1
|
Magnuson JT, Bautista NM, Lucero J, Lund AK, Xu EG, Schlenk D, Burggren WW, Roberts AP. Exposure to Crude Oil Induces Retinal Apoptosis and Impairs Visual Function in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2843-2850. [PMID: 32036658 DOI: 10.1021/acs.est.9b07658] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) present in crude oil are known to impair visual development in fish. However, the underlying mechanism of PAH-induced toxicity to the visual system of fish is not understood. Embryonic zebrafish (Danio rerio) at 4 h post fertilization were exposed to weathered crude oil and assessed for visual function using an optokinetic response, with subsequent samples taken for immunohistochemistry and gene expression analysis. Cardiotoxicity was also assessed by measuring the heart rate, stroke volume, and cardiac output, as cardiac performance has been proposed to be a contributing factor to eye-associated malformations following oil exposure. Larvae exposed to the highest concentrations of crude oil (89.8 μg/L) exhibited an increased occurrence of bradycardia, though no changes in stroke volume or cardiac output were observed. However, genes important in eye development and phototransduction were downregulated in oil-exposed larvae, with an increased occurrence of cellular apoptosis, reduced neuronal connection, and reduced optokinetic behavioral response in zebrafish larvae.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Naim M Bautista
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - JoAnn Lucero
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Amie K Lund
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Elvis Genbo Xu
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A0C5, Canada
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Warren W Burggren
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| | - Aaron P Roberts
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
2
|
Shaik FA, Jaggupilli A, Chelikani P. Highly conserved intracellular H208 residue influences agonist selectivity in bitter taste receptor T2R14. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183057. [PMID: 31493373 DOI: 10.1016/j.bbamem.2019.183057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 11/19/2022]
Abstract
Bitter taste receptors (T2Rs) are a specialized class of cell membrane receptors of the G protein-coupled receptor family and perform a crucial role in chemosensation. The 25 T2Rs in humans are activated by structurally diverse ligands of plant, animal and microbial origin. The mechanisms of activation of these receptors are poorly understood. Therefore, identification of structural determinants of T2Rs that regulate its efficacy could be beneficial in understanding the molecular mechanisms of T2R activation. In this work, we characterized a highly conserved histidine (H208), present at TM5-ICL3 region of T2R14 and its role in agonist-induced T2R14 signaling. Surprisingly, mutation of the conserved H208 (H208A) did not result in increased basal activity of T2R14, in contrast to similar H206A mutation in T2R4 that showed constitutive or basal activity. However, H208A mutation in T2R14 resulted in an increase in agonist-induced efficacy for Flufenamic acid (FFA). Interestingly, H208A did not affect the potency of another T2R14 agonist Diphenhydramine (DPH). The H208R compensatory mutation showed FFA response similar to wild-type T2R14. Molecular modeling suggests a FFA-induced shift in TM3 and TM5 helices of H208A, which changes the network of interactions connecting TM5-ICL3-TM6. This report identifies a crucial residue on the intracellular surface of T2Rs that is involved in bitter ligand selectivity. It also highlights the varied roles carried out by some conserved residues in different T2Rs.
Collapse
Affiliation(s)
- Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Appalaraju Jaggupilli
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling. Anal Bioanal Chem 2019; 411:4481-4508. [PMID: 30927013 DOI: 10.1007/s00216-019-01774-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs), G proteins, and their signaling associates are major signal transducers that control the majority of cellular signaling and regulate key biological functions including immune, neurological, cardiovascular, and metabolic processes. These pathways are targeted by over one-third of drugs on the market; however, the current understanding of their function is limited and primarily derived from cell-destructive approaches providing an ensemble of static, multi-cell information about the status and composition of molecules. Spatiotemporal behavior of molecules involved is crucial to understanding in vivo cell behaviors both in health and disease, and the advent of genetically encoded fluorescence proteins and small fluorophore-based biosensors has facilitated the mapping of dynamic signaling in cells with subcellular acuity. Since we and others have developed optogenetic methods to regulate GPCR-G protein signaling in single cells and subcellular regions using dedicated wavelengths, the desire to develop and adopt optogenetically amenable assays to measure signaling has motivated us to take a broader look at the available optical tools and approaches compatible with measuring single-cell and subcellular GPCR-G protein signaling. Here we review such key optical approaches enabling the examination of GPCR, G protein, secondary messenger, and downstream molecules such as kinase and lipid signaling in living cells. The methods reviewed employ both fluorescence and bioluminescence detection. We not only further elaborate the underlying principles of these sensors but also discuss the experimental criteria and limitations to be considered during their use in single-cell and subcellular signal mapping.
