1
|
Sarkisian KI, Yang JL, Marshall C, Stanczyk FZ. Allopregnanolone in the pathogenesis of the psychiatric comorbidities of polycystic ovarian syndrome. J Steroid Biochem Mol Biol 2025; 250:106719. [PMID: 40064425 DOI: 10.1016/j.jsbmb.2025.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/18/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine disorder affecting 10-15 % of women of reproductive age, with significant implications for both physical and mental health. Several recent research studies have examined the connection between PCOS and psychiatric disorders; however, the mechanism linking the two is not fully understood. Allopregnanolone is a neurosteroid that modulates GABAA receptors and is naturally affected by the pathophysiology of PCOS. It is thought to play a role in mood disorders, including premenstrual dysphoric disorder and postpartum depression. Recent research has begun to focus on the relationship between PCOS and allopregnanolone. A literature review was conducted using databases, including PubMed, MEDLINE, and Cochrane Library. Keywords included "PCOS," "psychiatric disorders," "allopregnanolone," and "neurosteroids." Articles were selected based on relevance to psychiatric implications of PCOS, with a focus on high-quality, original research studies. Quality assessment of the sources was informed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) Handbook criteria. The literature review revealed a growing body of evidence suggesting a strong association between PCOS and an increased risk of psychiatric disorders, particularly depression, anxiety, and mood disorders. The role of allopregnanolone, a neurosteroid, was identified as an important factor in this relationship, with some studies indicating its potential impact on mood regulation in PCOS patients. There is a dire need for clinicians to consider the mental health implications of PCOS during diagnosis and management. The integration of psychiatric screening in PCOS management could lead to earlier detection and improved outcomes. Future research should focus on the therapeutic potential of allopregnanolone and other neurosteroids in treating psychiatric disorders associated with PCOS.
Collapse
Affiliation(s)
- Karis I Sarkisian
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; University of California, Berkeley, United States.
| | - Jane L Yang
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Pinna G, Ponomareva O, Stalcup GL, Rasmusson AM. Neuroactive steroids and the pathophysiology of PTSD: Biomarkers for treatment targeting. Neurosci Biobehav Rev 2025; 172:106085. [PMID: 40024353 DOI: 10.1016/j.neubiorev.2025.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that arises after acute or chronic exposure to threatened death, serious injury, or sexual violence. The pathophysiology of PTSD is complex and involves dysregulation of multiple interacting brain regions and neurobiological systems including the sympathetic nervous system, the hypothalamic-pituitary-adrenal (HPA) axis, and the immune system. Deficient biosynthesis of neurosteroids that positively modulate GABAA receptor function, including allopregnanolone (Allo) and its equipotent stereoisomer pregnanolone (PA), also affects a subpopulation of individuals with PTSD and is associated with increased PTSD risk, severity, chronicity and treatment resistance. The synthesis of these neuroactive steroids by the brain, adrenal glands, and gonads may be influenced by stress, drugs, social isolation and other factors with impact on the balance of inhibitory versus excitatory (I/E) neurotransmission in brain. These neuroactive steroids are thus considered a potential target for new PTSD therapeutics. In this review, we first present studies in humans and rodents performed over the past 20 years that have shaped our current understanding of the role of Allo and PA in the pathophysiology of PTSD. We will also discuss the means by which rigorous measurement of neurosteroids can be used to identify individually-variable dysfunctional patterns of neurosteroidogenesis that could be targeted to prevent or treat PTSD. This broadened precision medicine approach to diagnosis of neuroendocrinopathies associated with PTSD may aid in reducing PTSD risk and facilitating the effective prescribing of PTSD therapeutics. We hope that such an approach will also forestall development of individually variable but common psychiatric, substance abuse, and medical PTSD-comorbidities.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA.
| | - Olga Ponomareva
- McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - George L Stalcup
- OAA Psychiatry/Neuroscience Research Fellow in the Neuropsychiatry Translational Research Fellowship (NeTReF) Program, VA Boston Healthcare System, USA
| | - Ann M Rasmusson
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
3
|
Zhu H, Ding C, Tang Y, Zheng J, Wang S, Ji Z, Zhu Y, Ge RS, Li H. Paraben preservatives exhibit inhibition on human and rat steroid 5α-reductase 1: A comprehensive 3D-QSAR and computational analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135841. [PMID: 39326151 DOI: 10.1016/j.jhazmat.2024.135841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Parabens are preservatives used in personal care products, cosmetics, and pharmaceuticals. Steroid 5α-reductase 1 (SRD5A1) catalyzes the conversion of testosterone to dihydrotestosterone and is present in the brain, contributing to neurosteroid production. This study aimed to assess the effects of nine paraben preservatives on SRD5A1 in human SF126 glioblastoma cell and rat brain microsomes, particularly focusing on dihydrotestosterone production in SF126 cells. The results showed that methyl, ethyl, propyl, butyl, hexyl, heptyl, nonyl, phenyl, and benzyl paraben inhibited human SRD5A1, with nonylparaben having the strongest effect (7.59 μM). Additionally, kinetic analysis indicated that parabens acted as mixed/noncompetitive inhibitors, leading to a significant decrease in dihydrotestosterone production in SF126 cells. While rat SRD5A1 exhibited lower sensitivity to parabens, docking analysis revealed that parabens bind to the NADPH-binding site of both human and rat SRD5A1. In conclusion, these results highlight the inhibitory effects of paraben preservatives on SRD5A1 and elucidate their binding mechanisms, underscoring their role in hormone production.
Collapse
Affiliation(s)
- He Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chentao Ding
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jingyi Zheng
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhongyao Ji
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Zhejiang 325000, China.
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
4
|
Rossetti MF, Schumacher R, Canesini G, Fernandez P, Gaydou L, Stoker C, Ramos JG. Neonatal overfeeding promotes anxiety, impairs episodic-like memory, and disrupts transcriptional regulation of hippocampal steroidogenic enzymes. J Nutr Biochem 2024; 134:109739. [PMID: 39154791 DOI: 10.1016/j.jnutbio.2024.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The objective of our study was to investigate the impact of neonatal overfeeding on cognitive functions and neurosteroidogenesis in male rats. Offspring were assigned to either small litters (SL; 4 pups/mother), resulting in increased milk intake and body weight gain, or normal litters (NL; 10 pups/mother). On postnatal day (PND) 21, half of the male rats were euthanized, while the remaining were kept under standard conditions (4 rats/cage) until PND70. At this stage, subjects underwent assessments for locomotor activity, anxiety levels via the elevated plus maze, and episodic-like memory (ELM) tests. By PND90, the rats were euthanized for brain dissection. Utilizing micropunch techniques, dentate gyrus (DG), CA1, and CA3 regions were extracted for analysis of mRNA expression and methylation patterns. At PND21, SL rats exhibited increased body and adipose tissue weights, alongside elevated cholesterol, glucose, and triglyceride levels compared to NL counterparts. By PND90, although metabolic disparities were no longer evident, SL rats demonstrated heightened anxiety-like behavior and diminished performance in ELM tests. Early life changes included a decreased expression of aromatase (P450arom) and 3α-HSD in CA1, with increased levels in CA3 and DG among SL rats. Additionally, PND90 rats from SL exhibited increased P450arom and decreased 5α-reductase 1 (5αR-1) expression in DG. Notably, some of these variations were correlated with changes in methylation patterns of their promoter regions. Our findings reveal that neonatal overfeeding exerts a long-term adverse effect on cognitive abilities and neurosteroidogenic pathways, underscoring the lasting impact of nutritional experiences during critical early postnatal development periods.
Collapse
Affiliation(s)
- Maria Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | | | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Nutrición en Situaciones Patológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Pamela Fernandez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Nutrición en Situaciones Patológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisa Gaydou
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
5
|
Li W, Cui R, Qi S, Zheng K, Yang J, Ge RS, Wang Y. Endocrine-Disrupting Effects of Salicylate Preservatives on Neurosteroidogenesis: Targeting 5α-Reductase Type 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24797-24807. [PMID: 39454092 DOI: 10.1021/acs.jafc.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Salicylate preservatives are widely used in consumer products and pharmaceuticals. This study investigates their potential endocrine-disrupting effects on neurosteroidogenesis, focusing on 5α-reductase type 1 (SRD5A1). We evaluated the effects of 13 salicylates on human SRD5A1 using SF126 glioblastoma cell microsomes and rat brain microsomes, examining dihydrotestosterone production in SF126 cells. Results revealed a hierarchy of inhibitory potency against human SRD5A1, with methyl salicylate (IC50, 71.93 μM) to menthyl salicylate (2.41 μM), indicating increasing potency. Kinetic analysis indicates their mixed/noncompetitive inhibitions. In SF126 cells, all salicylates at 100 μM significantly reduced dihydrotestosterone production. Rat SRD5A1 showed reduced sensitivity, with menthyl salicylate as the most potent inhibitor (IC50, 17.12 μM). Docking analysis suggests salicylates bind to the reduced nicotinamide adenine dinucleotide phosphate site of both human and rat SRD5A1. Bivariate correlation analysis highlights the influence of LogP, molecular weight, carbon number in the alcohol moiety, and pKa on inhibitory potency. 3D-QSAR revealed the importance of hydrophobic aromatic regions in SRD5A1 binding. This study delineates the inhibitory effects of salicylates and binding mechanisms on human and rat SRD5A1, providing insights into their impact on neurosteroid production.
