1
|
Niebora J, Data K, Domagała D, Józkowiak M, Barrett S, Norizadeh Abbariki T, Bryja A, Kulus M, Woźniak S, Ziemak H, Piotrowska-Kempisty H, Antosik P, Bukowska D, Mozdziak P, Dzięgiel P, Kempisty B. Avian Models for Human Carcinogenesis-Recent Findings from Molecular and Clinical Research. Cells 2024; 13:1797. [PMID: 39513904 PMCID: PMC11544849 DOI: 10.3390/cells13211797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Saoirse Barrett
- Human Clinical Embryology & Assisted Conception, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | | | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Science, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
2
|
Seung BJ, Sur JH. Detection of PIK3CA hotspot mutations in canine mammary tumors using droplet digital PCR: tissue validation and liquid biopsy feasibility. Sci Rep 2024; 14:25587. [PMID: 39462049 PMCID: PMC11512996 DOI: 10.1038/s41598-024-76820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Domestic dogs (Canis lupus familiaris) serve as valuable translational models for human cancer research due to their biological similarities. Canine mammary tumors (CMTs), frequently diagnosed in female dogs, share various characteristics with human breast cancers. This study investigates the PIK3CA (H1047R) mutation in CMTs using droplet digital PCR (ddPCR) and explores the potential of liquid biopsy for non-invasive detection. We analyzed 80 formalin-fixed, paraffin-embedded (FFPE) CMT tissue samples and compared ddPCR results with next-generation sequencing (NGS) data, achieving high concordance. Plasma and serum samples were also assessed for mutation concordance with tissue results. Our findings indicate a higher frequency of the PIK3CA (H1047R) mutations in benign and grade I malignant CMTs compared to more aggressive malignancies. The ddPCR assay demonstrated high sensitivity and specificity, with plasma testing showing 78.6% sensitivity and 87.5% specificity, and serum testing showing 66.7% sensitivity and 90.0% specificity. These results highlight the viability of liquid biopsy as a minimally invasive method for monitoring PIK3CA mutations in canine patients. The study suggests that liquid biopsy techniques hold significant promise for improving the early detection and monitoring of canine cancers, warranting further research to refine these methods and explore their applications in canine cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Byung-Joon Seung
- Department of Veterinary Pathology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- Komipharm International Co., Ltd., Siheung-si, Gyonggi-do, 15094, South Korea.
| |
Collapse
|
3
|
Lee DY, Oh JS, Kim JW, Oh M, Oh SJ, Lee S, Kim YH, Kim JH, Nam SJ, Song SW, Kim JS. Pre-operative dual-time-point [ 18F]FET PET differentiates CDKN2A/B loss and PIK3CA mutation status in adult-type diffuse glioma: a single-center prospective study. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06935-z. [PMID: 39365462 DOI: 10.1007/s00259-024-06935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE While [18F]FET PET plays a complementary role in glioma imaging, it needs to be more comprehensively understood for improved characterization of glioma prior to surgery given the evolving landscape of molecular neuropathology. Thus, we investigated the utility of pre-operative dual-time-point [18F]FET PET in correlation with next-generation sequencing (NGS) data in patients with adult-type diffuse glioma (ADG). METHODS Adult patients who were suspected to have primary glioma were prospectively recruited between June 2021 and January 2024. They underwent pre-operative dual-time-point static PET/CT at 20 min (early) and 80 min (delay) after [18F]FET injection. Semi-quantitative parameters of the hottest lesion (SUVmax) of tumour and the hottest lesion-to-normal brain ratio (TBRmax) were assessed from each summed image. Furthermore, the percentage changes (△) of SUVmax and TBRmax between two images were calculated. Histopathology of glioma was determined according to the 2021 WHO classification and NGS data. RESULTS This study investigated a dozen genes in 76 patients, of whom 51 had isocitrate dehydrogenase (IDH)-wild-type glioblastoma, 13 had IDH-mutant astrocytoma, and 12 had IDH-mutant oligodendroglioma. Every tumour was [18F]FET-avid having TBRmax more than 1.6. Patients with CDKN2A/B loss had significantly higher values of SUVmax (5.7 ± 1.6 vs. 4.7 ± 1.3, p = 0.004; 5.0 ± 1.4 vs. 4.4 ± 1.2, p = 0.026) and TBRmax (6.5 ± 1.8 vs. 5.1 ± 1.7, p = 0.001; 5.3 ± 1.5 vs. 4.3 ± 1.3, p = 0.004) in both scans than patients without CDKN2A/B loss, even after adjustment for age, MRI enhancement, tumor grade and type of pathology. Furthermore, patients with PIK3CA mutation (16.2 ± 11.8 vs. 6.7 ± 11.6, p = 0.007) had significantly higher △SUVmax than patients without PIK3CA mutation, even after adjustment for age, MRI enhancement, tumor grade, and type of pathology. CONCLUSION Among the dozen genes investigated in this prospective study in patients with ADG, we found out that CDKN2A/B loss and PIK3CA mutation status could be differentiated by pre-operative dual-time-point [18F]FET PET/CT.
Collapse
Affiliation(s)
- Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jeong Won Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sang Woo Song
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
4
|
Lillesand M, Kvikstad V, Gudlaugsson E, Skaland I, Slewa Johannessen A, Nigatu Tesfahun A, Sperstad SV, Janssen EAM, Austdal M. Integrating Genetic Alterations and Histopathological Features for Enhanced Risk Stratification in Non-Muscle-Invasive Bladder Cancer. Diagnostics (Basel) 2024; 14:2137. [PMID: 39410541 PMCID: PMC11482629 DOI: 10.3390/diagnostics14192137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Urothelial carcinoma presents as non-muscle-invasive bladder cancer (NMIBC) in ~75% of primary cases. Addressing the limitations of the TNM and WHO04/16 classification systems, this study investigates genetic alterations, the mitotic activity index (MAI), and immunohistochemistry (IHC) markers CK20, p53, and CD25 as better prognostic biomarkers in NMIBC. METHODS Using the Oncomine™ Focus Assay for targeted next-generation sequencing (NGS), 409 single-nucleotide variations (SNVs) and 193 copy number variations (CNVs) were identified across 287 patients with TaT1 tumors. RESULTS FGFR3 and PIK3CA alterations were significantly more prevalent in Ta tumors, while T1 tumors had significant ERBB2 alterations. Low-grade (LG) tumors were enriched with FGFR3 alterations, while high-grade (HG) tumors were significantly associated with ERBB2 alterations, as well as FGFR1 and CCND1 amplifications. FGFR3 alterations were linked to shorter recurrence-free survival (RFS; p = 0.033) but improved progression-free survival (PFS; p < 0.001). Conversely, ERBB2 alterations (p < 0.001), ERBB3 mutations (p = 0.044), and both MYC (p < 0.001) and MYCN (p = 0.011) amplifications were associated with shorter PFS. Survival analysis of gene sets revealed inverse associations between PIK3CA and ERBB2 (p = 0.003), as well as PIK3CA and MYC (p = 0.005), with PFS. CONCLUSIONS In multivariate Cox regression, MAI was the strongest predictor for PFS. Integrating genetic alterations and histopathological features may improve risk stratification in NMIBC.
Collapse
Affiliation(s)
- Melinda Lillesand
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Vebjørn Kvikstad
- Department of Forensic Medicine, Oslo University Hospital, 0372 Oslo, Norway;
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Ivar Skaland
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Aida Slewa Johannessen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Almaz Nigatu Tesfahun
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Sigmund Vegard Sperstad
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Marie Austdal
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
- Department of Research, Section for Biostatistics, Stavanger University Hospital, 4011 Stavanger, Norway
| |
Collapse
|
5
|
Faske JB, Myers MB, Bryant M, He X, McLellen F, Bourcier T, Parsons BL. CarcSeq detection of lorcaserin-induced clonal expansion of Pik3ca H1047R mutants in rat mammary tissue. Toxicol Sci 2024; 201:129-144. [PMID: 38851877 PMCID: PMC11347771 DOI: 10.1093/toxsci/kfae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
Lorcaserin is a 5-hydroxytryptamine 2C (serotonin) receptor agonist and a nongenotoxic rat carcinogen, which induced mammary tumors in male and female rats in a 2-yr bioassay. Female Sprague Dawley rats were treated by gavage daily with 0, 30, or 100 mg/kg lorcaserin, replicating bioassay dosing but for shorter duration, 12 or 24 wk. To characterize exposure and eliminate possible confounding by a potentially genotoxic degradation product, lorcaserin and N-nitroso-lorcaserin were quantified in dosing solutions, terminal plasma, mammary, and liver samples using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry. N-nitroso-lorcaserin was not detected, supporting lorcaserin classification as nongenotoxic carcinogen. Mammary DNA samples (n = 6/dose/timepoint) were used to synthesize PCR products from gene segments encompassing hotspot cancer driver mutations, namely regions of Apc, Braf, Egfr, Hras, Kras, Nfe2l2, Pik3ca, Setbp1, Stk11, and Tp53. Mutant fractions (MFs) in the amplicons were quantified by CarcSeq, an error-corrected next-generation sequencing approach. Considering all recovered mutants, no significant differences between lorcaserin dose groups were observed. However, significant dose-responsive increases in Pik3ca H1047R mutation were observed at both timepoints (ANOVA, P < 0.05), with greater numbers of mutants and mutants with greater MFs observed at 24 wk as compared with 12 wk. These observations suggest lorcaserin promotes outgrowth of spontaneously occurring Pik3ca H1047R mutant clones leading to mammary carcinogenesis. Importantly, this work reports approaches to analyze clonal expansion and demonstrates CarcSeq detection of the carcinogenic impact (selective Pik3ca H0147R mutant expansion) of a nongenotoxic carcinogen using a treatment duration as short as 3 months.
