1
|
Ayabe Y, Motomura G, Yamaguchi R, Utsunomiya T, Tanaka H, Sakamoto K, Nakashima Y. Involvement of Nerve Growth Factor in the Reparative Reaction to Osteonecrotic Lesions. J Orthop Res 2025; 43:939-948. [PMID: 39930333 DOI: 10.1002/jor.26055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
The reparative zone in femoral head osteonecrosis is pivotal for repair; however, the repair response mechanism remains poorly understood. Although neurotrophic nerve growth factor significantly contributes to bone formation in fatigue fractures and ectopic ossification, the relationship between nerve growth factor and the repair response to osteonecrosis remains unexplored. We aimed to elucidate the role of nerve growth factor in osteonecrosis repair. Twenty-seven wholly resected femoral heads diagnosed with Japanese Investigation Committee Stage 3 femoral head osteonecrosis, excluding those with severe collapse, were analyzed. Histopathological diagnosis confirmed the presence of necrotic, reparative, and viable zones in all examined femoral heads. Quantitative evaluation of immunohistological staining, including nerve growth factor, vascular endothelial growth factor, osteocalcin, CD31, and TUBB3, was conducted in each zone. Additionally, micro-computed tomography was used to measure the trabecular bone microstructure in the reparative zone. Nerve growth factor expression was detected in all 27 femoral heads with osteonecrosis, exhibiting a significantly higher prevalence in the reparative zone than in other regions (p < 0.0001). Nerve growth factor was predominantly distributed on the necrotic side within the reparative zone, rather than the viable side. In the reparative zone, nerve growth factor expression was positively correlated with bone formation parameters derived from micro-computed tomography images. Vascular endothelial growth factor, osteocalcin, CD31(+) vascular endothelial cells, and TUBB3(+) nerve cells also significantly increased in the reparative zone. In conclusion, nerve growth factor expression was consistent across all femoral heads with osteonecrosis and may play a role in reparative reaction to osteonecrotic lesions.
Collapse
Affiliation(s)
- Yusuke Ayabe
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Goro Motomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Yamaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidenao Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosei Sakamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Huang Y, Qin P, Zhou P, Long B, Zhang S, Gao R, Zhu B, Li Y, Li Q. Non-pharmacological interventions of intermittent fasting and pulsed radiofrequency energy (PRFE) combination therapy promote diabetic wound healing. Nutr Diabetes 2024; 14:83. [PMID: 39375333 PMCID: PMC11458794 DOI: 10.1038/s41387-024-00344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE This study aims to conduct an unbiased assessment of the synergistic effects of non-pharmacological Interventions of intermittent fasting and pulsed radiofrequency energy (PRFE) combination therapy on the facilitation of diabetic wound healing, while also exploring the underlying mechanisms. The findings of this research will provide a theoretical framework and innovative strategy for unconventional therapeutic interventions aimed at enhancing the healing process of diabetes-related wounds. METHODS In vivo experiments involved the induction of diabetic models in C57 mice through streptozotocin injection. To simulate a combined therapeutic approach, diabetic mice underwent fasting on days 2 and 6, accompanied by twice daily PRFE applications for 8 days. In vitro experiments were conducted using a serum-free culture medium to replicate fasting conditions. The investigation encompassed wound healing rate, proliferation, migration, angiogenesis, oxidative stress, fibrogenesis, and sensory nerve growth through histological analysis and functional assessments in vivo. Additionally, this study utilized quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting (WB), and immunofluorescence staining techniques to elucidate the potential mechanisms underlying the effects of intermittent Fasting and PRFE combination therapy in diabetic wound healing, both in vitro and in vivo. RESULTS The intermittent fasting and PRFE combination therapy demonstrated superior efficacy in enhancing diabetic wound healing compared to either treatment alone. It harnessed the respective strengths of individual therapies, fostering migration, mitigating oxidative stress, and enhancing fibrogenesis. Furthermore, the combination therapy manifested a synergistic effect in promoting proliferation, tube formation, angiogenesis, and sensory nerve growth. CONCLUSION This study demonstrates that intermittent fasting and PRFE combination therapy enhance diabetic wound healing, effectively leveraging the strengths of both therapies and even yielding synergistic benefits. Moreover, it indicates the potential engagement of the P75/HIF1A/VEGFA axis in mediating these effects.
Collapse
Affiliation(s)
- Yating Huang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Peiliang Qin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Binbin Long
- General Surgery Department, Taihe Hospital affiliated to Hubei University of Medicine, Shiyan, Hubei, 430000, China
| | - Shan Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ruikang Gao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Bingjie Zhu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China.
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China.
| |
Collapse
|
3
|
Lei Q, Jiang Z, Shao Y, Liu X, Li X. Stellate ganglion, inflammation, and arrhythmias: a new perspective on neuroimmune regulation. Front Cardiovasc Med 2024; 11:1453127. [PMID: 39328238 PMCID: PMC11424448 DOI: 10.3389/fcvm.2024.1453127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Current research on the stellate ganglion (SG) has shifted from merely understanding its role as a collection of neurons to recognizing its importance in immune regulation. As part of the autonomic nervous system (ANS), the SG plays a crucial role in regulating cardiovascular function, particularly cardiac sympathetic nerve activity. Abnormal SG function can lead to disordered cardiac electrical activity, which in turn affects heart rhythm stability. Studies have shown that excessive activity of the SG is closely related to the occurrence of arrhythmias, especially in the context of inflammation. Abnormal activity of the SG may trigger excessive excitation of the sympathetic nervous system (SNS) through neuroimmune mechanisms, thereby increasing the risk of arrhythmias. Simultaneously, the inflammatory response of the SG further aggravates this process, forming a vicious cycle. However, the causal relationship between SG, inflammation, and arrhythmias has not yet been fully clarified. Therefore, this article deeply explores the key role of the SG in arrhythmias and its complex relationship with inflammation, providing relevant clinical evidence. It indicates that interventions targeting SG function and inflammatory responses have potential in preventing and treating inflammation-related arrhythmias, offering a new perspective for cardiovascular disease treatment strategies.
Collapse
Affiliation(s)
- Qiulian Lei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zefei Jiang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Shao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinghong Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoping Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Ge S, Khachemoune A. Neuroanatomy of the Cutaneous Nervous System Regarding Wound Healing. INT J LOW EXTR WOUND 2024; 23:191-204. [PMID: 34779294 DOI: 10.1177/15347346211054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wound healing is an important topic in modern medicine across many disciplines. Healing of all cutaneous wounds, whether accidentally sustained or intentionally created, requires the common yet complex set of interactions between the immune, circulatory, nervous, endocrine, and integumentary systems. Deficits in any of these systems or the molecular factors that mediate their communications can contribute to impaired healing of cutaneous wounds. While the stages of wound repair, angiogenesis, growth factors, and cytokines involved have been extensively studied, the role of the cutaneous nervous system in wound healing has not been well outlined. We have provided a basic overview of cutaneous innervation and wound repair for the dermatologic surgeon by outlining the normal cutaneous nervous anatomy and function and discussing the most important neuropeptides that mediate the wound healing process.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA
- SUNY Downstate, Brooklyn, NY USA
| |
Collapse
|
5
|
Nolano M, Provitera V, Caporaso G, Fasolino I, Borreca I, Stancanelli A, Iuzzolino VV, Senerchia G, Vitale F, Tozza S, Ruggiero L, Iodice R, Ferrari S, Santoro L, Manganelli F, Dubbioso R. Skin innervation across amyotrophic lateral sclerosis clinical stages: new prognostic biomarkers. Brain 2024; 147:1740-1750. [PMID: 38123494 DOI: 10.1093/brain/awad426] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Over recent decades, peripheral sensory abnormalities, including the evidence of cutaneous denervation, have been reported among the non-motor manifestations in amyotrophic lateral sclerosis (ALS). However, a correlation between cutaneous innervation and clinical features has not been found. The aims of this study were to assess sensory involvement by applying a morpho-functional approach to a large population of ALS patients stratified according to King's stages and correlate these findings with the severity and prognosis of the disease. We recruited 149 ALS patients and 41 healthy controls. Patients undertook clinical questionnaires for small fibre neuropathy symptoms (Small Fiber Neuropathy Symptoms Inventory Questionnaire) and underwent nerve conductions studies (NCS) and 3-mm punch skin biopsies from leg, thigh and fingertip. We assessed intraepidermal nerve fibre (IENF) and Meissner corpuscle (MC) density by applying an indirect immunofluorescence technique. Moreover, a subset of 65 ALS patients underwent a longitudinal study with repeat biopsies from the thigh at 6- and 12-month follow-ups. Serum NfL levels were measured in 40 patients. Sensory symptoms and sensory NCS abnormalities were present in 32.2% and 24% of patients, respectively, and increased across clinical stages. Analogously, we observed a progressive reduction in amplitude of the sensory and motor ulnar nerve potential from stage 1 to stage 4. Skin biopsy showed a significant loss of IENFs and MCs in ALS compared with healthy controls (all P < 0.001). Across the clinical stages, we found a progressive reduction in MCs (P = 0.004) and an increase in IENFs (all P < 0.027). The increase in IENFs was confirmed by the longitudinal study. Interestingly, the MC density inversely correlated with NfL level (r = -0.424, P = 0.012), and survival analysis revealed that low MC density, higher NfL levels and increasing IENF density over time were associated with a poorer prognosis (all P < 0.024). To summarize, in patients with ALS, peripheral sensory involvement worsens in parallel with motor disability. Furthermore, the correlation between skin innervation and disease activity may suggest the use of skin innervation as a putative prognostic biomarker.