Collapse
Affiliation(s)
- Wanyu Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Rong Cui
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Shufang Qi
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Ke Zheng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Jin Yang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
6
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Evans-Strong A, Walton N, Blandino K, Roper ATC, Donaldson ST, Lewis M, Maguire J. Witnessed trauma exposure induces fear in mice through a reduction in endogenous neurosteroid synthesis. J Neuroendocrinol 2024; 36:e13378. [PMID: 38482748 PMCID: PMC11091913 DOI: 10.1111/jne.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.
Collapse
Affiliation(s)
- Aidan Evans-Strong
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Najah Walton
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Katrina Blandino
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Abigail T C Roper
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - S Tiffany Donaldson
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Mike Lewis
- Sage Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Gore IR, Gould E. Developmental and adult stress: effects of steroids and neurosteroids. Stress 2024; 27:2317856. [PMID: 38563163 PMCID: PMC11046567 DOI: 10.1080/10253890.2024.2317856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.
Collapse
Affiliation(s)
- Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
9
|
Maguire JL, Mennerick S. Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology 2024; 49:73-82. [PMID: 37369775 PMCID: PMC10700537 DOI: 10.1038/s41386-023-01626-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Like other classes of treatments described in this issue's section, neuroactive steroids have been studied for decades but have risen as a new class of rapid-acting, durable antidepressants with a distinct mechanism of action from previous antidepressant treatments and from other compounds covered in this issue. Neuroactive steroids are natural derivatives of progesterone but are proving effective as exogenous treatments. The best understood mechanism is that of positive allosteric modulation of GABAA receptors, where subunit selectivity may promote their profile of action. Mechanistically, there is some reason to think that neuroactive steroids may separate themselves from liabilities of other GABA modulators, although research is ongoing. It is also possible that intracellular targets, including inflammatory pathways, may be relevant to beneficial actions. Strengths and opportunities for further development include exploiting non-GABAergic targets, structural analogs, enzymatic production of natural steroids, precursor loading, and novel formulations. The molecular mechanisms of behavioral effects are not fully understood, but study of brain network states involved in emotional processing demonstrate a robust influence on affective states not evident with at least some other GABAergic drugs including benzodiazepines. Ongoing studies with neuroactive steroids will further elucidate the brain and behavioral effects of these compounds as well as likely underpinnings of disease.
Collapse
Affiliation(s)
- Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Steven Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Zhang H, Qiao M, Gao D, Wang J, Sun C, Sun Y, Zhang Y, Liu H, Zhang Z, Gao M. Shuyu capsule alleviates premenstrual depression via allopregnanolone metabolic pathway targeting GABA (A) receptors δ subunit in the hippocampus. Asian J Psychiatr 2023; 90:103800. [PMID: 37898099 DOI: 10.1016/j.ajp.2023.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
To reveal the exact changes of allopregnanolone-mediated γ-aminobutyric acid A receptor pathways and its specific therapeutic targets by Shuyu Capsule treating premenstrual depression, female Wistar rat models of premenstrual depression was established by Forced swimming test (FST). Behavioral tests, enzyme-linked immunosorbent assay (ELISA), interference knockdown adenovirus, and overexpressed vector adenovirus of GABAARδ, RT-qPCR, Western-Blot, and immunohistochemical detecting expressions were applied to identify the therapeutic targets. FST-based rat model indicated that Shuyu capsules alleviated typical premenstrual depression and may regulate alternations of 5α-reductase and 3α-steroid dehydrogenase, enhancing the metabolic pathway of progesterone to allopregnanolone, as well as targeting the GABAARδ subunit, thereby alleviating premenstrual depression of PMDD rat models.
Collapse
Affiliation(s)
- Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Mingqi Qiao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Dongmei Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jieqiong Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyan Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ya Sun
- Innovative Institute of Chinese Medicine and Pharmacy , Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy , Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Huayuan Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zhen Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Mingzhou Gao
- Innovative Institute of Chinese Medicine and Pharmacy , Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
11
|
Walton NL, Antonoudiou P, Maguire JL. Neurosteroid influence on affective tone. Neurosci Biobehav Rev 2023; 152:105327. [PMID: 37499891 PMCID: PMC10528596 DOI: 10.1016/j.neubiorev.2023.105327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Affective disorders such as depression and anxiety are among the most prevalent psychiatric illnesses and causes of disability worldwide. The recent FDA-approval of a novel antidepressant treatment, ZULRESSO® (Brexanolone), a synthetic neurosteroid has fueled interest into the role of neurosteroids in the pathophysiology of depression as well as the mechanisms mediating the antidepressant effects of these compounds. The majority of studies examining the impact of neurosteroids on affective states have relied on the administration of exogenous neurosteroids; however, neurosteroids can also be synthesized endogenously from cholesterol or steroid hormone precursors. Despite the well-established influence of exogenous neurosteroids on affective states, we still lack an understanding of the role of endogenous neurosteroids in modulating affective tone. This review aims to summarize the current literature supporting the influence of neurosteroids on affective states in clinical and preclinical studies, as well as recent evidence suggesting that endogenous neurosteroids may set a baseline affective tone.
Collapse
Affiliation(s)
- Najah L Walton
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pantelis Antonoudiou
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie L Maguire
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Scieszka D, Jin Y, Noor S, Barr E, Garcia M, Begay J, Herbert G, Hunter RP, Bhaskar K, Kumar R, Gullapalli R, Bolt A, McCormick MA, Bleske B, Gu H, Campen MJ. Biomass smoke inhalation promotes neuroinflammatory and metabolomic temporal changes in the hippocampus of female mice. J Neuroinflammation 2023; 20:192. [PMID: 37608305 PMCID: PMC10464132 DOI: 10.1186/s12974-023-02874-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the temporal dynamics of neuroinflammation and metabolomics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6 J mice were exposed to wood smoke every other day for 2 weeks at an average exposure concentration of 0.5 mg/m3. Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-day post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of CD31Hi and CD31Med expressors, with wood smoke inhalation causing an increased proportion of CD31Hi. These populations of CD31Hi and CD31Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b+/CD45low) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules, such as glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD+ metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD+ abundance on day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated with wildfire smoke exposure.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Yan Jin
- Florida International University Center for Translational Sciences, Port St. Lucie, FL, 34987, USA
| | - Shahani Noor
- Department of Molecular Genetics and Microbiology, Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ed Barr
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Russell P Hunter
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rahul Kumar
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rama Gullapalli
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Haiwei Gu
- Florida International University Center for Translational Sciences, Port St. Lucie, FL, 34987, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
13
|
