1
|
Dong S, Huang H, Li J, Li X, Bunu SJ, Yang Y, Zhang Y, Jia Q, Xu Z, Li Y, Zhou H, Li B, Zhu W. Development of ketalized unsaturated saccharides as multifunctional cysteine-targeting covalent warheads. Commun Chem 2024; 7:201. [PMID: 39251816 PMCID: PMC11385544 DOI: 10.1038/s42004-024-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Multi-functional cysteine-targeting covalent warheads possess significant therapeutic potential in medicinal chemistry and chemical biology. Herein, we present novel unsaturated and asymmetric ketone (oxazolinosene) scaffolds that selectively conjugate cysteine residues of peptides and bovine serum albumin under normal physiological conditions. This unsaturated saccharide depletes GSH in NCI-H1299 cells, leading to anti-tumor effects in vitro. The acetyl group of the ketal moiety on the saccharide ring can be converted to other carboxylic acids in a one-pot synthesis. In this way, the loaded acid can be click-released during cysteine conjugation, making the oxazolinosene a potential multifunctional therapeutic agent. The reaction kinetic model for oxazolinosene conjugation to GSH is well established and was used to evaluate oxazolinosene reactivity. The aforementioned oxazolinosenes were stereoselectively synthesized via a one-step reaction of nitriles with saccharides and conveniently converted into a series of α, β-unsaturated ketone N-glycosides as prevalent synthetic building blocks. The reaction mechanisms of oxazolinosene synthesis were investigated through calculations and validated with control experiments. Overall, these oxazolinosenes can be easily synthesized and developed as cysteine-targeted covalent warheads carrying useful click-releasing groups.
Collapse
Affiliation(s)
- Sanfeng Dong
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Hui Huang
- State Key Laboratory of Drug Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jintian Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Xiaomei Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Yun Yang
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yong Zhang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | - Hu Zhou
- State Key Laboratory of Drug Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China.
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38 Xue Yuan Road, Haidian District, 100191, Beijing, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China.
| |
Collapse
|
2
|
Chauhan M, Barot R, Yadav R, Joshi K, Mirza S, Chikhale R, Srivastava VK, Yadav MR, Murumkar PR. The Mycobacterium tuberculosis Cell Wall: An Alluring Drug Target for Developing Newer Anti-TB Drugs-A Perspective. Chem Biol Drug Des 2024; 104:e14612. [PMID: 39237482 DOI: 10.1111/cbdd.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
The Mycobacterium cell wall is a capsule-like structure comprising of various layers of biomolecules such as mycolic acid, peptidoglycans, and arabinogalactans, which provide the Mycobacteria a sort of cellular shield. Drugs like isoniazid, ethambutol, cycloserine, delamanid, and pretomanid inhibit cell wall synthesis by inhibiting one or the other enzymes involved in cell wall synthesis. Many enzymes present across these layers serve as potential targets for the design and development of newer anti-TB drugs. Some of these targets are currently being exploited as the most druggable targets like DprE1, InhA, and MmpL3. Many of the anti-TB agents present in clinical trials inhibit cell wall synthesis. The present article covers a systematic perspective of developing cell wall inhibitors targeting various enzymes involved in cell wall biosynthesis as potential drug candidates for treating Mtb infection.
Collapse
Affiliation(s)
- Monica Chauhan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rahul Barot
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rasana Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Karan Joshi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sadaf Mirza
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rupesh Chikhale
- The Cambridge Crystallography Data Center, Cambridge, UK
- School of Pharmacy, University College London, London, UK
| | | | - Mange Ram Yadav
- Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
3
|
Sekiya H, Nonaka Y, Kamitori S, Miyaji T, Tamai E. X-ray structure and mutagenesis analyses of Clostridioides difficile endolysin Ecd09610 glucosaminidase domain. Biochem Biophys Res Commun 2024; 715:149957. [PMID: 38688057 DOI: 10.1016/j.bbrc.2024.149957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.
Collapse
Affiliation(s)
- Hiroshi Sekiya
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Yasuhiro Nonaka
- Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Shigehiro Kamitori
- Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan; Research Facility Center for Science & Technology, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tomomi Miyaji
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Eiji Tamai
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
4
|
Yang H, Zhang X, Zhu Y, Zhang B, Fan J, Zhao H, Zhang B. Utilization of Peptidoglycans from Lactic Acid Bacterial Cell Walls for the Mitigation of Acrylamide and 5-Hydroxymethylfurfural. TOXICS 2024; 12:380. [PMID: 38922060 PMCID: PMC11209152 DOI: 10.3390/toxics12060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Acrylamide (AA) and 5-hydroxymethylfurfural (HMF), which are potentially carcinogenic to humans, are often produced during the hot processing of foods. This study first used a molecular docking model to simulate the binding behavior of four lactic acid bacteria peptidoglycans (PGNs) to AA/HMF, and the binding rate of LAB-based PGNs to AA/HMF was evaluated in vitro. In silico results show that interaction energy is the driving force responsible for the adsorption of LAB-derived PGNs to AA/HMF. In vitro results showed that the PGN of B. lactis B1-04 bound the most AA (28.7%) and HMF (48.0%), followed by L. acidophilus NCFM, B. breve CICC 6079, and L. plantarum CICC 22135. Moreover, an AA/HMF-bound layer on the cell surface of B. lactis B1-04 was observed via AFM and SEM due to adsorption. XPS analysis indicated the removal rate of AA/HMF by selected strains was positively correlated with the proportion of C-O, C=O, and N-H groups of PGNs. The atoms O1, O2, O3, O4, N1, N2, N3, H1, and H2 are involved in the adsorption of LAB-based PGNs to AA/HMF. Thus, the PGNs derived from these four Lactobacillus strains can be regarded as natural adsorbents for the binding of AA/HMF.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (H.Y.); (X.Z.); (Y.Z.); (B.Z.); (J.F.)
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (H.Y.); (X.Z.); (Y.Z.); (B.Z.); (J.F.)
| |
Collapse
|
5
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
6
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|
7
|
Zhai Y, Guo W, Li D, Chen B, Xu X, Cao X, Zhao L. Size-dependent influences of nanoplastics on microbial consortium differentially inhibiting 2, 4-dichlorophenol biodegradation. WATER RESEARCH 2024; 249:121004. [PMID: 38101052 DOI: 10.1016/j.watres.2023.121004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Nanoplastics (NPs), as a type of newly emerging pollutant, are ubiquitous in various environmental systems, one of which is coexistence with organic pollutants in wastewater, potentially influencing the pollutants' biodegradation. A knowledge gap exists regarding the influence of microbial consortium and NPs interactions on biodegradation efficiency. In this work, a 2,4-dichlorophenol (DCP) biodegradation experiment with presence of polystyrene nanoplastics (PS-NPs) with particle sizes of 100 nm (PS100) or 20 nm (PS20) was conducted to verify that PS-NPs had noticeable inhibitory effect on DCP biodegradation in a size-dependent manner. PS100 at 10 mg/L and 100 mg/L both prolonged the microbial stagnation compared to the control without PS-NPs; PS20 exacerbated greater, with PS20 at 100 mg/L causing a noticeable 6-day lag before the start-up of rapid DCP reduction. The ROS level increased to 1.4-fold and 1.8-fold under PS100 and PS20 exposure, respectively, while the elevated LDH under PS20 exposure indicated the mechanical damage to cell membrane by smaller NPs. PS-NPs exposure also resulted in a decrease in microbial diversity and altered the niches of microbial species, e.g., they decreased the abundance of some functional bacteria such as Brevundimonas and Comamonas, while facilitated some minor members to obtain more proliferation. A microbial network with higher complexity and less competition was induced to mediate PS-NPs stress. Functional metabolism responded differentially to PS100 and PS20 exposure. Specifically, PS100 downregulated amino acid metabolism, while PS20 stimulated certain pathways in response to more severe oxidative stress. Our findings give insights into PS-NPs environmental effects concerning microflora and biological degradation.
Collapse
Affiliation(s)
- Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
8
|
Halawa EM, Fadel M, Al-Rabia MW, Behairy A, Nouh NA, Abdo M, Olga R, Fericean L, Atwa AM, El-Nablaway M, Abdeen A. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol 2024; 14:1305294. [PMID: 38283841 PMCID: PMC10820715 DOI: 10.3389/fphar.2023.1305294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Antibiotics represent a frequently employed therapeutic modality for the management of bacterial infections across diverse domains, including human health, agriculture, livestock breeding, and fish farming. The efficacy of antibiotics relies on four distinct mechanisms of action, which are discussed in detail in this review, along with accompanying diagrammatic illustrations. Despite their effectiveness, antibiotic resistance has emerged as a significant challenge to treating bacterial infections. Bacteria have developed defense mechanisms against antibiotics, rendering them ineffective. This review delves into the specific mechanisms that bacteria have developed to resist antibiotics, with the help of diagrammatic illustrations. Antibiotic resistance can spread among bacteria through various routes, resulting in previously susceptible bacteria becoming antibiotic-resistant. Multiple factors contribute to the worsening crisis of antibiotic resistance, including human misuse of antibiotics. This review also emphasizes alternative solutions proposed to mitigate the exacerbation of antibiotic resistance.