Collapse
|
4
|
Szymanski D, Papanastasiou M, Pandarinathan L, Zvonok N, Janero DR, Pavlopoulos S, Vouros P, Makriyannis A. Aliphatic Azides as Selective Cysteine Labeling Reagents for Integral Membrane Proteins. J Med Chem 2018; 61:11199-11208. [DOI: 10.1021/acs.jmedchem.8b01302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dennis Szymanski
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Malvina Papanastasiou
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lakshmipathi Pandarinathan
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - David R. Janero
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul Vouros
- Barnett Institute, Northeastern University, 215 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Tsai CJ, Pamula F, Nehmé R, Mühle J, Weinert T, Flock T, Nogly P, Edwards PC, Carpenter B, Gruhl T, Ma P, Deupi X, Standfuss J, Tate CG, Schertler GFX. Crystal structure of rhodopsin in complex with a mini-G o sheds light on the principles of G protein selectivity. SCIENCE ADVANCES 2018; 4:eaat7052. [PMID: 30255144 PMCID: PMC6154990 DOI: 10.1126/sciadv.aat7052] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
Selective coupling of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) to specific Gα-protein subtypes is critical to transform extracellular signals, carried by natural ligands and clinical drugs, into cellular responses. At the center of this transduction event lies the formation of a signaling complex between the receptor and G protein. We report the crystal structure of light-sensitive GPCR rhodopsin bound to an engineered mini-Go protein. The conformation of the receptor is identical to all previous structures of active rhodopsin, including the complex with arrestin. Thus, rhodopsin seems to adopt predominantly one thermodynamically stable active conformation, effectively acting like a "structural switch," allowing for maximum efficiency in the visual system. Furthermore, our analysis of the well-defined GPCR-G protein interface suggests that the precise position of the carboxyl-terminal "hook-like" element of the G protein (its four last residues) relative to the TM7/helix 8 (H8) joint of the receptor is a significant determinant in selective G protein activation.
Collapse
Affiliation(s)
- Ching-Ju Tsai
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Corresponding author. (C.-J.T.); (G.F.X.S.)
| | - Filip Pamula
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| | - Rony Nehmé
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonas Mühle
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
| | - Tilman Flock
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
- Fitzwilliam College, University of Cambridge, Cambridge, UK
| | - Przemyslaw Nogly
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| | - Patricia C. Edwards
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Byron Carpenter
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Thomas Gruhl
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| | - Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Condensed Matter Theory Group, PSI, 5232 Villigen PSI, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
| | - Christopher G. Tate
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
- Corresponding author. (C.-J.T.); (G.F.X.S.)
| |
Collapse
|
6
|
Hirji N, Aboshiha J, Georgiou M, Bainbridge J, Michaelides M. Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet 2018; 39:149-157. [PMID: 29303385 DOI: 10.1080/13816810.2017.1418389] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Achromatopsia is an autosomal recessive condition, characterised by reduced visual acuity, impaired colour vision, photophobia and nystagmus. The symptoms can be profoundly disabling, and there is no cure currently available. However, the recent development of gene-based interventions may lead to improved outcomes in the future. This article aims to provide a comprehensive review of the clinical features of the condition, its genetic basis and the underlying pathogenesis. We also explore the insights derived from animal models, including the implications for gene supplementation approaches. Finally, we discuss current human gene therapy trials.