Collapse
Affiliation(s)
- Jennifer B Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Florence McLellen
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Todd Bourcier
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US FDA, Silver Spring, MD 20993, United States
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| |
Collapse
|
6
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
7
|
Bastos IM, Rebelo S, Silva VLM. A comprehensive review on phosphatidylinositol-3-kinase (PI3K) and its inhibitors bearing pyrazole or indazole core for cancer therapy. Chem Biol Interact 2024; 398:111073. [PMID: 38823538 DOI: 10.1016/j.cbi.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Cancer is a complex and multifaceted group of diseases with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. Dysregulation of normal signalling pathways in cancer contributes to the different hallmarks of this disease. The signalling pathway of which phosphatidylinositol 3-kinase (PI3K) is a part is not an exception. In fact, dysregulated activation of PI3K signalling pathways can result in unbridled cellular proliferation and enhanced cell survival, thereby fostering the onset and advancement of cancer. Therefore, there is substantial interest in developing targeted therapies specifically aimed at inhibiting the PI3K enzyme and its associated pathways. Also, the therapeutic interest on pyrazoles and indazoles has been growing due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as PI3K inhibitors, and they showed promising results. There are already some PI3K inhibitors approved by Food and Drug Administration (FDA), such as Idelalisib (Zydelig®) and Alpelisib (Piqray®). In this context, this review aims to address the importance of PI3K in cellular processes and its role in cancer. Additionally, it aims to report a comprehensive literature review of PI3K inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PI3K inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Mozibullah M, Khatun M, Sikder M, Islam M, Sharmin M. Identifying Oncogenic Missense Single Nucleotide Polymorphisms in Human SAT1 Gene Using Computational Algorithms and Molecular Dynamics Tools. Cancer Rep (Hoboken) 2024; 7:e2130. [PMID: 39041636 PMCID: PMC11264109 DOI: 10.1002/cnr2.2130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The human SAT1 gene encodes spermidine/spermine N1-acetyltransferase 1 (SSAT1), a regulatory biological catalyst of polyamine catabolism. Numerous essential biological processes, such as cellular proliferation, differentiation, and survival, depend on polyamines like spermidine and spermine. Thus, SSAT1 is involved in key cellular activities such as proliferation and survival of cells and mediates various diseases including cancer. A plethora of studies established the involvement of missense single nucleotide polymorphisms (SNPs) in numerous pathological conditions due to their ability to adversely affect the structure and subsequent function of the protein. AIMS To date, an in silico study to identify the pathogenic missense SNPs of the human SAT1 gene has not been accomplished yet. This study aimed to filter the missense SNPs that were functionally detrimental and pathogenic. METHODS AND RESULTS The rs757435207 (I21N) was ascertained to be the most deleterious and pathogenic by all algorithmic tools. Stability and evolutionary conservation analysis tools also stated that I21N variant decreased the stability and was located in the highly conserved residue. Molecular dynamics simulation revealed that I21N caused substantial alterations in the conformational stability and dynamics of the SSAT1 protein. Consequently, the I21N variant could disrupt the native functional roles of the SSAT1 enzyme. CONCLUSION Therefore, the I21N variant was identified and concluded to be an oncogenic missense variant of the human SAT1 gene. Overall, the findings of this study would be a great directory of future experimental research to develop personalized medicine.
Collapse
Affiliation(s)
- Md. Mozibullah
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Marina Khatun
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Asaduzzaman Sikder
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Mehbuba Sharmin
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
9
|
DuBose E, Bevill SM, Mitchell DK, Sciaky N, Golitz BT, Dixon SAH, Rhodes SD, Bear JE, Johnson GL, Angus SP. Neratinib, a pan ERBB/HER inhibitor, restores sensitivity of PTEN-null, BRAFV600E melanoma to BRAF/MEK inhibition. Front Oncol 2024; 14:1191217. [PMID: 38854737 PMCID: PMC11159048 DOI: 10.3389/fonc.2024.1191217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Approximately 50% of melanomas harbor an activating BRAFV600E mutation. Standard of care involves a combination of inhibitors targeting mutant BRAF and MEK1/2, the substrate for BRAF in the MAPK pathway. PTEN loss-of-function mutations occur in ~40% of BRAFV600E melanomas, resulting in increased PI3K/AKT activity that enhances resistance to BRAF/MEK combination inhibitor therapy. Methods To compare the response of PTEN null to PTEN wild-type cells in an isogenic background, CRISPR/Cas9 was used to knock out PTEN in a melanoma cell line that harbors a BRAFV600E mutation. RNA sequencing, functional kinome analysis, and drug synergy screening were employed in the context of BRAF/MEK inhibition. Results RNA sequencing and functional kinome analysis revealed that the loss of PTEN led to an induction of FOXD3 and an increase in expression of the FOXD3 target gene, ERBB3/HER3. Inhibition of BRAF and MEK1/2 in PTEN null, BRAFV600E cells dramatically induced the expression of ERBB3/HER3 relative to wild-type cells. A synergy screen of epigenetic modifiers and kinase inhibitors in combination with BRAFi/MEKi revealed that the pan ERBB/HER inhibitor, neratinib, could reverse the resistance observed in PTEN null, BRAFV600E cells. Conclusions The findings indicate that PTEN null BRAFV600E melanoma exhibits increased reliance on ERBB/HER signaling when treated with clinically approved BRAFi/MEKi combinations. Future studies are warranted to test neratinib reversal of BRAFi/MEKi resistance in patient melanomas expressing ERBB3/HER3 in combination with its dimerization partner ERBB2/HER2.
Collapse
Affiliation(s)
- Evan DuBose
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Samantha M. Bevill
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Brian T. Golitz
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Shelley A. H. Dixon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN, United States
| | - James E. Bear
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Steven P. Angus
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN, United States
- Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Rached L, Saleh K, Casiraghi O, Even C. Salivary gland carcinoma: Towards a more personalised approach. Cancer Treat Rev 2024; 124:102697. [PMID: 38401478 DOI: 10.1016/j.ctrv.2024.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
Salivary Gland carcinomas (SGCs) are rare tumors accounting for less than 1% of all cancers with 21 histologically diverse subtypes. The rarity of the disease presents a challenge for clinicians to conduct large size randomized controlled trials. Surgery and radiotherapy remain the only curative treatment for localized disease, whereas treatments for recurrent and metastatic disease remain more challenging with very disappointing results for chemotherapy. The different histological subtypes harbor various genetic alterations, some pathognomonic with a diagnostic impact for pathologists in confirming a difficult diagnosis and others with therapeutic implications regardless of the histologic subtype. Current international guidelines urge pathologists to identify androgen receptor status, HER-2 expression that could be determined by immunohistochemistry, and TRK status in patients with non-adenoid cystic salivary gland carcinoma that are eligible to initiate a systemic treatment, in order to offer them available targeted therapies or refer them to clinical trials based on their mutational profile. A more advanced molecular profiling by next generation sequencing would offer a larger panel of molecular alterations with possible therapeutic implications such as NOTCH, PI3K, BRAF, MYB, and EGFR. In the following review, we present the most common genetic alterations in SGCs as well as actionable mutations with the latest available data on therapeutic options and upcoming clinical trials.
Collapse
Affiliation(s)
- Layal Rached
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Khalil Saleh
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Odile Casiraghi
- Department of Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Caroline Even
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, Villejuif 94800, France.
| |
Collapse
|
11
|
Hanafi AR, Hanif MA, Pangaribuan MTG, Ariawan WP, Sutandyo N, Kurniawati SA, Setiawan L, Cahyanti D, Rayhani F, Imelda P. Genomic features of lung cancer patients in Indonesia's national cancer center. BMC Pulm Med 2024; 24:43. [PMID: 38245692 PMCID: PMC10799463 DOI: 10.1186/s12890-024-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
INTRODUCTION Advances in molecular biology bring advantages to lung cancer management. Moreover, high-throughput molecular tests are currently useful for revealing genetic variations among lung cancer patients. We investigated the genomics profile of the lung cancer patients at the National Cancer Centre of Indonesia. METHODS A retrospective study enrolled 627 tissue biopsy samples using real time polymerase chain reaction (RT-PCR) and 80 circulating tumour DNA (ctDNA) liquid biopsy samples using next-generation sequencing (NGS) from lung cancer patients admitted to the Dharmais Cancer Hospital from January 2018 to December 2022. Data were obtained from medical records. Data statistically analysed with p < 0.05 is considered significant. RESULT The EGFR test results revealed by RT-PCR were wild type (51.5%), single variant (38.8%), double variant (8.3%), and triple variant (1.4%), with 18.66% L85R, 18.22% Ex19del, and 11.08% L861Q variant. Liquid biopsy ctDNA using NGS showed only 2.5% EGFR wild type, 62.5% single variant and 35% co-variant, with EGFR/TP53 and EGFR/PIK3CA as the highest. CONCLUSION EGFR variants are the most found in our centre. Liquid biopsy with ctDNA using NGS examination could detect broad variants and co-variants that will influence the treatment planning.