Collapse
Affiliation(s)
- Esraa M. Halawa
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Fadel
- Department of Microbial Chemistry, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Laboratories-Diagnostic Immunology Division, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nehal A. Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
9
|
Oliva RL, Vogt C, Bublitz TA, Camenzind T, Dyckmans J, Joergensen RG. Galactosamine and mannosamine are integral parts of bacterial and fungal extracellular polymeric substances. ISME COMMUNICATIONS 2024; 4:ycae038. [PMID: 38616925 PMCID: PMC11014887 DOI: 10.1093/ismeco/ycae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Extracellular polymeric substances (EPS) are produced by microorganisms and interact to form a complex matrix called biofilm. In soils, EPS are important contributors to the microbial necromass and, thus, to soil organic carbon (SOC). Amino sugars (AS) are used as indicators for microbial necromass in soil, although the origin of galactosamine and mannosamine is largely unknown. However, indications exist that they are part of EPS. In this study, two bacteria and two fungi were grown in starch medium either with or without a quartz matrix to induce EPS production. Each culture was separated in two fractions: one that directly underwent AS extraction (containing AS from both biomass and EPS), and another that first had EPS extracted, followed then by AS determination (exclusively containing AS from EPS). We did not observe a general effect of the quartz matrix neither of microbial type on AS production. The quantified amounts of galactosamine and mannosamine in the EPS fraction represented on average 100% of the total amounts of these two AS quantified in cell cultures, revealing they are integral parts of the biofilm. In contrast, muramic acid and glucosamine were also quantified in the EPS, but with much lower contribution rates to total AS production, of 18% and 33%, respectively, indicating they are not necessarily part of EPS. Our results allow a meaningful ecological interpretation of mannosamine and galactosamine data in the future as indicators of microbial EPS, and also attract interest of future studies to investigate the role of EPS to SOC and its dynamics.
Collapse
Affiliation(s)
- Rebeca Leme Oliva
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Carla Vogt
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tábata Aline Bublitz
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tessa Camenzind
- Institute of Biology, Department of Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jens Dyckmans
- Centre for Stable Isotope Research Analysis, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
10
|
Chi B, Huang Y, Xiong Z, Tan J, Zhou W, Yang Z, Zhou K, Duan X, Chen A, Zha R, Gui K. Investigation of lysing excess sludge slurry using hydrolase secreting thermophilic bacterial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119562. [PMID: 37952379 DOI: 10.1016/j.jenvman.2023.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Sludge reduction is a critical challenge in biological wastewater treatment. Combining excess sludge slurry lysis technology with traditional activated sludge processes is a promising approach for in-situ sludge reduction. Here, a strategy for excess sludge slurry lysis based on thermophilic bacterial communities (LTBC) was proposed. This investigation focused on the process of excess sludge slurry lysis dominated by thermophilic bacterial communities domesticated at different temperatures (55-75 °C). The evolution of sludge lysate was analyzed, and the mechanism of excess sludge slurry lysis under the action of thermophilic bacterial communities was elucidated through amplicon sequencing analysis. The results demonstrated that the aerobic thermophilic bacterial communities adapted to 75 °C exhibit the highest efficiency in sludge slurry lysis. During LTBC process, the removal efficiency of volatile suspended solids reached 53.9 ± 1.8% within 2 h, and 97.0 ± 1.0% of the protein and 96.0 ± 1.0% of the polysaccharide in the extracellular polymers was solubilized, and bacterial cell walls in sludge were disrupted. Fourier transform infrared spectroscopy and excitation-emission matrix spectroscopy of the sludge lysate demonstrated that the LTBC process was accompanied by humification process. The accumulation of humic acid primarily occurred at 55 °C and 65 °C, while fulvic acid occurred at 75 °C. The thermophilic bacterial communities adapted to 75 °C were dominated by Thermus and Thermaerobacter. Phylogenetic studies showed that the LTBC hydrolase system comprises enzymes related to protein hydrolysis, carbohydrate hydrolysis, and peptidoglycan hydrolysis, including metalopeptidase MepB, neutral α-glucosidase C, N-acetyl Muramyl-L-alanine amidase, and others enzymes. These results provide a theoretical basis for the application of LTBC technology in the reduction of sludge which generated in traditional waste water activated sludge processes.
Collapse
Affiliation(s)
- Baoyan Chi
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Ying Huang
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Zhenfeng Xiong
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Jiali Tan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Weidong Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Zhuo Yang
- Central & South China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, PR China
| | - Kemei Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Xinxin Duan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Ao Chen
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Rong Zha
- Zhenjiang Esther Environment Protection Technology Co., Ltd., Jurong City, 212400, PR China
| | - Keting Gui
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
11
|
Saif MS, Hasan M, Zafar A, Ahmed MM, Tariq T, Waqas M, Hussain R, Zafar A, Xue H, Shu X. Advancing Nanoscale Science: Synthesis and Bioprinting of Zeolitic Imidazole Framework-8 for Enhanced Anti-Infectious Therapeutic Efficacies. Biomedicines 2023; 11:2832. [PMID: 37893205 PMCID: PMC10604899 DOI: 10.3390/biomedicines11102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 μg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 μg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 μg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ayesha Zafar
- School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, 24 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Muhammad Mahmood Ahmed
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Chemical and Biological Science, Department of Veterinary Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Amna Zafar
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
12
|
Lin S, Wu F, Zhang Y, Chen H, Guo H, Chen Y, Liu J. Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chem Soc Rev 2023; 52:6617-6643. [PMID: 37724854 DOI: 10.1039/d3cs00369h] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a great leap forward in bacteria-based living agents, including imageable probes, diagnostic reagents, and therapeutics, by virtue of their unique characteristics, such as genetic manipulation, rapid proliferation, colonization capability, and disease site targeting specificity. However, successful translation of bacterial bioagents to clinical applications remains challenging, due largely to their inherent susceptibility to environmental insults, unavoidable toxic side effects, and limited accumulation at the sites of interest. Cell surface components, which play critical roles in shaping bacterial behaviors, provide an opportunity to chemically modify bacteria and introduce different exogenous functions that are naturally unachievable. With the help of surface modification, a wide range of functionalized bacteria have been prepared over the past years and exhibit great potential in various biomedical applications. In this article, we mainly review the synthesis, functionalization, and biomedical applications of surface-modified bacteria. We first introduce the approaches of chemical modification based on the bacterial surface structure and then highlight several advanced functions achieved by modifying specific components on the surface. We also summarize the advantages as well as limitations of surface chemically modified bacteria in the applications of bioimaging, diagnosis, and therapy and further discuss the current challenges and possible solutions in the future. This work will inspire innovative design thinking for the development of chemical strategies for preparing next-generation biomedical bacterial agents.
Collapse
Affiliation(s)
- Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
13
|
Huang X, Lu C, Zhang W, Liu L, Zha Z, Miao Z. Chiral Sulfur Nanosheets for Dual-Selective Inhibition of Gram-Positive Bacteria. ACS NANO 2023; 17:14893-14903. [PMID: 37466081 DOI: 10.1021/acsnano.3c03458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Elemental sulfur is the oldest known antimicrobial agent. However, conventional sulfur in the clinic suffers from poor aqueous solubility and limited antibacterial activity, greatly hindering its practical use. Herein, we report a reform strategy coupling dimension engineering with chirality transfer to convert conventional 3D sulfur particles into chiral 2D sulfur nanosheets (S-NSs), which exhibit 50-fold improvement of antibacterial capability and dual-selective inhibition against Gram-positive bacteria. Benefiting from the inherent selectivity of S-NSs and chirality selectivity from decorated d-histidine, the obtained chiral S-NSs are proven to precisely kill Gram-positive drug-resistant bacteria, while no obvious bacterial inhibition is observed for Gram-negative bacteria. Mechanism studies reveal that S-NSs produce numerous reactive oxygen specipoes and hydrogen sulfide after incubation with bacteria, thus causing bacterial membrane destruction, respiratory chain damage, and ATP production inhibition. Upon spraying chiral S-NSs dispersions onto MRSA-infected wounds, the skin healing process was greatly accelerated in 8 days due to metabolism inhibition and oxidative damage of bacteria, indicating the excellent treatment efficiency of MRSA-infected wounds. This work converts the traditional well-known sulfur into modern antibacterial agents with a superior Gram-selectivity bactericidal capability.
