1
|
Silva JRDA, de Oliveira AA, França LP, da Cruz JD, Amaral ACF. Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora. Molecules 2024; 29:2240. [PMID: 38792102 PMCID: PMC11124082 DOI: 10.3390/molecules29102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the chemical composition of the essential oil obtained from the leaves of Bocageopsis multiflora (Mart.) R.E.Fr (Annonaceae), examining its effectiveness in combating both the larvae and adult forms of Aedes aegypti mosquitoes. Additionally, for a deeper understanding of the insecticidal activity, toxicity properties and molecular docking calculations were conducted using the main compounds of this essential oil. GC/MS analysis revealed the presence of 26 constituents, representing 95.2% of the essential oil, with the major components identified as the sesquiterpenes α-selinene, β-selinene, and β-elemene. Larvicidal assays demonstrated potent activity of this essential oil with significant LC50 values of 40.8 and 39.4 μg/mL at 24 and 48 h, respectively. Adulticidal assessments highlighted strong efficacy with LC50 of 12.5 µg/mL. Molecular docking analysis identified optimal interaction activities of α-selinene and β-selinene with key Aedes proteins. The in silico studies comparing synthetic insecticides with the major sesquiterpenes of the essential oil revealed that β-selinene exhibited a significantly higher binding affinity compared to the other two sesquiterpenes. Also, ADMET studies of the three main sesquiterpenes indicated acceptable drug-like properties. In these findings, safety evaluations showed low toxicity and skin sensitization for the main sesquiterpenes, contrasting with commercial synthetic insecticides. Therefore, in silico analyses suggest promising interactions with Aedes proteins, indicating its potential as an effective alternative to conventional insecticides These results show the larvicidal and adulticidal potential of the essential oil from Bocageopsis multiflora against Aedes aegypti, supported by its predominant constituents, α-selinene, β-selinene and β-elemene.
Collapse
Affiliation(s)
- Jefferson Rocha de Andrade Silva
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Aimêe Almeida de Oliveira
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Leandro Pereira França
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Jefferson Diocesano da Cruz
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| | - Ana Claudia Fernandes Amaral
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| |
Collapse
|
2
|
Maciel L, Ferraz MVF, Oliveira AA, Lins RD, dos Anjos J, Guido RVC, Soares TA. Inhibition of 3-Hydroxykynurenine Transaminase from Aedes aegypti and Anopheles gambiae: A Mosquito-Specific Target to Combat the Transmission of Arboviruses. ACS BIO & MED CHEM AU 2023; 3:211-222. [PMID: 37101811 PMCID: PMC10125267 DOI: 10.1021/acsbiomedchemau.2c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 04/28/2023]
Abstract
Arboviral infections such as Zika, chikungunya, dengue, and yellow fever pose significant health problems globally. The population at risk is expanding with the geographical distribution of the main transmission vector of these viruses, the Aedes aegypti mosquito. The global spreading of this mosquito is driven by human migration, urbanization, climate change, and the ecological plasticity of the species. Currently, there are no specific treatments for Aedes-borne infections. One strategy to combat different mosquito-borne arboviruses is to design molecules that can specifically inhibit a critical host protein. We obtained the crystal structure of 3-hydroxykynurenine transaminase (AeHKT) from A. aegypti, an essential detoxification enzyme of the tryptophan metabolism pathway. Since AeHKT is found exclusively in mosquitoes, it provides the ideal molecular target for the development of inhibitors. Therefore, we determined and compared the free binding energy of the inhibitors 4-(2-aminophenyl)-4-oxobutyric acid (4OB) and sodium 4-(3-phenyl-1,2,4-oxadiazol-5-yl)butanoate (OXA) to AeHKT and AgHKT from Anopheles gambiae, the only crystal structure of this enzyme previously known. The cocrystallized inhibitor 4OB binds to AgHKT with K i of 300 μM. We showed that OXA binds to both AeHKT and AgHKT enzymes with binding energies 2-fold more favorable than the crystallographic inhibitor 4OB and displayed a 2-fold greater residence time τ upon binding to AeHKT than 4OB. These findings indicate that the 1,2,4-oxadiazole derivatives are inhibitors of the HKT enzyme not only from A. aegypti but also from A. gambiae.