Collapse
Affiliation(s)
- Arif Riswahyudi Hanafi
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia.
| | - Muhammad Alfin Hanif
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Mariska T G Pangaribuan
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Wily Pandu Ariawan
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Noorwati Sutandyo
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Sri Agustini Kurniawati
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Lyana Setiawan
- Department of Clinical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Dian Cahyanti
- Department of Anatomical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Farilaila Rayhani
- Department of Anatomical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Priscillia Imelda
- Cancer Research Team, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| |
Collapse
|
12
|
Choschzick M, Stergiou C, Gut A, Zoche M, Ross JS, Moch H. NOTCH1 and PIK3CA mutation are related to HPV-associated vulvar squamous cell carcinoma. Pathol Res Pract 2023; 251:154877. [PMID: 37839360 DOI: 10.1016/j.prp.2023.154877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
NOTCH1 and PIK3CA are members of important cell signalling pathways that are deregulated in squamous cell carcinomas of various organs. Vulvar squamous cell carcinomas (vulvSCC) are classically divided into two pathways, HPV-associated or HPV-independent, but the effect of NOTCH1 and PIK3CA mutations in both groups is unclear. We analysed two different cohorts of vulvSCC using Hybrid Capture-based Comprehensive Genomic Profiling and identified NOTCH1 and PIK3CA mutations in 35% and 31% of 48 primary vulvSCC. In this first cohort, PIK3CA and NOTCH1 mutations were significantly correlated with HPV infection (p < 0.01). Furthermore, mutations in both genes were associated with an advanced tumor stage and poorly differentiated status (p < 0.05). PIK3CA and NOTCH1 mutations were also associated with shorter patient survival which did not reach significance. In the second cohort of 735 advanced vulvSCC from metastatic site biopsies or from sites of unresectable loco-regional disease, NOTCH1 and PIK3CA mutations were reported in 14% and 20.3%, respectively. 4 of 48 (8%) and 22 of 735 vulvSCC (3.0%) featured genomic alterations (short variants and/or copy number changes and/or rearrangements) in both NOTCH1 and PIK3CA. NOTCH1 mutations were mostly located in the extracellular EGF-like domains, were inactivating and indicated that NOTCH1 functions predominantly as a tumor suppressor gene in vulvSCC. In contrast, PIK3CA mutations favored hotspot codons 1624 and 1633 of the gene, indicating that PIK3CA acts as an oncogene in vulvar carcinogenesis. In conclusion, NOTCH1 and PIK3CA mutations are detectable in a substantial proportion of vulvSCC and are related to HPV infection and more aggressive tumor behaviour.
Collapse
Affiliation(s)
- M Choschzick
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.
| | - C Stergiou
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - A Gut
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - M Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - J S Ross
- Foundation Medicine, Inc., Cambridge, MA, USA; SUNY Upstate Medical University, Syracuse, NY, USA
| | - H Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Kapturska KM, Pawlak A. New molecular targets in canine hemangiosarcoma-Comparative review and future of the precision medicine. Vet Comp Oncol 2023; 21:357-377. [PMID: 37308243 DOI: 10.1111/vco.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Human angiosarcoma and canine hemangiosarcoma reveal similarities not only in their aggressive clinical behaviour, but especially in molecular landscape and genetic alterations involved in tumorigenesis and metastasis formation. Currently, no satisfying treatment that allows for achieving long overall survival or even prolonged time to progression does not exist. Due to the progress that has been made in targeted therapies and precision medicine the basis for a new treatment design is to uncover mutations and their functions as possible targets to provide tailored drugs for individual cases. Whole exome or genome sequencing studies and immunohistochemistry brought in the last few years important discoveries and identified the most common mutations with probably crucial role in this tumour development. Also, despite a lack of mutation in some of the culprit genes, the cancerogenesis cause may be buried in main cellular pathways connected with proteins encoded by those genes and involving, for example, pathological angiogenesis. The aim of this review is to highlight the most promising molecular targets for precision oncology treatment from the veterinary perspective aided by the principles of comparative science. Some of the drugs are only undergoing laboratory in vitro studies and others entered the clinic in the management of other cancer types in humans, but those used in dogs with promising responses have been mentioned as priorities.
Collapse
Affiliation(s)
- Karolina Małgorzata Kapturska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Veterinary Clinic NEOVET s.c. Hildebrand, Jelonek, Michalek-Salt, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
14
|
Ono M, Miyamoto T, Asaka R, Uchikawa J, Ando H, Tanaka Y, Shinagawa M, Yokokawa Y, Asaka S, Wang TL, Shih IM, Shiozawa T. Establishment of a novel model of endometriosis-associated ovarian cancer by transplanting uterine tissue from Arid1a/Pten knockout mice. Sci Rep 2023; 13:8348. [PMID: 37221199 DOI: 10.1038/s41598-023-35292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023] Open
Abstract
Although endometriosis is primarily benign, it has been identified as a risk factor for endometriosis-associated ovarian cancer (EAOC). Genetic alterations in ARID1A, PTEN, and PIK3CA have been reported in EAOC; however, an appropriate EAOC animal model has yet to be established. Therefore, the present study aimed to create an EAOC mouse model by transplanting uterine pieces from donor mice, in which Arid1a and/or Pten was conditionally knocked out (KO) in Pax8-expressing endometrial cells by the administration of doxycycline (DOX), onto the ovarian surface or peritoneum of recipient mice. Two weeks after transplantation, gene KO was induced by DOX and endometriotic lesions were thereafter removed. The induction of only Arid1a KO did not cause any histological changes in the endometriotic cysts of recipients. In contrast, the induction of only Pten KO evoked a stratified architecture and nuclear atypia in the epithelial lining of all endometriotic cysts, histologically corresponding to atypical endometriosis. The induction of Arid1a; Pten double-KO evoked papillary and cribriform structures with nuclear atypia in the lining of 42 and 50% of peritoneal and ovarian endometriotic cysts, respectively, which were histologically similar to EAOC. These results indicate that this mouse model is useful for investigating the mechanisms underlying the development of EAOC and the related microenvironment.
Collapse
Affiliation(s)
- Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Junko Uchikawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hirofumi Ando
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Tanaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Manaka Shinagawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yusuke Yokokawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shiho Asaka
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Diagnostic Pathology, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB-2 Rm 306, Baltimore, MD, 21287, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB-2 Rm 305, Baltimore, MD, 21287, USA
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
15
|
Petkova M, Kraft M, Stritt S, Martinez-Corral I, Ortsäter H, Vanlandewijck M, Jakic B, Baselga E, Castillo SD, Graupera M, Betsholtz C, Mäkinen T. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation. J Exp Med 2023; 220:e20220741. [PMID: 36688917 PMCID: PMC9884640 DOI: 10.1084/jem.20220741] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marle Kraft
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Bojana Jakic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eulàlia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sandra D. Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Menter DG, Bresalier RS. An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention. Annu Rev Pharmacol Toxicol 2023; 63:165-186. [PMID: 36202092 DOI: 10.1146/annurev-pharmtox-052020-023107] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
17
|
Arendt ML, Sakthikumar S, Melin M, Elvers I, Rivera P, Larsen M, Saellström S, Lingaas F, Rönnberg H, Lindblad-Toh K. PIK3CA is recurrently mutated in canine mammary tumors, similarly to in human mammary neoplasia. Sci Rep 2023; 13:632. [PMID: 36635367 PMCID: PMC9837039 DOI: 10.1038/s41598-023-27664-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Biological features of neoplastic disease affecting mammary gland tissue are shared between canines and humans. Research performed in either species has translational value and early phase clinical trials performed in canines with spontaneous disease could be informative for human trials. The purpose of this study was to investigate the somatic genetic aberrations occurring in canine mammary neoplasia by exome capture and next generation sequencing. Based on 55 tumor-normal pairs we identified the PIK3CA gene as the most commonly mutated gene in canine mammary tumors, with 25% of samples carrying mutations in this gene. A recurrent missense mutation was identified, p.H1047R, which is homologous to the human PIK3CA hotspot mutation found in different types of breast neoplasia. Mutations homologous to other known human mutation hotspots such as the PIK3CA p.E545K and the KRAS p.G12V/D were also identified. We identified copy number aberrations affecting important tumor suppressor and oncogenic pathways including deletions affecting the PTEN tumor suppressor gene. We suggest that activation of the KRAS or PIK3CA oncogenes or loss of the PTEN suppressor gene may be important for mammary tumor development in dogs. This data endorses the conservation of cancer across species and the validity of studying cancer in non-human species.
Collapse
Affiliation(s)
- Maja Louise Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | | - Malin Melin
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Uppsala University, Uppsala, Sweden
| | | | | | | | - Sara Saellström
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Frode Lingaas
- Veterinary Faculty, Norwegian University of Life Sciences, Ås, Norway
| | - Henrik Rönnberg
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Silveira C, Sousa AC, Corredeira P, Martins M, Sousa AR, Da Cruz Paula A, Selenica P, Brown DN, Golkaram M, Kaplan S, Zhang S, Liu L, Weigelt B, Reis-Filho JS, Costa L, Carmo-Fonseca M. Comprehensive Genomic Profiling of Cell-Free Circulating Tumor DNA Detects Response to Ribociclib Plus Letrozole in a Patient with Metastatic Breast Cancer. Biomolecules 2022; 12:biom12121818. [PMID: 36551247 PMCID: PMC9775495 DOI: 10.3390/biom12121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Analysis of cell-free circulating tumor DNA obtained by liquid biopsy is a non-invasive approach that may provide clinically actionable information when conventional tissue biopsy is inaccessible or infeasible. Here, we followed a patient with hormone receptor-positive and human epidermal growth factor receptor (HER) 2-negative breast cancer who developed bone metastases seven years after mastectomy. We analyzed circulating cell-free DNA (cfDNA) extracted from plasma using high-depth massively parallel sequencing targeting 468 cancer-associated genes, and we identified a clonal hotspot missense mutation in the PIK3CA gene (3:178952085, A > G, H1047R) and amplification of the CCND1 gene. Whole-exome sequencing revealed that both alterations were present in the primary tumor. After treatment with ribociclib plus letrozole, the genetic abnormalities were no longer detected in cfDNA. These results underscore the clinical utility of combining liquid biopsy and comprehensive genomic profiling to monitor treatment response in patients with metastasized breast cancer.