Collapse
Affiliation(s)
- Xiang Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Chenxin Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Wenjie Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Lulu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
14
|
Roy M, Roy A, Rustagi S, Pandey N. An Overview of Nanomaterial Applications in Pharmacology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4838043. [PMID: 37388336 PMCID: PMC10307208 DOI: 10.1155/2023/4838043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| |
Collapse
|
15
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
16
|
Liauw CM, Vaidya M, Slate AJ, Hickey NA, Ryder S, Martínez-Periñán E, McBain AJ, Banks CE, Whitehead KA. Analysis of Cellular Damage Resulting from Exposure of Bacteria to Graphene Oxide and Hybrids Using Fourier Transform Infrared Spectroscopy. Antibiotics (Basel) 2023; 12:antibiotics12040776. [PMID: 37107138 PMCID: PMC10135141 DOI: 10.3390/antibiotics12040776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
With the increase in antimicrobial resistance, there is an urgent need to find new antimicrobials. Four particulate antimicrobial compounds, graphite (G), graphene oxide (GO), silver-graphene oxide (Ag-GO) and zinc oxide-graphene oxide (ZnO-GO) were tested against Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The antimicrobial effects on the cellular ultrastructure were determined using Fourier transform infrared spectroscopy (FTIR), and selected FTIR spectral metrics correlated with cell damage and death arising from exposure to the GO hybrids. Ag-GO caused the most severe damage to the cellular ultrastructure, whilst GO caused intermediate damage. Graphite exposure caused unexpectedly high levels of damage to E. coli, whereas ZnO-GO exposure led to relatively low levels of damage. The Gram-negative bacteria demonstrated a stronger correlation between FTIR metrics, indicated by the perturbation index and the minimal bactericidal concentration (MBC). The blue shift of the combined ester carbonyl and amide I band was stronger for the Gram-negative varieties. FTIR metrics tended to provide a better assessment of cell damage based on correlation with cellular imaging and indicated that damage to the lipopolysaccharide, peptidoglycan and phospholipid bilayers had occurred. Further investigations into the cell damage caused by the GO-based materials will allow the development of this type of carbon-based multimode antimicrobials.
Collapse
Affiliation(s)
- Christopher M Liauw
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Misha Vaidya
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Anthony J Slate
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Niall A Hickey
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Steven Ryder
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
17
|
Zheng P, Li R, Li F, Wang R, Qian S. Exploration of Biological Properties and Antibacterial Action against
Escherichia coli
and
Staphylococcus aureus
of (LLKK)
3
‐Derived Peptides. ChemistrySelect 2023. [DOI: 10.1002/slct.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Syed RU, Moni SS, Nawaz M, Bin Break MK, Khalifa NE, Abdelwahab SI, Alharbi RM, Alfaisal RH, Al Basher BN, Alhaidan EM. Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria. Pharmaceutics 2023; 15:pharmaceutics15041082. [PMID: 37111568 PMCID: PMC10145306 DOI: 10.3390/pharmaceutics15041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Amikacin sulfate-loaded dextran sulfate sodium nanoparticles were formulated, lyophilized (LADNP), and then analyzed. The LADNP had a −20.9 ± 8.35 mV zeta potential, PDI of 0.256, and % PDI of 67.7. The zeta average nano size of LADNP was 317.9 z. d.nm, while the dimension of an individual particle was 259.3 ± 73.52 nm, and nanoparticle conductivity in colloidal solution was 2.36 mS/cm. LADNP has distinct endothermic peaks at temperatures at 165.77 °C, according to differential scanning calorimetry (DSC). The thermogravimetric analysis (TGA) showed the weight loss of LADNP, which was observed as 95% at 210.78 °C. XRD investigation on LADNP exhibited distinct peaks at 2θ as 9.6°, 10.4°, 11.4°, 18.9°, 20.3°, 24.4°, 28.2°, 33.2°, 38.9°, and 40.4° confirming crystalline structure. The amikacin release kinetics from LADNP revealed zero order kinetics with a linear release showed zero order kinetics with 37% of drug release in 7 h and had an R2 value of 0.99. The antibacterial effect of LADNP showed broad-spectrum activity against tested human pathogenic bacteria. The preset study demonstrated that LADNP is a promising antibacterial agent.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Sivakumar S Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Sudan
| | | | | | | | | | | |
Collapse
|
19
|
Shimoyama Y, Sasaki D, Ohara-Nemoto Y, Nemoto TK, Nakasato M, Sasaki M, Ishikawa T. Immunoelectron Microscopic Analysis of Dipeptidyl-Peptidases and Dipeptide Transporter Involved in Nutrient Acquisition in Porphyromonas gingivalis. Curr Microbiol 2023; 80:106. [PMID: 36797528 DOI: 10.1007/s00284-023-03212-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Porphyromonas gingivalis is an asaccharolytic, Gram-negative, anaerobic bacterium representing a keystone pathogen in chronic periodontitis. The bacterium's energy production depends on the metabolism of amino acids, which are predominantly incorporated as dipeptides via the proton-dependent oligopeptide transporter (Pot). In this study, the localization of dipeptidyl-peptidases (DPPs) and Pot was investigated for the first time in P. gingivalis using immunoelectron microscopy with specific antibodies for the bacterial molecules and gold-conjugated secondary antibodies on ultrathin sections. High-temperature protein G and hemin-binding protein 35 were used as controls, and the cytoplasmic localization of the former and outer membrane localization of the latter were confirmed. P. gingivalis DPP4, DPP5, DPP7, and DPP11, which are considered sufficient for complete dipeptide production, were detected in the periplasmic space. In contrast, DPP3 was localized in the cytoplasmic space in accord with the absence of a signal sequence. The inner membrane localization of Pot was confirmed. Thus, spatial integration of the nutrient acquisition system exists in P. gingivalis, in which where dipeptides are produced in the periplasmic space by DPPs and readily transported across the inner membrane via Pot.
Collapse
Affiliation(s)
- Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Daisuke Sasaki
- Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, 1-3-27 Chuo-Dori, Morioka, Iwate, 020-8505, Japan.
| | - Yuko Ohara-Nemoto
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Takayuki K Nemoto
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Manami Nakasato
- Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, 1-3-27 Chuo-Dori, Morioka, Iwate, 020-8505, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| |
Collapse
|
20
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
21
|
Wang F, Lin YN, Xu Y, Ba YB, Zhang ZH, Zhao L, Lam W, Guan FL, Zhao Y, Xu CH. Mechanisms of acidic electrolyzed water killing bacteria. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Juhas M. The World of Microorganisms. BRIEF LESSONS IN MICROBIOLOGY 2023:1-16. [DOI: 10.1007/978-3-031-29544-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Interrogation of the contribution of (endo)lysin domains to tune their bacteriolytic efficiency provides a novel clue to design superior antibacterials. Int J Biol Macromol 2022; 223:1042-1053. [PMID: 36370862 DOI: 10.1016/j.ijbiomac.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Bacteriophage-derived endolysins and bacterial autolysins (hereinafter lysins) represent a completely new class of efficient antibacterials. They prevent the development of bacterial resistance and help protect commensal microbiota, producing cell wall lysis. Here we have investigated whether the acquisition of enzymatic active domains (EADs) and cell wall binding domains (CWBDs) of balancing efficiencies could be a way of tuning natural lysin activity. The concept was applied to produce a chimeric lysin of superior antibacterial capacity using the endolysin Skl and the major pneumococcal autolysin LytA. Combination of the Skl EAD and the cell wall choline-binding domain (CBD) of LytA in the chimera QSLA increased the bacterial killing by 2 logs or more compared to parental enzymes at an equal concentration and extended the substrate range to resistant and emergent pneumococci and other pathogens of the mitis group. Contrarily, QLAS, containing LytA EAD and Skl CBD, was inactive against all tested strains, although domain structures were preserved and hydrolysis of purified cell walls maintained in both chimeras. As a whole, our study provides a novel clue to design superior lysins to fight multidrug-resistant pathogens based on domain selection, and a powerful in-vivo active lysin (QSLA) with promising therapeutic perspectives.