Collapse
Affiliation(s)
- Maria Nolano
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Vincenzo Provitera
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Giuseppe Caporaso
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Ilaria Borreca
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Annamaria Stancanelli
- Istituti Clinici Scientifici Maugeri IRCCS, Skin Biopsy Lab, Neurological Rehabilitation Unit of Telese Terme Institute, Telese Terme, Benevento 82037, Italy
| | - Valentina V Iuzzolino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Gianmaria Senerchia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Floriana Vitale
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, Verona 37134, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
6
|
Keykhaee M, Rahimifard M, Najafi A, Baeeri M, Abdollahi M, Mottaghitalab F, Farokhi M, Khoobi M. Alginate/gum arabic-based biomimetic hydrogel enriched with immobilized nerve growth factor and carnosine improves diabetic wound regeneration. Carbohydr Polym 2023; 321:121179. [PMID: 37739486 DOI: 10.1016/j.carbpol.2023.121179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/24/2023]
Abstract
Diabetic foot ulcers (DFUs) often remain untreated because they are difficult to heal, caused by reduced skin sensitivity and impaired blood vessel formation. In this study, we propose a novel approach to manage DFUs using a multifunctional hydrogel made from a combination of alginate and gum arabic. To enhance the healing properties of the hydrogel, we immobilized nerve growth factor (NGF), within specially designed mesoporous silica nanoparticles (MSN). The MSNs were then incorporated into the hydrogel along with carnosine (Car), which further improves the hydrogel's therapeutic properties. The hydrogel containing the immobilized NGF (SiNGF) could control the sustain release of NGF for >21 days, indicating that the target hydrogel (AG-Car/SiNGF) can serve as a suitable reservoir managing diabetic wound regeneration. In addition, Car was able to effectively reduce inflammation and significantly increase angiogenesis compared to the control group. Based on the histological results obtained from diabetic rats, the target hydrogel (AG-Car/SiNGF) reduced inflammation and improved re-epithelialization, angiogenesis, and collagen deposition. Specific staining also confirmed that AG-Car/SiNGF exhibited improved tissue neovascularization, transforming growth factor-beta (TGFβ) expression, and nerve neurofilament. Overall, our research suggests that this newly developed composite system holds promise as a potential treatment for non-healing diabetic wounds.
Collapse
Affiliation(s)
- Maryam Keykhaee
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Li X, Hu S, Liu P. Vascular-related biomarkers in psychosis: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1241422. [PMID: 37692299 PMCID: PMC10486913 DOI: 10.3389/fpsyt.2023.1241422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background While the molecular underpinnings of vascular dysfunction in psychosis are under active investigation, their implications remain unclear due to inconsistent and sometimes sparse observations. We conducted a comprehensive meta-analysis to critically assess the alterations of vascular-related molecules in the cerebrospinal fluid (CSF) and blood of patients with psychotic disorders compared with healthy individuals. Methods Databases were searched from inception to February 23, 2023. Meta-analyses were performed using a random-effects model. Meta-regression and subgroup analyses were conducted to assess the effects of clinical correlates. Results We identified 93 eligible studies with 30 biomarkers investigated in the CSF and/or blood. Among the biomarkers examined, psychotic disorders were associated with elevated CSF-to-serum albumin ratio (standardized mean difference [SMD], 0.69; 95% confidence interval [CI], 0.35-1.02); blood S100B (SMD, 0.88; 95% CI, 0.59-1.17), matrix metalloproteinase-9 (MMP-9; SMD, 0.66; 95% CI, 0.46-0.86), and zonulin (SMD, 1.17; 95% CI, 0.04-2.30). The blood levels of S100B, MMP-9, nerve growth factor (NGF), vascular endothelial growth factor (VEGF), intercellular adhesion molecule 1 (ICAM-1), and vascular adhesion molecule 1 (VCAM-1) were altered in patient subgroups differing in demographic and clinical characteristics. Blood S100B level was positively correlated with age and duration of illness. Substantial between-study heterogeneity was observed in most molecules. Conclusion The alterations in certain vascular-related fluid markers in psychotic disorders suggest disturbances in normal vascular structures and functions. However, not all molecules examined displayed clear evidence of changes. While potential impacts of clinical factors, including the administered treatment, were identified, the exploration remained limited. Further studies are needed to investigate the diverse patterns of expression, and understand how these abnormalities reflect the pathophysiology of psychosis and the impact of clinical factors.
Collapse
Affiliation(s)
- Xiaojun Li
- Tsinghua University School of Medicine, Beijing, China
| | - Shuang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pozi Liu
- Tsinghua University School of Medicine, Beijing, China
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Fico E, Rosso P, Triaca V, Segatto M, Lambiase A, Tirassa P. NGF Prevents Loss of TrkA/VEGFR2 Cells, and VEGF Isoform Dysregulation in the Retina of Adult Diabetic Rats. Cells 2022; 11:cells11203246. [PMID: 36291113 PMCID: PMC9600509 DOI: 10.3390/cells11203246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Among the factors involved in diabetic retinopathy (DR), nerve growth factor (NGF) and vascular endothelial growth factor A (VEGFA) have been shown to affect both neuronal survival and vascular function, suggesting that their crosstalk might influence DR outcomes. To address this question, the administration of eye drops containing NGF (ed-NGF) to adult Sprague Dawley rats receiving streptozotocin (STZ) intraperitoneal injection was used as an experimental paradigm to investigate NGF modulation of VEGFA and its receptor VEGFR2 expression. We show that ed-NGF treatment prevents the histological and vascular alterations in STZ retina, VEGFR2 expression decreased in GCL and INL, and preserved the co-expression of VEGFR2 and NGF-tropomyosin-related kinase A (TrkA) receptor in retinal ganglion cells (RGCs). The WB analysis confirmed the NGF effect on VEGFR2 expression and activation, and showed a recovery of VEGF isoform dysregulation by suppressing STZ-induced VEGFA121 expression. Reduction in inflammatory and pro-apoptotic intracellular signals were also found in STZ+NGF retina. These findings suggest that ed-NGF administration might favor neuroretina protection, and in turn counteract the vascular impairment by regulating VEGFR2 and/or VEGFA isoform expression during the early stages of the disease. The possibility that an increase in the NGF availability might contribute to the switch from the proangiogenic/apoptotic to the neuroprotective action of VEGF is discussed.
Collapse
Affiliation(s)
- Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (E.F.); (P.T.)
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (E.F.); (P.T.)
| |
Collapse
|
9
|
Lisi L, Ciotti GMP, Chiavari M, Martire M, Navarra P. The effects of CHF6467, a new mutated form of NGF, on cell models of human glioblastoma. A comparison with wild-type NGF. Growth Factors 2022; 40:37-45. [PMID: 35442129 DOI: 10.1080/08977194.2022.2060095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CHF6467 is a mutated form of human recombinant nerve growth factor (NGF). The mutation selectively disrupts the binding of NGF to its p75NTR receptor while maintaining the affinity toward TrkA receptor. Because of such different profile of receptor interaction, CHF6467 maintains unaltered the neurotrophic and neuroprotective properties of wild-type NGF but shows reduced algogenic activity.In this study, we investigated the effects of CHF6467 on mortality, proliferation, cell-damage and migration in three human glioblastoma cell lines (U87MG, T98G, LN18), and in the rat astrocytoma C6 cells. Both CHF6467 and wild-type NGF, given in the range 1-50 ng/ml, did not modify cell proliferation, metabolism and migration, as well as the number of live/dead cells.The present in vitro data are predictive of a lack of tumorigenic activity by both wild-type NGF and CHF6467 on these cell types in vivo, and warrant for CHF6467 further clinical development.