Walton NL, Antonoudiou P, Barros L, Dargan T, DiLeo A, Evans-Strong A, Gabby J, Howard S, Paracha R, Sánchez EJ, Weiss GL, Kong D, Maguire JL. Impaired Endogenous Neurosteroid Signaling Contributes to Behavioral Deficits Associated With Chronic Stress. Biol Psychiatry 2023; 94:249-261. [PMID: 36736870 PMCID: PMC10363189 DOI: 10.1016/j.biopsych.2023.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic stress is a major risk factor for psychiatric illnesses, including depression. However, the pathophysiological mechanisms whereby stress leads to mood disorders remain unclear. Allopregnanolone acts as a positive allosteric modulator preferentially on δ subunit-containing GABAA (gamma-aminobutyric acid A) receptors. Accumulating clinical and preclinical evidence supports the antidepressant effects of exogenous administration of allopregnanolone analogs; yet, the role of endogenous allopregnanolone in the pathophysiology of depression remains unknown. METHODS We utilized a chronic unpredictable stress (CUS) mouse model, followed by behavioral and biochemical assays, to examine whether altered neurosteroid signaling contributes to behavioral outcomes following CUS. We subsequently performed in vivo CRISPR (clustered regularly interspaced short palindromic repeats) knockdown of rate-limiting enzymes involved in allopregnanolone synthesis, 5α-reductase type 1 and 2 (5α1/2), in addition to lentiviral overexpression of 5α1/2 in the basolateral amygdala (BLA) of mice that underwent CUS to assess the impact of 5α1/2 on behavioral outcomes. RESULTS The expression of δ subunit-containing GABAA receptors and endogenous levels of allopregnanolone were reduced in the BLA following CUS. Treatment with an exogenous allopregnanolone analog, SGE-516, was sufficient to increase allopregnanolone levels in the BLA following CUS. Knockdown of 5α1/2 in the BLA mimicked the behavioral outcomes associated with CUS. Conversely, overexpression of 5α1/2 in the BLA improved behavioral outcomes following CUS. CONCLUSIONS Our findings demonstrate that chronic stress impairs endogenous neurosteroid signaling in the BLA, which is sufficient to induce behavioral deficits. Further, these studies suggest that allopregnanolone-based treatments may directly target the underlying pathophysiology of mood disorders suggesting that targeting endogenous neurosteroidogenesis may offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Najah L Walton
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Pantelis Antonoudiou
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lea Barros
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Biology, Hamilton College, Clinton, New York
| | - Tauryn Dargan
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Alyssa DiLeo
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Aidan Evans-Strong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Jenah Gabby
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Louis Stokes Alliance for Minority Participation, Tufts University, Medford, Massachusetts
| | - Samantha Howard
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rumzah Paracha
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Edgardo J Sánchez
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Chemistry, University of Puerto Rico, Cayey, Puerto Rico
| | - Grant L Weiss
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Dong Kong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jamie L Maguire
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
14
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
15
|
Scieszka D, Jin Y, Noor S, Barr E, Garcia M, Begay J, Herbert G, Hunter RP, Bhaskar K, Kumar R, Gullapalli R, Bolt A, McCormick MA, Bleske B, Gu H, Campen M. Neuroinflammatory and Metabolomic Temporal Dynamics Following Wood Smoke Inhalation. RESEARCH SQUARE 2023:rs.3.rs-3002040. [PMID: 37333410 PMCID: PMC10275049 DOI: 10.21203/rs.3.rs-3002040/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the neuroinflammatory and metabolomic temporal dynamics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6J mice were exposed to wood smoke every other day for two weeks at an average exposure concentration of 0.5mg/m 3 . Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-days post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of PECAM (CD31), high and medium expressors, with wood smoke inhalation causing an increased proportion of PECAM Hi . These populations of PECAM Hi and PECAM Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b + /CD45 low ) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules like glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD + metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD + abundance at day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated wtith wildfire smoke exposure.
Collapse
Affiliation(s)
| | - Yan Jin
- Florida International University, Center for Translational Sciences
| | - Shahani Noor
- University of New Mexico, Department of Molecular Genetics and Microbiology
| | - Ed Barr
- University of New Mexico, College of Pharmacy
| | | | | | - Guy Herbert
- University of New Mexico, College of Pharmacy
| | | | - Kiran Bhaskar
- University of New Mexico, Department of Molecular Genetics and Microbiology
| | - Rahul Kumar
- University of New Mexico, Department of Pathology
| | | | - Alicia Bolt
- University of New Mexico, College of Pharmacy
| | - Mark A McCormick
- University of New Mexico, Department of Biochemistry and Molecular Biology
| | - Barry Bleske
- University of New Mexico, Department of Pharmacy Practice and Administrative Science
| | - Haiwei Gu
- Florida International University, Center for Translational Sciences
| | | |
Collapse
|
16
|
Hamidovic A, Davis J, Soumare F, Datta A, Naveed A. Trajectories of Allopregnanolone and Allopregnanolone to Progesterone Ratio across the Six Subphases of Menstrual Cycle. Biomolecules 2023; 13:biom13040652. [PMID: 37189398 DOI: 10.3390/biom13040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Allopregnanolone is one of the most studied neuroactive steroids; yet, despite its relevance to neuropsychiatric research, it is not known how it, as well as its ratio to progesterone, varies across all six subphases of the menstrual cycle. Two enzymes—5α-dihydroprogesterone and 5α-reductase—convert progesterone to allopregnanolone, and, based on immunohistochemical studies in rodents, the activity of 5α-reductase is considered the rate-limiting step in the formation of allopregnanolone. It is not clear, however, whether the same phenomenon is observed across to the menstrual cycle, and, if so, at what point this takes place. Methods: Thirty-seven women completed the study during which they attended eight clinic visits across one menstrual cycle. We analyzed their allopregnanolone and progesterone serum concentrations using ultraperformance liquid chromatography–tandem mass spectrometry, and we implemented a validated method to realign the data from the original eight clinic study visits, following which we imputed the missing data. Hence, we characterized allopregnanolone concentrations, and the ratio of allopregnanolone:progesterone at six menstrual cycle subphases: (1) early follicular, (2) mid-follicular, (3) periovulatory, (4) early luteal, (5) mid-luteal, and (6) late luteal. Results: There were significant differences in allopregnanolone levels between (1) early follicular and early luteal, (2) early follicular and mid-luteal, (3) mid-follicular and mid-luteal, (4) periovulatory and mid-luteal, and (5) mid-luteal and late luteal. We detected a sharp drop in allopregnanolone:progesterone ratio in the early luteal subphase. Within the luteal subphase, the ratio was the lowest in the mid-luteal subphase. Conclusions: Allopregnanolone concentrations are the most distinct, relative to the other subphases, in the mid-luteal subphase. The shape of the allopregnanolone trajectory across the cycle is similar to that of progesterone; however, the proportion of the two neuroactive steroid hormones is drastically different due to enzymatic saturation, which takes place at the start of the early luteal subphase, but continuing through, and peaking, in the mid-luteal subphase. Hence, the estimated activity of 5α-reductase decreases, but does not cease, at any point across the menstrual cycle.
Collapse
Affiliation(s)
- Ajna Hamidovic
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - John Davis
- College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Fatimata Soumare
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Avisek Datta
- School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, IL 60612, USA
| | - Aamina Naveed
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| |
Collapse
|
17
|
Umminger LF, Rojczyk P, Seitz-Holland J, Sollmann N, Kaufmann E, Kinzel P, Zhang F, Kochsiek J, Langhein M, Kim CL, Wiegand TLT, Kilts JD, Naylor JC, Grant GA, Rathi Y, Coleman MJ, Bouix S, Tripodis Y, Pasternak O, George MS, McAllister TW, Zafonte R, Stein MB, O'Donnell LJ, Marx CE, Shenton ME, Koerte IK. White Matter Microstructure Is Associated with Serum Neuroactive Steroids and Psychological Functioning. J Neurotrauma 2023; 40:649-664. [PMID: 36324218 PMCID: PMC10061338 DOI: 10.1089/neu.2022.0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Military service members are at increased risk for mental health issues, and comorbidity with mild traumatic brain injury (mTBI) is common. Largely overlapping symptoms between conditions suggest a shared pathophysiology. The present work investigates the associations among white matter microstructure, psychological functioning, and serum neuroactive steroids that are part of the stress-response system. Diffusion-weighted brain imaging was acquired from 163 participants (with and without military affiliation) and free-water-corrected fractional anisotropy (FAT) was extracted. Associations between serum neurosteroid levels of allopregnanolone (ALLO) and pregnenolone (PREGNE), psychological functioning, and whole-brain white matter microstructure were assessed using regression models. Moderation models tested the effect of mTBI and comorbid post-traumatic stress disorder (PTSD) and mTBI on these associations. ALLO is associated with whole-brain white matter FAT (β = 0.24, t = 3.05, p = 0.006). This association is significantly modulated by PTSD+mTBI comorbidity (β = 0.00, t = 2.50, p = 0.027), although an mTBI diagnosis alone did not significantly impact this association (p = 0.088). There was no significant association between PREGNE and FAT (p = 0.380). Importantly, lower FAT is associated with poor psychological functioning (β = -0.19, t = -2.35, p = 0.020). This study provides novel insight into a potential common pathophysiological mechanism of neurosteroid dysregulation underlying the high risk for mental health issues in military service members. Further, comorbidity of PTSD and mTBI may bring the compensatory effects of the brain's stress response to their limit. Future research is needed to investigate whether neurosteroid regulation may be a promising tool for restoring brain health and improving psychological functioning.