Collapse
Affiliation(s)
- Catarina Silveira
- GenoMed—Diagnósticos de Medicina Molecular, S.A., Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Carla Sousa
- GenoMed—Diagnósticos de Medicina Molecular, S.A., Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Rita Sousa
- Serviço de Oncologia Médica, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - Arnaud Da Cruz Paula
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - David N. Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mahdi Golkaram
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Shannon Kaplan
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Shile Zhang
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Li Liu
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Serviço de Oncologia Médica, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
19
|
Avila M, Grinsfelder MO, Pham M, Westin SN. Targeting the PI3K Pathway in Gynecologic Malignancies. Curr Oncol Rep 2022; 24:1669-1676. [PMID: 36401704 PMCID: PMC10862662 DOI: 10.1007/s11912-022-01326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW This review explores the PI3K pathway aberrations common in gynecologic malignancies, the relevant therapeutic targets that have been explored to date particularly given their success in endometrial cancers, and predictive biomarkers of response to therapy. RECENT FINDINGS Landmark trials have been noted involving this pathway, particularly in endometrial cancers. One phase II trial of the potent orally bioavailable mTOR inhibitor, everolimus, in combination with letrozole demonstrated an unprecedented clinical benefit rate (CBR) of 40% and high objective response rate (RR) of 32% in hormone agnostic endometrial cancers. This was followed by GOG 3007 that compared everolimus and letrozole to hormonal therapy yielding similar response rates but double progression-free survival rates. The phosphoinositide 3-kinase (PI3K) signaling pathway is implicated in tumorigenesis given its regulation over cell growth, cellular trafficking, and angiogenesis. In gynecologic malignancies, alterations in PI3K signaling are common. Therefore, developing modulators of the PI3K pathway and identifying molecular markers to predict response are of great interest for these cancer types.
Collapse
Affiliation(s)
- Monica Avila
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Michaela Onstad Grinsfelder
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Melissa Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
21
|
Dahoud W, Handler J, Parimi V, Meyer CF, Wethington SL, Eshleman JR, Vang R, Ronnett BM, Xing D. Adult Granulosa Cell Tumor With Sarcomatous Transformation: A Case Study With Emphasis on Molecular Alterations. Int J Gynecol Pathol 2022; 41:600-607. [PMID: 34856571 PMCID: PMC9167042 DOI: 10.1097/pgp.0000000000000845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult granulosa cells tumors (AGCTs) are typically low-grade indolent tumors. On rare occasions, they undergo high-grade/sarcomatous transformation and behave aggressively. This transformation is postulated to occur as the result of acquired genetic alterations, some of which may be eligible for targeted therapy. Here we report a rare case of AGCT with sarcomatous transformation that harbored distinct molecular alterations from those typically seen with AGCTs supporting a molecularly driven approach to these malignancies. The patient is a 56-yr-old G3P3 woman with a history of multiple recurrences of ovarian AGCT for which the first diagnosis was made at the age of 25 when she was evaluated for infertility. The ovarian tumor displayed typical features of AGCT with low-grade, bland morphology. The first extraovarian spread of tumor involving the cul-de-sac was reported at the age of 39. After that, recurrences occurred every 2 to 3 yr with involvement of multiple anatomic sites and repeated surgical resections. At the age of 55 she developed a symptomatic recurrence in the pelvis and underwent resection of an isolated lesion (specimen 1) to no gross residual disease. Within 4 wk of resection she developed significant pelvic pain and imaging showed recurrence of the mass. Therefore, in 5 mo after the initial resection she underwent repeat excision of the lesion (specimen 2) and associated bowel. The sections from specimen 1 showed a biphasic morphology: a low-grade component with morphology and immunophenotype consistent with a typical AGCT and a high-grade spindle cell component with features consistent with a high-grade sarcoma. Specimen 2 featured a pure high-grade sarcoma characterized by coagulative tumor cell necrosis, readily recognizable mitoses, highly atypical cells with vesicular nuclei and prominent nucleoli. SF-1 positivity and the presence of FOXL2 C134W mutation in the sarcomatous component support the notion of transformation of typical AGCT. While detected TERT promoter C228T mutation may play a role in this process, we further identified genetic alterations affecting PI3K/AKT/mTOR pathway, including mutations in PIK3CA , PIK3R1 , AKT1 , and NF2 , which may also contribute to tumor progression/transformation. These findings provide rationale for molecular/pathway-based targeted therapy for patients with advanced AGCT.
Collapse
|
22
|
Deep Learning-Based Image Analysis for the Quantification of Tumor-Induced Angiogenesis in the 3D In Vivo Tumor Model—Establishment and Addition to Laser Speckle Contrast Imaging (LSCI). Cells 2022; 11:cells11152321. [PMID: 35954165 PMCID: PMC9367525 DOI: 10.3390/cells11152321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: angiogenesis plays an important role in the growth and metastasis of tumors. We established the CAM assay application, an image analysis software of the IKOSA platform by KML Vision, for the quantification of blood vessels with the in ovo chorioallantoic membrane (CAM) model. We added this proprietary deep learning algorithm to the already established laser speckle contrast imaging (LSCI). (2) Methods: angiosarcoma cell line tumors were grafted onto the CAM. Angiogenesis was measured at the beginning and at the end of tumor growth with both measurement methods. The CAM assay application was trained to enable the recognition of in ovo CAM vessels. Histological stains of the tissue were performed and gluconate, an anti-angiogenic substance, was applied to the tumors. (3) Results: the angiosarcoma cells formed tumors on the CAM that appeared to stay vital and proliferated. An increase in perfusion was observed using both methods. The CAM assay application was successfully established in the in ovo CAM model and anti-angiogenic effects of gluconate were observed. (4) Conclusions: the CAM assay application appears to be a useful method for the quantification of angiogenesis in the CAM model and gluconate could be a potential treatment of angiosarcomas. Both aspects should be evaluated in further research.
Collapse
|
23
|
Vique‐Sánchez JL, Benítez‐Cardoza CG. A Potential PIK3CA Inhibitor to Develop an Anticancer Drug. ChemistrySelect 2022. [DOI: 10.1002/slct.202202301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Hall DCN, Benndorf RA. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cell Mol Life Sci 2022; 79:393. [PMID: 35780223 PMCID: PMC9250486 DOI: 10.1007/s00018-022-04430-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxygenase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of aspirin's prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.
Collapse
Affiliation(s)
- Daniella C N Hall
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
25
|
Ouedraogo SY, Zoure AA, Zeye MMJ, Kiendrebeogo TI, Zhou X, Sawadogo AY, Simpore J, Chen H. BRCA1, BRCA2, TP53, PIK3CA, PTEN and AKT1 genes mutations in Burkina Faso breast cancer patients: prevalence, spectrum and novel variant. Mol Genet Genomics 2022; 297:1257-1268. [PMID: 35731312 DOI: 10.1007/s00438-022-01914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023]
Abstract
BRCA1 and BRCA2 are the two most commonly mutated tumor suppressor genes associated with hereditary breast cancer (BC). Also, mutations in TP53, PIK3CA, PTEN and AKT1 were observed at a high frequency in BC with their mutation spectrum exhibiting a subgroup particularity with enormous clinical significance in the prevention, classification and treatment of cancers. Unfortunately, the mutation spectrum of these genes is still unknown in most Sub-Saharan African population. Therefore, using samples from 133 unselected BC patients, we aimed to assess the contribution of these mutations by direct Sanger sequencing. The analysis revealed pathogenic germline variants on BRCA1 exon 11 (c.3331C > T, 0.75%) and BRCA2 exon 11 (c.5635G > T, c.6211delA; 1.5%). Five other pathogenic variants were identified in 61 of the 133 subjects (45.86%), with 39.09% for PIK3CA, 12.78% for TP53. Interestingly, a variant in PIK3CA found in high frequency in our population was different from the one usually found in other populations (c.1634A > C, 38.34%), and four patients carried mutations linked to Cowen Syndrome 5 c.[1634A > C;1658_1659delGTinsC]. A novel variant (c.312G > T) was found in TP53 gene at 12.78%. Overall, mutation carriers were found more in Her2 negative and in patients that underwent surgery and chemotherapy. No pathogenic variant was found in PTEN and AKT1. Our population displayed a high frequency of PIK3CA mutations with an unusual distribution and spectrum as well as a relatively low prevalence of BRCA mutations. Our results provided novel data on an unstudied population and may help in prevention, and the establishment of suitable therapeutic approaches for our population.