Collapse
Affiliation(s)
- Larissa
G. Maciel
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, 50740-560 Recife, Brazil
| | - Matheus V. F. Ferraz
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, 50740-560 Recife, Brazil
- Aggeu
Magalhães Institute, Oswaldo Cruz
Foundation, 50740-465 Recife, Brazil
| | - Andrew A. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo, 13563-120 São Carlos, Brazil
| | - Roberto D. Lins
- Aggeu
Magalhães Institute, Oswaldo Cruz
Foundation, 50740-465 Recife, Brazil
| | - Janaína
V. dos Anjos
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, 50740-560 Recife, Brazil
| | - Rafael V. C. Guido
- São
Carlos Institute of Physics, University
of São Paulo, 13563-120 São Carlos, Brazil
| | - Thereza A. Soares
- Department
of Chemistry, University of São Paulo, 055508-090 Ribeirão
Preto, Brazil
- Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, 0315 Oslo, Norway
| |
Collapse
|
3
|
Chen H, Bhowmick B, Tang Y, Lozano-Fernandez J, Han Q. Biochemical Evolution of a Potent Target of Mosquito Larvicide, 3-Hydroxykynurenine Transaminase. Molecules 2022; 27:molecules27154929. [PMID: 35956879 PMCID: PMC9369995 DOI: 10.3390/molecules27154929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
A specific mosquito enzyme, 3-hydroxykynurenine transaminase (HKT), is involved in the processing of toxic metabolic intermediates of the tryptophan metabolic pathway. The HKT enzymatic product, xanthurenic acid, is required for Plasmodium spp. development in the mosquito vectors. Therefore, an inhibitor of HKT may not only be a mosquitocide but also a malaria-transmission blocker. In this work, we present a study investigating the evolution of HKT, which is a lineage-specific duplication of an alanine glyoxylate aminotransferases (AGT) in mosquitoes. Synteny analyses, together with the phylogenetic history of the AGT family, suggests that HKT and the mosquito AGTs are paralogous that were formed via a duplication event in their common ancestor. Furthermore, 41 amino acid sites with significant evidence of positive selection were identified, which could be responsible for biochemical and functional evolution and the stability of conformational stabilization. To get a deeper understanding of the evolution of ligands’ capacity and the ligand-binding mechanism of HKT, the sequence and the 3D homology model of the common ancestor of HKT and AGT in mosquitoes, ancestral mosquito AGT (AncMosqAGT), were inferred and built. The homology model along with 3-hydroxykynurenine, kynurenine, and alanine were used in docking experiments to predict the binding capacity and ligand-binding mode of the new substrates related to toxic metabolites detoxification. Our study provides evidence for the dramatic biochemical evolution of the key detoxifying enzyme and provides potential sites that could hinder the detoxification function, which may be used in mosquito larvicide and design.
Collapse
Affiliation(s)
- Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Biswajit Bhowmick
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
| | - Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain;
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China; (H.C.); (B.B.); (Y.T.)
- One Health Institute, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
4
|
Esposito Verza A, Miggiano R, Lombardo F, Fiorillo C, Arcà B, Purghé B, Del Grosso E, Galli U, Rizzi M, Rossi F. Biochemical and structural analysis of a cytosolic sulfotransferase of the malaria vector Anopheles gambiae overexpressed in the reproductive tissues. Curr Res Struct Biol 2022; 4:246-255. [PMID: 35941867 PMCID: PMC9356239 DOI: 10.1016/j.crstbi.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
The temporary or permanent chemical modification of biomolecules is a crucial aspect in the physiology of all living species. However, while some modules are well characterised also in insects, others did not receive the same attention. This holds true for sulfo-conjugation that is catalysed by cytosolic sulfotransferases (SULT), a central component of the metabolism of endogenous low molecular weight molecules and xenobiotics. In particular, limited information is available about the functional roles of the mosquito predicted enzymes annotated as SULTs in genomic databases. The herein described research is the first example of a biochemical and structural study of a SULT of a mosquito species, in general, and of the malaria vector Anopheles gambiae in particular. We confirmed that the AGAP001425 transcript displays a peculiar expression pattern that is suggestive of a possible involvement in modulating the mosquito reproductive tissues physiology, a fact that could raise attention on the enzyme as a potential target for insect-containment strategies. The crystal structures of the enzyme in alternative ligand-bound states revealed elements distinguishing AgSULT-001425 from other characterized SULTs, including a peculiar conformational plasticity of a discrete region that shields the catalytic cleft and that could play a main role in the dynamics of the reaction and in the substrate selectivity of the enzyme. Along with further in vitro biochemical studies, our structural investigations could provide a framework for the discovery of small-molecule inhibitors to assess the effect of interfering with AgSULT-001425-mediated catalysis at the organismal level. Mosquito cytosolic sulfotransferases (SULT) are poorly characterized. A SULT-encoding gene is highly transcribed in Anopheles male reproductive system. The corresponding enzyme is a genuine SULT acting on small phenolic molecules. We solved the AgSULT crystal structure in its substrate-free and ligand-bound states. The peculiar features of AgSULT could drive the design of isozyme-specific inhibitors.
Collapse
Affiliation(s)
- Arianna Esposito Verza
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Riccardo Miggiano
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Fabrizio Lombardo
- Sapienza University of Rome, Department of Public Health and Infectious Diseases – Division of Parasitology, Piazzale Aldo Moro, 5, Rome, Italy
| | - Carmine Fiorillo
- Sapienza University of Rome, Department of Public Health and Infectious Diseases – Division of Parasitology, Piazzale Aldo Moro, 5, Rome, Italy
| | - Bruno Arcà
- Sapienza University of Rome, Department of Public Health and Infectious Diseases – Division of Parasitology, Piazzale Aldo Moro, 5, Rome, Italy
| | - Beatrice Purghé
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Erika Del Grosso
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Ubaldina Galli
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Menico Rizzi
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
| | - Franca Rossi
- University of Piemonte Orientale, DSF Department of Pharmaceutical Sciences, Largo Donegani, 2, Novara, Italy
- Corresponding author. University of Piemonte Orientale DSF - Department of Pharmaceutical Sciences, Largo Donegani, 2 - 28100, Novara, Italy.