Collapse
Affiliation(s)
- Lisa F. Umminger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, Epilepsy Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fan Zhang
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janna Kochsiek
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cara L. Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L. T. Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jason D. Kilts
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer C. Naylor
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J. Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark S. George
- Psychiatry Department, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- School of Public Health, University of California San Diego, La Jolla, California, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lauren J. O'Donnell
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Marx
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
18
|
Rocks D, Kundakovic M. Hippocampus-based behavioral, structural, and molecular dynamics across the estrous cycle. J Neuroendocrinol 2023; 35:e13216. [PMID: 36580348 PMCID: PMC10050126 DOI: 10.1111/jne.13216] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The activity of neurons in the rodent hippocampus contributes to diverse behaviors, with the activity of ventral hippocampal neurons affecting behaviors related to anxiety and emotion regulation, and the activity of dorsal hippocampal neurons affecting performance in learning- and memory-related tasks. Hippocampal cells also express receptors for ovarian hormones, estrogen and progesterone, and are therefore affected by physiological fluctuations of those hormones that occur over the rodent estrous cycle. In this review, we discuss the effects of cycling ovarian hormones on hippocampal physiology. Starting with behavior, we explore the role of the estrous cycle in regulating hippocampus-dependent behaviors. We go on to detail the cellular mechanisms through which cycling estrogen and progesterone, through changes in the structural and functional properties of hippocampal neurons, may be eliciting these changes in behavior. Then, providing a basis for these cellular changes, we outline the epigenetic, chromatin regulatory mechanisms through which ovarian hormones, by binding to their receptors, can affect the regulation of behavior- and synaptic plasticity-related genes in hippocampal neurons. We also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the estrous cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. Finally, we discuss directions for future studies and the translational value of the rodent estrous cycle for understanding the effects of the human menstrual cycle on hippocampal physiology and brain disease risk.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University; Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University; Bronx, NY, USA
| |
Collapse
|
19
|
Abaffy T, Lu HY, Matsunami H. Sex steroid hormone synthesis, metabolism, and the effects on the mammalian olfactory system. Cell Tissue Res 2023; 391:19-42. [PMID: 36401093 PMCID: PMC9676892 DOI: 10.1007/s00441-022-03707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Sex steroid hormones influence olfactory-mediated social behaviors, and it is generally hypothesized that these effects result from circulating hormones and/or neurosteroids synthesized in the brain. However, it is unclear whether sex steroid hormones are synthesized in the olfactory epithelium or the olfactory bulb, and if they can modulate the activity of the olfactory sensory neurons. Here, we review important discoveries related to the metabolism of sex steroids in the mouse olfactory epithelium and olfactory bulb, along with potential areas of future research. We summarize current knowledge regarding the expression, neuroanatomical distribution, and biological activity of the steroidogenic enzymes, sex steroid receptors, and proteins that are important to the metabolism of these hormones and reflect on their potential to influence early olfactory processing. We also review evidence related to the effects of sex steroid hormones on the development and activity of olfactory sensory neurons. By better understanding how these hormones are metabolized and how they act both at the periphery and olfactory bulb level, we can better appreciate the complexity of the olfactory system and discover potential similarities and differences in early olfactory processing between sexes.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hsiu-Yi Lu
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
20
|
Gallo AT, Addis S, Martyn V, Ramanathan H, Wilkerson GK, Bennett KS, Hood SD, Stampfer H, Hulse GK. The role of flumazenil in generalised anxiety disorder: a pilot naturalistic open-label study with a focus on treatment resistance. Ther Adv Psychopharmacol 2023; 13:20451253231156400. [PMID: 36937113 PMCID: PMC10021101 DOI: 10.1177/20451253231156400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023] Open
Abstract
Background Anxiety disorders are highly prevalent and chronic disorders with treatment resistance to current pharmacotherapies occurring in approximately one in three patients. It has been postulated that flumazenil (FMZ) is efficacious in the management of anxiety disorders via the removal of α4β2δ gamma-aminobutyric acid A receptors. Objective To assess the safety and feasibility of continuous low-dose FMZ infusions for the management of generalised anxiety disorder (GAD) and collect preliminary efficacy data. Design Uncontrolled, open-label pilot study. Method Participants had a primary diagnosis of generalised anxiety disorder (GAD) and received two consecutive subcutaneous continuous low-dose FMZ infusions. Each infusion contained 16 mg of FMZ and was delivered over 96 ± 19.2 h. The total dose of FMZ delivered was 32 mg over approximately 8 days. Sodium valproate was given to participants at risk of seizure. The primary outcome was the change in stress and anxiety subscale scores on the Depression Anxiety Stress Scale-21 between baseline, day 8, and day 28. Results Nine participants with a primary diagnosis of GAD were treated with subcutaneous continuous low-dose FMZ infusions; seven participants met the criteria for treatment resistance. There was a significant decrease in anxiety and stress between baseline and day 8 and baseline and day 28. There was also a significant improvement in subjective sleep quality from baseline to day 28 measured by the Jenkins Sleep Scale. No serious adverse events occurred. Conclusion This study presents preliminary results for subcutaneous continuous low-dose FMZ's effectiveness and safety in GAD. The findings suggest that it is a safe, well-tolerated, and feasible treatment option in this group of patients. Future randomised control trials are needed in this field to determine the efficacy of this treatment.
Collapse
Affiliation(s)
| | - Stephen Addis
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| | - Vlad Martyn
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| | - Hishani Ramanathan
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Grace K Wilkerson
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Kellie S Bennett
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Sean D Hood
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Hans Stampfer
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Gary K Hulse
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
- School of Medical and Health Sciences, Edith
Cowan University, Joondalup, WA, Australia
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| |
Collapse
|
21
|
Long-Term Management of Generalised Anxiety Disorder with Low-Dose Continuous Infusions of Flumazenil: A Case Series. Behav Sci (Basel) 2022; 12:bs12110430. [DOI: 10.3390/bs12110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Generalised anxiety disorder (GAD) is a common anxiety disorder associated with social and occupational impairment. Recently, a theory was postulated that dysfunctional gamma aminobutyric acid type A receptors (GABAA) are implicated in anxiety symptomology, which could be corrected by flumazenil, an antagonist at the benzodiazepine binding site on the GABAA receptor. Method: Participants had a primary diagnosis of GAD and were treated initially with an eight-day continuous low-dose flumazenil infusion (total 32 mg at a rate of 4 mg/24 h). Some participants were re-treated with a further four- or eight-day infusion. Treatment response was measured as a 50% reduction in anxiety or stress scores on the Depression Anxiety Stress Scale—21 (DASS-21). Remission was measured as scores ≤3 or ≤7 on the anxiety and stress subscales of the DASS-21, respectively. Results: Eight cases are reported. All cases met the criteria for treatment response on the anxiety and stress subscale of the DASS-21. Remission was achieved in seven participants on the anxiety subscale and in five on the stress subscale. No changes in hepatic, renal, or haematological function were likely attributed to flumazenil. Conclusion: Data suggest that low-dose continuous flumazenil infusion manages GAD symptoms and is safe. Although these results are promising, future randomised control trials are required to confirm these results.