Collapse
Affiliation(s)
- Serge Yannick Ouedraogo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, No. 172 Tongzipo Road, Changsha, 410013, Hunan, China.,Biomolecular Research Center Pietro Annigoni (CERBA)/LABIOGENE, University of Ouaga 1 Pr Joseph KI ZERBO, UFR/SVT, Ouagadougou, Burkina Faso
| | - Abdou Azaque Zoure
- Biomolecular Research Center Pietro Annigoni (CERBA)/LABIOGENE, University of Ouaga 1 Pr Joseph KI ZERBO, UFR/SVT, Ouagadougou, Burkina Faso.,Institute of Health Sciences Research (IRSS/CNRST)/Department of Biomedical and Public Health, Ouagadougou, Burkina Faso
| | - Moutanou Modeste Judes Zeye
- Biomolecular Research Center Pietro Annigoni (CERBA)/LABIOGENE, University of Ouaga 1 Pr Joseph KI ZERBO, UFR/SVT, Ouagadougou, Burkina Faso.,Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | | | - Xi Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, No. 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Alexis Yobi Sawadogo
- Service of Gynecology, University Hospital Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Jacques Simpore
- Biomolecular Research Center Pietro Annigoni (CERBA)/LABIOGENE, University of Ouaga 1 Pr Joseph KI ZERBO, UFR/SVT, Ouagadougou, Burkina Faso
| | - Hanchun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, No. 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
26
|
The diagnostic importance of pathogenic variants and variant coexistence determined by NGS-based liquid biopsy approach in patients with lung adenocarcinoma. Mol Cell Probes 2022; 64:101819. [DOI: 10.1016/j.mcp.2022.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022]
|
27
|
Deng S, Leong HC, Datta A, Gopal V, Kumar AP, Yap CT. PI3K/AKT Signaling Tips the Balance of Cytoskeletal Forces for Cancer Progression. Cancers (Basel) 2022; 14:1652. [PMID: 35406424 PMCID: PMC8997157 DOI: 10.3390/cancers14071652] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The PI3K/AKT signaling pathway plays essential roles in multiple cellular processes, which include cell growth, survival, metabolism, and motility. In response to internal and external stimuli, the PI3K/AKT signaling pathway co-opts other signaling pathways, cellular components, and cytoskeletal proteins to reshape individual cells. The cytoskeletal network comprises three main components, which are namely the microfilaments, microtubules, and intermediate filaments. Collectively, they are essential for many fundamental structures and cellular processes. In cancer, aberrant activation of the PI3K/AKT signaling cascade and alteration of cytoskeletal structures have been observed to be highly prevalent, and eventually contribute to many cancer hallmarks. Due to their critical roles in tumor progression, pharmacological agents targeting PI3K/AKT, along with cytoskeletal components, have been developed for better intervention strategies against cancer. In our review, we first discuss existing evidence in-depth and then build on recent advances to propose new directions for therapeutic intervention.
Collapse
Affiliation(s)
- Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Hin Chong Leong
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Arpita Datta
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
28
|
Messaoudi S, Al Sharhan N, Alharthi B, Babu S, Alsaleh A, Alasiri A, Assidi M, Buhmeida A, Almawi W. Detection of genetic mutations in patients with breast cancer from Saudi Arabia using Ion AmpliSeq™ Cancer Hotspot Panel v.2.0. Biomed Rep 2022; 16:26. [PMID: 35251613 PMCID: PMC8889543 DOI: 10.3892/br.2022.1509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022] Open
Abstract
Next-Generation Sequencing allows for quick and precise sequencing of multiple genes concurrently. Recently, this technology has been employed for the identification of novel gene mutations responsible for disease manifestation among breast cancer (BC) patients, the most common type of cancer amongst Arabian women, and the major cause of disease-associated death in women worldwide. Genomic DNA was extracted from the peripheral blood of 32 Saudi Arabian BC patients with histologically confirmed invasive BC stages I-III and IV, as well from 32 healthy Saudi Arabian women using a QIAamp® DNA Mini Kit. The isolated DNA was quantified using a Qubit™ dsDNA BR Assay Kit with a Qubit 2.0 Fluorometer. Ion semiconductor sequencing technology with an Ion S5 System and AmpliSeq™ Cancer Hotspot Panel v2 were utilized to analyze ~2,800 mutations described in the Catalogue of Somatic Mutations in Cancer from 50 oncogenes and tumor suppressor genes. Ion Reporter Software v.5.6 was used to evaluate the genomic alterations in all the samples after alignment to the hg19 human reference genome. The results showed that out of the 50 genes, 26 mutations, including 17 (65%) missense point mutations (single nucleotide variants), and 9 (35%) frameshift (insertion/deletion) mutations, were identified in 11 genes across the cohort in 61 samples (95%). Mutations were predominantly focused on two genes, PIK3CA and TP53, in the BC genomes of the sample set. PIK3CA mutation, c.1173A>G located in exon 9, was identified in 15 patients (46.9%). The TP53 mutations detected were a missense mutation (c.215C>G) in 26 patients (86.70%) and 1 frameshift mutation (c.215_216insG) in 1 patient (3.33%), located within exon 3 and 5, respectively. This study revealed specific mutation profiles for every BC patient, Thus, the results showed that Ion Torrent DNA Sequencing technology may be a possible diagnostic and prognostic method for developing personalized therapy based on the patient's individual BC genome.
Collapse
Affiliation(s)
- Safia Messaoudi
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Nourah Al Sharhan
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Bandar Alharthi
- Department of Surgery, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Saranya Babu
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Abrar Alsaleh
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Alanoud Alasiri
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wassim Almawi
- Faculty of Sciences, El‑Manar University, 1068 Tunis, Tunisia
| |
Collapse
|
29
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
30
|
Driskill JH, Hwang H, Callan AK, Oliver D. Case Report of Fibro-Adipose Vascular Anomaly (FAVA) with Activating Somatic PIK3CA Mutation. Case Rep Genet 2022; 2022:9016497. [PMID: 35967928 PMCID: PMC9363927 DOI: 10.1155/2022/9016497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Fibro-adipose vascular anomaly (FAVA) is a recently described complex and painful benign lesion found in young adults and the pediatric population composed of intramuscular vascular, fibrous, and adipose tissues. A previous report has identified the presence of somatic mosaic mutations in the gene for the catalytic subunit of phosphatidylinositol 3-kinase (PIK3CA) in cases of FAVA. Herein, we present a case of FAVA found in a 23-year-old male patient who presented with chronic wrist pain associated with a mass, and we identified an associated somatic activating mutation (H1047R) in PIK3CA. We briefly review the relevant literature surrounding the identification and histology of FAVA, the known mutational spectrum, downstream signaling pathways, and relevant treatment modalities. Our case highlights the association between FAVA and somatic mosaic activating PIK3CA mutations.
Collapse
Affiliation(s)
- Jordan H. Driskill
- Medical Scientist Training Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Helena Hwang
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexandra K. Callan
- Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight Oliver
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Class I PI3K Biology. Curr Top Microbiol Immunol 2022; 436:3-49. [DOI: 10.1007/978-3-031-06566-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Sir-Mendoza F, González-Martínez F, Madera M. Prevalence of KRAS, PIK3CA, BRAF and AXIN2 gene mutations in colorectal cancer and its relationship with dental agenesis: a systematic review. REVISTA DE LA FACULTAD DE MEDICINA 2021. [DOI: 10.15446/revfacmed.v71n1.95595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: The study of allelic and genotypic frequencies contributes to determining the distribution of genetic variants in different populations and their possible association with biomarkers. This knowledge could improve the decision-making process regarding the management of some diseases such as colorectal cancer (CRC), in which the detection of clinical biomarkers such as dental agenesis could be crucial in clinical practice.
Objective: To evaluate the available scientific evidence on the prevalence of KRAS, PIK3CA, BRAF and AXIN2 mutations and their possible association with dental agenesis in people with CRC.
Materials and methods: A systematic search was conducted in PubMed, EMBASE and Cochrane Library databases using the following search strategy: type of studies: observational studies reporting the prevalence of KRAS, PIK3CA, BRAF and AXIN2 mutations in people diagnosed with CRC and their possible association with dental agenesis; publication language: English and Spanish; publication period: 2010-2020; search terms: “Genes”, “RAS”, “Kras”, “PIK3CA”, “BRAF”, “AXIN2”, “Mutation”, “Polymorphism”, “Colorectal Neoplasms”, “Colorectal Cancer”, used in different combinations (“AND” and “OR”).
Results: The initial search yielded 403 records, but only 30 studies met the eligibility criteria. Of these, 11, 5, 5 and 1 only reported the prevalence of PIK3CA, KRAS, BRAF and AXIN2 mutations, respectively; while 8 reported the prevalence of more than one of these mutations in patients with CRC. The prevalence of KRAS (p.Gly12Asp), PIK3CA (p.Glu545Lys), and BRAF (p.Val600Glu) mutations ranged from 20.5% to 54%, 3.5% to 20.2%, and 2.5% to 12.1%, respectively. There were no findings regarding the association between the occurrence of these mutations and dental agenesis.
Conclusions: KRAS mutations were the most prevalent; however, there is no evidence on the association between dental agenesis and the occurrence of KRAS, PIK3CA and BRAF germline mutations in individuals with CRC.