| |
Collapse
|
5
|
Maciel LG, Barbosa ADS, de Alencar-Filho EB, Soares TA, Dos Anjos JV. A second generation of 1,2,4-oxadiazole derivatives with enhanced solubility for inhibition of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. RSC Med Chem 2021; 12:222-236. [PMID: 34046611 PMCID: PMC8127416 DOI: 10.1039/d0md00305k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
The most widely used method for the control of the Aedes aegypti mosquito population is the chemical control method. It represents a time- and cost-effective way to curb several diseases (e.g. dengue, Zika, chikungunya, yellow fever) through vector control. For this reason, the discovery of new compounds with a distinct mode of action from the available ones is essential in order to minimize the rise of insecticide resistance. Detoxification enzymes are an attractive target for the discovery of new insecticides. The kynurenine pathway is an important metabolic pathway, and it leads to the chemically stable xanthurenic acid, biosynthesized from 3-hydroxykynurenine, a precursor of reactive oxygen and nitrogen species, by the enzyme 3-hydroxykynurenine transaminase (HKT). Previously, we have reported the effectiveness of 1,2,4-oxadiazole derivatives acting as larvicides for A. aegypti and AeHKT inhibitors from in vitro and in silico studies. Here, we report the synthesis of new sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] propanoates and the cognate HKT-inhibitory activity. These new derivatives act as competitive inhibitors with IC50 values in the range of 42 to 339 μM. We further performed molecular docking simulations and QSAR analysis for the previously synthesized sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] butanoates reported earlier by our group and the data produced herein. Most of the 1,2,4-oxadiazole derivatives, including the canonical compounds for both series, showed a similar binding mode with HKT. The binding occurs similarly to the co-crystallized inhibitor via anchoring to Arg356 and positioning of the aromatic ring and its substituents outwards at the entry of the active site. QSAR analysis was performed in search of more than 770 molecular descriptors to establish a relationship between the lowest energy conformations and the IC50 values. The five best descriptors were selected to create and validate the model, which exhibited parameters that attested to its robustness and predictability. In summary, we observed that compounds with a para substitution and heavier groups (i.e. CF3 and NO2 substituents) had an enhanced HKT-inhibition profile. These compounds comprise a series described as AeHKT inhibitors via enzymatic inhibition experiments, opening the way to further the development of new substances with higher potency against HKT from Aedes aegypti.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Andrey da S Barbosa
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | | | - Thereza A Soares
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Janaína V Dos Anjos
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| |
Collapse
|
6
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Maciel LG, Oliveira AA, Romão TP, Leal LLL, Guido RVC, Silva-Filha MHNL, Dos Anjos JV, Soares TA. Discovery of 1,2,4-oxadiazole derivatives as a novel class of noncompetitive inhibitors of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. Bioorg Med Chem 2019; 28:115252. [PMID: 31864777 DOI: 10.1016/j.bmc.2019.115252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
The mosquito Aedes aegypti is the vector of arboviruses such as Zika, Chikungunya, dengue and yellow fever. These infectious diseases have a major impact on public health. The unavailability of effective vaccines or drugs to prevent or treat most of these diseases makes vector control the main form of prevention. One strategy to promote mosquito population control is the use of synthetic insecticides to inhibit key enzymes in the metabolic pathway of these insects, particularly during larval stages. One of the main targets of the kynurenine detoxification pathway in mosquitoes is the enzyme 3-hydroxykynurenine transaminase (HKT), which catalyzes the conversion of 3-hydroxykynurenine (3-HK) into xanthurenic acid (XA). In this work, we report eleven newly synthesized oxadiazole derivatives and demonstrate that these compounds are potent noncompetitive inhibitors of HKT from Ae. aegypti. The present data provide direct evidence that HKT can be explored as a molecular target for the discovery of novel larvicides against Ae. aegypti. More importantly, it ensures that structural information derived from the HKT 3D-structure can be used to guide the development of more potent inhibitors.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Andrew A Oliveira
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | - Tatiany P Romão
- Institute Aggeu Magalhães (IAM) - FIOCRUZ, Av. Professor Moraes Rego s/n°, Recife, PE 50740-560 Brazil
| | - Laylla L L Leal
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | | | - Janaína V Dos Anjos
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| | - Thereza A Soares
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| |
Collapse
|
8
|
Costa ÂCF, Cavalcanti SCH, Santana AS, Lima APS, Brito TB, Oliveira RRB, Macêdo NA, Cristaldo PF, Araújo APA, Bacci L. Insecticidal activity of indole derivatives against Plutella xylostella and selectivity to four non-target organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:973-982. [PMID: 31420785 DOI: 10.1007/s10646-019-02095-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The diamondback moth Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) is a destructive pest of brassica crops of economic importance that have resistance to a range of insecticides. Indole derivates can exert diverse biological activities, and different effects may be obtained from small differences in their molecular structures. Indole is the parent substance of a large number of synthetic and natural compounds, such as plant and animal hormones. In the present study, we evaluate the insecticidal activity of 20 new synthesized indole derivatives against P. xylostella, and the selectivity of these derivatives against non-target hymenopteran beneficial arthropods: the pollinator Apis mellifera (Linnaeus, 1758) (Hymenoptera: Apidae), and the predators Polybia scutellaris (White, 1841), Polybia sericea (Olivier, 1791) and Polybia rejecta (Fabricius, 1798) (Hymenoptera: Vespidae). Bioassays were performed in the laboratory to determine the lethal and sublethal effects of the compounds on P. xylostella and to examine their selectivity to non-target organisms by topical application and foliar contact. The treatments consisted of two synthesized derivatives (most and least toxic), the positive control (deltamethrin) and the negative control (solvent). The synthesized compound 4e [1-(1H-indol-3-yl)hexan-1-one] showed high toxicity (via topical application and ingestion) and decreased the leaf consumption by P. xylostella, displaying a higher efficiency than the pyrethroid deltamethrin, widely used to control this pest. In addition, the synthesized indole derivatives were selective to the pollinator A. mellifera and the predators P. scutellaris, P. sericea and P. rejecta, none of which were affected by deltamethrin. Our results highlight the promising potential of the synthesized indole derivatives for the generation of new chemical compounds for P. xylostella management.