Collapse
|
24
|
Xie J, Wang L, Zhang X, Li Y, Liao X, Yang C, Tang RY. Discovery of New Anti-MRSA Agents Based on Phenoxyethanol and Its Mechanism. ACS Infect Dis 2022; 8:2291-2306. [PMID: 36255441 DOI: 10.1021/acsinfecdis.2c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a severe threat to public health and safety. The discovery and development of novel anti-MRSA drugs with a new mode of action are a challenge. In this study, a class of novel aryloxyethyl propiolates and their homologues as anti-MRSA agents have been designed and synthesized based on phenoxyethanol, of which compound II-39 showed high inhibitory activity against MRSA with an MIC of 0.78 μg/mL and an MBC of 3.13 μg/mL, which was better than that of vancomycin. Compound II-39 could destroy the cell wall and cell membrane, inhibited the formation of a biofilm, and bound to the DNA of MRSA through the electrostatic and groove interaction. Proteomic and metabolomic studies revealed that compound II-39 affected multiple intracellular metabolic pathways of MRSA. Notably, compound II-39 could effectively inhibit the expression of CrtPQMN proteins and block the biosynthesis of virulence factor (staphyloxanthin). Thus, aryloxyethyl propiolates and their homologues are promising anti-MRSA agents with multiple targets.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Lijuan Wang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Xin Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Caixin Yang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China.,Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
25
|
Chen X, Li Y, Bai K, Gu M, Xu X, Jiang N, Chen Y, Li J, Luo L. Class A Penicillin-Binding Protein C Is Responsible for Stress Response by Regulation of Peptidoglycan Assembly in Clavibacter michiganensis. Microbiol Spectr 2022; 10:e0181622. [PMID: 36040162 PMCID: PMC9603630 DOI: 10.1128/spectrum.01816-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
The cell wall peptidoglycan of bacteria is essential for their survival and shape development. The penicillin-binding proteins (PBPs) are responsible for the terminal stage of peptidoglycan assembly. It has been shown that PBPC, a member of class A high-molecular-weight PBP, played an important role in morphology maintenance and stress response in Clavibacter michiganensis. Here, we reported the stress response strategies under viable but nonculturable (VBNC) state and revealed the regulation of peptidoglycan assembly by PBPC in C. michiganensis cells. Using atomic force microscopy imaging, we found that peptidoglycan of C. michiganensis cells displayed a relatively smooth and dense surface, whereas ΔpbpC was characterized by a "ridge-and-groove" surface, which was more distinctive after Cu2+ treatment. The peptidoglycan layer of wild type cells exhibited a significant increase in thickness and slight increase in cross-linkage following Cu2+ treatment. Compared with wild type, the thickness and cross-linkage of peptidoglycan decreased during log phase in ΔpbpC cells, but the peptidoglycan cross-linkage increased significantly under Cu2+ stress, while the thickness did not change. It is noteworthy that the above changes in the peptidoglycan layer resulted in a significant increase in the accumulation of amylase and exopolysaccharide in ΔpbpC. This study elucidates the role of PBPC in Gram-positive rod-shaped plant pathogenic bacterium in response to environmental stimuli by regulating the assembling of cell wall peptidoglycan, which is significant in understanding the survival of C. michiganensis under stress and the field epidemiology of tomato bacterial canker disease. IMPORTANCE Peptidoglycan of cell walls in bacteria is a cross-linked and meshlike scaffold that provides strength to withstand the external pressure. The increased cross-linkage in peptidoglycan and altered structure in VBNC cells endowed the cell wall more resistant to adversities. Here we systematically evaluated the stress response strategies in Gram-positive rod-shaped bacterium C. michiganensis log phase cells and revealed a significant increase of peptidoglycan thickness and slight increase of cross-linkage after Cu2+ treatment. Most strikingly, knocking-out of PBPC leads to a significant increase in cross-linking of peptidoglycan in response to Cu2+ treatment. Understanding the stress resistance mechanism and survival strategy of phytopathogenic bacteria is the basis of exploring bacterial physiology and disease epidemiology.
Collapse
Affiliation(s)
- Xing Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yao Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Kaihong Bai
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Meng Gu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Xiaoli Xu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Na Jiang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Yu Chen
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jianqiang Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Laixin Luo
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Wang A, Duan S, Hu Y, Ding X, Xu FJ. Fluorination of Polyethylenimines for Augmentation of Antibacterial Potency via Structural Damage and Potential Dissipation of Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44173-44182. [PMID: 36130111 DOI: 10.1021/acsami.2c12692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of drug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus, MRSA) has continued, making the ″super-bugs″ a formidable threat to global health. Herein, we synthesize a series of fluoroalkylated polyethylenimines (PEI-F) with different grafting degrees of fluoroalkyls via a simple ring-opening reaction and demonstrate for the first time that fluoroalkylated PEIs are able to exert potent antibacterial activity to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Among the fluoroalkylated polymers, PEI-F3.0 shows the strongest antibacterial activity, with a minimum inhibitory concentration (MIC) of 64 μg mL-1, against both E. coli and S. aureus. More importantly, we find that PEI-F3.0 is able to kill over 99.8% of S. aureus within 1 min, which is extremely desirable for the treatment of acute and severe bacterial infections that require quick disinfection. We also demonstrate that the fluoroalkylated PEIs are able to kill bacteria via structural damage of the outer membrane (OM) and cytoplasmic membrane (CM), potential dissipation of CM, and generation of intracellular reactive oxygen species (ROS). The in vivo antibacterial test suggests that commercial Vaseline blended with 6.25 wt % of PEI-F3.0 (VL/PEI-F3.0) is able to efficaciously eradicate MRSA infection on a bacterial infected wound model and promote the healing procedure of the wound site. Therefore, the fluoroalkylated PEIs provide a promising strategy to cope with the major challenges of drug-resistant infections.
Collapse
Affiliation(s)
- Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
27
|
Huang S, Fu Y, Mo A. Electrophoretic-deposited MXene titanium coatings in regulating bacteria and cell response for peri-implantitis. Front Chem 2022; 10:991481. [PMID: 36247682 PMCID: PMC9558740 DOI: 10.3389/fchem.2022.991481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Two-dimensional(2D)MXenes have continued to receive increasing interest from researchers due to their graphene-like properties, in addition to their versatile properties for applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, their construction and biological properties as titanium coatings to prevent peri-implantitis are still unclear. Materials and methods: In this work, few-layer Ti3C2Tx MXene coatings with different thicknesses at varied depositing voltages (30, 40, and 50 V) were constructed by anodic electrophoretic deposition without adding any electrolytic ions. In vitro cytocompatibility assay was performed on preosteoblasts (MC3T3-E1) cell lines after the characterization of the coating. Meanwhile, the antibacterial activity against bacteria which are closely related to peri-implantitis including Staphylococcus aureus (S. aureus) and its drug-resistant strain MRSA was further investigated. Results: MXene-coated titanium models with different thicknesses were successfully assembled by analyzing the results of characterization. The compounding of Ti3C2Tx could significantly improve the initial adhesion and proliferation of MC3T3-E1 cells. Moreover, the coating can effectively inhibit the adhesion and cell activity of S. aureus and MRSA, and MRSA expressed greater restricting behavior than S. aureus. The ability to promote antibacterial activity is proportional to the content of Ti3C2Tx. Its antioxidant capacity to reduce ROS in the culture environment and bacterial cells was first revealed. Conclusion: In summary, this work shows a new avenue for MXene-based nano-biomaterials under the clinical problem of multiple antibiotic resistance.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Anchun Mo,
| |
Collapse
|
28
|
Pokhrel R, Shakya R, Baral P, Chapagain P. Molecular Modeling and Simulation of the Peptidoglycan Layer of Gram-Positive Bacteria Staphylococcus aureus. J Chem Inf Model 2022; 62:4955-4962. [PMID: 35981320 DOI: 10.1021/acs.jcim.2c00437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The peptidoglycan (PG) layer is a vital component of the bacterial cell wall that protects the cell from rupturing due to internal pressure. Its ubiquity across the bacterial kingdom but not animals has made it the target of drug discovery efforts. The PG layer composed of cross-linked PG strands is porous enough to allow the diffusion of molecules through the PG mesh and into the cell. The lack of an accurate atomistic model of the PG mesh has limited the computational investigations of drug diffusion in Gram-positive bacteria, which lack the outer membrane but consist of a much thicker PG layer compared to Gram-negative bacteria. In this work, we built an atomistic model of the Staphylococcus aureus PG layer architecture with horizontally aligned PG strands and performed molecular dynamics simulations of the diffusion of curcumin molecules through the PG mesh. An accurate model of the Gram-positive bacterial cell wall may aid in developing novel antibiotics to tackle the threat posed by antibiotic resistance.