Collapse
|
33
|
Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Proc Natl Acad Sci U S A 2021; 118:2109327118. [PMID: 34725156 PMCID: PMC8609346 DOI: 10.1073/pnas.2109327118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are of critical importance in cell signaling and can function as drivers of disease. Information on the PI3K structure is essential for an understanding of the function of these proteins and for the identification of specific and effective small-molecule inhibitors. Here we present a single-particle cryo-electron microscopy (cryo-EM) analysis of PI3Kα, the dimer consisting of the p110α catalytic subunit bound to the p85α regulatory subunit. We investigated three conformational states of PI3Kα: the unbound dimer, the dimer bound to the isoform-specific inhibitor BYL-719, and the dimer associated with an activating phosphopeptide. Each of these conformations reveals specific structural features that provide insights into conformation-associated functions. Phosphoinositide 3-kinases (PI3Ks) are lipid kinases essential for growth and metabolism. Their aberrant activation is associated with many types of cancers. Here we used single-particle cryoelectron microscopy (cryo-EM) to determine three distinct conformations of full-length PI3Kα (p110α–p85α): the unliganded heterodimer PI3Kα, PI3Kα bound to the p110α-specific inhibitor BYL-719, and PI3Kα exposed to an activating phosphopeptide. The cryo-EM structures of unbound and of BYL-719–bound PI3Kα are in general accord with published crystal structures. Local deviations are presented and discussed. BYL-719 stabilizes the structure of PI3Kα, but three regions of low-resolution extra density remain and are provisionally assigned to the cSH2, BH, and SH3 domains of p85. One of the extra density regions is in contact with the kinase domain blocking access to the catalytic site. This conformational change indicates that the effects of BYL-719 on PI3Kα activity extend beyond competition with adenosine triphosphate (ATP). In unliganded PI3Kα, the DFG motif occurs in the “in” and “out” positions. In BYL-719–bound PI3Kα, only the DFG-in position, corresponding to the active conformation of the kinase, was observed. The phosphopeptide-bound structure of PI3Kα is composed of a stable core resolved at 3.8 Å. It contains all p110α domains except the adaptor-binding domain (ABD). The p85α domains, linked to the core through the ABD, are no longer resolved, implying that the phosphopeptide activates PI3Kα by fully releasing the niSH2 domain from binding to p110α. The structures presented here show the basal form of the full-length PI3Kα dimer and document conformational changes related to the activated and inhibited states.
Collapse
|
34
|
Zhao T, Zhou Y, Wang Q, Yi X, Ge S, He H, Xue S, Du B, Ge J, Dong J, Qu L, Wang L, Zhou W. QPCT regulation by CTCF leads to sunitinib resistance in renal cell carcinoma by promoting angiogenesis. Int J Oncol 2021; 59:48. [PMID: 34036385 PMCID: PMC8208629 DOI: 10.3892/ijo.2021.5228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Sunitinib is widely used as a first‑line treatment for advanced renal cell carcinoma (RCC). However, a number of patients with RCC who receive sunitinib develop drug resistance; and the biological mechanisms involved in resistance to sunitinib remain unclear. It has previously been suggested that the protein glutaminyl‑peptide cyclotransferase (QPCT) is closely related to sunitinib resistance in RCC. Thus, in the present study, in order to further examine the molecular mechanisms responsible for sunitinib resistance in RCC, sunitinib‑non‑responsive and ‑responsive RCC tissue and plasma samples were collected and additional experiments were performed in order to elucidate the molecular mechanisms responsible for sunitinib resistance in RCC. The upstream and downstream regulatory mechanisms of QPCT were also evaluated. On the whole, the data from the present study suggest that QPCT, CCCTC‑binding factor (CTCF) and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit alpha (PIK3CA) may be used as targets for predicting, reversing and treating sunitinib‑resistant RCC.
Collapse
Affiliation(s)
- Tangliang Zhao
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yulin Zhou
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
- Department of Urology, Xuzhou Central Hospital, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qingyun Wang
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaoming Yi
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Silun Ge
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Haowei He
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Song Xue
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bowen Du
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jie Dong
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Le Qu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
35
|
Tsai WS, Hung TF, Chen JY, Huang SH, Chang YC. Early Detection and Dynamic Changes of Circulating Tumor Cells in Transgenic NeuN Transgenic (NTTg) Mice with Spontaneous Breast Tumor Development. Cancers (Basel) 2021; 13:cancers13133294. [PMID: 34209279 PMCID: PMC8267737 DOI: 10.3390/cancers13133294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This study aimed to prove the early presence of circulating tumor cells (CTCs) with viability and tumorigenesis in a murine model that spontaneously develops breast cancer. Serial CTC examinations were performed on NeuN transgenic mice, starting from the age of 8 weeks and continuing after palpable tumor formation. Prior to the detection of palpable tumors, the CTC counts rose over time from 1 ± 1.6 to 16 ± 9.5 per 75 μL; this number continued to grow with tumor development. The viability and tumorigenesis of the collected CTCs were confirmed by re-implanting the cells into a non-cancer-bearing mouse. Ultrasonography with Doppler showed a significant correlation between CTCs and tumor vascular density (p-value < 0.01), rather than tumor volume (p-value 0.076). Abstract Background: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development. Methods: In this longitudinal, clinically uninterrupted study, we collected 75 μL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs. Results: The CTC counts of the first group of mice were low (1 ± 1.6) initially. The average CTC counts were 16 ± 9.5, 29.0 ± 18.2, and 70.0 ± 30.3 cells per 75 μL blood at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability, respectively. There was a significant positive correlation between an increase in CTC levels and tumor vascular density (p-value < 0.01). This correlation was stronger than that between CTC levels and tumor size (p-value = 0.076). The captured CTCs were implanted into a non-tumor-bearing NTTg mouse for xenografting, confirming their viability and tumorigenesis. Conclusion: Serial CTCs during an early stage of tumor progression were quantified and found to be positively correlated with the later tumor vascular density and size. Furthermore, the successful generation of CTC-derived xenografts indicates the tumorigenicity of this early onset CTC population.
Collapse
Affiliation(s)
- Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (W.-S.T.); (S.-H.H.)
| | - Tsung-Fu Hung
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
- National Laboratory Animal Center, National Research Laboratories, Taipei 115, Taiwan
| | - Shu-Huan Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (W.-S.T.); (S.-H.H.)
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
- National Laboratory Animal Center, National Research Laboratories, Taipei 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Biomedical Translational Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: ; Tel.: +886-227899930
| |
Collapse
|
36
|
Qiu X, Wang Y, Liu F, Peng L, Fang C, Qian X, Zhang X, Wang Q, Xiao Z, Chen R, Yuan S, Li Y. Survival and prognosis analyses of concurrent PIK3CA mutations in EGFR mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors. Am J Cancer Res 2021; 11:3189-3200. [PMID: 34249454 PMCID: PMC8263631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/24/2021] [Indexed: 06/13/2023] Open
Abstract
In non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation, the prognostic impact of a concurrent Phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA) mutation was still unknown. Some studies have shown that EGFR mutant NSCLC patients treated with EGFR tyrosine kinase inhibitors (TKIs) when concurrent PIK3CA mutation have a worse prognosis and shorter survival time. This study conducted a retrospective analysis of NSCLC patients with EGFR mutant or concurrent PIK3CA mutations from January 2015 to October 2019 in the First Affiliated Hospital of Nanchang University. Relative to EGFR alone mutations (Single-Mt), we found that NSCLC patients with EGFR mutations coexisting with PIK3CA mutations (Double-Mt) treated with EGFR-TKIs had a shorter median time to progression (TTP): 7.8 months versus 10.9 months (Double-Mt versus Single-Mt, P = 0.001), and decrease in median overall survival (OS): 20.6 months versus 32.4 months (P < 0.001). The objective response rate (ORR) between Double-Mt and Single-Mt was 36.7% versus 61.9% (P = 0.044), disease control rates (DCR) was 80.1% versus 91.7% (P = 0.179). Obviously, EGFR-TKIs for EGFR mutate NSCLC patients when concurrent PIK3CA mutations have a worse prognosis and shorter survival time.
Collapse
Affiliation(s)
- Xiaotong Qiu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Fen Liu
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Lihong Peng
- Department of Medical Oncology, The Affiliated Ji’an Hospital of Nanchang University (Ji’an Central People’s Hospital)106 Jinggangshan Road, Ji’an 343000, China
| | - Chen Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Xiaoyin Qian
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Xinwei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Qian Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Zhehao Xiao
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Renfang Chen
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Shangkun Yuan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University17 Yongwai Zheng Road, Nanchang 330000, China
| |
Collapse
|
37
|
Verma R, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Sumi MP, Ahmad E, Ali A, Mahajan B, Saluja SS. Cross-talk between next generation sequencing methodologies to identify genomic signatures of esophageal cancer. Crit Rev Oncol Hematol 2021; 162:103348. [PMID: 33961993 DOI: 10.1016/j.critrevonc.2021.103348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
The asymptomatic behaviour of esophageal cancerous cells at early stages develops advanced clinical presentation of the disease, resulting in poor prognosis and curbed intervention of therapeutic modalities. The endeavours to detect diagnostic and prognostic markers have been proven futile at the clinical platform. While several biomarkers have been investigated, including CYFRA 21-1, carcinoembryonic antigen and squamous cell carcinoma antigen, their sensitivity has not proved consistently satisfactory across the various stages of esophageal cancer. Hence, there is an impending requirement of biomarkers for early diagnosis and better prognosis. In the recent past, next generation sequencing (NGS) tool has emerged as an important tool to highlight the hallmarks of esophageal cancer (EC). This review summarizes the changes/mutations occurred in tumor cells during carcinogenesis and addresses the contribution of NGS techniques, viz. whole genome sequencing (WGS), RNA-Sequencing and Exome sequencing (ES), in EC. Additionally, this review highlights the connection between the findings from these techniques. An effort has been made to emphasize the genes affected and involved signaling pathway in EC. Further, investigations of these mutated genes would not only shed light on the relevant genes to be studied but also help in the better management and cure through personalized therapy.