Collapse
Affiliation(s)
- Ângela C F Costa
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | | | - Alisson S Santana
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana P S Lima
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Thaysnara B Brito
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Rafael R B Oliveira
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Nathália A Macêdo
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Paulo F Cristaldo
- Programa de Pós-Graduação em Entomologia Agrícola, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Ana Paula A Araújo
- Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Leandro Bacci
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
9
|
Study of Anopheles gambiae 3-hydroxykynurenine transaminase activity and inhibition by LC-MS/MS method. J Pharm Biomed Anal 2019; 173:154-161. [DOI: 10.1016/j.jpba.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
|
10
|
Rossi F, Miggiano R, Ferraris DM, Rizzi M. The Synthesis of Kynurenic Acid in Mammals: An Updated Kynurenine Aminotransferase Structural KATalogue. Front Mol Biosci 2019; 6:7. [PMID: 30873412 PMCID: PMC6400995 DOI: 10.3389/fmolb.2019.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/06/2019] [Indexed: 01/25/2023] Open
Abstract
Kynurenic acid (KYNA) is a bioactive compound that is produced along the kynurenine pathway (KP) during tryptophan degradation. In a few decades, KYNA shifted from being regarded a poorly characterized by-product of the KP to being considered a main player in many aspects of mammalian physiology, including the control of glutamatergic and cholinergic synaptic transmission, and the coordination of immunomodulation. The renewed attention being paid to the study of KYNA homeostasis is justified by the discovery of selective and potent inhibitors of kynurenine aminotransferase II, which is considered the main enzyme responsible for KYNA synthesis in the mammalian brain. Since abnormally high KYNA levels in the central nervous system have been associated with schizophrenia and cognitive impairment, these inhibitors promise the development of novel anti-psychotic and pro-cognitive drugs. Here, we summarize the currently available structural information on human and rodent kynurenine aminotransferases (KATs) as the result of global efforts aimed at describing the full complement of mammalian isozymes. These studies highlight peculiar features of KATs that can be exploited for the development of isozyme-specific inhibitors. Together with the optimization of biochemical assays to measure individual KAT activities in complex samples, this wealth of knowledge will continue to foster the identification and rational design of brain penetrant small molecules to attenuate KYNA synthesis, i.e., molecules capable of lowering KYNA levels without exposing the brain to the harmful withdrawal of KYNA-dependent neuroprotective actions.
Collapse
Affiliation(s)
- Franca Rossi
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| | - Riccardo Miggiano
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| | - Davide M Ferraris
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| | - Menico Rizzi
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
11
|
Shin YC, Yun H, Park HH. Structural dynamics of the transaminase active site revealed by the crystal structure of a co-factor free omega-transaminase from Vibrio fluvialis JS17. Sci Rep 2018; 8:11454. [PMID: 30061559 PMCID: PMC6065307 DOI: 10.1038/s41598-018-29846-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/19/2018] [Indexed: 02/01/2023] Open
Abstract
Omega (ω)-transaminase catalyzes the transfer of an amino group from a non-α position amino acid, or an amine compound with no carboxylic group, to an amino acceptor, and has been studied intensively because of its high potential utility in industry and pharmatheutics. The ω-transaminase from Vibrio fluvialis JS17 (Vfat) is an amine:pyruvate transaminase capable of the stereo-selective transamination of arylic chiral amines. This enzyme exhibits extraordinary enantio-selectivity, and has a rapid reaction rate for chiral amine substrates. In this study, we report the crystal structure of the apo form of Vfat. The overall structure of Vfat was typical of other class III aminotransferase exhibiting an N-terminal helical domain, a small domain, and a large domain. Interestingly, the two subunits of apo Vfat in the asymmetric unit had different structures. A comparison of the overall structure to other transaminases, revealed that the structures of the N-terminal helical domain and the large domain can be affected by cofactor occupancy, but the structural rearrangement in these regions can occur independently.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Hyungdon Yun
- Department of Bioscience & Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Pesek J, Svoboda J, Sattler M, Bartram S, Boland W. Biosynthesis of 8-hydroxyquinoline-2-carboxylic acid, an iron chelator from the gut of the lepidopteran Spodoptera littoralis. Org Biomol Chem 2015; 13:178-84. [PMID: 25356857 DOI: 10.1039/c4ob01857e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the regurgitate (foregut content) of Spodoptera larvae we found high concentrations (0.5-5 mM) of 8-hydroxyquinoline-2-carboxylic acid (8-HQA). In a survey of different lepidopteran species, this compound was only detected in species belonging to the family of Noctuidae. 8-HQA was shown to derive from tryptophan metabolism. The amount of 8-HQA in the regurgitate was strongly dependent on the tryptophan content of the diet. In the insect 8-HQA is generated from tryptophan via kynurenine and 3-hydroxykynurenine. 8-HQA is produced by the larvae and not by their commensal gut bacteria. Analysis of different life stages of Spodoptera larvae revealed that 8-HQA is formed during the larval stage, probably acting as an iron chelator to control the gut microbiome.