Collapse
Affiliation(s)
- Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Rojesh Shakya
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prabin Baral
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
29
|
Gupta R, Yuan J, Lele PP. Bacterial Proprioception: Can a Bacterium Sense Its Movement? Front Microbiol 2022; 13:928408. [PMID: 35875555 PMCID: PMC9302961 DOI: 10.3389/fmicb.2022.928408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution of the bacterial flagellum gave rise to motility and repurposing of a signaling network, now termed the chemotaxis network, enabled biasing of cell movements. This made it possible for the bacterium to seek out favorable chemical environments. To enable chemotaxis, the chemotaxis network sensitively detects extracellular chemical stimuli and appropriately modulates flagellar functions. Additionally, the flagellar motor itself is capable of detecting mechanical stimuli and adapts its structure and function in response, likely triggering a transition from planktonic to surface-associated lifestyles. Recent work has shown a link between the flagellar motor's response to mechanical stimuli and the chemotactic output. Here, we elaborate on this link and discuss how it likely helps the cell sense and adapt to changes in its swimming speeds in different environments. We discuss the mechanism whereby the motor precisely tunes its chemotaxis output under different mechanical loads, analogous to proprioception in higher order organisms. We speculate on the roles bacterial proprioception might play in a variety of phenomena including the transition to surface-associated lifestyles such as swarming and biofilms.
Collapse
Affiliation(s)
- Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
30
|
Shen C, Lin Y, Mohammadi TN, Masuda Y, Honjoh KI, Miyamoto T. Characterization of novel antimicrobial peptides designed on the basis of amino acid sequence of peptides from egg white hydrolysate. Int J Food Microbiol 2022; 378:109802. [PMID: 35752018 DOI: 10.1016/j.ijfoodmicro.2022.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Salmonella enterica subsp. enterica serotype Typhimurium (S. Typhimurium) is one of the most prevalent foodborne pathogens responsible for food poisoning and is spread through the consumption of contaminated poultry products. In this study, four antimicrobial peptides (AMPs) with varying hydrophobicity and helical structure-forming tendencies were designed and synthesized based on the amino acid sequences of peptides from egg white hydrolysate. Two of these AMPs, P1R3 (KSWKKHVVSGFFLR) and P1C (KSWKKHVVSGFFLRLWVHKK), exhibited inhibitory activity against S. Typhimurium and compromised its biofilm-forming ability. Investigation of their modes of action revealed that P1R3 and P1C interact with and permeabilize the cytoplasmic membrane of bacteria, leading to membrane potential dissipation, damage to membrane integrity, and consequent bacterial death. P1R3 also bound to S. Typhimurium DNA, resulting in DNA aggregation or precipitation. Moreover, both peptides showed negligible cytotoxicity to Vero cells, and P1C displayed significant antimicrobial activity in chicken meat. Peptides P1R3 and P1C, therefore, have the potential to be developed as promising food preservatives, especially against pathogenic S. Typhimurium.
Collapse
Affiliation(s)
- Cunkuan Shen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
31
|
Atze H, Liang Y, Hugonnet JE, Gutierrez A, Rusconi F, Arthur M. Heavy isotope labeling and mass spectrometry reveal unexpected remodeling of bacterial cell wall expansion in response to drugs. eLife 2022; 11:72863. [PMID: 35678393 PMCID: PMC9249393 DOI: 10.7554/elife.72863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics of the β-lactam (penicillin) family inactivate target enzymes called D,D-transpeptidases or penicillin-binding proteins (PBPs) that catalyze the last cross-linking step of peptidoglycan synthesis. The resulting net-like macromolecule is the essential component of bacterial cell walls that sustains the osmotic pressure of the cytoplasm. In Escherichia coli, bypass of PBPs by the YcbB L,D-transpeptidase leads to resistance to these drugs. We developed a new method based on heavy isotope labeling and mass spectrometry to elucidate PBP- and YcbB-mediated peptidoglycan polymerization. PBPs and YcbB similarly participated in single-strand insertion of glycan chains into the expanding bacterial side wall. This absence of any transpeptidase-specific signature suggests that the peptidoglycan expansion mode is determined by other components of polymerization complexes. YcbB did mediate β-lactam resistance by insertion of multiple strands that were exclusively cross-linked to existing tripeptide-containing acceptors. We propose that this undocumented mode of polymerization depends upon accumulation of linear glycan chains due to PBP inactivation, formation of tripeptides due to cleavage of existing cross-links by a β-lactam-insensitive endopeptidase, and concerted cross-linking by YcbB.
Collapse
Affiliation(s)
- Heiner Atze
- INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Arnaud Gutierrez
- INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | - Michel Arthur
- INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
32
|
Pseudomonas aeruginosa Alters Peptidoglycan Composition under Nutrient Conditions Resembling Cystic Fibrosis Lung Infections. mSystems 2022; 7:e0015622. [PMID: 35545925 PMCID: PMC9239049 DOI: 10.1128/msystems.00156-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa are highly virulent opportunistic pathogens with increased transmissibility and enhanced antimicrobial resistance. Understanding the cellular mechanisms behind this heightened virulence and resistance is critical. Peptidoglycan (PG) is an integral component of P. aeruginosa cells that is essential to its survival and a target for antimicrobials. Here, we examined the global PG composition of two P. aeruginosa epidemic strains, LESB58 and LESlike1, and compared them to the common laboratory strains PAO1 and PA14. We also examined changes in PG composition when the strains were cultured under nutrient conditions that resembled cystic fibrosis lung infections. We identified 448 unique muropeptides and provide the first evidence for stem peptides modified with O-methylation, meso-diaminopimelic acid (mDAP) deamination, and novel substitutions of mDAP residues within P. aeruginosa PG. Our results also present the first evidence for both d,l- and l,d-endopeptidase activity on the PG sacculus of a Gram-negative organism. The PG composition of the epidemic strains varied significantly when grown under conditions resembling cystic fibrosis (CF) lung infections, showing increases in O-methylated stem peptides and decreases in l,d-endopeptidase activity as well as an increased abundance of de-N-acetylated sugars and l,d-transpeptidase activity, which are related to bacterial virulence and antibiotic resistance, respectively. We also identified strain-specific changes where LESlike1 increased the addition of unique amino acids to the terminus of the stem peptide and LESB58 increased amidase activity. Overall, this study demonstrates that P. aeruginosa PG composition is primarily influenced by nutrient conditions that mimic the CF lung; however, inherent strain-to-strain differences also exist. IMPORTANCE Using peptidoglycomics to examine the global composition of the peptidoglycan (PG) allows insights into the enzymatic activity that functions on this important biopolymer. Changes within the PG structure have implications for numerous physiological processes, including virulence and antimicrobial resistance. The identification of highly unique PG modifications illustrates the complexity of this biopolymer in Pseudomonas aeruginosa. Analyzing the PG composition of clinical P. aeruginosa epidemic strains provides insights into the increased virulence and antimicrobial resistance of these difficult-to-eradicate infections.
Collapse
|
33
|
Xiong Q, Wan ATY, Liu X, Fung CSH, Xiao X, Malainual N, Hou J, Wang L, Wang M, Yang KY, Cui Y, Leung ELH, Nong W, Shin SK, Au SWN, Jeong KY, Chew FT, Hui JHL, Leung TF, Tungtrongchitr A, Zhong N, Liu Z, Tsui SKW. Comparative Genomics Reveals Insights into the Divergent Evolution of Astigmatic Mites and Household Pest Adaptations. Mol Biol Evol 2022; 39:6582989. [PMID: 35535514 PMCID: PMC9113151 DOI: 10.1093/molbev/msac097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1–2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.