Collapse
Affiliation(s)
- Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta Parveen Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
38
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
39
|
Zhang M, Jang H, Nussinov R. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Res 2021; 81:237-247. [PMID: 33046444 PMCID: PMC7855922 DOI: 10.1158/0008-5472.can-20-0911] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site (km) and the other, for example, E542K and E545K, reduces the transition state barrier (ka), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Nussinov R, Zhang M, Tsai CJ, Jang H. Phosphorylation and Driver Mutations in PI3Kα and PTEN Autoinhibition. Mol Cancer Res 2020; 19:543-548. [PMID: 33288731 DOI: 10.1158/1541-7786.mcr-20-0818] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
PI3K and PTEN are the second and third most highly mutated proteins in cancer following only p53. Their actions oppose each other. PI3K phosphorylates signaling lipid PIP2 to PIP3 PTEN dephosphorylates it back. Driver mutations in both proteins accrue PIP3 PIP3 recruits AKT and PDK1 to the membrane, promoting cell-cycle progression. Here we review phosphorylation events and mutations in autoinhibition in PI3K and PTEN from the structural standpoint. Our purpose is to clarify how they control the autoinhibited states. In autoinhibition, a segment or a subunit of the protein occludes its functional site. Protein-protein interfaces are often only marginally stable, making them sensitive to changes in conditions in living cells. Phosphorylation can stabilize or destabilize the interfaces. Driver mutations commonly destabilize them. In analogy to "passenger mutations," we coin "passenger phosphorylation" to emphasize that the presence of a phosphorylation recognition sequence logo does not necessarily imply function. Rather, it may simply reflect a statistical occurrence. In both PI3K and PTEN, autoinhibiting phosphorylation events are observed in the occluding "piece." In PI3Kα, the "piece" is the p85α subunit. In PTEN, it is the C-terminal segment. In both enzymes the stabilized interface covers the domain that attaches to the membrane. Driver mutations that trigger rotation of the occluding piece or its deletion prompt activation. To date, both enzymes lack specific, potent drugs. We discuss the implications of detailed structural and mechanistic insight into oncogenic activation and how it can advance allosteric precision oncology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland. .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| |
Collapse
|
41
|
Ghalamkari S, Alavi S, Mianesaz H, Khosravian F, Bahreini A, Salehi M. A novel carcinogenic PI3Kα mutation suggesting the role of helical domain in transmitting nSH2 regulatory signals to kinase domain. Life Sci 2020; 269:118759. [PMID: 33189828 DOI: 10.1016/j.lfs.2020.118759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
AIMS Mutations in PIK3CA, which encodes p110α subunit of PI3K class IA enzymes, are highly frequent in breast cancer. Here, we aimed to probe mutations in exon 9 of PIK3CA and computationally simulate their function. MATERIALS AND METHODS PCR/HRM and PCR/sequencing were used for mutation detection in 40 breast cancer specimens. The identified mutations were queried via in silico algorithms to check the pathogenicity. The molecular dynamics (MD) simulations were utilized to assess the function of mutant proteins. KEY FINDINGS Three samples were found to harbor at least one of the E542K, E545K and L551Q mutations of which L551Q has not been reported previously. All mutations were confirmed to be pathogenic and MD simulations revealed their impact on protein function and regulation. The novel L551Q mutant dynamics was similar to that of previously found carcinogenic mutants, E542K and E545K. A functional role for the helical domain was also suggested by which the inhibitory signal of p85α is conducted to kinase domain via helical domain. Helical domain mutations lead to impairment of kinase domain allosteric regulation. Interestingly, our results show that p110α substrate binding pocket of kinase domain in mutants may have differential affinity for enzyme substrates, including anit-p110α drugs. SIGNIFICANCE The novel p110α L551Q mutation could have carcinogenic feature similar to previously known helical domain mutations.
Collapse
Affiliation(s)
- Safoura Ghalamkari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahryar Alavi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamidreza Mianesaz
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Khosravian
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Bahreini
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA, USA; KaryoGen, Isfahan, Iran.
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran; Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
42
|
Jang HJ, Lee A, Kang J, Song IH, Lee SH. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning. World J Gastroenterol 2020; 26:6207-6223. [PMID: 33177794 PMCID: PMC7596644 DOI: 10.3748/wjg.v26.i40.6207] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identifying genetic mutations in cancer patients have been increasingly important because distinctive mutational patterns can be very informative to determine the optimal therapeutic strategy. Recent studies have shown that deep learning-based molecular cancer subtyping can be performed directly from the standard hematoxylin and eosin (H&E) sections in diverse tumors including colorectal cancers (CRCs). Since H&E-stained tissue slides are ubiquitously available, mutation prediction with the pathology images from cancers can be a time- and cost-effective complementary method for personalized treatment. AIM To predict the frequently occurring actionable mutations from the H&E-stained CRC whole-slide images (WSIs) with deep learning-based classifiers. METHODS A total of 629 CRC patients from The Cancer Genome Atlas (TCGA-COAD and TCGA-READ) and 142 CRC patients from Seoul St. Mary Hospital (SMH) were included. Based on the mutation frequency in TCGA and SMH datasets, we chose APC, KRAS, PIK3CA, SMAD4, and TP53 genes for the study. The classifiers were trained with 360 × 360 pixel patches of tissue images. The receiver operating characteristic (ROC) curves and area under the curves (AUCs) for all the classifiers were presented. RESULTS The AUCs for ROC curves ranged from 0.693 to 0.809 for the TCGA frozen WSIs and from 0.645 to 0.783 for the TCGA formalin-fixed paraffin-embedded WSIs. The prediction performance can be enhanced with the expansion of datasets. When the classifiers were trained with both TCGA and SMH data, the prediction performance was improved. CONCLUSION APC, KRAS, PIK3CA, SMAD4, and TP53 mutations can be predicted from H&E pathology images using deep learning-based classifiers, demonstrating the potential for deep learning-based mutation prediction in the CRC tissue slides.
Collapse
Affiliation(s)
- Hyun-Jong Jang
- Department of Physiology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - J Kang
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - In Hye Song
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| |
Collapse
|
43
|
Brueffer C, Gladchuk S, Winter C, Vallon‐Christersson J, Hegardt C, Häkkinen J, George AM, Chen Y, Ehinger A, Larsson C, Loman N, Malmberg M, Rydén L, Borg Å, Saal LH. The mutational landscape of the SCAN-B real-world primary breast cancer transcriptome. EMBO Mol Med 2020; 12:e12118. [PMID: 32926574 PMCID: PMC7539222 DOI: 10.15252/emmm.202012118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a disease of genomic alterations, of which the panorama of somatic mutations and how these relate to subtypes and therapy response is incompletely understood. Within SCAN-B (ClinicalTrials.gov: NCT02306096), a prospective study elucidating the transcriptomic profiles for thousands of breast cancers, we developed a RNA-seq pipeline for detection of SNVs/indels and profiled a real-world cohort of 3,217 breast tumors. We describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population-based cohort and relate it to patient survival. We demonstrate that RNA-seq can be used to call mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the status of molecular pathways and mutational burden, and identify potentially druggable mutations in 86.8% of tumors. To make this rich dataset available for the research community, we developed an open source web application, the SCAN-B MutationExplorer (http://oncogenomics.bmc.lu.se/MutationExplorer). These results add another dimension to the use of RNA-seq as a clinical tool, where both gene expression- and mutation-based biomarkers can be interrogated in real-time within 1 week of tumor sampling.
Collapse
Affiliation(s)
- Christian Brueffer
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
| | - Sergii Gladchuk
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
| | - Christof Winter
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- Present address:
Institut für Klinische Chemie und PathobiochemieKlinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Johan Vallon‐Christersson
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Cecilia Hegardt
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Jari Häkkinen
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
| | - Anthony M George
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
| | - Yilun Chen
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
| | - Anna Ehinger
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- Department of PathologySkåne University HospitalLundSweden
| | - Christer Larsson
- Lund University Cancer CenterLundSweden
- Division of Molecular PathologyDepartment of Laboratory MedicineLund UniversityLundSweden
| | - Niklas Loman
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- Department of OncologySkåne University HospitalLundSweden
| | | | - Lisa Rydén
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- Department of SurgerySkåne University HospitalLundSweden
| | - Åke Borg
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Lao H Saal
- Division of OncologyDepartment of Clinical SciencesLund UniversityLundSweden
- Lund University Cancer CenterLundSweden
- CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| |
Collapse
|
44
|
PIK3CA C-terminal frameshift mutations are novel oncogenic events that sensitize tumors to PI3K-α inhibition. Proc Natl Acad Sci U S A 2020; 117:24427-24433. [PMID: 32929011 DOI: 10.1073/pnas.2000060117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PIK3CA hotspot mutation is well established as an oncogenic driver event in cancer and its durable and efficacious inhibition is a focus in the development and testing of clinical cancer therapeutics. However, hundreds of cancer-associated PIK3CA mutations remain uncharacterized, their sensitivity to PI3K inhibitors unknown. Here, we describe a series of PIK3CA C-terminal mutations, primarily nucleotide insertions, that produce a frame-shifted protein product with an extended C terminus. We report that these mutations occur at a low frequency across multiple cancer subtypes, including breast, and are sufficient to drive oncogenic transformation in vitro and in vivo. We demonstrate that the oncogenicity of these mutant p110α proteins is dependent on p85 but not Ras association. P110α-selective pharmacologic inhibition blocks transformation in cells and mammary tumors characterized by PIK3CA C-terminal mutation. Taken together, these results suggest patients with breast and other tumors characterized by PIK3CA C-terminal frameshift mutations may derive benefit from p110α-selective inhibitors, including the recently FDA-approved alpelisib.