Collapse
Affiliation(s)
- Lucia Lisi
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Gabriella Maria Pia Ciotti
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Marta Chiavari
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Maria Martire
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
10
|
Rajpar I, Tomlinson RE. Function of peripheral nerves in the development and healing of tendon and bone. Semin Cell Dev Biol 2022; 123:48-56. [PMID: 33994302 PMCID: PMC8589913 DOI: 10.1016/j.semcdb.2021.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023]
Abstract
Although the functions of the peripheral nervous system in whole body homeostasis and sensation have been understood for many years, recent investigation has uncovered new roles for innervation in the musculoskeletal system. This review centers on advances regarding the function of nerves in the development and repair of two connected tissues: tendon and bone. Innervation in healthy tendons is generally confined to the tendon sheaths, and tendon-bone attachment units are typically aneural. In contrast to tendon, bone is an innervated and vascularized structure. Historically, the function of abundant peripheral nerves in bone has been limited to pain and some non-painful sensory perception in disease and injury. Indeed, much of our understanding of peripheral nerves in tendons, bones, and entheses is limited to the source and type of innervation in healthy and injured tissues. However, more recent studies have made important observations regarding the appearance, type, and innervation patterns of nerves during embryonic and postnatal development and in response to injury, which suggest a more expansive role for peripheral nerves in the formation of musculoskeletal tissues. Indeed, tendons and bones develop in a close spatiotemporal relationship in the embryonic mesoderm. Models of limb denervation have shed light on the importance of sensory innervation in bone and to a lesser extent, tendon development, and more recent work has unraveled key nerve signaling pathways. Furthermore, loss of sensory innervation also impairs healing of bone fractures and may contribute to chronic tendinopathy. However, more study is required to translate our knowledge of peripheral nerves to therapeutic strategies to combat bone and tendon diseases.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan E Tomlinson
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Zhu T, Zhu M, Qiu Y, Wu Z, Huang N, Wan G, Xu J, Song P, Wang S, Yin Y, Li P. Puerarin Alleviates Vascular Cognitive Impairment in Vascular Dementia Rats. Front Behav Neurosci 2021; 15:717008. [PMID: 34720898 PMCID: PMC8554240 DOI: 10.3389/fnbeh.2021.717008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia triggers vascular dementia (VD), which is characterized by memory loss, cognitive deficits, and vascular injury in the brain. Puerarin (Pur) represents the major isoflavone glycoside of Radix Puerariae, with verified neuroprotective activity and cardiovascular protective effects. However, whether Pur ameliorates cognitive impairment and vascular injury in rats with permanent occlusion of bilateral common carotid arteries (BCCAO) remains unknown. This work aimed to assess Pur's effects on BCCAO-induced VD and to dissect the underlying mechanisms, especially examining the function of transient receptor potential melastatin-related 2 (TRPM2) in alleviating cognitive deficits and vascular injuries. Rats with BCCAO developed VD. Pur (50, 100, and 150 mg/kg) dose-dependently attenuated the pathological changes, increased synaptic structural plasticity in the dorsal CA1 hippocampal region and decreased oxidative stress, which eventually reduced cognitive impairment and vascular injury in BCCAO rats. Notably, Pur-improved neuronal cell loss, synaptic structural plasticity, and endothelial vasorelaxation function might be mediated by the reactive oxygen species (ROS)-dependent TRPM2/NMDAR pathway, evidenced by decreased levels of ROS, malondialdehyde (MDA), Bax, Bax/Bcl2, and TRPM2, and increased levels of superoxide dismutase (SOD), Bcl2, and NR2A. In conclusion, Pur has therapeutic potential for VD, alleviating neuronal cell apoptosis and vascular injury, which may be related to the ROS-dependent TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Moli Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Zeqing Wu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guangrui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuangxi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yaling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| |
Collapse
|
12
|
Gajardo G, Ulloa-Leal C, Valderrama X, Paiva L, Ratto MH. Heterologous beta-nerve growth factor (β-NGF) given at the LH surge enhances luteal function in dairy heifers. Domest Anim Endocrinol 2021; 77:106645. [PMID: 34186420 DOI: 10.1016/j.domaniend.2021.106645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 01/12/2023]
Abstract
Genetic selection for high yield milk production has led to a decline in dairy cattle's reproductive performance over the last 40 years. Low progesterone (P4) plasma content following ovulation is associated with suboptimal fertility in dairy cattle. Several pieces of evidence indicate that the protein beta-nerve growth factor (β-NGF) that is present in the male seminal plasma exerts potent ovulatory and luteotrophic effects following systemic administration in camelids but also in other species. In this study, we determine whether systemic administration of purified llama β-NGF given at the induced preovulatory luteinizing hormone (LH) peak improves corpus luteum (CL) function in dairy heifers subjected to an estradiol (E2) / P4 estrus-synchronization protocol. To achieve this, we first determined plasma E2 and LH hormone profiles to establish the timing of the estradiol benzoate (EB)-induced LH peak in estrus-synchronized heifers. Then, we tested whether the administration of β-NGF given at the end of this peak affects the CL and its function by analyzing diameter, vascular area, and P4 output. Our results show that, with the estrus-synchronization protocol applied, plasma LH concentrations peaked (P < 0.01) 40-h and 16-h after removal of the bovine intravaginal device (DIB; containing 1.0 g of P4) plus cloprostenol injection and subsequent EB administration, respectively; after peaking, plasma LH concentrations remained stable for the next 8-h to then return to basal levels. Heifers synchronized with this protocol and receiving a dose of 1 mg of β-NGF at the end of the LH peak (ie, 48-h after DIB removal) did not show significant differences in CL diameter, but these exhibited a greater CL vascular area (P = 0.01) than the observed in vehicle-injected heifers. Furthermore, plasma P4 concentration in β-NGF-treated heifers was higher (P = 0.001) than those quantified in vehicle-injected heifers. These results support the use of β-NGF in estrus-synchronization protocols to improve the early luteal function in dairy heifers.
Collapse
Affiliation(s)
- G Gajardo
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile
| | - C Ulloa-Leal
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile
| | - X Valderrama
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias (INIA), Casilla 24-0 - Osorno, Chile
| | - L Paiva
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile
| | - M H Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile.
| |
Collapse
|
13
|
Alastra G, Aloe L, Baldassarro VA, Calzà L, Cescatti M, Duskey JT, Focarete ML, Giacomini D, Giardino L, Giraldi V, Lorenzini L, Moretti M, Parmeggiani I, Sannia M, Tosi G. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci 2021; 15:695592. [PMID: 34335170 PMCID: PMC8319677 DOI: 10.3389/fnins.2021.695592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.
Collapse
Affiliation(s)
- Giuseppe Alastra
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Jason Thomas Duskey
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Letizia Focarete
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- IRET Foundation, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Irene Parmeggiani
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sannia
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giovanni Tosi
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Bae YU, You JH, Cho NH, Kim LE, Shim HM, Park JH, Cho HC. Association of Protein Z with Prediabetes and Type 2 Diabetes. Endocrinol Metab (Seoul) 2021; 36:637-646. [PMID: 34074095 PMCID: PMC8258334 DOI: 10.3803/enm.2021.962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a progressive metabolic disease. Early detection of prediabetes is important to reduce the risk of T2DM. Some cytokines are known to be associated with T2DM. Therefore, we aimed to identify cytokines as novel biomarkers of glucose dysmetabolism. METHODS The first stage of the study included 43 subjects (13 subjects with newly diagnosed T2DM, 13 with prediabetes, and 16 with normoglycemia) for cytokine microarray analysis. Blood samples of the subjects were assessed for 310 cytokines to identify potential indicators of prediabetes. The second stage included 142 subjects (36 subjects with T2DM, 35 with prediabetes, and 71 with normoglycemia) to validate the potential cytokines associated with prediabetes. RESULTS We identified 41 cytokines that differed by 1.5-fold or more in at least one out of the three comparisons (normoglycemia vs. prediabetes, normoglycemia vs. T2DM, and prediabetes vs. T2DM) among 310 cytokines. Finally, we selected protein Z (PROZ) and validated this finding to determine its association with prediabetes. Plasma PROZ levels were found to be decreased in patients with prediabetes (1,490.32±367.19 pg/mL) and T2DM (1,583.34±465.43 pg/mL) compared to those in subjects with normoglycemia (1,864.07±450.83 pg/mL) (P<0.001). There were significantly negative correlations between PROZ and fasting plasma glucose (P=0.001) and hemoglobin A1c (P=0.010). CONCLUSION PROZ levels were associated with prediabetes and T2DM. We suggest that PROZ may be a promising biomarker for the early detection of prediabetes. Further large-scale studies are needed to evaluate the relationship and mechanism between PROZ and prediabetes and T2DM.
Collapse
Affiliation(s)
- Yun-Ui Bae
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu,
Korea
| | - Ji Hong You
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu,
Korea
| | - Nan Hee Cho
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu,
Korea
| | - Leah Eunjung Kim
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu,
Korea
| | - Hye Min Shim
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu,
Korea
| | - Jae-Hyung Park
- Department of Physiology, Keimyung University School of Medicine, Daegu,
Korea
| | - Ho Chan Cho
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu,
Korea
| |
Collapse
|
15
|
Nerve Growth Factor (NGF) modulates in vitro induced myofibroblasts by highlighting a differential protein signature. Sci Rep 2021; 11:1672. [PMID: 33462282 PMCID: PMC7814037 DOI: 10.1038/s41598-021-81040-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
We previously described the profibrogenic effect of NGF on conjunctival Fibroblasts (FBs) and its ability to trigger apoptosis in TGFβ1-induced myofibroblasts (myoFBs). Herein, cell apoptosis/signalling, cytokines' signature in conditioned media and inflammatory as well as angiogenic pathway were investigated. Experimental myoFBs were exposed to NGF (0.1-100 ng/mL), at defined time-point for confocal and biomolecular analysis. Cells were analysed for apoptotic and cell signalling activation in cell extracts and for some inflammatory and proinflammatory/angiogenic factors' activations. NGF triggered cJun overexpression and phospho-p65-NFkB nuclear translocation. A decreased Bcl2:Bax ratio and a significant expression of smad7 were confirmed in early AnnexinV-positive myoFBs. A specific protein signature characterised the conditioned media: a dose dependent decrease occurred for IL8, IL6 while a selective increase was observed for VEGF and cyr61 (protein/mRNA). TIMP1 levels were unaffected. Herein, NGF modulation of smad7, the specific IL8 and IL6 as well as VEGF and cyr61 modulation deserve more attention as opening to alternative approaches to counteract fibrosis.
Collapse
|
16
|
Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study. Int J Mol Sci 2020; 21:ijms21239037. [PMID: 33261156 PMCID: PMC7729583 DOI: 10.3390/ijms21239037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Although, biomarkers are regarded as an important tool for monitoring injury severity and treatment efficacy, and for predicting clinical evolution in many neurological diseases and disorders including spinal cord injury, there is still a lack of reliable biomarkers for the assessment of clinical course and patient outcome. In this study, a biological dataset of 60 cytokines/chemokines, growth factorsm and intracellular and extracellular matrix proteins, analyzed in CSF within 24 h of injury, was used for correlation analysis with the clinical dataset of the same patients. A heat map was generated of positive and negative correlations between biomarkers and clinical rating scale scores at discharge, and between biomarkers and changes in clinical scores during the observation period. Using very stringent statistical criteria, we found 10 molecules which correlated with clinical scores at discharge, and five molecules, which correlated with changes in clinical scores. The proposed methodology may be useful for generating hypotheses regarding "predictive" and "treatment effectiveness" biomarkers, thereby suggesting potential candidates for disease-modifying therapies using a "bed-to-bench" approach.