Collapse
Affiliation(s)
- Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Angel Tsz-Yau Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoyu Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Cathy Sin-Hang Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiaojun Xiao
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Nat Malainual
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jinpao Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mingqiang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Elaine Lai-Han Leung
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Soo-Kyung Shin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | - Kyoung Yong Jeong
- Institute of Allergy, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Korea
| | - Fook-Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jerome Ho-Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhigang Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
34
|
Choi Y, Park JS, Kim J, Min K, Mahasenan K, Kim C, Yoon HJ, Lim S, Cheon DH, Lee Y, Ryu S, Mobashery S, Kim BM, Lee HH. Structure-based inhibitor design for reshaping bacterial morphology. Commun Biol 2022; 5:395. [PMID: 35484224 PMCID: PMC9050674 DOI: 10.1038/s42003-022-03355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The spiral shape of intestinal pathogen Campylobacter jejuni is critical for invasion of intestinal mucosa epithelial cells. Insofar as this cell morphology plays a role in the pathology of C. jejuni infection, its restructuring by pharmacological intervention could be an unexplored means to prevention of infection. We recently described that peptidoglycan hydrolase 3 (Pgp3) is involved in the spiral-shape formation of C. jejuni. We report herein the design and synthesis of the hydroxamate-based inhibitors targeting Pgp3. C. jejuni cells exposed to these inhibitors changed from the helical- to rod-shaped morphology, comparable to the case of the pgp3-deletion mutant. Evidence for the mechanism of action was provided by crystal structures of Pgp3 in complex with inhibitors, shedding light into the binding modes of inhibitors within the active site, supported by kinetics and molecular-dynamics simulations. C. jejuni exposed to these inhibitors underwent the morphological change from helical- to rod-shaped bacteria, an event that reduce the ability for invasion of the host cells. This proof of concept suggests that alteration of morphology affects the interference with the bacterial infection.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ji Su Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea
| | - Kyungjin Min
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kiran Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sewon Lim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dae Hee Cheon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, United States.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
35
|
Heselpoth RD, Euler CW, Fischetti VA. PaP1, a Broad-Spectrum Lysin-Derived Cationic Peptide to Treat Polymicrobial Skin Infections. Front Microbiol 2022; 13:817228. [PMID: 35369520 PMCID: PMC8965563 DOI: 10.3389/fmicb.2022.817228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Most skin infections, including those complicating burns, are polymicrobial involving multiple causative bacteria. Add to this the fact that many of these organisms may be antibiotic-resistant, and a simple skin lesion or burn could soon become life-threatening. Membrane-acting cationic peptides from Gram-negative bacteriophage lysins can potentially aid in addressing the urgent need for alternative therapeutics. Such peptides natively constitute an amphipathic region within the structural composition of these lysins and function to permit outer membrane permeabilization in Gram-negative bacteria when added externally. This consequently allows the lysin to access and degrade the peptidoglycan substrate, resulting in rapid hypotonic lysis and bacterial death. When separated from the lysin, some of these cationic peptides kill sensitive bacteria more effectively than the native molecule via both outer and cytoplasmic membrane disruption. In this study, we evaluated the antibacterial properties of a modified cationic peptide from the broad-acting lysin PlyPa01. The peptide, termed PaP1, exhibited potent in vitro bactericidal activity toward numerous high priority Gram-positive and Gram-negative pathogens, including all the antibiotic-resistant ESKAPE pathogens. Both planktonic and biofilm-state bacteria were sensitive to the peptide, and results from time-kill assays revealed PaP1 kills bacteria on contact. The peptide was bactericidal over a wide temperature and pH range and could withstand autoclaving without loss of activity. However, high salt concentrations and complex matrices were found to be largely inhibitory, limiting its use to topical applications. Importantly, unlike other membrane-acting antimicrobials, PaP1 lacked cytotoxicity toward human cells. Results from a murine burn wound infection model using methicillin-resistant Staphylococcus aureus or multidrug-resistant Pseudomonas aeruginosa validated the in vivo antibacterial efficacy of PaP1. In these studies, the peptide enhanced the potency of topical antibiotics used clinically for treating chronic wound infections. Despite the necessity for additional preclinical drug development, the collective data from our study support PaP1 as a potential broad-spectrum monotherapy or adjunctive therapy for the topical treatment of polymicrobial infections and provide a foundation for engineering future lysin-derived peptides with improved antibacterial properties.
Collapse
Affiliation(s)
- Ryan D. Heselpoth
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- *Correspondence: Ryan D. Heselpoth,
| | - Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
- Department of Medical Laboratory Sciences, Hunter College, New York, NY, United States
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
36
|
Peng Y, Chen Z, Li Y, Wang Y, Ye C, Xu J, Zhang S. Bacteriostasis and cleaning effect of trace ozone replacing personal care products. ENVIRONMENTAL TECHNOLOGY 2022:1-14. [PMID: 35099355 DOI: 10.1080/09593330.2022.2036818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Ozone is widely used to inactivate bacteria, fungi, and viruses. In recent years, the treatment of itchy skin diseases (eczema and atopic dermatitis) using trace ozone has also received attention. However, the feasibility of using trace ozone to replace personal care products (PCPs) has rarely been analyzed. In this study, the applicability of trace ozone was evaluated in terms of its efficiency for microbial inactivation in three types of skin microbiomes, cleaning performance on simulated human hair and epidermis, safety for simulated human hair, and contribution to emission reduction. The results revealed that at a 10:1 ratio of ozonated water to bacterial suspension, the inactivation ratios of Malassezia, C. albicans, and S. epidermidis reached 99.63%, 83.47%, and 100%, respectively. In addition, the cleaning performance of an ozone solution (0.4 mg/L) for simulated human skin contaminated with carbon black and sebum could reach 95.89% and 95.63%, respectively, with 5 min of washing. The average scores were 0.40 and 0.37 after 5 min and 10 min of ozone treatments, respectively, indicating that trace ozone does not significantly damage simulated human hair. Results also revealed that the total emissions of COD, TP, and TN would be reduced by 1.29×106, 3.55×103, and 3.63×103 mg/ (household · year), respectively, if PCPs are replaced by trace ozone. In short, our findings indicate that trace ozone is a potential alternative to PCPs. By replacing PCPs with trace ozone, the use of synthetic chemical products can be reduced and carbon emissions from oil extraction can be countered.
Collapse
Affiliation(s)
- Yanyan Peng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR People's Republic of China
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| | - Yuantao Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| | - Chengsong Ye
- Xiamen University, Xiamen, PR People's Republic of China
| | - Junming Xu
- Confosin Technology Co. Ltd., Dongguan, PR People's Republic of China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| |
Collapse
|
37
|
PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nat Commun 2022; 13:590. [PMID: 35105886 PMCID: PMC8807736 DOI: 10.1038/s41467-022-28257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
Collapse
|
38
|
Xu S, Wu C, Guo WB, Yang L, Ji R, Pan K, Miao AJ. Polystyrene Nanoplastics Inhibit the Transformation of Tetrabromobisphenol A by the Bacterium Rhodococcus jostii. ACS NANO 2022; 16:405-414. [PMID: 34919385 DOI: 10.1021/acsnano.1c07133] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) in the environment pose significant risks to organisms of different trophic levels. While the toxicity of MPs and NPs have been extensively investigated, it remains unknown whether these particles affect microbial transformation of organic pollutants. Here, we show that 20 and 100 nm polystyrene NPs (PS-NPs) can inhibit the transformation of tetrabromobisphenol A (TBBPA) by Gram-positive bacterium Rhodococcus jostii in a concentration-dependent manner. We found that smaller PS-NPs were more inhibitory than larger ones and that both PS-NPs affected biotransformation in several ways. PS-NPs adsorbed TBBPA on their surface and reduced the bioavailable concentration of TBBPA for transformation by R. jostii. Furthermore, PS-NPs induced oxidative stress, increased membrane permeability, and downregulated O-methyltransferase enzymes that transform TBBPA into their methylated derivatives. Our results demonstrate that PS-NPs can impact microbial transformation of organic pollutants, and these effects should be accounted for in future environmental risk assessments.
Collapse
Affiliation(s)
- Shen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China PRC
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China PRC
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| |
Collapse
|
39
|
Ahanger AM, Kumar S, Arya A, Suryavanshi A, Kain D, Vandana. Synthesis and Encapsulation of Ajuga parviflora Extract with Zeolitic Imidazolate Framework-8 and Their Therapeutic Action against G + and G - Drug-Resistant Bacteria. ACS OMEGA 2022; 7:1671-1681. [PMID: 35071862 PMCID: PMC8772321 DOI: 10.1021/acsomega.1c03984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 10/29/2023]
Abstract
Infectious diseases caused by bacteria have become a public health issue. Antibiotic therapy for infectious disorders, as well as antibiotic overuse, has resulted in antibiotic-resistant bacterial strains. Zeolitic imidazolate framework-8 (ZIF-8) possesses a wide surface area, high porosity, variable functionality, and potential drug carriers. We have established a clear method for making a nanoscale APE@ZIF-8 nanocomposite agent with outstanding antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and cephalosporin-carbapenem-resistant Escherichia coli (CCREC). We present a unique approach for encapsulating molecules ofAjuga parviflora extract (APE) with ZIF-8. APE@ZIF-8 has a positive charge. By electrostatic contact with the negatively charged bacterial surface of S. aureus and E. coli, APE@ZIF-8 NPs produce reactive oxygen species (ROS) that damage bacterial cell organelles. As a result, the APE@ZIF-8 nanocomposite offers limitless application potential in the treatment of infectious disorders caused by drug-resistant gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Ab Majeed Ahanger
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Suresh Kumar
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Atul Arya
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Amrita Suryavanshi
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Dolly Kain
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Vandana
- Medicinal
Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, New Delhi 110007, India
- Department
of Chemistry, Dyal Singh College, University
of Delhi, New Delhi 110003, India
| |
Collapse
|
40
|
Hydrophilic nanoparticles that kill bacteria while sparing mammalian cells reveal the antibiotic role of nanostructures. Nat Commun 2022; 13:197. [PMID: 35017467 PMCID: PMC8752835 DOI: 10.1038/s41467-021-27193-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
To dissect the antibiotic role of nanostructures from chemical moieties belligerent to both bacterial and mammalian cells, here we show the antimicrobial activity and cytotoxicity of nanoparticle-pinched polymer brushes (NPPBs) consisting of chemically inert silica nanospheres of systematically varied diameters covalently grafted with hydrophilic polymer brushes that are non-toxic and non-bactericidal. Assembly of the hydrophilic polymers into nanostructured NPPBs doesn't alter their amicability with mammalian cells, but it incurs a transformation of their antimicrobial potential against bacteria, including clinical multidrug-resistant strains, that depends critically on the nanoparticle sizes. The acquired antimicrobial potency intensifies with small nanoparticles but subsides quickly with large ones. We identify a threshold size (dsilica ~ 50 nm) only beneath which NPPBs remodel bacteria-mimicking membrane into 2D columnar phase, the epitome of membrane pore formation. This study illuminates nanoengineering as a viable approach to develop nanoantibiotics that kill bacteria upon contact yet remain nontoxic when engulfed by mammalian cells.