Collapse
|
22
|
Chik MW, Hazalin NAMN, Singh GKS. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer's disease rat model: A focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids 2022; 184:109035. [PMID: 35405201 DOI: 10.1016/j.steroids.2022.109035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Neurosteroids have been associated with neurodegenerative diseases because they are involved in the modulation of neurotransmitter, neurotropic and neuroprotective actions. Emerging evidence suggests that the enzymes responsible for the synthesis of neurosteroids change during the progression of Alzheimer's disease (AD). The present study aimed to assess the changes in phase I and II enzymes involved in the metabolism of neurosteroids of the progestogen, androgenic and estrogenic steroidogenic pathways and the possibility that the neurosteroids are actively converted into the most abundant metabolites (i.e. glucuronides and sulphates). The gene expression for the phase I and II neurosteroid biosynthetic enzymes were studied in the hippocampus of streptozotocin AD rat model. Male Sprague-Dawley rats were randomly divided into control, sham (saline injected into the hippocampus) and 3 and 12 weeks post-STZ administration (STZ-G3w and STZ-G12w, respectively) groups. Behavioral assessments showed memory impairment in both STZ-injected groups, whereas the formation of amyloid-beta was more pronounced in the STZ-12w group. Gene expression of the hippocampus revealed that glucuronidation and sulphation enzymes transcript of the phase I metabolites were upregulated at the late stage of the disease progression (Hsd17b10, Hsd3b1, Akr1c3 and Cyp19a1) except for Sts. The phase II Sult and Ugt enzymes were mostly upregulated in the STZ-G12w rats (Sult1a1, Sult1e1, Ugt1a1, Ugt1a7c, Ugt1a6, Ugt2b35 and Ugt2b17) and normally expressed in the STZ-G3w group (Sult2a2, Sult2a6, Sult2b1, Ugt2b7, Sult4a1 and Ugt1a7c). In conclusion, changes occur in the phase I and II enzymes transcript of the progestogen, androgenic and estrogenic steroidogenic pathways during the progression of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
23
|
Raut SB, Marathe PA, van Eijk L, Eri R, Ravindran M, Benedek DM, Ursano RJ, Canales JJ, Johnson LR. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol Ther 2022; 239:108195. [PMID: 35489438 DOI: 10.1016/j.pharmthera.2022.108195] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing memories, is a chronic debilitating condition in need of new treatment options. Current treatment guidelines recommend psychotherapy as first line management with only two drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related to depression and anxiety without producing permanent remission. PTSD remains a significant public health problem with high morbidity and mortality requiring major advances in therapeutics. Early evidence has emerged for the beneficial effects of psychedelics particularly in combination with psychotherapy for management of PTSD, including psilocybin, MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to therapy by increasing trust between therapist and patient, thus allowing for modification of trauma related memories. Furthermore, research into the memory reconsolidation mechanisms has allowed for identification of various pharmacological targets to disrupt abnormally persistent memories. A number of pre-clinical and clinical studies have investigated novel and re-purposed pharmacological agents to disrupt fear memory in PTSD. Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids have also shown potential for PTSD treatment. Here, we focus on the role of fear memory in the pathophysiology of PTSD and propose that many of these new therapeutic strategies produce benefits through the effect on fear memory. Evaluation of recent research findings suggests that while a number of drugs have shown promising results in preclinical studies and pilot clinical trials, the evidence from large scale clinical trials would be needed for these drugs to be incorporated in clinical practice.
Collapse
Affiliation(s)
- Sanket B Raut
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Padmaja A Marathe
- Department of Pharmacology and Therapeutics, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400 012, India
| | - Liza van Eijk
- Department of Psychology, College of Healthcare Sciences, James Cook University, QLD 4811, Australia
| | - Rajaraman Eri
- Health Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Manoj Ravindran
- Medicine, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Department of Psychiatry, North-West Private Hospital, Burnie TAS 7320, Australia
| | - David M Benedek
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Robert J Ursano
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Juan J Canales
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Luke R Johnson
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
24
|
Abstract
BACKGROUND Anxiety disorders are highly prevalent affecting up to 33.7% of people over a lifetime. Although many treatment options are available, they are often associated with unacceptable side-effect profiles and approximately one in three patients are treatment resistant. Allopregnanolone, a neuroactive steroid acting as a positive allosteric modulator at the GABAA receptor, is synthesised in response to stress and acts to negatively modulate the hypothalamic-pituitary-adrenal axis. FINDINGS After chronic exposure to and withdrawal from allopregnanolone, an increase in α4β2δ GABAA receptors results in a reduced inhibitory effect of allopregnanolone, resulting in decreased inhibition and, therefore, increased neuronal excitability. The relationship between allopregnanolone and increased α4β2δ GABAA receptors has been demonstrated in animal models during methamphetamine withdrawal and puberty, events both associated with stress. The effect of allopregnanolone during these events is anxiogenic, a paradoxical action to its usual anxiolytic effects. Flumazenil, the GABAA receptor antagonist, has been shown to cause receptor internalisation of α4β2δ GABAA receptors, which may results in anxiolysis. CONCLUSION We propose that chronic stress and chronic exposure to and withdrawal from allopregnanolone in anxiety disorders result in alterations in GABAA receptor function, which can be corrected by flumazenil. As such, flumazenil may exhibit anxiolytic properties in patients with increased α4β2δ GABAA receptor expression.
Collapse
Affiliation(s)
- Alexander T Gallo
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gary K Hulse
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Fresh Start Recovery Programme, Subiaco, WA, Australia
| |
Collapse
|
25
|
Lambert PM, Lu X, Zorumski CF, Mennerick S. Physiological markers of rapid antidepressant effects of allopregnanolone. J Neuroendocrinol 2022; 34:e13023. [PMID: 34423498 PMCID: PMC8807818 DOI: 10.1111/jne.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023]
Abstract
The rise of ketamine and brexanolone as rapid antidepressant treatments raises the question of common mechanisms. Both drugs act without the long onset time of traditional antidepressants such as selective serotonin reuptake inhibitors. The drugs also share the interesting feature of benefit that persists beyond the initial drug lifetime. Here, we briefly review literature on functional changes that may mark the triggering mechanism of rapid antidepressant actions. Because ketamine has a longer history of study as a rapid antidepressant, we use this literature as a template to guide hypotheses about common action. Brexanolone has the complication of being a formulation of a naturally occurring neurosteroid; thus, endogenous levels need to be considered when studying the impact of exogenous administration. We conclude that network disinhibition and increased high-frequency oscillations are candidates to mediate acute triggering effects of rapid antidepressants.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
26
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
27
|
Bar-Sadeh B, Amichai OE, Pnueli L, Begum K, Leeman G, Emes RD, Stöger R, Bentley GR, Melamed P. Epigenetic regulation of 5α reductase-1 underlies adaptive plasticity of reproductive function and pubertal timing. BMC Biol 2022; 20:11. [PMID: 34996447 PMCID: PMC8742331 DOI: 10.1186/s12915-021-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. Results Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women’s buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. Conclusions SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01219-6.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Or E Amichai
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Khurshida Begum
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | - Gregory Leeman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
28
|
Taheri Zadeh Z, Rahmani S, Alidadi F, Joushi S, Esmaeilpour K. Depresssion, anxiety and other cognitive consequences of social isolation: Drug and non-drug treatments. Int J Clin Pract 2021; 75:e14949. [PMID: 34614276 DOI: 10.1111/ijcp.14949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE During the COVID-19 pandemic, quarantine and staying at home is advised. The social relationship between people has become deficient, and human social isolation (SI) has become the consequence of this situation. It was shown that SI has made changes in hippocampal neuroplasticity, which will lead to poor cognitive function and behavioural abnormalities. There is a connection between SI, learning, and memory impairments. In addition, anxiety-like behaviour and increased aggressive mood in long-term isolation have been revealed during the COVID-19 outbreak. METHODS Term searches was done in Google Scholar, Scopus, ScienceDirect, Web of Science and PubMed databases as well as hand searching in key resource journals from 1979 to 2020. RESULTS Studies have shown that some drug administrations may positively affect or even prevent social isolation consequences in animal models. These drug treatments have included opioid drugs, anti-depressants, Antioxidants, and herbal medications. In addition to drug interventions, there are non-drug treatments that include an enriched environment, regular exercise, and music. CONCLUSION This manuscript aims to review improved cognitive impairments induced by SI during COVID-19.
Collapse
Affiliation(s)
- Zahra Taheri Zadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
29
|
Danan D, Todder D, Zohar J, Cohen H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity? Feedback Inhibition and Other Modulating Factors of Glucocorticoid Signaling Dynamics. Int J Mol Sci 2021; 22:ijms22116050. [PMID: 34205191 PMCID: PMC8200046 DOI: 10.3390/ijms22116050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Previously, we found that basal corticosterone pulsatility significantly impacts the vulnerability for developing post-traumatic stress disorder (PTSD). Rats that exhibited PTSD-phenotype were characterized by blunted basal corticosterone pulsatility amplitude and a blunted corticosterone response to a stressor. This study sought to identify the mechanisms underlining both the loss of pulsatility and differences in downstream responses. Serial blood samples were collected manually via jugular vein cannula at 10-min intervals to evaluate suppression of corticosterone following methylprednisolone administration. The rats were exposed to predator scent stress (PSS) after 24 h, and behavioral responses were assessed 7 days post-exposure for retrospective classification into behavioral response groups. Brains were harvested for measurements of the glucocorticoid receptor, mineralocorticoid receptor, FK506-binding protein-51 and arginine vasopressin in specific brain regions to assess changes in hypothalamus–pituitary–adrenal axis (HPA) regulating factors. Methylprednisolone produced greater suppression of corticosterone in the PTSD-phenotype group. During the suppression, the PTSD-phenotype rats showed a significantly more pronounced pulsatile activity. In addition, the PTSD-phenotype group showed distinct changes in the ventral and dorsal CA1, dentate gyrus as well as in the paraventricular nucleus and supra-optic nucleus. These results demonstrate a pre-trauma vulnerability state that is characterized by an over-reactivity of the HPA and changes in its regulating factors.