Collapse
|
45
|
Kwong A, Cheuk IWY, Shin VY, Ho CYS, Au CH, Ho DNY, Wong EYL, Yu SWY, Chen J, Chan KKL, Ngan HYS, Chan TL, Ma ESK. Somatic mutation profiling in BRCA-negative breast and ovarian cancer patients by multigene panel sequencing. Am J Cancer Res 2020; 10:2919-2932. [PMID: 33042626 PMCID: PMC7539773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023] Open
Abstract
Targeted therapeutic agents such as poly (ADP-ribose) polymerases (PARP) inhibitors have emerged in treating cancers associated with germline BRCA mutations. Recently studies demonstrated the effectiveness of PARP inhibitors in treating patients with somatic BRCA mutations. Somatic mutations in 122 Chinese breast or ovarian cancer patients without BRCA, PTEN and TP53 mutations were screened using multigene sequencing panel. The five most frequent pathogenic or likely pathogenic mutated genes identified in breast cancer patients were PIK3CA (28.6%), TP53 (16.9%), MAP3K1 (14.3%), GATA3 (14.3%) and PTEN (5.2%). The five most frequently mutated genes identified in ovarian patients were TP53 (52.9%), KRAS (23.5%) and PIK3CA (11.8%), BRCA1 (5.9%) and RB1 (5.9%). Somatic PIK3CA and TP53 mutations were common events in both germline BRCA-negative breast and ovarian cancer patients. In contrast, somatic screening of BRCA mutations in BRCA-negative breast cancer patients has limited value. The results highlight the benefit of somatic testing to guide future research directions on other targeted therapies for breast and ovarian malignancies.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
- Department of Surgery, Hong Kong Sanatorium & HospitalHong Kong SAR
- Hong Kong Hereditary Breast Cancer Family RegistryHong Kong SAR
| | - Isabella WY Cheuk
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Vivian Yvonne Shin
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Cecilia YS Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Chun-Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Dona NY Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Elaine YL Wong
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Stephanie WY Yu
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Jiawei Chen
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Karen KL Chan
- Department of Obstetrics and Gynaecology, The University of Hong KongHong Kong SAR
| | - Hextan YS Ngan
- Department of Obstetrics and Gynaecology, The University of Hong KongHong Kong SAR
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family RegistryHong Kong SAR
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Edmond SK Ma
- Hong Kong Hereditary Breast Cancer Family RegistryHong Kong SAR
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| |
Collapse
|
46
|
Aydin AM, Chahoud J, Adashek JJ, Azizi M, Magliocco A, Ross JS, Necchi A, Spiess PE. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat Rev Urol 2020; 17:555-570. [DOI: 10.1038/s41585-020-0359-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
47
|
Parsons R. Discovery of the PTEN Tumor Suppressor and Its Connection to the PI3K and AKT Oncogenes. Cold Spring Harb Perspect Med 2020; 10:a036129. [PMID: 31932465 PMCID: PMC7397838 DOI: 10.1101/cshperspect.a036129] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN (phosphatase and tensin homolog on chromosome 10) was discovered over 20 years ago in 1997 and linked to the phosphatidylinositol 3-kinase (PI3K) and AKT oncogenes the following year. The discovery of PTEN emerged from the linked concepts of oncogenes and tumor suppressor genes that cause and prevent cancer and the fields of tumor viruses and human cancer genetics from which these two concepts arose. While much has been learned since, the initial discovery and characterization, including the discovery that PTEN is a regulator of PI3K and AKT, provide the foundation on which we continue to build our knowledge. To provide the context in which these cancer genes were discovered, background information that led to their discovery will also be discussed, which will hopefully be a useful guide for readers seeking to build on the work of others.
Collapse
Affiliation(s)
- Ramon Parsons
- Department of Oncological Sciences, Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
48
|
Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nat Commun 2020; 11:3644. [PMID: 32686686 PMCID: PMC7371703 DOI: 10.1038/s41467-020-17386-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a biologically heterogeneous disease. To characterize its mutational profile, we conduct targeted sequencing of 205 genes for 2,105 CRC cases with survival data. Our data shows several findings in addition to enhancing the existing knowledge of CRC. We identify PRKCI, SPZ1, MUTYH, MAP2K4, FETUB, and TGFBR2 as additional genes significantly mutated in CRC. We find that among hypermutated tumors, an increased mutation burden is associated with improved CRC-specific survival (HR = 0.42, 95% CI: 0.21–0.82). Mutations in TP53 are associated with poorer CRC-specific survival, which is most pronounced in cases carrying TP53 mutations with predicted 0% transcriptional activity (HR = 1.53, 95% CI: 1.21–1.94). Furthermore, we observe differences in mutational frequency of several genes and pathways by tumor location, stage, and sex. Overall, this large study provides deep insights into somatic mutations in CRC, and their potential relationships with survival and tumor features. Large scale sequencing study is of paramount importance to unravel the heterogeneity of colorectal cancer. Here, the authors sequenced 205 cancer genes in more than 2000 tumours and identified additional mutated driver genes, determined that mutational burden and specific mutations in TP53 are associated with survival odds.
Collapse
|
49
|
Kuroiwa Y, Nakayama J, Adachi C, Inoue T, Watanabe S, Semba K. Proliferative Classification of Intracranially Injected HER2-positive Breast Cancer Cell Lines. Cancers (Basel) 2020; 12:cancers12071811. [PMID: 32640677 PMCID: PMC7408688 DOI: 10.3390/cancers12071811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
HER2 is overexpressed in 25–30% of breast cancers, and approximately 30% of HER2-positive breast cancers metastasize to the brain. Although the incidence of brain metastasis in HER2-positive breast cancer is high, previous studies have been mainly based on cell lines of the triple-negative subtype, and the molecular mechanisms of brain metastasis in HER2-positive breast cancer are unclear. In the present study, we performed intracranial injection using nine HER2-positive breast cancer cell lines to evaluate their proliferative activity in brain tissue. Our results show that UACC-893 and MDA-MB-453 cells rapidly proliferated in the brain parenchyma, while the other seven cell lines moderately or slowly proliferated. Among these nine cell lines, the proliferative activity in brain tissue was not correlated with either the HER2 level or the HER2 phosphorylation status. To extract signature genes associated with brain colonization, we conducted microarray analysis and found that these two cell lines shared 138 gene expression patterns. Moreover, some of these genes were correlated with poor prognosis in HER2-positive breast cancer patients. Our findings might be helpful for further studying brain metastasis in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yuka Kuroiwa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (C.A.); (T.I.); (K.S.)
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (C.A.); (T.I.); (K.S.)
- Correspondence: ; Tel.: +81-3-5369-7320
| | - Chihiro Adachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (C.A.); (T.I.); (K.S.)
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (C.A.); (T.I.); (K.S.)
| | - Shinya Watanabe
- Department of Biomolecular Profiling, Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima 960-1295, Japan;
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (C.A.); (T.I.); (K.S.)
- Department of Cell Factory, Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
50
|
García-Carracedo D, Cai Y, Qiu W, Saeki K, Friedman RA, Lee A, Li Y, Goldberg EM, Stratikopoulos EE, Parsons R, Lu C, Efstratiadis A, Philipone EM, Yoon AJ, Su GH. PIK3CA and p53 Mutations Promote 4NQO-Initated Head and Neck Tumor Progression and Metastasis in Mice. Mol Cancer Res 2020; 18:822-834. [PMID: 32152233 PMCID: PMC7272268 DOI: 10.1158/1541-7786.mcr-19-0549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
The PI3K signaling pathway is frequently mutated in head and neck squamous cell carcinoma (HNSCC), often via gain-of-function (GOF) mutations in the PIK3CA gene. Here, we present novel genetically engineered mouse models (GEMM) carrying a GOF allele Loxp-STOP-Loxp(LSL)-PIK3CAH1047R (E20) alone or in combination with heterozygous LSL-p53+/R172H (p53) mutation with tissue-specific expression to interrogate the role of oncogenic PIK3CA in transformation of upper aerodigestive track epithelium. We demonstrated that the GOF PIK3CA mutation promoted progression of 4-nitroquinoline 1-oxide-induced oral squamous cell carcinoma (OSCC) in both E20 single mutant and E20/p53 double mutant mice, with frequent distal metastasis detected only in E20/p53 GEMM. Similar to in human OSCC, loss of p16 was associated with progression of OSCC in these mice. RNA-seq analyses revealed that among the common genes differentially expressed in primary OSCC cell lines derived from E20, p53, and E20/p53 GEMMs compared with those from the wild-type mice, genes associated with proliferation and cell cycle were predominantly represented, which is consistent with the progressive loss of p16 detected in these GEMMs. Importantly, all of these OSCC primary cell lines exhibited enhanced sensitivity to BYL719 and cisplatin combination treatment in comparison with cisplatin alone in vitro and in vivo, regardless of p53 and/or p16 status. Given the prevalence of mutations in p53 and the PI3K pathways in HNSCC in conjunction with loss of p16 genetically or epigenetically, this universal increased sensitivity to cisplatin and BYL719 combination therapy in cancer cells with PIK3CA mutation represents an opportunity to a subset of patients with HNSCC. IMPLICATIONS: Our results suggest that combination therapy of cisplatin and PI3K inhibitor may be worthy of consideration in patients with HNSCC with PIK3CA mutation.
Collapse
Affiliation(s)
- Darío García-Carracedo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Yi Cai
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Wanglong Qiu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Kiyoshi Saeki
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Andrew Lee
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Elizabeth M Goldberg
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Elias E Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | | | - Elizabeth M Philipone
- Division of Oral and Maxillofacial Pathology, Columbia University College of Dental Medicine, New York, New York
| | - Angela J Yoon
- Division of Oral and Maxillofacial Pathology, Columbia University College of Dental Medicine, New York, New York
| | - Gloria H Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York.
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|