Collapse
|
41
|
Yan W, Xu H, Lu D, Zhou Y. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions. BIORESOURCE TECHNOLOGY 2022; 344:126248. [PMID: 34743996 DOI: 10.1016/j.biortech.2021.126248] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Thermal hydrolysis pretreatment (THP), as a step prior to sludge anaerobic digestion (AD), is widely applied due to its effectiveness in enhancing organic solids hydrolysis and subsequent biogas productivity. However, THP also induces a series of problems including formation of refractory compounds in THP cylinder, high residual ammonia and organic in the AD centrate, inhibition on downstream nitrogen removal process and reduction in UV-disinfection effectiveness during post-treatment. More attention should be paid on how to mitigate these negative effects. Despite intensive studies were carried out to reduce refractory compounds formation and enhance biological performance, there is limited effort to discuss the solutions to tackle the THP associated problems in a holistic manner. This paper summarizes the solutions developed to date and analyzes their technology readiness to assess application potential in full-scale settings. The content highlights the limitations of THP and proposes potential solutions to address the technological challenges.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
42
|
Quantification and surface localization of the hemolysin A type 1 secretion system at the endogenous level and under conditions of overexpression. Appl Environ Microbiol 2021; 88:e0189621. [PMID: 34851699 DOI: 10.1128/aem.01896-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion systems are essential for Gram-negative bacteria as these nanomachineries allow a communication with the outside world by exporting proteins into the extracellular space or directly into the cytosol of a host cell. For example, type one secretion systems (T1SS) secrete a broad range of substrates across both membranes into the extracellular space. One well-known example is the hemolysin A (HlyA) T1SS from Escherichia coli (E. coli), which consists of an ABC transporter (HlyB), a membrane fusion protein (HlyD), the outer membrane protein TolC and the substrate HlyA, a member of the family of RTX (repeats in toxins) toxins. Here, we determined the amount of TolC at the endogenous level (parental strain, UTI89) and under conditions of overexpression (T7 expression system, BL21(DE3)-BD). The overall amount of TolC was not influenced by the overexpression of the HlyBD complex. Moving one step further, we determined the localization of the HlyA T1SS by super-resolution microscopy. In contrast to other bacterial secretion systems, no polarization was observed with respect to endogenous or overexpression levels. Additionally, the cell growth and division cycle did not influence the polarization. Most importantly, the size of the observed T1SS clusters did not correlate with the recently proposed outer membrane islands. These data indicate that T1SS cluster at the outer membrane generating domains of so far not described identity. Importance Uropathogenic Escherichia coli (UPEC) strains cause about 110 million urinary tract infections each year worldwide representing a global burden to the healthcare system. UPEC secrete many virulence factors among these the TX toxin hemolysin A via a cognate T1SS into the extracellular space. In this study, we determined the endogenous copy number of the HlyA T1SS in UTI89 and analyzed the surface localization in BL21(DE3)-BD and UTI89, respectively. With approximately 800 copies of the T1SS in UTI89, this is one of the highest expressed bacterial secretion systems. Furthermore and in clear contrast to other secretion systems, no polarized surface localization was detected. Finally, quantitative analysis of the super-resolution data revealed that clusters of the HlyA T1SS are not related to the recently identified outer membrane protein islands. These data provide insights into the quantitative molecular architecture of the HlyA T1SS.
Collapse
|
43
|
Zhao L, Wei J, Pan X, Jie Y, Zhu B, Zhao H, Zhang B. Critical analysis of peptidoglycan structure of Lactobacillus acidophilus for phthalate removal. CHEMOSPHERE 2021; 282:130982. [PMID: 34111639 DOI: 10.1016/j.chemosphere.2021.130982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/05/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Our previous studies have shown that lactic acid bacteria (LABs) can bind and remove di-n-butyl phthalate (DBP), diethyl phthalate, and dioctyl phthalate; three ubiquitous environmental phthalate contaminants. In this study, Lactobacillus acidophilus NCFM was chosen to study the DBP binding mechanism. We found that the three-dimensional structure of the bacterial cell wall, including the carbohydrates and proteins, was essential for DBP adsorption. Peptidoglycan was the main binding component in the cell wall (80.71%), and binding sites exposed to DBP were C-N, N-H, O-H, and C-O bonds. Molecular dynamic (MD) studies demonstrated that hydrophobic interaction plays an important role in DBP adsorption, the chemical sites that influenced the binding in the peptidoglycan model were O2, O3>N1, N2, N3>O1, O4, and the form of adsorption force included hydrogen bonding force, electrostatic force, and van der Waals forces. These theoretical data from the MD simulation were consistent with the experimental results in terms of the ability of this bacterium to bind DBP, so the MD simulation proposed a new way to investigate the mechanisms of phthalate binding to LABs.
Collapse
Affiliation(s)
- Lili Zhao
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China; College of Life Sciences, Henan Normal University, 453007 Xinxiang, China
| | - Junyan Wei
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Xin Pan
- College of Life Sciences, Henan Normal University, 453007 Xinxiang, China
| | - Yu Jie
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Baoqing Zhu
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Hongfei Zhao
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China
| | - Bolin Zhang
- School of Biological Science & Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| |
Collapse
|
44
|
Luo X, Xu X, Cao R, Wan Q, Wang J, Xu H, Lin Y, Wen G, Huang T. The formation kinetics and control of biofilms by three dominant fungi species isolated from groundwater. J Environ Sci (China) 2021; 109:148-160. [PMID: 34607663 DOI: 10.1016/j.jes.2021.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Filamentous fungi can enter drinking water supply systems in various ways, and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections. In this study, the biofilms formation kinetics of the three genera of fungal spores, Aspergillus niger (A. niger), Penicillium polonicum (P. polonicum) and Trichoderma harzianum (T. harzianum) isolated from the groundwater were reported, as well as the effects of water quality parameters were evaluated. In addition, the efficiency of low- concentrations of chlorine-based disinfectants (chlorine, chlorine dioxide and chloramine) on controlling the formation of fungal biofilms was assessed. The results showed that the biofilms formation of the three genera of fungi could be divided into the following four phases: induction, exponential, stationary and sloughing off. The optimum conditions for fungal biofilms formation were found to be neutral or weakly acidic at 28 °C with rich nutrition. In fact, A. niger, P. polonicum, and T. harzianum were not observed to form mature biofilms in actual groundwater within 120 hr. Carbon was found to have the maximum effect on the fungal biofilms formation in actual groundwater, followed by nitrogen and phosphorus. The resistance of fungal species to disinfectants during the formation of biofilms decreased in the order: A. niger > T. harzianum > P. polonicum. Chlorine dioxide was observed to control the biofilms formation with maximum efficiency, followed by chlorine and chloramine. Consequently, the results of this study will provide a beneficial understanding for the formation and control of fungal biofilms.