Collapse
Affiliation(s)
- Dor Danan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Doron Todder
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv 52621, Israel;
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
- Correspondence: ; Tel.: +972-544-369106
| |
Collapse
|
30
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
31
|
Cao T, Tang M, Jiang P, Zhang B, Wu X, Chen Q, Zeng C, Li N, Zhang S, Cai H. A Potential Mechanism Underlying the Therapeutic Effects of Progesterone and Allopregnanolone on Ketamine-Induced Cognitive Deficits. Front Pharmacol 2021; 12:612083. [PMID: 33767621 PMCID: PMC7985688 DOI: 10.3389/fphar.2021.612083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ketamine exposure can model cognitive deficits associated with schizophrenia. Progesterone (PROG) and its active metabolite allopregnanolone (ALLO) have neuroprotective effects and the pathway involving progesterone receptor membrane component 1 (PGRMC1), epidermal growth factor receptor (EGFR), glucagon-like peptide-1 receptor (GLP-1R), phosphatidylinositol 3 kinase (PI3K), and protein kinase B (Akt) appears to play a key role in their neuroprotection. The present study aimed to investigate the effects of PROG (8,16 mg kg−1) and ALLO (8,16 mg kg−1) on the reversal of cognitive deficits induced by ketamine (30 mg kg−1) via the PGRMC1 pathway in rat brains, including hippocampus and prefrontal cortex (PFC). Cognitive performance was evaluated by Morris water maze (MWM) test. Western blot and real-time quantitative polymerase chain reaction were utilized to assess the expression changes of protein and mRNA. Additionally, concentrations of PROG and ALLO in plasma, hippocampus and PFC were measured by a liquid chromatography-tandem mass spectrometry method. We demonstrated that PROG or ALLO could reverse the impaired spatial learning and memory abilities induced by ketamine, accompanied with the upregulation of PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway. Additionally, the coadministration of AG205 abolished their neuroprotective effects and induced cognitive deficits similar with ketamine. More importantly, PROG concentrations were markedly elevated in PROG-treated groups in hippocampus, PFC and plasma, so as for ALLO concentrations in ALLO-treated groups. Interestingly, ALLO (16 mg kg−1) significantly increased the levels of PROG. These findings suggest that PROG can exert its neuroprotective effects via activating the PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway in the brain, whereas ALLO also restores cognitive deficits partially via increasing the level of PROG in the brain to activate the PGRMC1 pathway.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - MiMi Tang
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Pei Jiang
- Institute of Clinical Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - XiangXin Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Chew L, Sun KL, Sun W, Wang Z, Rajadas J, Flores RE, Arnold E, Jo B, Fung LK. Association of serum allopregnanolone with restricted and repetitive behaviors in adult males with autism. Psychoneuroendocrinology 2021; 123:105039. [PMID: 33161257 PMCID: PMC8428554 DOI: 10.1016/j.psyneuen.2020.105039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) has been associated with imbalance between excitatory and inhibitory (E/I) neurotransmission systems, as well as with neuroinflammation. Sitting at the crossroads between E/I imbalance and neuroinflammation is a class of endogenous hormones known as neurosteroids. Current literature points to dysregulated steroid metabolism and atypical neurosteroid levels in ASD as early as in utero. However, due to the complexity of neurosteroid metabolomics, including possible sex differences, the impact of neurosteroids on ASD symptomatology remains unclear. In this study, we assessed neurosteroid levels and ASD symptom severity of 21 males with ASD and 20 full-scale-IQ-matched typically developing (TD) males, all aged 18-39. Using liquid chromatography-tandem mass spectrometry, concentrations of allopregnanolone, cortisol, dehydroepiandrosterone, progesterone, and testosterone were measured in saliva and serum. With the exception of cortisol's, all neurosteroids' concentrations were found to have ASD vs. TD group differences in distribution, where one group was normally distributed and the other non-normally distributed. Serum allopregnanolone levels in males with ASD were found to negatively correlate with clinician-rated measures of restricted and repetitive behavior measures (ADOS-2 RRB and ADI-R RRSB domain scores). Additionally, lower serum allopregnanolone levels were found to predict more negative camouflaging scores, which represent greater differences in self- and clinician-rated symptom severity, of both ASD symptomatology overall and repetitive behaviors in particular. Taken together, our findings demonstrate that in adult males with ASD, decreased serum allopregnanolone levels are associated with more severe restricted and repetitive behaviors and with less insight into the severity of these behaviors.
Collapse
Affiliation(s)
- Leila Chew
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA; David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Kevin L Sun
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Wenchao Sun
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Zhe Wang
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Jayakumar Rajadas
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Ryan E Flores
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Emily Arnold
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Booil Jo
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Lawrence K Fung
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA.
| |
Collapse
|
33
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat Commun 2020; 11:5430. [PMID: 33110062 PMCID: PMC7591894 DOI: 10.1038/s41467-020-19249-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023] Open
Abstract
Human steroid 5α-reductase 2 (SRD5A2) is an integral membrane enzyme in steroid metabolism and catalyzes the reduction of testosterone to dihydrotestosterone. Mutations in the SRD5A2 gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride, as SRD5A2 inhibitors, are widely used antiandrogen drugs for benign prostate hyperplasia. The molecular mechanisms underlying enzyme catalysis and inhibition for SRD5A2 and other eukaryotic integral membrane steroid reductases remain elusive due to a lack of structural information. Here, we report a crystal structure of human SRD5A2 at 2.8 Å, revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the transmembrane domain. Structural analysis together with computational and mutagenesis studies reveal the molecular mechanisms of the catalyzed reaction and of finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region that regulate NADPH/NADP+ exchange. Mapping disease-causing mutations of SRD5A2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and may facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, 999078, Macau, SAR, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fei Ye
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore.
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
34
|
Love J, Zelikowsky M. Stress Varies Along the Social Density Continuum. Front Syst Neurosci 2020; 14:582985. [PMID: 33192349 PMCID: PMC7606998 DOI: 10.3389/fnsys.2020.582985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Social stress is ubiquitous in the lives of social animals. While significant research has aimed to understand the specific forms of stress imparted by particular social interactions, less attention has been paid to understanding the behavioral effects and neural underpinnings of stress produced by the presence and magnitude of social interactions. However, in humans and rodents alike, chronically low and chronically high rates of social interaction are associated with a suite of mental health issues, suggesting the need for further research. Here, we review literature examining the behavioral and neurobiological findings associated with changing social density, focusing on research on chronic social isolation and chronic social crowding in rodent models, and synthesize findings in the context of the continuum of social density that can be experienced by social animals. Through this synthesis, we aim to both summarize the state of the field and describe promising avenues for future research that would more clearly define the broad effects of social interaction on the brain and behavior in mammals.