Collapse
|
17
|
Stucker S, Chen J, Watt FE, Kusumbe AP. Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Front Cell Dev Biol 2020; 8:602269. [PMID: 33324652 PMCID: PMC7726257 DOI: 10.3389/fcell.2020.602269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
The bone marrow (BM) vascular niche microenvironments harbor stem and progenitor cells of various lineages. Bone angiogenesis is distinct and involves tissue-specific signals. The nurturing vascular niches in the BM are complex and heterogenous consisting of distinct vascular and perivascular cell types that provide crucial signals for the maintenance of stem and progenitor cells. Growing evidence suggests that the BM niche is highly sensitive to stress. Aging, inflammation and other stress factors induce changes in BM niche cells and their crosstalk with tissue cells leading to perturbed hematopoiesis, bone angiogenesis and bone formation. Defining vascular niche remodeling under stress conditions will improve our understanding of the BM vascular niche and its role in homeostasis and disease. Therefore, this review provides an overview of the current understanding of the BM vascular niches for hematopoietic stem cells and their malfunction during aging, bone loss diseases, arthritis and metastasis.
Collapse
Affiliation(s)
- Sina Stucker
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Junyu Chen
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fiona E. Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Giuliani A, Lorenzini L, Baldassarro VA, Pannella M, Cescatti M, Fernandez M, Alastra G, Flagelli A, Villetti G, Imbimbo BP, Giardino L, Calzà L. Effects of Topical Application of CHF6467, a Mutated Form of Human Nerve Growth Factor, on Skin Wound Healing in Diabetic Mice. J Pharmacol Exp Ther 2020; 375:317-331. [PMID: 32948647 DOI: 10.1124/jpet.120.000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Nerve growth factor (NGF) is the protein responsible for the development and maintenance of sensory skin innervation. Given the role of appropriate innervation in skin healing, NGF has been indicated as a possible prohealing treatment in pathologic conditions characterized by nerve-ending loss, such as chronic ulcers in diabetes; however, its use as a therapeutic agent is limited by its hyperalgesic effect. We tested the effect of topical application of the nonalgogenic NGF derivative hNGFP61S/R100E in two models of skin ulcer induced in dbdb diabetic mice, investigating healing time, skin histology, reinnervation, and angiogenesis using morphologic and molecular approaches. We showed that the topical administration of CHF6467, a recombinant human NGF in which an amino acid substitution (R100E) abolished the hyperalgesic effect usually associated with NGF, accelerated skin repair in experimental wounds (full-excision and pressure-ulcer) induced in diabetic mice (dbdb). CHF6467-induced acceleration of wound healing was accompanied by increased re-epithelization, reinnervation, and revascularization as assessed by histology, immunohistochemistry, and image analysis. Bioinformatic analysis of differentially expressed genes and signaling pathways in the wound tissues showed that protein kinase B-mammalian target of rapamycin was the most regulated pathway. In spite of the transdermal absorption leading to measurable, dose-dependent increases in CHF6467 plasma levels, no systemic thermal or local mechanical hyperalgesia was observed in treated mice. When tested in vitro in human cell lines, CHF6467 stimulated keratinocyte and fibroblast proliferation and tube formation by endothelial cells. Collectively, these results support a possible use of CHF6467 as a prohealing agent in skin lesions in diabetes. SIGNIFICANCE STATEMENT: Topical application of CHF6467 accelerates reinnervation, neoangiogenesis, and wound healing in diabetic mice in both full-thickness skin-excision and pressure-ulcer models through the protein kinase B/mammalian target of rapamycin pathway and does not induce hyperalgesia.
Collapse
Affiliation(s)
- A Giuliani
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - V A Baldassarro
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Pannella
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Cescatti
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Fernandez
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - G Alastra
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - A Flagelli
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - G Villetti
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - B P Imbimbo
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Giardino
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Calzà
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| |
Collapse
|
19
|
Jadhav A, Khaire A, Joshi S. Exploring the role of oxidative stress, fatty acids and neurotrophins in gestational diabetes mellitus. Growth Factors 2020; 38:226-234. [PMID: 33703982 DOI: 10.1080/08977194.2021.1895143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gestational diabetes mellitus (GDM) constitutes an unfavorable intrauterine environment for embryonic and feto-placental development. Women with GDM are at higher risk for materno-fetal complications and placental abnormalities. The placenta acts as an interface between the maternal and fetal circulations and also plays an important role in protecting the fetus from adverse effects of maternal metabolic conditions. One of the earliest abnormalities observed in GDM pregnancies is increased oxidative stress in the placenta which affects fetal development. Imbalances in maternal nutrition particularly long-chain polyunsaturated fatty acid (LCPUFA) intake and/or metabolism lead to increased oxidative stress. Reports indicate that oxidative stress and LCPUFA such as docosahexaenoic acid affect the levels of neurotrophins. The present review aims to provide insights into a mechanistic link between oxidative stress, LCPUFA and neurotrophin in the placenta in women with GDM and its implications for neurodevelopmental outcomes in children.
Collapse
Affiliation(s)
- Anjali Jadhav
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
20
|
Giuliani A, Sivilia S, Baldassarro VA, Gusciglio M, Lorenzini L, Sannia M, Calzà L, Giardino L. Age-Related Changes of the Neurovascular Unit in the Cerebral Cortex of Alzheimer Disease Mouse Models: A Neuroanatomical and Molecular Study. J Neuropathol Exp Neurol 2019; 78:101-112. [PMID: 30629191 DOI: 10.1093/jnen/nly125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We describe age-related histological structure and molecular changes of the neurovascular unit (NVU) in the cerebral cortex of Tg2576 and age-matched wild-type (WT) mice. Major results can be summarized as follows: (i) β-amyloid (6E10)-immunoreactivity progressively increases in neurons and astrocytes of Tg2576 mice, reaching the highest concentration at 5 months and then decreasing as soon as extracellular plaque deposition begins; (ii) the synaptic puncta density of glutamatergic and GABAergic neurons in Tg2576 mice is unbalanced versus WT at all investigated ages, with a decrease in synaptophysin and VGLUT1; density of VGAT contacts is higher in 27-month-old Tg2576 versus WT mice; (iii) capillary density is higher in 5-month-old Tg2576 versus WT mice, then decreases to a lower density at 27 months, when the capillary-astrocyte interface is lower; and (iv) mRNA expression of genes involved in microvessel dynamics indicates age- and genotype-dependent changes in the expression levels of hypoxia-related genes, i.e. the highest level is in 5-month-old animals and there is impaired regulation in Tg2576. We conclude that at 5 months, when learning and memory impairment is already present in the absence of extracellular amyloid plaque deposition, Tg2576 mice display alterations in the structure and molecular regulation of the NVU.
Collapse
Affiliation(s)
- Alessandro Giuliani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Italy.,Pharmacy and Biotechnology Department (FaBiT), University of Bologna, Bologna, Italy
| | | | - Luca Lorenzini
- IRET Foundation, Ozzano Emilia, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Michele Sannia
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Laura Calzà
- IRET Foundation, Ozzano Emilia, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Pharmacy and Biotechnology Department (FaBiT), University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Gostynska N, Pannella M, Rocco ML, Giardino L, Aloe L, Calzà L. The pleiotropic molecule NGF regulates the in vitro properties of fibroblasts, keratinocytes, and endothelial cells: implications for wound healing. Am J Physiol Cell Physiol 2019; 318:C360-C371. [PMID: 31774700 DOI: 10.1152/ajpcell.00180.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerve growth factor (NGF) is recognized as a pleiotropic molecule, exerting a variety of biological effects on different cell types and pathophysiological conditions, and its role in tissue wound healing has been recently highlighted. However, the preferential cellular target of NGF is still elusive in the complex cellular and molecular cross talk that accompanies wound healing. Thus, to explore possible NGF cellular targets in skin wound healing, we investigated the in vitro NGF responsiveness of keratinocytes (cell line HEKa), fibroblasts (cell line BJ), and endothelial cells (cell line HUVEC), also in the presence of adverse microenvironmental conditions, e.g., hyperglycemia. The main results are summarized as follows: 1) NGF stimulates keratinocyte proliferation and HUVEC proliferation and angiogenesis in a dose-dependent manner although it has no effect on fibroblast proliferation; 2) NGF stimulates keratinocyte but not fibroblast migration in the wound healing assay; and 3) NGF completely reverts the proliferation impairment of keratinocytes and the angiogenesis impairment of HUVECs induced by high d-glucose concentration in the culture medium. These results contribute to better understanding possible targets for the therapeutic use of NGF in skin repair.
Collapse
Affiliation(s)
- N Gostynska
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy
| | - M Pannella
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy
| | - M L Rocco
- IRET Foundation, Ozzano dell'Emilia, Italy
| | - L Giardino
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - L Aloe
- IRET Foundation, Ozzano dell'Emilia, Italy
| | - L Calzà
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Ozzano dell'Emilia, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
22
|
Synergy Between Low Dose Metronomic Chemotherapy and the pH-centered Approach Against Cancer. Int J Mol Sci 2019; 20:ijms20215438. [PMID: 31683667 PMCID: PMC6862380 DOI: 10.3390/ijms20215438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Low dose metronomic chemotherapy (MC) is becoming a mainstream treatment for cancer in veterinary medicine. Its mechanism of action is anti-angiogenesis by lowering vascular endothelial growth factor (VEGF) and increasing trombospondin-1 (TSP1). It has also been adopted as a compassionate treatment in very advanced human cancer. However, one of the main limitations of this therapy is its short-term effectiveness: 6 to 12 months, after which resistance develops. pH-centered cancer treatment (pHT) has been proposed as a complementary therapy in cancer, but it has not been adopted or tested as a mainstream protocol, in spite of existing evidence of its advantages and benefits. Many of the factors directly or indirectly involved in MC and anti-angiogenic treatment resistance are appropriately antagonized by pHT. This led to the testing of an association between these two treatments. Preliminary evidence indicates that the association of MC and pHT has the ability to reduce anti-angiogenic treatment limitations and develop synergistic anti-cancer effects. This review will describe each of these treatments and will analyze the fundamentals of their synergy.