Collapse
Affiliation(s)
- Xinyu Luo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
45
|
Jimenez E, Hamdan-Partida A, Padilla-Godinez FJ, Arellano-Lara D, Gomez-Lopez E, Lopez-Goerne TM. Spectroscopic Analysis and Microbicidal Effect of Ag/TiO2-SiO2 Bionanocatalysts. IEEE Trans Nanobioscience 2021; 21:246-255. [PMID: 34694999 DOI: 10.1109/tnb.2021.3122084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Silver, especially nanostructured silver, has been found to exhibit antimicrobial properties by disrupting the function of bacterial cell walls. Nonetheless, strains of bacteria have been reported to resist silver nanoparticles. The highly efficient mutational mechanisms of bacteria, capable of overcoming modern antimicrobial compounds, make it critical to develop new materials that target genetic material, regardless of nucleotide sequence or protein structure, without being toxic to the patient. This work evaluates the microbicidal properties of a catalytic, nanostructured, organically functionalized, titanosilicate matrix (bionanocatalysts) impregnated with silver. The bionanocatalysts were synthesized by the sol-gel method using silver acetate as the silver precursor. The effect of the bionanocatalysts against clinically important strains of bacteria and yeasts was evaluated. In addition, the physicochemical composition and in vitro reactivity on DNA were studied. The antibiogram analysis revealed that the compound could inhibit the growth (inhibition halos of up to 15 ± 0.9 mm) of all the strains studied (bacteria and yeasts) at low concentrations of silver, thus reducing the toxicity associated with platinum. In this work, by adding silver in the catalytic TiO2-SiO2 matrix, the intrinsic microbicidal properties of the metal were enhanced: the results provided a valuable compound exhibiting reduced toxicity and antimicrobial effects that could potentially be used as a potent disinfectant against drug-resistant strains, as found in hospitals, for instance.
Collapse
|
46
|
Sekiya H, Kamitori S, Nariya H, Matsunami R, Tamai E. Structural and biochemical characterization of the Clostridium perfringens-specific Zn 2+-dependent amidase endolysin, Psa, catalytic domain. Biochem Biophys Res Commun 2021; 576:66-72. [PMID: 34482025 DOI: 10.1016/j.bbrc.2021.08.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Phage-derived endolysins, enzymes that degrade peptidoglycans, have the potential to serve as alternative antimicrobial agents. Psa, which was identified as an endolysin encoded in the genome of Clostridium perfringens st13, was shown to specifically lyse C. perfringens. Psa has an N-terminal catalytic domain that is homologous to the Amidase_2 domain (PF01510), and a novel C-terminal cell wall-binding domain. Here, we determined the X-ray structure of the Psa catalytic domain (Psa-CD) at 1.65 Å resolution. Psa-CD has a typical Amidase_2 domain structure, consisting of a spherical structure with a central β-sheet surrounded by two α-helix groups. Furthermore, there is a Zn2+ at the center of Psa-CD catalytic reaction site, as well as a unique T-shaped substrate-binding groove consisting of two grooves on the molecule surface. We performed modeling study of the enzyme/substrate complex along with a mutational analysis, and demonstrated that the structure of the substrate-binding groove is closely related to the amidase activity. Furthermore, we proposed a Zn2+-mediated catalytic reaction mechanism for the Amidase_2 family, in which tyrosine constitutes part of the catalytic reaction site.
Collapse
Affiliation(s)
- Hiroshi Sekiya
- Department of Infectious Disease, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology, Graduate School of Human Life Sciences Food and Nutritional Sciences, Jumonji University, 2-1-28, Kansawa, Niiza, Saitama, 352-8510, Japan
| | - Risa Matsunami
- Department of Infectious Disease, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Eiji Tamai
- Department of Infectious Disease, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan; Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
47
|
Polybetaines in Biomedical Applications. Int J Mol Sci 2021; 22:ijms22179321. [PMID: 34502230 PMCID: PMC8430529 DOI: 10.3390/ijms22179321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Polybetaines, that have moieties bearing both cationic (quaternary ammonium group) and anionic groups (carboxylate, sulfonate, phosphate/phosphinate/phosphonate groups) situated in the same structural unit represent an important class of smart polymers with unique and specific properties, belonging to the family of zwitterionic materials. According to the anionic groups, polybetaines can be divided into three major classes: poly(carboxybetaines), poly(sulfobetaines) and poly(phosphobetaines). The structural diversity of polybetaines and their special properties such as, antifouling, antimicrobial, strong hydration properties and good biocompatibility lead to their use in nanotechnology, biological and medical fields, water remediation, hydrometallurgy and the oil industry. In this review we aimed to highlight the recent developments achieved in the field of biomedical applications of polybetaines such as: antifouling, antimicrobial and implant coatings, wound healing and drug delivery systems.
Collapse
|
48
|
Li T, Lu Y, Zhang H, Wang L, Beier RC, Jin Y, Wang W, Li H, Hou X. Antibacterial Activity and Membrane-Targeting Mechanism of Aloe-Emodin Against Staphylococcus epidermidis. Front Microbiol 2021; 12:621866. [PMID: 34484130 PMCID: PMC8415635 DOI: 10.3389/fmicb.2021.621866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant Staphylococcus epidermidis (S. epidermidis) dwarfs the current antibiotic development and calls for the discovery of new antibacterial agents. Aloe-emodin is a plant-derived compound that holds promise to battle against these strains. This work reports the antimicrobial activity of aloe-emodin against S. epidermidis and other Gram-positive pathogenic species, manifesting minimum inhibitory concentrations (MICs) and minimum bactericidal concentration (MBCs) around 4-32 and 32-128 μg/mL, respectively. For Gram-negative bacteria tested, the MICs and MBCs of aloe-emodin were 128-256 and above 1024 μg/mL, respectively. Aloe-emodin at the MBC for 4 h eradicated 96.9% of S. epidermidis cells. Aloe-emodin treatment led to deformities in the morphology of S. epidermidis cells and the destroy of the selective permeability of the cell membranes. Analysis of the transcriptional profiles of aloe-emodin-treated cells revealed changes of genes involved in sulfur metabolism, L-lysine and peptidoglycan biosynthesis, and biofilm formation. Aloe-emodin therefore can safely control Gram-positive bacterial infections and proves to target the bacterial outer membrane.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Yan Lu
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Lei Wang
- Beijing Huafukang Bioscience Co., Ltd., Beijing, China
| | - Ross C. Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Yajie Jin
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Wenjing Wang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Huanrong Li
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
49
|
Modulation of the enzymatic activity of the flagellar lytic transglycosylase SltF by rod components, and the scaffolding protein FlgJ in Rhodobacter sphaeroides. J Bacteriol 2021; 203:e0037221. [PMID: 34309398 DOI: 10.1128/jb.00372-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macromolecular cell-envelope-spanning structures such as the bacterial flagellum must traverse the cell wall. Lytic transglycosylases enzymes are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. In the periplasmic space, the assembly of the flagellar rod requires the scaffold protein FlgJ, which includes a muramidase domain in the canonical models Salmonella enterica and Escherichia coli. In contrast, in Rhodobacter sphaeroides, FlgJ and the dedicated flagellar lytic transglycosylase SltF are separate entities that interact in the periplasm. In this study we show that sltF is expressed along with the genes encoding the early components of the flagellar hierarchy that include the hook-basal body proteins, making SltF available during the rod assembly. Protein-protein interaction experiments demonstrated that SltF interacts with the rod proteins FliE, FlgB, FlgC, FlgF and FlgG through its C-terminal region. A deletion analysis that divides the C-terminus in two halves revealed that the interacting regions for most of the rod proteins are not redundant. Our results also show that the presence of the rod proteins FliE, FlgB, FlgC, and FlgF displace the previously reported SltF-FlgJ interaction. In addition, we observed modulation of the transglycosylase activity of SltF mediated by FlgB and FlgJ that could be relevant to coordinate rod assembly with cell wall remodeling. In summary, different mechanisms regulate the flagellar lytic transglycosylase, SltF ensuring a timely transcription, a proper localization and a controlled enzymatic activity. Importance Several mechanisms participate in the assembly of cell-envelope-spanning macromolecular structures. The sequential expression of substrates to be exported, selective export, and a specific order of incorporation are some of the mechanisms that stand out to drive an efficient assembly process. In this work we analyze how the structural rod proteins, the scaffold protein FlgJ and the flagellar lytic enzyme SltF, interact in an orderly fashion to assemble the flagellar rod into the periplasmic space. A complex arrangement of transient interactions directs a dedicated flagellar muramidase towards the flagellar rod. All these interactions bring this protein to the proximity of the peptidoglycan wall while also modulating its enzymatic activity. This study suggests how a dynamic network of interactions participates in controlling SltF, a prominent component for flagellar formation.
Collapse
|
50
|
Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth. Int J Mol Sci 2021; 22:ijms22115690. [PMID: 34073633 PMCID: PMC8199566 DOI: 10.3390/ijms22115690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species. As expected, the putative cell wall binding domain, CWH1—350, was completely inactive. We also observe the effect of CWH351—656 on preventing C. difficile spore outgrowth. Our results suggest that CWH351—656 has therapeutic potential as an antimicrobial agent against C. difficile infection.
Collapse
|