Collapse
Affiliation(s)
- Jelena Pesek
- Department of Bioorganic Chemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | | | | | | | | |
Collapse
|
13
|
Vitamin B6-dependent enzymes in the human malaria parasite Plasmodium falciparum: a druggable target? BIOMED RESEARCH INTERNATIONAL 2014; 2014:108516. [PMID: 24524072 PMCID: PMC3912857 DOI: 10.1155/2014/108516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/24/2013] [Accepted: 11/28/2013] [Indexed: 11/17/2022]
Abstract
Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism).
Collapse
|
14
|
The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti. Bioorg Med Chem 2013; 21:6996-7003. [PMID: 24095017 DOI: 10.1016/j.bmc.2013.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/30/2013] [Accepted: 09/07/2013] [Indexed: 11/21/2022]
Abstract
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.
Collapse
|
15
|
Oppici E, Roncador A, Montioli R, Bianconi S, Cellini B. Gly161 mutations associated with Primary Hyperoxaluria Type I induce the cytosolic aggregation and the intracellular degradation of the apo-form of alanine:glyoxylate aminotransferase. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2277-88. [PMID: 24055001 DOI: 10.1016/j.bbadis.2013.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022]
Abstract
Primary Hyperoxaluria Type I (PH1) is a severe rare disorder of metabolism due to inherited mutations on liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme whose deficiency causes the deposition of calcium oxalate crystals in the kidneys and urinary tract. PH1 is an extremely heterogeneous disease and there are more than 150 disease-causing mutations currently known, most of which are missense mutations. Moreover, the molecular mechanisms by which missense mutations lead to AGT deficiency span from structural, functional to subcellular localization defects. Gly161 is a highly conserved residue whose mutation to Arg, Cys or Ser is associated with PH1. Here we investigated the molecular bases of the AGT deficit caused by Gly161 mutations with expression studies in a mammalian cellular system paired with biochemical analyses on the purified recombinant proteins. Our results show that the mutations of Gly161 (i) strongly reduce the expression levels and the intracellular half-life of AGT, and (ii) make the protein in the apo-form prone to an electrostatically-driven aggregation in the cell cytosol. The coenzyme PLP, by shifting the equilibrium from the apo- to the holo-form, is able to reduce the aggregation propensity of the variants, thus partly decreasing the effect of the mutations. Altogether, these results shed light on the mechanistic details underlying the pathogenicity of Gly161 variants, thus expanding our knowledge of the enzymatic phenotypes leading to AGT deficiency.
Collapse
Affiliation(s)
- Elisa Oppici
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
16
|
da Silva-Alves DCB, dos Anjos JV, Cavalcante NNM, Santos GKN, Navarro DMDAF, Srivastava RM. Larvicidal isoxazoles: Synthesis and their effective susceptibility towards Aedes aegypti larvae. Bioorg Med Chem 2012; 21:940-7. [PMID: 23321014 DOI: 10.1016/j.bmc.2012.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
Abstract
Twenty 3,5-disubstituted isoxazoles have been synthesized and tested against fourth instar Aedes aegypti larvae. In the synthesis of title compounds, modifications have been made in the C-5 side-chain with a view to test their larvicidal activity. These isoxazoles have been obtained by 1,3-dipolar cycloaddition of arylnitrile oxides to terminal alkynes which furnished the desired products in 20% to 79% yields. A comparative study of the larvicidal activity between 3-(3-aryl-isoxazol-5-yl)-propan-1-ols and 3-(3-aryl-isoxazol-5-yl)-propionic acids clearly demonstrated that the latter compounds possess much better larvicidal activity than the former. We also tested two esters, viz., methyl 3-[3-(phenyl)-isoxazole-5-yl] propionate and methyl 3-[3-(4-chlorophenyl)-isoxazole-5-yl] propionate, where the latter presented an excellent larvicidal profile.
Collapse
Affiliation(s)
- Diana C B da Silva-Alves
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50740-560 Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Biochemical identification and crystal structure of kynurenine formamidase from Drosophila melanogaster. Biochem J 2012; 446:253-60. [PMID: 22690733 DOI: 10.1042/bj20120416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KFase (kynurenine formamidase), also known as arylformamidase and formylkynurenine formamidase, efficiently catalyses the hydrolysis of NFK (N-formyl-L-kynurenine) to kynurenine. KFase is the second enzyme in the kynurenine pathway of tryptophan metabolism. A number of intermediates formed in the kynurenine pathway are biologically active and implicated in an assortment of medical conditions, including cancer, schizophrenia and neurodegenerative diseases. Consequently, enzymes involved in the kynurenine pathway have been considered potential regulatory targets. In the present study, we report, for the first time, the biochemical characterization and crystal structures of Drosophila melanogaster KFase conjugated with an inhibitor, PMSF. The protein architecture of KFase reveals that it belongs to the α/β hydrolase fold family. The PMSF-binding information of the solved conjugated crystal structure was used to obtain a KFase and NFK complex using molecular docking. The complex is useful for understanding the catalytic mechanism of KFase. The present study provides a molecular basis for future efforts in maintaining or regulating kynurenine metabolism through the molecular and biochemical regulation of KFase.