Collapse
|
23
|
Garrido MP, Torres I, Vega M, Romero C. Angiogenesis in Gynecological Cancers: Role of Neurotrophins. Front Oncol 2019; 9:913. [PMID: 31608227 PMCID: PMC6761325 DOI: 10.3389/fonc.2019.00913] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, or generation of new blood vessels from other pre-existing, is a key process to maintain the supply of nutrients and oxygen in tissues. Unfortunately, this process is exacerbated in pathologies such as retinopathies and cancers with high angiogenesis as ovarian cancer. Angiogenesis is regulated by multiple systems including growth factors and neurotrophins. One of the most studied angiogenic growth factors is the vascular endothelial growth factor (VEGF), which is overexpressed in several cancers. It has been recently described that neurotrophins could regulate angiogenesis through direct and indirect mechanisms. Neurotrophins are a family of proteins that include nerve growth factor (NGF), brain-derived growth factor (BDNF), and neurotrophins 3 and 4/5 (NT 3, NT 4/5). These molecules and their high affinity receptors (TRKs) regulate the development, maintenance, and plasticity of the nervous system. Furthermore, it was recently described that they display essential functions in non-neuronal tissues, such as reproductive organs among others. Studies have shown that several types of cancer overexpress neurotrophins such as NGF and BDNF, which might contribute to tumor progression and angiogenesis. Besides, in recent years the FDA has approved the use of pharmacologic inhibitors of pan-TRK receptors in patients with TRKs fusion-positive cancers. In this review, we discuss the mechanisms by which neurotrophins stimulate tumor progression and angiogenesis, with emphasis on gynecological cancers.
Collapse
Affiliation(s)
- Maritza P Garrido
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Torres
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Ramli K, Gasim AI, Ahmad AA, Htwe O, Mohamed Haflah NH, Law ZK, Hasan S, Naicker AS, Mokhtar SA, Muhamad Ariffin MH, Baharudin A, Tan GC, Haji Idrus R, Abdullah S, Ng MH. Efficacy of Human Cell-Seeded Muscle-Stuffed Vein Conduit in Rat Sciatic Nerve Repair. Tissue Eng Part A 2019; 25:1438-1455. [PMID: 30848172 DOI: 10.1089/ten.tea.2018.0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We investigated the efficacy of a muscle-stuffed vein (MSV) seeded with neural-transdifferentiated human mesenchymal stem cells as an alternative nerve conduit to repair a 15-mm sciatic nerve defect in athymic rats. Other rats received MSV conduit alone, commercial polyglycolic acid conduit (Neurotube®), reverse autograft, or were left untreated. Motor and sensory functions as well as nerve conductivity were evaluated for 12 weeks, after which the grafts were harvested for histological analyses. All rats in the treatment groups demonstrated a progressive increase in the mean Sciatic Functional Index (motor function) and nerve conduction amplitude (electrophysiological function) and showed positive withdrawal reflex (sensory function) by the 10th week of postimplantation. Autotomy, which is associated with neuropathic pain, was severe in rats treated with conduit without cells; there was mild or no autotomy in the rats of other groups. Histologically, harvested grafts from all except the untreated groups exhibited axonal regeneration with the presence of mature myelinated axons. In conclusion, treatment with MSV conduit is comparable to that of other treatment groups in supporting functional recovery following sciatic nerve injury; and the addition of cells in the conduit alleviates neuropathic pain. Impact Statement It is shown that pretreated muscle-stuffed vein conduit is comparable to that of commercial nerve conduit and autograft in supporting functional recovery following peripheral nerve injury. The addition of neural-differentiated mesenchymal stem cells in the conduit is shown to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Khairunnisa Ramli
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Aminath Ifasha Gasim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amir Adham Ahmad
- Department of Orthopaedics, School of Medicine, International Medical University, Seremban, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hazla Mohamed Haflah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shariful Hasan
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hisam Muhamad Ariffin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmi Baharudin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah Haji Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shalimar Abdullah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Liang Y, Tarique I, Vistro WA, Liu Y, Wang Z, haseeb A, Gandahi NS, Iqbal A, Wang S, An T, Yang H, Chen Q, Yang P. Age-associated changes of the intrinsic nervous system in relation with interstitial cells in the pre-weaning goat rumen. Aging (Albany NY) 2019; 11:4641-4653. [PMID: 31305258 PMCID: PMC6660047 DOI: 10.18632/aging.102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/01/2019] [Indexed: 05/04/2023]
Abstract
In this study, we investigated the neural changes and their relationships with interstitial cells (ICs) in the rumen of pre-weaning goats by transmission electron microscopy, western blot and immunofluorescence (antibody: general neuronal marker-Protein Gene Product (PGP9.5)/ IC marker-vimentin). The immunofluorescence results showed that PGP9.5-positive reaction was widely distributed in neuronal soma (NS) and nerve fibre (NF). The NSs were observed in the ganglia of the myenteric plexus (MP) but not in the submucosal plexus. The mean optical density (MOD) of the whole of PGP9.5-positive nerves and the protein expression level of PGP.5 in the rumen wall both decreased significantly with age. However an obvious increase MOD of PGP.5-positive NFs within the rumen epithelium were observed. In the MP, the nerves and ICs were interwoven to form two complex networks that gradually tightened with age. Furthermore, NSs and nerve trunks were surrounded by a ring-boundary layer consisting of several ICs that became physically closer with aging. Moreover, ICs were located nearby NFs within the ML, forming connections between ICs, smooth muscle cells and axons. This study describes the pattern of neural distribution and its association with ICs in the developing rumen which shed light on the postpartum development of ruminants.
Collapse
Affiliation(s)
- Yu Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Waseem Ail Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yifei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziyu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Abdul haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Noor Samad Gandahi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Adeela Iqbal
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Siyi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tianci An
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
26
|
Ghinea N, Robin B, Pichon C, Leclere R, Nicolas A, Chnecker C, Côté JF, Guillonneau B, Radu A. Vasa nervorum angiogenesis in prostate cancer with perineural invasion. Prostate 2019; 79:640-646. [PMID: 30663097 DOI: 10.1002/pros.23771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Perineural invasion (PNI) is generally accepted as a major route of cancer dissemination in malignancies associated with highly enervated organs. However, the effect of cancer cells on vasa nervorum remains unknown. We studied this effect in locally advanced prostate cancer, a high-risk feature associated with approximately 20% of prostate cancer specific mortality. METHODS We used immunohistochemistry for CD34, fibroblast growth factor-2 (FGF-2), FSHR, podoplanin, vascular endothelial growth factor (VEGF), and VEGFR-2 as well as histochemical methods to examine the vasa nervorum of nerves invaded by cancer cells in tissue samples from 85 patients. RESULTS The percentage of the nerve area occupied by CD34-positive vasa nervorum endothelial cells in nerves with PNI was much higher than in nerves without PNI (7.3 ± 1.2 vs 1.9 ± 0.4; P < 0.001 and 5.8 ± 0.6 vs 1.23 ± 0.8; P < 0.001 in pT3a and pT3b prostate cancer specimens, respectively). In 19/85 of the patients the CD34-positive vasa nervorum microvessels have a thick basement membrane, similar to the vessels in diabetic microangiopathy. This subendothelial layer contains collagen fibers. Vasa nervorum endothelia and Schwann cells express FGF-2 (nuclear localization) and FSHR (plasma membrane and cytoplasmic staining). Prostate cancer cells invading nerves express VEGF, a critical cytokine in tumor angiogenesis. The vasa nervorum of prostatic nerves with PNI did not express detectable levels of VEGFR-2. No podoplanin-positive lymphatic vessels were seen in nerves. CONCLUSION In locally advanced prostate cancer, PNI of cancer cells is associated with formation of new endoneurial capillaries and changes of vasa nervorum morphology.
Collapse
Affiliation(s)
- Nicolae Ghinea
- Institut Curie, Université de recherche Paris-Sciences-et-Lettres, Département Recherche Translationnelle, Equipe Angiogenèse tumorale, Paris, France
| | - Blaise Robin
- Institut Curie, Université de recherche Paris-Sciences-et-Lettres, Département Recherche Translationnelle, Equipe Angiogenèse tumorale, Paris, France
| | - Christophe Pichon
- Institut Curie, Université de recherche Paris-Sciences-et-Lettres, Département Recherche Translationnelle, Equipe Angiogenèse tumorale, Paris, France
| | - Renaud Leclere
- Hôpital Curie, Université de recherche Paris-Sciences-et-Lettres, Pôle de médicine diagnostique et théranostique, Paris, France
| | - André Nicolas
- Hôpital Curie, Université de recherche Paris-Sciences-et-Lettres, Pôle de médicine diagnostique et théranostique, Paris, France
| | - Caroline Chnecker
- Hôpital Lariboisière, Service d'Anatomie et de Cytologie Pathologiques, Paris, France
| | - Jean-François Côté
- Hôpital Pitié-Salpêtrière, Service d'Anatomie et de Cytologie Pathologiques, Paris, France
| | | | - Aurelian Radu
- Icahn School of Medicine at Mount Sinai, Department of Cell, Developmental and Regenerative Biology, New York, New York
| |
Collapse
|
27
|
Yu X, Qi Y, Zhao T, Fang J, Liu X, Xu T, Yang Q, Dai X. NGF increases FGF2 expression and promotes endothelial cell migration and tube formation through PI3K/Akt and ERK/MAPK pathways in human chondrocytes. Osteoarthritis Cartilage 2019; 27:526-534. [PMID: 30562625 DOI: 10.1016/j.joca.2018.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Vascular invasion is observed at the osteochondral junction in osteoarthritis (OA). Nerve growth factor (NGF) as an angiogenic factor is expressed in OA. This study is to investigate the effects of NGF on angiogenesis in vitro in human chondrocytes. DESIGN Articular cartilages of knee joints were harvested from healthy and OA patients. Expressions of NGF and tropomyosin-related kinase A (TrkA) were detected by western blot, Safranin-O and fast green staining and immunohistochemistry in cartilage. Expression of fibroblast growth factor 2 (FGF2) was detected by western blot in cultured chondrocytes. Chondrocytes were transfected by lentiviral vectors to knock down TrkA. Migration and tube formation of human microvascular endothelial cell (HMVEC) were assessed by using transwell co-culture with chondrocyte after treatment of NGF. RESULTS We confirmed expressions of NGF and TrkA were significantly up-regulated in OA. NGF induced expression of FGF2 in a time- and dose-dependent manner. Angiogenic activities of endothelial cells were greatly enhanced after co-cultured with NGF pre-treated chondrocytes, while knock-down of TrkA significantly abolished the above effects. We further found that NGF-induced expression of FGF2 promoted angiogenic activities of endothelial cells through PI3K/Akt and ERK/MAPK signaling pathways. CONCLUSIONS NGF promotes expression of FGF2 in vitro via PI3K/Akt and ERK/MAPK signaling pathways in human chondrocytes and it increases angiogenesis, which is mediated by TrkA. NGF could be responsible for vascular up-growth from subchondral bone in OA.