Collapse
Affiliation(s)
- Jay Love
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | | |
Collapse
|
35
|
Peng HM, Valentín-Goyco J, Im SC, Han B, Liu J, Qiao J, Auchus RJ. Expression in Escherichia Coli, Purification, and Functional Reconstitution of Human Steroid 5α-Reductases. Endocrinology 2020; 161:bqaa117. [PMID: 32716491 PMCID: PMC7383974 DOI: 10.1210/endocr/bqaa117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
The potent androgen 5α-dihydrotestosterone irreversibly derives from testosterone via the activity of steroid 5α-reductases (5αRs). The major 5αR isoforms in most species, 5αR1 and 5αR2, have not been purified to homogeneity. We report here the heterologous expression of polyhistidine-tagged, codon-optimized human 5αR1 and 5αR2 cDNAs in Escherichia coli. A combination of the nonionic detergents Triton X-100 and Nonidet P-40 enabled solubilization of these extremely hydrophobic integral membrane proteins and facilitated purification with affinity and cation-exchange chromatography methods. For functional reconstitution, we incorporated the purified isoenzymes into Triton X-100-saturated dioleoylphosphatidylcholine liposomes and removed excess detergent with polystyrene beads. Kinetic studies indicated that the 2 isozymes differ in biochemical properties, with 5αR2 having a lower apparent Km for testosterone, androstenedione, progesterone, and 17-hydroxyprogesterone than 5αR1; however, 5αR1 had a greater capacity for steroid conversion, as reflected by a higher Vmax than 5αR2. Both enzymes preferred progesterone as substrate over other steroids, and the catalytic efficiency of purified reconstituted 5αR2 exhibited a sharp pH optimum at pH 5. Intriguingly, we found that the prostate-cancer drug-metabolite 3-keto-∆ 4-abiraterone is metabolized by 5αR1 but not 5αR2, which may serve as a structural basis for isoform selectivity and inhibitor design. The functional characterization results with the purified reconstituted isoenzymes paralleled trends obtained with HEK-293 cell lines stably expressing native 5αR1 and 5αR2. Access to purified human 5αR1 and 5αR2 will advance studies of these important enzymes and might help to clarify their contributions to steroid anabolism and catabolism.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| | - Bing Han
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jiayan Liu
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Jie Qiao
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| |
Collapse
|
36
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with anti-androgen drug finasteride. RESEARCH SQUARE 2020:rs.3.rs-40159. [PMID: 32702725 PMCID: PMC7373137 DOI: 10.21203/rs.3.rs-40159/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human steroid 5α-reductase 2 (SRD5α2) as a critical integral membrane enzyme in steroid metabolism catalyzes testosterone to dihydrotestosterone. Mutations on its gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride as SRD5α2 inhibitors are widely used anti-androgen drugs for benign prostate hyperplasia, which have recently been indicated in the treatment of COVID-19. The molecular mechanisms underlying enzyme catalysis and inhibition remained elusive for SRD5α2 and other eukaryotic integral membrane steroid reductases due to a lack of structural information. Here, we report a crystal structure of human SRD5α2 at 2.8 Å revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the membrane. Structural analysis together with computational and mutagenesis studies reveals molecular mechanisms for the 5α-reduction of testosterone and the finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region regulating the NADPH/NADP + exchange. Mapping disease-causing mutations of SRD5α2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and will facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Fei Ye
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
37
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
38
|
Paul SM, Pinna G, Guidotti A. Allopregnanolone: From molecular pathophysiology to therapeutics. A historical perspective. Neurobiol Stress 2020; 12:100215. [PMID: 32435665 PMCID: PMC7231972 DOI: 10.1016/j.ynstr.2020.100215] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Allopregnanolone is synthesized in the central nervous system either de novo from cholesterol or from steroid hormone precursors like progesterone and pregnenolone. Over the past 30 years, direct and rapid, non-genomic actions of allopregnanolone and its derivatives via GABAA receptors have been demonstrated. Changes in brain levels of allopregnanolone during pregnancy and in the postpartum period, or during exposure to protracted stress appear to play a crucial role in the pathophysiology of mood disorders. The discovery that allopregnanolone at low (nanomolar) concentrations elicits marked anxiolytic, anti-stress and antidepressant effects by facilitating allosterically the action of GABA at extrasynaptic GABAA receptors has provided new perspectives for the discovery of novel drugs useful for the treatment of mood disorders. These findings have led to the seminal clinical studies that recently demonstrated that treatment with allopregnanolone (i.e., brexanolone) can dramatically and rapidly improve the symptoms of postpartum depression in many patients.
Collapse
Affiliation(s)
- Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Guidotti
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of IIIinois at Chicago, USA
| |
Collapse
|
39
|
Abstract
Stress is ubiquitous in chronic medical conditions; however, the connections to psychiatric and neurologic conditions are not always clearly established. Epilepsy is a unique illness that is intimately intertwined with stress and anxiety not only as a result of the disease process but also as a cause of disease exacerbation. Anxiety and depression also involve stress management and often overlap with epilepsy. Anxiety symptoms themselves may be present as intrinsic aspects of seizure phenomena, either during the events or closely related to them. The pathways of stress and anxiety involve the hypothalamic pituitary adrenal (HPA) axis and explain at least in part how stress may lead to worsening seizure control. Ultimately, the study of stress, anxiety, and epilepsy offers insight into mind and body connections, and furthers understanding of neuropsychiatric illness.
Collapse
|
40
|
Murata K, Li F, Shinguchi K, Ogata M, Fujita N, Takahashi R. Yokukansankachimpihange Improves the Social Isolation-Induced Sleep Disruption and Allopregnanolone Reduction in Mice. Front Nutr 2020; 7:8. [PMID: 32118027 PMCID: PMC7026005 DOI: 10.3389/fnut.2020.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Yokukansankachimpihange (YKSCH), a traditional Japanese medicine composed of 9 crude drugs, is designed to improve neurosis, insomnia in adults, and night crying in children. YKSCH has been reported to improve diurnal rhythm in patients with Alzheimer's disease and prolong the total sleeping time in healthy subjects. However, little is known about how YKSCH alleviates sleep disorders. Here, we investigated whether and how YKSCH treatment affected sleep latency and duration in group-housed and socially isolated mice. Male ddy mice were treated with YKSCH [1,500 mg/kg, per os (p.o.)] in group-housed or socially isolated conditions for 3-4 weeks. After the last injection, mice were intraperitoneally (i.p.) administered with pentobarbital (60 mg/kg) and the sleep latency and duration was evaluated. The results show that pretreatment with YKSCH had no effect on sleep latency or duration in group-housed mice. However, YKSCH treatment significantly improved the reduced sleep duration in socially isolated mice. This effect of YKSCH was inhibited by the administration of bicuculline (3 mg/kg, i.p.), a GABAA receptor antagonist. Furthermore, we showed that YKSCH treatment improved the decrease in allopregnanolone content and its synthase expression levels in the olfactory bulb. These results suggest that YKSCH treatment improved social isolation stress-induced insomnia via the GABAergic pathway and that the mechanism of action of YKSCH is partly due to improvement of allopregnanolone levels of expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma, Ltd., Takaoka, Japan
| |
Collapse
|
41
|
Meltzer-Brody S, Kanes SJ. Allopregnanolone in postpartum depression: Role in pathophysiology and treatment. Neurobiol Stress 2020; 12:100212. [PMID: 32435663 PMCID: PMC7231991 DOI: 10.1016/j.ynstr.2020.100212] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Postpartum depression (PPD) is a unique subtype of major depressive disorder and a substantial contributor to maternal morbidity and mortality. In addition to affecting the mother, PPD can have short- and long-term consequences for the infant and partner. The precise etiology of PPD is unknown, but proposed mechanisms include altered regulation of stress response pathways, such as the hypothalamic-pituitary-adrenal axis, and dysfunctional gamma-aminobutyric acid (GABA) signaling, and functional linkages exist between these pathways. Current PPD pharmacotherapies are not directly related to these proposed pathophysiologies. In this review, we focus on the potential role of GABAergic signaling and the GABAA receptor positive allosteric modulator allopregnanolone in PPD. Data implicating GABAergic signaling and allopregnanolone in PPD are discussed in the context of the development of brexanolone injection, an intravenous formulation of allopregnanolone recently approved by the United States Food and Drug Administration for the treatment of adult women with PPD.
Collapse
Affiliation(s)
- Samantha Meltzer-Brody
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, USA
- Corresponding author.
| | | |
Collapse
|
42
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
43
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
44
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
45
|
Boero G, Porcu P, Morrow AL. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol Stress 2019; 12:100203. [PMID: 31879693 PMCID: PMC6920111 DOI: 10.1016/j.ynstr.2019.100203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
For several years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone) may have therapeutic potential for treatment of various stress-related diseases including post-traumatic stress disorder (PTSD), depression, alcohol use disorders (AUDs), as well as neurological and psychiatric conditions that are worsened in the presence of stress, such as multiple sclerosis, schizophrenia, and seizure disorders. In this review, we make the argument that the pleiotropic actions of allopregnanolone account for its ability to promote recovery in such a wide variety of illnesses. Likewise, the allopregnanolone precursors, pregnenolone and progesterone, share many actions of allopregnanolone. Of course, pregnenolone and progesterone lack direct effects on GABAA receptors, but these compounds are converted to allopregnanolone in vivo. This review presents a theoretical framework for understanding how endogenous neurosteroids that regulate 1) γ-aminobutyric acid (GABA)A receptors, 2) corticotropin releasing factor (CRF) and 3) pro-inflammatory signaling in the innate immune system and brain could play a key role in both the prevention and treatment of stress-related disease. We further discuss cautions and limitations of allopregnanolone or precursor therapy as well as the need for more clinical studies.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - A Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
46
|
Godar SC, Cadeddu R, Floris G, Mosher LJ, Mi Z, Jarmolowicz DP, Scheggi S, Walf AA, Koonce CJ, Frye CA, Muma NA, Bortolato M. The Steroidogenesis Inhibitor Finasteride Reduces the Response to Both Stressful and Rewarding Stimuli. Biomolecules 2019; 9:biom9110749. [PMID: 31752360 PMCID: PMC6920809 DOI: 10.3390/biom9110749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 01/15/2023] Open
Abstract
Finasteride (FIN) is the prototypical inhibitor of steroid 5α-reductase (5αR), the enzyme that catalyzes the rate-limiting step of the conversion of progesterone and testosterone into their main neuroactive metabolites. FIN is clinically approved for the treatment of benign prostatic hyperplasia and male baldness; while often well-tolerated, FIN has also been shown to cause or exacerbate psychological problems in vulnerable subjects. Evidence on the psychological effects of FIN, however, remains controversial, in view of inconsistent clinical reports. Here, we tested the effects of FIN in a battery of tests aimed at capturing complementary aspects of mood regulation and stress reactivity in rats. FIN reduced exploratory, incentive, prosocial, and risk-taking behavior; furthermore, it decreased stress coping, as revealed by increased immobility in the forced-swim test (FST). This last effect was also observed in female and orchiectomized male rats, suggesting that the mechanism of action of FIN does not primarily reflect changes in gonadal steroids. The effects of FIN on FST responses were associated with a dramatic decrease in corticotropin release hormone (CRH) mRNA and adrenocorticotropic hormone (ACTH) levels. These results suggest that FIN impairs stress reactivity and reduces behavioral activation and impulsive behavior by altering the function of the hypothalamus-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- Sean C. Godar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Laura J. Mosher
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
- Department of Pharmacology and Toxicology, School of Pharmacy; Lawrence, KS 66045, USA; (Z.M.); (N.A.M.)