Collapse
|
18
|
Kappes B, Tews I, Binter A, Macheroux P. PLP-dependent enzymes as potential drug targets for protozoan diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1567-76. [PMID: 21884827 DOI: 10.1016/j.bbapap.2011.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
The chemical properties of the B(6) vitamers are uniquely suited for wide use as cofactors in essential reactions, such as decarboxylations and transaminations. This review addresses current efforts to explore vitamin B(6) dependent enzymatic reactions as drug targets. Several current targets are described that are found amongst these enzymes. The focus is set on diseases caused by protozoan parasites. Comparison across a range of these organisms allows insight into the distribution of potential targets, many of which may be of interest in the development of broad range anti-protozoan drugs. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Barbara Kappes
- University Hospital Heidelberg, Department of Infectious Diseases, Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Kim B, Park OK, Bae JY, Jang TH, Yoon JH, Do KH, Kim BG, Yun H, Park HH. Crystallization and preliminary X-ray crystallographic studies of β-transaminase from Mesorhizobium sp. strain LUK. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:231-3. [PMID: 21301093 DOI: 10.1107/s1744309110050876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/04/2010] [Indexed: 11/11/2022]
Abstract
β-Transaminase (β-TA) catalyzes the transamination reaction between β-aminocarboxylic acids and keto acids. This enzyme is a particularly suitable candidate for use as a biocatalyst for the asymmetric synthesis of enantiochemically pure β-amino acids for pharmaceutical purposes. The β-TA from Mesorhizobium sp. strain LUK (β-TAMs) belongs to a novel class in that it shows β-transaminase activity with a broad and unique substrate specificity. In this study, β-TAMs was overexpressed in Escherichia coli with an engineered C-terminal His tag. β-TAMs was then purified to homogeneity and crystallized at 293 K. X-ray diffraction data were collected to a resolution of 2.5 Å from a crystal that belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 90.91, b = 192.17, c = 52.75 Å.
Collapse
Affiliation(s)
- Bokyung Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jang TH, Kim B, Park OK, Bae JY, Kim BG, Yun H, Park HH. Crystallization and preliminary X-ray crystallographic studies of ω-transaminase from Vibrio fluvialis JS17. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:923-5. [PMID: 20693669 DOI: 10.1107/s1744309110021573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/07/2010] [Indexed: 11/10/2022]
Abstract
Omega-transaminase (ω-TA) catalyzes the transfer of an amino group from a non-alpha-position amino acid or an amine compound with no carboxylic group to an amino acceptor. ω-TA from Vibrio fluvialis JS17 (ω-TAVf) is a novel amine:pyruvate transaminase that is capable of stereoselective transamination of aryl chiral amines. In this study, omega-TAVf was overexpressed in Escherichia coli with engineered C-terminal His tags. ω-TAVf was then purified to homogeneity and crystallized at 292 K. X-ray diffraction data were collected to a resolution of 2.5 A from a crystal belonging to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a=78.43, b=95.95, c=122.89 A.
Collapse
Affiliation(s)
- Tae-ho Jang
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Hellmann H, Mooney S. Vitamin B6: a molecule for human health? Molecules 2010; 15:442-59. [PMID: 20110903 PMCID: PMC6257116 DOI: 10.3390/molecules15010442] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/16/2010] [Accepted: 01/20/2010] [Indexed: 11/16/2022] Open
Abstract
Vitamin B6 is an intriguing molecule that is involved in a wide range of metabolic, physiological and developmental processes. Based on its water solubility and high reactivity when phosphorylated, it is a suitable co-factor for many biochemical processes. Furthermore the vitamin is a potent antioxidant, rivaling carotenoids or tocopherols in its ability to quench reactive oxygen species. It is therefore not surprising that the vitamin is essential and unquestionably important for the cellular metabolism and well-being of all living organisms. The review briefly summarizes the biosynthetic pathways of vitamin B6 in pro- and eukaryotes and its diverse roles in enzymatic reactions. Finally, because in recent years the vitamin has often been considered beneficial for human health, the review will also sum up and critically reflect on current knowledge how human health can profit from vitamin B6.
Collapse
Affiliation(s)
- Hanjo Hellmann
- Washington State University, Abelson 435, P.O. Box 66224, Pullman, WA, USA.
| | | |
Collapse
|
22
|
Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1089-97. [PMID: 19770506 PMCID: PMC2756167 DOI: 10.1107/s0907444909029643] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/24/2009] [Indexed: 11/11/2022]
Abstract
A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70 degrees can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 A resolution.