Collapse
Affiliation(s)
- X Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China; Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Shixin Road 590#, Hangzhou 311215, PR China
| | - Y Qi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - T Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - J Fang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China; Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Shixin Road 590#, Hangzhou 311215, PR China
| | - X Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - T Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - Q Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China
| | - X Dai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China; Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China.
| |
Collapse
|
28
|
Qorri B, Kalaydina RV, Velickovic A, Kaplya Y, Decarlo A, Szewczuk MR. Agonist-Biased Signaling via Matrix Metalloproteinase-9 Promotes Extracellular Matrix Remodeling. Cells 2018; 7:cells7090117. [PMID: 30149671 PMCID: PMC6162445 DOI: 10.3390/cells7090117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic noncellular structure that is crucial for maintaining tissue architecture and homeostasis. The dynamic nature of the ECM undergoes constant remodeling in response to stressors, tissue needs, and biochemical signals that are mediated primarily by matrix metalloproteinases (MMPs), which work to degrade and build up the ECM. Research on MMP-9 has demonstrated that this proteinase exists on the cell surface of many cell types in complex with G protein-coupled receptors (GPCRs), and receptor tyrosine kinases (RTKs) or Toll-like receptors (TLRs). Through a novel yet ubiquitous signaling platform, MMP-9 is found to play a crucial role not only in the direct remodeling of the ECM but also in the transactivation of associated receptors to mediate and recruit additional remodeling proteins. Here, we summarize the role of MMP-9 as it exists in a tripartite complex on the cell surface and discuss how its association with each of the TrkA receptor, Toll-like receptors, epidermal growth factor receptor, and the insulin receptor contributes to various aspects of ECM remodeling.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | - Aleksandra Velickovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Yekatrina Kaplya
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Alexandria Decarlo
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
29
|
Shirooie S, Nabavi SF, Dehpour AR, Belwal T, Habtemariam S, Argüelles S, Sureda A, Daglia M, Tomczyk M, Sobarzo-Sanchez E, Xu S, Nabavi SM. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol Res 2018; 135:37-48. [PMID: 29990625 DOI: 10.1016/j.phrs.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology and/or giving patients some symptomatic relief have been adopted for the last few decades. Various studies in recent years have shown the beneficial effects of omega-3 poly unsaturated fatty acids (PUFAs) through diverse mechanisms including anti-inflammatory effects. This review now assesses the potential of this class of compounds in NDs therapy through specific action against the mammalian target of rapamycin (mTOR) signaling pathway. The role of mTOR in neurodegenerative diseases and targeted therapies by PUFAs are discussed.
Collapse
Affiliation(s)
- Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi Katarmal, Almora, Uttarakhand, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14623, United States
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran.
| |
Collapse
|
30
|
Xueshuantong Injection (Lyophilized) Attenuates Cerebral Ischemia/Reperfusion Injury by the Activation of Nrf2–VEGF Pathway. Neurochem Res 2018; 43:1096-1103. [DOI: 10.1007/s11064-018-2523-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022]
|
31
|
Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway. Oncotarget 2018; 7:81026-81048. [PMID: 27835587 PMCID: PMC5348374 DOI: 10.18632/oncotarget.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling.
Collapse
|
32
|
Lv Y, Fu L. The potential mechanism for Hydroxysafflor yellow A attenuating blood-brain barrier dysfunction via tight junction signaling pathways excavated by an integrated serial affinity chromatography and shotgun proteomics analysis approach. Neurochem Int 2017; 112:38-48. [PMID: 29107696 DOI: 10.1016/j.neuint.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Our previous studies elucidated that hydroxysafflor yellow A (HSYA) exerted anti-inflammatory effects against ischemia stroke by inhibiting TLR4 pathway-mediated signaling transduction. However, only several targets were verified in that limited work. The integrated method of serial affinity chromatography (SAC) and shotgun proteomics analysis (SPA) might be an alternative approach for exploring a potential therapeutic role. SAC was induced to extract specific binding proteins in the brain tissue of 2 h of ischemia stroke mice via HSYA affinity matrices. SPA was conducted by nanoLC-MS/MS, while the identified proteins were mapped on to Gene Ontology and KEGG pathway components analysis. The protection of HSYA for blood-brain barrier in mice with ischemia stroke was assessed with the leakage of Evans Blue. The expression of tight junction proteins of blood-brain barrier: occludin, claudin-5, and ZO-1 were detected with ischemia boundary positive areas staining. The regulation of nonmuscle myosin heavy chain IIA (NMMHC IIA), TLR4-mediated PI3K/AKT/JNK1/2/14-3-3ε/NF-κB p65 signaling pathway were evaluated using western blot analysis. A total of 35 proteins with molecular eights ranging from 27,841.22 to 234,122.79 KD were identified. Gene Ontology annotation and KEGG pathways analysis of the identified proteins were conducted with tight junction and PI3K/AKT signaling pathways. HSYA could significantly reduce the leakage of Evans Blue in mice with ischemia stroke, while attenuating the expression of occludin, claudin-5, and ZO-1. Western blot demonstrated that regulation of NMMHC IIA, TLR4-mediated PI3K/AKT/JNK1/2/14-3-3ε/NF-κB p65 signaling pathway played an essential role in the protective effect of HSYA. The integrated method of SAC and SPA provides the promising explanations for exploring the mechanism underlying blood-brain barrier dysfunction via the tight junction pathway. HSYA could attenuate blood-brain barrier dysfunction in anti-inflammatory patterns in ischemia stroke mice via the tight junction pathway.
Collapse
Affiliation(s)
- Yanni Lv
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Longsheng Fu
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
33
|
Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 2017; 151:1-15. [PMID: 28112808 PMCID: PMC5382350 DOI: 10.1111/imm.12717] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
Neurotrophic factors comprise a broad family of biomolecules - most of which are peptides or small proteins - that support the growth, survival and differentiation of both developing and mature neurons. The prototypical example and best-characterized neurotrophic factor is nerve growth factor (NGF), which is widely recognized as a target-derived factor responsible for the survival and maintenance of the phenotype of specific subsets of peripheral neurons and basal forebrain cholinergic nuclei during development and maturation. In addition to being active in a wide array of non-nervous system cells, NGF is also synthesized by a range of cell types not considered as classical targets for innervation by NGF-dependent neurons; these include cells of the immune-haematopoietic lineage and populations in the brain involved in neuroendocrine functions. NGF concentrations are elevated in numerous inflammatory and autoimmune states such as multiple sclerosis, chronic arthritis, systemic lupus erythematosus and mastocytosis, in conjunction with increased accumulation of mast cells. Intriguingly, NGF seems to be linked also with diabetic pathology and insulin homeostasis. Mast cells and NGF appear involved in neuroimmune interactions and tissue inflammation. As mast cells are capable of producing and responding to NGF, this suggests that alterations in mast cell behaviour could provoke maladaptive neuroimmune tissue responses, including those of an autoimmune nature. Moreover, NGF exerts a modulatory role on sensory nociceptive nerve physiology in the adult, which appears to correlate with hyperalgesic phenomena occurring in tissue inflammation. NGF can therefore be viewed as a multifactorial modulator of neuro-immune-endocrine functions.
Collapse
Affiliation(s)
- Stephen D. Skaper
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
| |
Collapse
|
34
|
Role of Nerve Growth Factor (NGF) and miRNAs in Epithelial Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18030507. [PMID: 28245631 PMCID: PMC5372523 DOI: 10.3390/ijms18030507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is the eighth most common cancer in women worldwide, and epithelial ovarian cancer (EOC) represents 90% of cases. Nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A receptor (TRKA) have been associated with the development of several types of cancer, including EOC; both NGF and TRKA levels are elevated in this pathology. EOC presents high angiogenesis and several molecules have been reported to induce this process. NGF increases angiogenesis through its TRKA receptor on endothelial cells, and by indirectly inducing vascular endothelial growth factor expression. Other molecules controlled by NGF include ciclooxigenase-2, disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) and calreticulin (CRT), proteins involved in crucial processes needed for EOC progression. These molecules could be modified through microRNA regulation, which could be regulated by NGF. MicroRNAs are the widest family of non-coding RNAs; they bind to 3'-UTR of mRNAs to inhibit their translation, to deadenilate or to degraded them. In EOC, a deregulation in microRNA expression has been described, including alterations of miR-200 family, cluster-17-92, and miR-23b, among others. Since the NGF-microRNA relationship in pathologies has not been studied, this review proposes that some microRNAs could be associated with NGF/TRKA activation, modifying protein levels needed for EOC progression.
