in Mycobacterium bovis bacillus Calmette-Guerin, which is identical to the glbO gene of Mtb, attenuated its survival under hypoxia and complementation of the glbO gene of Mtb rescued this inhibition, but phosphorylation-deficient mutant did not. These results demonstrated that autokinase activity of the HbO modulates its physiological function and plays a vital role in supporting the survival of its host under hypoxia. Innovation and Conclusion: Our study demonstrates that the redox-dependent autokinase activity regulates oligomeric state and membrane association of HbO that generates a reservoir of oxygen in the proximity of respiratory membranes to sustain viability of Mtb under hypoxia. These results thus provide a novel insight into the physiological function of the HbO and demonstrate its pivotal role in supporting the survival and adaptation of Mtb under hypoxia.
Collapse
Affiliation(s)
| | - Deepti Sethi
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Himani Datta
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Singh
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Naveen Thakur
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ajay Chhaya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kanak L Dikshit
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
50
|
Lee BS, Sviriaeva E, Pethe K. Targeting the cytochrome oxidases for drug development in mycobacteria. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 152:45-54. [PMID: 32081616 DOI: 10.1016/j.pbiomolbio.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis strictly depends on oxygen to multiply, and the terminal oxidases are a vital part of the oxidative phosphorylation pathway. The bacterium possesses two aerobic respiratory branches: a cytochrome bcc-aa3 and a bacteria-specific cytochrome bd oxidase. The identification of small-molecule inhibitors of the cytochrome bcc-aa3 under numerous experimental conditions reflects the essentiality of the pathway for the optimum growth of M. tuberculosis. Recent findings on the biology of the cytochrome bcc-aa3 as well as the report of the first high-resolution structure of a mycobacterial cytochrome bcc-aa3 complex will help in the characterization and further development of potent inhibitors. Although the aerobic cytochrome bd respiratory branch is not strictly essential for growth, the discovery of a strong synthetic lethal interaction with the cytochrome bcc-aa3 placed the cytochrome bd oxidase under the spotlight as an attractive drug target for its synergistic role in potentiating the efficacy of cytochrome bcc-aa3 inhibitors and other drugs targeting oxidative phosphorylation. In this review, we are discussing current knowledge about the two mycobacterial aerobic respiratory branches, their potential as drug targets, as well as potential drawbacks.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Ekaterina Sviriaeva
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
| |
Collapse
|