Collapse
|
23
|
Meng Y, Katsuma S, Mita K, Shimada T. Abnormal red body coloration of the silkworm,Bombyx mori, is caused by a mutation in a novel kynureninase. Genes Cells 2009; 14:129-40. [DOI: 10.1111/j.1365-2443.2008.01257.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Curiosity to kill the KAT (kynurenine aminotransferase): structural insights into brain kynurenic acid synthesis. Curr Opin Struct Biol 2008; 18:748-55. [PMID: 18950711 DOI: 10.1016/j.sbi.2008.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 11/23/2022]
Abstract
Kynurenine aminotransferases are pyridoxal-5'-phosphate-dependent enzymes, which catalyze the synthesis of kynurenic acid, a highly neuroactive metabolite whose impairment is associated with a number of severe brain disorders. Crystallographic studies of these enzymes from different organisms, including humans, have revealed distinctive structural traits of type I and type II kynurenine aminotransferases. A striking difference concerns domain swapping of the N-terminal regions, which play equivalent key functional roles in both an unswapped and swapped structure in type I and type II isozymes. Different conformational changes during catalysis create divergent active sites in the two isozymes and affect substrate specificity. Structural investigations indicate intriguing evolutionary relationships and pave the way for the design of isozyme-specific inhibitors, which are of interest for the treatment of catastrophic brain diseases such as Alzheimer's disease and schizophrenia.
Collapse
|
25
|
Vidhyanandhini R, Kumar NP. Characterization of the 3-HKT gene in important malaria vectors in India, viz: Anopheles culicifacies and Anopheles stephensi (Diptera: Culicidae). Mem Inst Oswaldo Cruz 2008; 103:595-7. [PMID: 18949331 DOI: 10.1590/s0074-02762008000600014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 06/24/2008] [Indexed: 11/21/2022] Open
Abstract
The 3-hydroxykynurenine transaminase (3-HKT) gene plays a vital role in the development of malaria parasites by participating in the synthesis of xanthurenic acid, which is involved in the exflagellation of microgametocytes in the midgut of malaria vector species. The 3-HKT enzyme is involved in the tryptophan metabolism of Anophelines. The gene had been studied in the important global malaria vector, Anopheles gambiae. In this report, we have conducted a preliminary investigation to characterize this gene in the two important vector species of malaria in India, Anopheles culicifacies and Anopheles stephensi. The analysis of the genetic structure of this gene in these species revealed high homology with the An. gambiae gene. However, four non-synonymous mutations in An. stephensi and seven in An. culicifacies sequences were noted in the exons 1 and 2 of the gene; the implication of these mutations on enzyme structure remains to be explored.
Collapse
Affiliation(s)
- R Vidhyanandhini
- Vector Control Research Centre, Indian Council of Medical Research, Medical Complex, Indira Nagar, Pondicherry, India
| | | |
Collapse
|
26
|
Paglino A, Lombardo F, Arcà B, Rizzi M, Rossi F. Purification and biochemical characterization of a recombinant Anopheles gambiae tryptophan 2,3-dioxygenase expressed in Escherichia coli. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:871-876. [PMID: 18687401 DOI: 10.1016/j.ibmb.2008.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/26/2008] [Accepted: 05/29/2008] [Indexed: 05/26/2023]
Abstract
In the malaria vector Anopheles gambiae, tryptophan 2,3-dioxygenase (TDO) is the only enzyme able to initiate l-tryptophan degradation through the kynurenine pathway. TDO converts l-tryptophan to N-formylkynurenine by catalyzing the heme-dependent oxidative opening of the substrate indole ring. Despite the central role exerted by kynurenines in the physiology of living organisms, only a few insect TDOs have been subjected to biochemical characterization in vitro. We performed a RT-PCR-based analysis of the tissue distribution of TDO mRNA in A. gambiae that revealed a ubiquitous expression of the gene, thus further underlining the importance of the enzyme in the mosquito biology. We developed an expression/purification procedure yielding pure and active recombinant A. gambiae TDO. Spectral analyses showed that the enzyme was purified in its heme-ferric form that was subsequently used to determining the Michaelis-Menten constants of the TDO catalyzed reaction in the presence of reducing agents. The screening of a number of compounds as potential TDO modulators showed that several kynurenines and other Tryptophan-derived molecules interfere with the enzyme activity in vitro. Our study could contribute to understanding TDO regulation in vivo and to the identification of inhibitors to be used to alter Tryptophan homeostasis in the malaria vector.
Collapse
Affiliation(s)
- Alessandra Paglino
- DiSCAFF, University of Piemonte Orientale "A. Avogadro", Via Bovio, 6, 28100 Novara, Italy
| | | | | | | | | |
Collapse
|
27
|
Gobaille S, Kemmel V, Brumaru D, Dugave C, Aunis D, Maitre M. Xanthurenic acid distribution, transport, accumulation and release in the rat brain. J Neurochem 2008; 105:982-93. [PMID: 18182052 DOI: 10.1111/j.1471-4159.2008.05219.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tryptophan metabolism through the kynurenine pathway leads to several neuroactive compounds, including kynurenic and picolinic acids. Xanthurenic acid (Xa) has been generally considered as a substance with no physiological role but possessing toxic and apoptotic properties. In the present work, we present several findings which support a physiological role for endogenous Xa in synaptic signalling in brain. This substance is present in micromolar amounts in most regions of the rat brain with a heterogeneous distribution. An active vesicular synaptic process inhibited by bafilomycin and nigericin accumulates xanthurenate into pre-synaptic terminals. A neuronal transport, partially dependant on adenosine 5'-triphosphate (ATP), sodium and chloride ions exists in NCB-20 neurons which could participate in the clearance of extracellular xanthurenate. Both transports (neuronal and vesicular) are greatly enhanced by the presence of micromolar amounts of zinc ions. Finally, electrical in vivo stimulation of A10-induced Xa release in the extracellular spaces of the rat prefrontal cortex. This phenomenon is reproduced by veratrine, K+ ions and blocked by EGTA and tetrodotoxin. These results strongly argue for a role for Xa in neurotransmission/neuromodulation in the rat brain, thus providing the existence of specific Xa receptors.