Collapse
|
35
|
Baldassarro VA, Marchesini A, Giardino L, Calzà L. Vulnerability of primary neurons derived from Tg2576 Alzheimer mice to oxygen and glucose deprivation: role of intraneuronal amyloid-β accumulation and astrocytes. Dis Model Mech 2017; 10:671-678. [PMID: 28237964 PMCID: PMC5451168 DOI: 10.1242/dmm.028001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Microvascular dysfunction is considered an integral part of Alzheimer disease (AD) pathogenesis, but the possible relationship between amyloid pathology, microvascular dysfunction and cell death is still unclear. In order to investigate the influence of intraneuronal amyloid-β (Aβ) accumulation on vulnerability to hypoxia, we isolated primary cortical neurons from Tg2576 (carrying the amyloid precursor protein APPSwe mutation) and wild-type fetal mice. We first demonstrated that neurons isolated from Tg2576 newborn mice show an increase in VEGFa mRNA expression and a decrease in the expression of the two VEGF receptors, Flt1 and Kdr, compared with wild-type cells. Moreover, APPSwe primary neurons displayed higher spontaneous and glutamate-induced cell death. We then deprived the cultures of oxygen and glucose (OGD) as an in vitro model of hypoxia. After OGD, APPSwe neurons display higher levels of cell death in terms of percentage of pyknotic/fragmented nuclei and mitochondrial depolarization, accompanied by an increase in the intraneuronal Aβ content. To explore the influence of intraneuronal Aβ peptide accumulation, we used the γ-secretase inhibitor LY450139, which showed that the reduction of the intracellular amyloid fully protects APPSwe neurons from OGD-induced degeneration. Conditioned medium from OGD-exposed APPSwe or wild-type astrocytes protected APPswe neurons but not wild-type neurons, during OGD. In conclusion, the presence of the mutated human APP gene, leading to the intracellular accumulation of APP and Aβ fragments, worsens OGD toxicity. Protection of APPSwe neurons can be obtained either using a γ-secretase inhibitor or astrocyte conditioned medium. Summary:In vitro systems derived from AD mice can be used to investigate the vulnerability of AD neurons to different neurotoxic challenges, including oxygen glucose deprivation.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Science and Technologies (ICIR - HST), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.,Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40127 Bologna, Italy
| | | | - Luciana Giardino
- Interdepartmental Centre for Industrial Research in Health Science and Technologies (ICIR - HST), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.,Department of Medical Veterinary Sciences (DIMEVET), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.,Fondazione IRET, 40064 Ozzano Emilia, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Science and Technologies (ICIR - HST), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy .,Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40127 Bologna, Italy.,Fondazione IRET, 40064 Ozzano Emilia, Bologna, Italy
| |
Collapse
|
36
|
The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing. Int J Mol Sci 2017; 18:ijms18020386. [PMID: 28208669 PMCID: PMC5343921 DOI: 10.3390/ijms18020386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/17/2017] [Accepted: 02/06/2017] [Indexed: 01/07/2023] Open
Abstract
Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds.
Collapse
|
37
|
Recurrent and novel mutations in the NTRK1 gene lead to rare congenital insensitivity to pain with anhidrosis in two Chinese patients. Clin Chim Acta 2017; 468:39-45. [PMID: 28192073 DOI: 10.1016/j.cca.2017.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/09/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Congenital insensitivity to pain with anhidrosis (CIPA) is an extremely rare autosomal recessive autonomic and sensory neuropathy. CIPA is associated with various mutations in NTRK1. CASES Two unrelated Chinese patients presented separately with symptoms of insensitivity to pain, inability to sweat, repeated painless fractures, and Charcot arthropathy were recruited. Both of them were clinically diagnosed with CIPA. Increased serum bone resorption marker (β-CTX) levels and decreased BMD were observed in both patients. X-ray films revealed enlarged bony calli in the fracture sites, Charcot arthropathy, and bilateral lower limb osteomyelitis. Sanger sequencing demonstrated compound heterozygous mutations in NTRK1 for proband 1 (IVS7-33T>A in intron 7 and c. 2281C>T in exon 17) and for proband 2 (IVS7-33T>A in intron 7 and c.1652delA in exon 14), of which the variation in exon 14 in NTRK1 was a novel mutation. CONCLUSIONS We report the detailed phenotypes, as well as both recurrent and novel mutations in NTRK1 in 2 Chinese patients with CIPA. The genetic findings of our study expand the gene mutation spectrum of CIPA.
Collapse
|
38
|
|
39
|
Rathod R, Khaire A, Kale A, Joshi S. A combined supplementation of vitamin B12 and n-3 polyunsaturated fatty acids across two generations improves nerve growth factor and vascular endothelial growth factor levels in the rat hippocampus. Neuroscience 2016; 339:376-384. [DOI: 10.1016/j.neuroscience.2016.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
|
40
|
Zhou W, Zhang J, Wang G, Ling L, Yan C. Permeability and distribution of nerve growth factor in the brain of neonatal rats by periphery venous injection in hypoxic-ischemic state. SPRINGERPLUS 2016; 5:1893. [PMID: 27843750 PMCID: PMC5084138 DOI: 10.1186/s40064-016-3594-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022]
Abstract
Objective To investigate the permeability of β-NGF through blood–brain-barrier (BBB) in neonatal and adult rats, and the spatial distribution of β-NGF in different brain regions in hypoxic-ischemic (HI) and normal neonatal rats. Methods To investigate the overall permeability of β-NGF through BBB, β-NGF labeled with I125 was injected into adult rats, neonatal rats and HI neonatal rats via tail vein. The radioactivity of brain tissue and blood was examined and analyzed 30 min after injection. Also, brain regions including the basal forebrain, frontal cortex, hippocampus, hypothalamus, cerebellum, bulbus olfactorius and hypophysis, of all the rats were dissected and radioactivity was examined to investigate the spatial specificity of NGF permeation through BBB. Results Statistically significant results were observed in I125-β-NGF contents in brain tissues of adult rats group, neonatal rats group and HI neonatal rats group (P < 0.05). Compared to the HI neonatal rats’ brain with the highest I125-β-NGF contents, normal neonatal rats ranks the second while the adult rats were the lowest. While for the spatial specificity examination part, I125-β-NGF in both HI group and control group were widely distributed in basal forebrain, frontal cortex, hippocampus, cerebellum and bulbus olfactorius. But the radioactivity in frontal cortex, hippocampus and cerebellum of HI groups are statistically higher than control groups (P < 0.05). Conclusion β-NGF can more easily penetrate the BBB of newborn rats than adult rats via peripheral venous administration and this effect can be enhanced by HI insult. Also, this HI-induced permeation of β-NGF through BBB is more obvious in frontal cortex, hippocampus and cerebellum.
Collapse
Affiliation(s)
- Wenli Zhou
- Department of Neonatology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Limian Ling
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Chaoying Yan
- Department of Neonatology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin China
| |
Collapse
|
41
|
Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DLJ, Rajbhandari L, Brushart TM, Minichiello L, Zhou F, Venkatesan A, Clemens TL. NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone. Cell Rep 2016; 16:2723-2735. [PMID: 27568565 DOI: 10.1016/j.celrep.2016.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 12/16/2022] Open
Abstract
Developing tissues dictate the amount and type of innervation they require by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase receptors. Here, we show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons were observed at perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers of incipient ossification. Inactivation of TrkA signaling during embryogenesis in TrkA(F592A) mice impaired innervation, delayed vascular invasion of the primary and secondary ossification centers, decreased numbers of Osx-expressing osteoprogenitors, and decreased femoral length and volume. These same phenotypic abnormalities were observed in mice following tamoxifen-induced disruption of NGF in Col2-expressing perichondrial osteochondral progenitors. We conclude that NGF serves as a skeletal neurotrophin to promote sensory innervation of developing long bones, a process critical for normal primary and secondary ossification.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zhi Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Qian Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Brian C Goh
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Thomas M Brushart
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Fengquan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
42
|
Eslami R, Gharakhanlou R, Kazemi A, Dakhili AB, Sorkhkamanzadeh G, Sheikhy A. Does Endurance Training Compensate for Neurotrophin Deficiency Following Diabetic Neuropathy? IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e37757. [PMID: 28184326 PMCID: PMC5291940 DOI: 10.5812/ircmj.37757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/17/2016] [Accepted: 07/10/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND A lack of neurotrophic support is believed to contribute to the development of diabetic neuropathy. On the other hand, neurotrophins have consistently been shown to increase in the central and peripheral nervous system following exercise, but the effects of exercise intervention on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in diabetic neuropathy are not understood. OBJECTIVES This experimental study was designed and carried out at the Tarbiat Modares university (TMU) in Tehran, Iran, to investigate the hypothesis that increased activity as endurance training can help to increase the endogenous expression of neurotrophins in diabetic rats. METHODS This was an experimental study with 2 × 2 factorial plans performed at TMU in Iran. Sampling was accidental and 28 adult male Wistar rats in the body mass range of 326.3 ± 8.4 g comprised the sample, with each rat randomly assigned to four groups: diabetic control (DC), diabetic training (DT), healthy control (HC), and healthy training (HT). To induce diabetic neuropathy, after 12 hours of food deprivation, an intraperitoneal injection of streptozotocin (STZ) solution (45 mg/Kg) method was used. Two weeks after STZ injection, the endurance training protocol was performed for 6 weeks; 24 hours after the last training session, the rats were sacrificed. Real-time PCR was used for BDNF and NGF expression. RESULTS The data indicate that diabetes decreases BDNF and NGF expression in sensory (92%, P = 0.01; 90%, P = 0.038, respectively) and motor (93%, P = 0.05; 60%, P = 0.029, respectively) roots. However, NGF mRNA levels in the DT group were significantly higher than in the HC group ((7.1-fold), P = 0.01; (2.2-fold), P = 0.001, respectively, for sensory and motor roots), but this was not shown for BDNF. In addition, endurance training can increase NGF expression in healthy rats ((7.4-fold), P = 0.01; (3.8-fold), P = 0.001, respectively, for sensory and motor roots). CONCLUSIONS This study shows that BDNF and NGF expression decreases in diabetic neuropathy. However, this decrease can be reversed through endurance training. These results also indicate that endurance training may have a potential role in compensating for neurotrophin deficiency following diabetic neuropathy.