| | - Zhen Mi
- Department of Pharmacology and Toxicology, School of Pharmacy; Lawrence, KS 66045, USA; (Z.M.); (N.A.M.)
| | - David P. Jarmolowicz
- Department of Applied Behavioral Science; University of Kansas, Lawrence, KS 66045, USA;
- Cofrin Logan Center for Addiction Research and Treatment; University of Kansas, Lawrence, KS 66045, USA
| | - Simona Scheggi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
| | - Alicia A. Walf
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Psychology; The University at Albany-SUNY, Albany, NY 12222, USA; (C.J.K.); (C.A.F.)
| | - Carolyn J. Koonce
- Department of Psychology; The University at Albany-SUNY, Albany, NY 12222, USA; (C.J.K.); (C.A.F.)
| | - Cheryl A. Frye
- Department of Psychology; The University at Albany-SUNY, Albany, NY 12222, USA; (C.J.K.); (C.A.F.)
- Department of Biological Sciences; The University at Albany-SUNY, Albany, NY 12222, USA
- Center for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA
- Comprehensive Neuropsychological Services, Albany, NY 12203, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, School of Pharmacy; Lawrence, KS 66045, USA; (Z.M.); (N.A.M.)
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake, UT 84112, USA; (S.C.G.); (R.C.); (G.F.); (L.J.M.); (S.S.)
- Correspondence:
| |
Collapse
|
47
|
Zorumski CF, Paul SM, Covey DF, Mennerick S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol Stress 2019; 11:100196. [PMID: 31649968 PMCID: PMC6804800 DOI: 10.1016/j.ynstr.2019.100196] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
The recent FDA approval of the neurosteroid, brexanolone (allopregnanolone), as a treatment for women with postpartum depression, and successful trials of a related neuroactive steroid, SGE-217, for men and women with major depressive disorder offer the hope of a new era in treating mood and anxiety disorders based on the potential of neurosteroids as modulators of brain function. This review considers potential mechanisms contributing to antidepressant and anxiolytic effects of allopregnanolone and other GABAergic neurosteroids focusing on their actions as positive allosteric modulators of GABAA receptors. We also consider their roles as endogenous "stress" modulators and possible additional mechanisms contributing to their therapeutic effects. We argue that further understanding of the molecular, cellular, network and psychiatric effects of neurosteroids offers the hope of further advances in the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven M. Paul
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas F. Covey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
48
|
Matsumoto K, Fujiwara H, Araki R, Yabe T. Post-weaning social isolation of mice: A putative animal model of developmental disorders. J Pharmacol Sci 2019; 141:111-118. [DOI: 10.1016/j.jphs.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
|
49
|
Gunduz-Bruce H, Silber C, Kaul I, Rothschild AJ, Riesenberg R, Sankoh AJ, Li H, Lasser R, Zorumski CF, Rubinow DR, Paul SM, Jonas J, Doherty JJ, Kanes SJ. Trial of SAGE-217 in Patients with Major Depressive Disorder. N Engl J Med 2019; 381:903-911. [PMID: 31483961 DOI: 10.1056/nejmoa1815981] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Altered neurotransmission of γ-aminobutyric acid (GABA) has been implicated in the pathogenesis of depression. Whether SAGE-217, an oral, positive allosteric modulator of GABA type A receptors, is effective and safe for the treatment of major depressive disorder is unknown. METHODS In this double-blind, phase 2 trial, we enrolled patients with major depression and randomly assigned them in a 1:1 ratio to receive 30 mg of SAGE-217 or placebo once daily. The primary end point was the change from baseline to day 15 in the score on the 17-item Hamilton Depression Rating Scale (HAM-D; scores range from 0 to 52, with higher scores indicating more severe depression). Secondary efficacy end points, which were assessed on days 2 through 8 and on days 15, 21, 28, 35, and 42, included changes from baseline in scores on additional depression and anxiety scales, a reduction from baseline of more than 50% in the HAM-D score, a HAM-D score of 7 or lower, and a Clinical Global Impression of Improvement score of 1 (very much improved) or 2 (much improved) (on a scale of 1 to 7, with a score of 7 indicating that symptoms are very much worse). RESULTS A total of 89 patients underwent randomization: 45 patients were assigned to the SAGE-217 group, and 44 to the placebo group. The mean baseline HAM-D score was 25.2 in the SAGE-217 group and 25.7 in the placebo group. The least-squares mean (±SE) change in the HAM-D score from baseline to day 15 was -17.4±1.3 points in the SAGE-217 group and -10.3±1.3 points in the placebo group (least-squares mean difference in change, -7.0 points; 95% confidence interval, -10.2 to -3.9; P<0.001). The differences in secondary end points were generally in the same direction as those of the primary end point. There were no serious adverse events. The most common adverse events in the SAGE-217 group were headache, dizziness, nausea, and somnolence. CONCLUSIONS Administration of SAGE-217 daily for 14 days resulted in a reduction in depressive symptoms at day 15. Adverse events were more common in the SAGE-217 group than in the placebo group. Further trials are needed to determine the durability and safety of SAGE-217 in major depressive disorder and to compare SAGE-217 with available treatments. (Funded by Sage Therapeutics; ClinicalTrials.gov number, NCT03000530.).
Collapse
Affiliation(s)
- Handan Gunduz-Bruce
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Christopher Silber
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Inder Kaul
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Anthony J Rothschild
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Robert Riesenberg
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Abdul J Sankoh
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Haihong Li
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Robert Lasser
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Charles F Zorumski
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - David R Rubinow
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Steven M Paul
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Jeffrey Jonas
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - James J Doherty
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| | - Stephen J Kanes
- From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) - all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.)
| |
Collapse
|
50
|
Morrison KE, Cole AB, Thompson SM, Bale TL. Brexanolone for the treatment of patients with postpartum depression. Drugs Today (Barc) 2019; 55:537-544. [PMID: 31584571 PMCID: PMC8033597 DOI: 10.1358/dot.2019.55.9.3040864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
On March 19, 2019, the United States Food and Drug Administration (FDA) approved Zulresso (brexanolone) for intravenous use for the treatment of postpartum depression (PPD) in adult women. The decision was based on three recent clinical trials following an FDA priority review and breakthrough therapy designation. Brexanolone is now available through a restricted process called the Zulresso Risk Evaluation and Mitigation Strategy Program that requires the drug to be administered by a healthcare provider in a certified healthcare facility. Brexanolone represents an important new treatment option to address treatment-resistant depressive symptoms. In this article, we discuss the current critical need for PPD treatments, the mechanisms of brexanolone action, and the efficacy and drug safety studies that led to FDA approval. Additionally, we discuss some limitations of the current formulation, specific populations of women that might benefit from this treatment, and how new drugs on the horizon may increase the ability to treat PPD in a variety of patient populations.
Collapse
Affiliation(s)
- K E Morrison
- Departments of Pharmacology and Psychiatry and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - A B Cole
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - S M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - T L Bale
- Departments of Pharmacology and Psychiatry and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|