Collapse
Affiliation(s)
- Serge Gobaille
- INSERM U-575 and Department of Biochemistry, Faculty of Medicine, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
28
|
Mizdrak J, Hains PG, Kalinowski D, Truscott RJ, Davies MJ, Jamie JF. Novel human lens metabolites from normal and cataractous human lenses. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.03.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Lima S, Khristoforov R, Momany C, Phillips RS. Crystal structure of Homo sapiens kynureninase. Biochemistry 2007; 46:2735-44. [PMID: 17300176 PMCID: PMC2531291 DOI: 10.1021/bi0616697] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Collapse
Affiliation(s)
- Santiago Lima
- Departments of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
30
|
Han Q, Beerntsen BT, Li J. The tryptophan oxidation pathway in mosquitoes with emphasis on xanthurenic acid biosynthesis. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:254-63. [PMID: 17070835 PMCID: PMC2577175 DOI: 10.1016/j.jinsphys.2006.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 05/12/2023]
Abstract
Oxidation of tryptophan to kynurenine and 3-hydroxykynurenine (3-HK) is the major catabolic pathway in mosquitoes. However, 3-HK is oxidized easily under physiological conditions, resulting in the production of reactive radical species. To overcome this problem, mosquitoes have developed an efficient mechanism to prevent 3-HK from accumulating by converting this chemically reactive compound to the chemically stable xanthurenic acid. Interestingly, 3-HK is a precursor for the production of compound eye pigments during the pupal and early adult stages; consequently, mosquitoes need to preserve and transport 3-HK for compound eye pigmentation in pupae and adults. This review summarizes the tryptophan oxidation pathway, compares and contrasts the mosquito tryptophan oxidation pathway with other model species, and discusses possible driving forces leading to the functional adaptation and evolution of enzymes involved in the mosquito tryptophan oxidation pathway.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
31
|
Han Q, Robinson H, Gao YG, Vogelaar N, Wilson SR, Rizzi M, Li J. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase. J Biol Chem 2006; 281:37175-82. [PMID: 16990263 DOI: 10.1074/jbc.m607032200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In the mosquito, transamination of 3-HK (3-hydroxykynurenine) to XA (xanthurenic acid) is catalysed by an AGT (alanine glyoxylate aminotransferase) and is the major branch pathway of tryptophan metabolism. Interestingly, malaria parasites hijack this pathway to use XA as a chemical signal for development in the mosquito. Here, we report that the mosquito has two AGT isoenzymes. One is the previously cloned AeHKT [Aedes aegypti HKT (3-HK transaminase)] [Han, Fang and Li (2002) J. Biol. Chem. 277, 15781-15787], similar to hAGT (human AGT), which primarily catalyses 3-HK to XA in mosquitoes, and the other is a typical dipteran insect AGT. We cloned the second AGT from Ae. aegypti mosquitoes [AeAGT (Ae. aegypti AGT)], overexpressed the enzyme in baculovirus/insect cells and determined its biochemical characteristics. We also expressed hAGT for a comparative study. The new cloned AeAGT is highly substrate-specific when compared with hAGT and the previously reported AeHKT and Drosophila AGT, and is translated mainly in pupae and adults, which contrasts with AeHKT that is expressed primarily in larvae. Our results suggest that the physiological requirements of mosquitoes and the interaction between the mosquito and its host appear to be the driving force in mosquito AGT evolution.
Collapse
Affiliation(s)
- Qian Han
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
- †Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Seong Ryul Kim
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
| | - Haizhen Ding
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
- †Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Jianyong Li
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
- †Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes represent about 4% of the enzymes classified by the Enzyme Commission. The versatility of PLP in carrying out a large variety of reactions exploiting the electron sink effect of the pyridine ring, the conformational changes accompanying the chemical steps and stabilizing distinct catalytic intermediates, and the spectral properties of the different coenzyme-substrate derivatives signaling the reaction progress, are some of the features that have attracted our interest to investigate the structure-dynamics-function relationships of PLP-dependent enzymes. To this goal, an integrated approach combining biochemical, biophysical, computational, and molecular biology methods was used. The extensive work carried out on two enzymes, tryptophan synthase and O-acetylserine sulfhydrylase, is presented and discussed as representative of other PLP-dependent enzymes we have investigated. Finally, perspectives of PLP-dependent enzymes functional genomics and drug targeting highlight the continuous novelty of an "old" class of enzymes.
Collapse
Affiliation(s)
- Andrea Mozzarelli
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy.
| | | |
Collapse
|