Collapse
Affiliation(s)
- Rasoul Eslami
- Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, IR Iran
| | - Reza Gharakhanlou
- Physical Education Department, Faculty of Humanity and Literature, Tarbiat Modares University, Tehran, IR Iran
| | - Abdolreza Kazemi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran
- Physical Education Department, Faculty of Humanity and Literature, Vali-e-Asr University of Rafsanjan, Rafsanjan, IR Iran
- Corresponding Author: Abdolreza Kazemi, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran and Physical Education Department, Faculty of Humanity and Literature, Vali-e-Asr University of Rafsanjan, Rafsanjan, IR Iran. Tel: +98-9133982706, E-mail:
| | - Amir Bahador Dakhili
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran
| | - Ghazaleh Sorkhkamanzadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran
| | - Ayob Sheikhy
- Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, IR Iran
| |
Collapse
|
43
|
Bhalla S, Andurkar SV, Gulati A. Neurobiology of opioid withdrawal: Role of the endothelin system. Life Sci 2016; 159:34-42. [DOI: 10.1016/j.lfs.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 02/04/2023]
|
44
|
The neglected role of copper ions in wound healing. J Inorg Biochem 2016; 161:1-8. [DOI: 10.1016/j.jinorgbio.2016.02.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 12/30/2022]
|
45
|
Lee H, Chung HJ, Park TG. Perspectives On: Local and Sustained Delivery of Angiogenic Growth Factors. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506073363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review emphasizes the role of angiogenesis in tissue engineering, introduces various angiogenic growth factors, and highlights current status of delivery systems for angiogenic growth factors using natural and synthetic biomaterials. A short overview of angiogenic growth factors is presented, followed by the introduction of emerging strategies for designing smart delivery carriers.
Collapse
Affiliation(s)
- Hyukjin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Tae Gwan Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea,
| |
Collapse
|
46
|
Rathod R, Kale A, Joshi S. Novel insights into the effect of vitamin B₁₂ and omega-3 fatty acids on brain function. J Biomed Sci 2016; 23:17. [PMID: 26809263 PMCID: PMC4727338 DOI: 10.1186/s12929-016-0241-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/20/2016] [Indexed: 01/16/2023] Open
Abstract
The prevalence of psychiatric disorders which are characterized by cognitive decline is increasing at an alarming rate and account for a significant proportion of the global disease burden. Evidences from human and animal studies indicate that neurocognitive development is influenced by various environmental factors including nutrition. It has been established that nutrition affects the brain throughout life. However, the mechanisms through which nutrition modulates mental health are still not well understood. It has been suggested that the deficiencies of both vitamin B12 and omega-3 fatty acids can have adverse effects on cognition and synaptic plasticity. Studies indicate a need for supplementation of vitamin B12 and omega-3 fatty acids to reduce the risk of cognitive decline, although the results of intervention trials using these nutrients in isolation are inconclusive. In the present article, we provide an overview of vitamin B12 and omega-3 fatty acids, the possible mechanisms and the evidences through which vitamin B12 and omega-3 fatty acids modulate mental health and cognition. Understanding the role of vitamin B12 and omega-3 fatty acids on brain functioning may provide important clues to prevent early cognitive deficits and later neurobehavioral disorders.
Collapse
Affiliation(s)
- Richa Rathod
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune, 411043, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune, 411043, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune, 411043, India.
| |
Collapse
|
47
|
Guang M, Yao Y, Zhang L, Huang B, Ma L, Xiang L, Jin J, Gong P. The effects of nerve growth factor on endothelial cells seeded on different titanium surfaces. Int J Oral Maxillofac Surg 2015; 44:1506-13. [PMID: 26338076 DOI: 10.1016/j.ijom.2015.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023]
Abstract
Angiogenesis is critical for peri-implant bone regeneration and osseointegration. Endothelial cells (ECs) play an important role in angiogenesis during the early stage of bone formation. Nerve growth factor (NGF) is also reported to function as an angiogenic growth factor. The effects of NGF on ECs seeded on titanium surfaces are unclear. This study was done to investigate the influence of NGF on peri-implant angiogenesis in vitro and in vivo. We used two different titanium surfaces. ECs seeded on these surfaces were treated with indicated concentrations of NGF or vascular endothelial growth factor (VEGF). Proliferation, differentiation, morphological features, and amounts attached were assessed. Chicken embryo chorioallantoic membrane (CAM) was adopted to evaluate the effect of NGF in vivo. The results showed that NGF could promote EC proliferation on both titanium surfaces (F1d=2.083, P=0.156; F3d=30.857, P=0.0002; F5d=4.440, P=0.041; F7d=11.065, P=0.001). NGF and the SLA surface upregulated mRNA of NGF, TrkA, and p75 expression (FNGF=11.941, P=0.003; FTrkA=28.514, P=0.004; Fp75=7.725, P=0.01). In vivo, the supernatants of the NGF-treated group could promote neovascularization in CAM (F=17.662, P=0.009). This study demonstrated that NGF could enhance EC proliferation, gene expression on different titanium surfaces, and neovascularization in CAM. This provides novel information in relation to the promotion of early dental implant osseointegration.
Collapse
Affiliation(s)
- M Guang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Y Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - B Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - J Jin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - P Gong
- Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
48
|
Sahay AS, Sundrani DP, Joshi SR. Regional changes of placental vascularization in preeclampsia: a review. IUBMB Life 2015; 67:619-25. [PMID: 26269153 DOI: 10.1002/iub.1407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022]
Abstract
Preeclampsia is characterized by vascular dysfunction and results in maternal and fetal morbidity and mortality. The placenta plays a critical role in the growth and development of the fetus, and recent studies indicate that placental architecture, oxygen availability, and oxidative stress indices vary across different regions of the placenta. Our earlier studies have reported altered maternal angiogenesis and differential placental gene expression and methylation patterns of angiogenic factors in women with preeclampsia when compared with normotensive women. We have also demonstrated lower maternal and placental neurotrophin (NT) levels in women with preeclampsia. Studies suggest that oxidative stress is associated with proteases like matrix metalloproteinases (MMPs) and growth factors like NTs and angiogenic factors known to be involved in the process of angiogenesis. Recently, we have reported regionwise differential oxidative stress, antioxidant enzyme activity, and NT levels in placenta from normotensive control women and women with preeclampsia. The current review describes the regional changes in the placenta and highlights the role of placental oxidative stress in influencing regional differences in the expression of angiogenic factors, MMPs, and NTs. This review discusses the need for further research on various growth factors and proteins involved in the process of placental development across different regions of the placenta. This would help to understand whether regional differences in these factors affect the growth and development of the fetus.
Collapse
Affiliation(s)
- Akriti S Sahay
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Deepali P Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|
49
|
Zhao Q, Hu J, Xiang J, Gu Y, Jin P, Hua F, Zhang Z, Liu Y, Zan K, Zhang Z, Zu J, Yang X, Shi H, Zhu J, Xu Y, Cui G, Ye X. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke. Brain Res 2015; 1624:489-496. [PMID: 26279113 DOI: 10.1016/j.brainres.2015.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/24/2023]
Abstract
Stem cell-based treatments have been reported to be a potential strategy for stroke. However, tumorigenic potential and low survival rates of transplanted cells could attenuate the efficacy of the stem cell-based treatments. The application of stem cell-condition medium (CM) may be a practicable approach to conquer these limitations. In this study, we investigated whether intranasal administration of human umbilical cord mesenchymal stem cells (hUCMSCs)-CM has the therapeutic effects in rats after stroke. Adult male rats were subjected to middle cerebral artery occlusion (MCAo) and were treated by intranasal routine with or without hUCMSCs-CM (1 ml/kg/d), starting 24h after MCAo and daily for 14 days. Neurological functional tests, blood brain barrier (BBB) leakage, were measured. Angiogenesis and angiogenic factor expression were measured by immunohistochemistry, and Western blot, respectively. hUCMSCs-CM treatment of stroke by intranasal routine starting 24h after MCAo in rats significantly enhances BBB functional integrity and promotes functional outcome but does not decrease lesion volume compared to rats in DMEM/F12 medium control group and saline control group. Treatment of ischemic rats with hUCMSCs-CM by intranasal routine also significantly decreases the levels of Ang2 and increases the levels of both Ang1 and Tie2 in the ischemic brain. To take together, increased expression of Ang1 and Tie2 and decreased expression of Ang2, induced by hUCMSCs-CM treatment, contribute to vascular remodeling in the ischemic brain which plays an important role in functional outcome after stroke.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jinxia Hu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jie Xiang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yuming Gu
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yonghai Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Kun Zan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hongjuan Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jienan Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
50
|
Chen WH, Mao CQ, Zhuo LL, Ong JL. Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects. Neural Regen Res 2015; 10:1159-65. [PMID: 26330843 PMCID: PMC4541251 DOI: 10.4103/1673-5374.160114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 11/16/2022] Open
Abstract
We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor (β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects filled with collagen bone substitute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μg β-NGF in PBS (β-NGF + PBS) into the right-hand side defect, and PBS into the left (control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on the β-NGF + PBS side than on the control side, and that of neurofilament 160 was greater. On day 14, β III-tubulin and protein gene product 9.5 were greater on the β-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application of β-NGF promoted neurogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-filled defects.
Collapse
Affiliation(s)
- Wei-hui Chen
- Department of Oral Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chuan-qing Mao
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Li-li Zhuo
- Department of Oral Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Joo L. Ong
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|