Collapse
Affiliation(s)
- Nashila Hirji
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - Jonathan Aboshiha
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - Michalis Georgiou
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - James Bainbridge
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| | - Michel Michaelides
- a UCL Institute of Ophthalmology, University College London , London , UK.,b Moorfields Eye Hospital , London , UK
| |
Collapse
|
7
|
Cevheroğlu O, Becker JM, Son ÇD. GPCR-Gα protein precoupling: Interaction between Ste2p, a yeast GPCR, and Gpa1p, its Gα protein, is formed before ligand binding via the Ste2p C-terminal domain and the Gpa1p N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2435-2446. [PMID: 28958779 DOI: 10.1016/j.bbamem.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023]
Abstract
G protein coupled receptors bind ligands that initiate intracellular signaling cascades via heterotrimeric G proteins. In this study, involvement of the N-terminal residues of yeast G-alpha (Gpa1p) with the C-terminal residues of a full-length or C-terminally truncated Ste2p were investigated using bioluminescence resonance energy transfer (BRET), a non-radiative energy transfer phenomenon where protein-protein interactions can be quantified between a donor bioluminescent molecule and a suitable acceptor fluorophore. Constitutive and position-dependent BRET signal was observed in the absence of agonist (α-factor). Upon the activation of the receptors with α-factor, no significant change in BRET signal was observed. The location of Ste2p-Gpa1p heterodimer was investigated using confocal fluorescence microscopy and bimolecular fluorescence complementation (BiFC) assay, a technique where two non-fluorescent fragments of a fluorescent protein reassemble in vivo to restore fluorescence property thereby directly reporting a protein-protein interaction. BiFC experiments resulted in a dimerization signal intracellularly during biosynthesis on the endoplasmic reticulum (ER) and on the plasma membrane (PM). The constitutive BRET and BiFC signals observed on ER between Ste2p and Gpa1p in their quiescent and activated states are indicative of pre-coupling between these two proteins. This study is the first to show that the extreme N-terminus of yeast G protein alpha subunit is in close proximity to its receptor. The data suggests a pre-coupled heterodimer prior to receptor activation. The images presented in this study are the first direct in vivo evidence showing the localization of receptor - G protein heterodimers during biosynthesis and before reaching the plasma membrane.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, United States; Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, Çankaya, Ankara, 06800, Turkey
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, United States
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, Çankaya, Ankara, 06800, Turkey.
| |
Collapse
|
8
|
Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model. PLoS One 2016; 11:e0159528. [PMID: 27483005 PMCID: PMC4970668 DOI: 10.1371/journal.pone.0159528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/04/2016] [Indexed: 01/13/2023] Open
Abstract
Agonist-activated G protein-coupled receptors (GPCRs) interact with GDP-bound G protein heterotrimers (Gαβγ) promoting GDP/GTP exchange, which results in dissociation of Gα from the receptor and Gβγ. The GTPase activity of Gα hydrolyzes GTP to GDP, and the GDP-bound Gα interacts with Gβγ, forming a GDP-bound G protein heterotrimer. The G protein cycle is allosterically modulated by conformational changes of the Gα subunit. Although biochemical and biophysical methods have elucidated the structure and dynamics of Gα, the precise conformational mechanisms underlying the G protein cycle are not fully understood yet. Simulation methods could help to provide additional details to gain further insight into G protein signal transduction mechanisms. In this study, using the available X-ray crystal structures of Gα, we simulated the entire G protein cycle and described not only the steric features of the Gα structure, but also conformational changes at each step. Each reference structure in the G protein cycle was modeled as an elastic network model and subjected to normal mode analysis. Our simulation data suggests that activated receptors trigger conformational changes of the Gα subunit that are thermodynamically favorable for opening of the nucleotide-binding pocket and GDP release. Furthermore, the effects of GTP binding and hydrolysis on mobility changes of the C and N termini and switch regions are elucidated. In summary, our simulation results enabled us to provide detailed descriptions of the structural and dynamic features of the G protein cycle.
Collapse
|
9
|
Duc NM, Kim HR, Chung KY. Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol 2015; 763:214-22. [PMID: 25981300 DOI: 10.1016/j.ejphar.2015.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate physiology and pathology of various organs. Consequently, about 40% of drugs in the market targets GPCRs. Heterotrimeric G proteins are composed of α, β, and γ subunits, and act as the key downstream signaling molecules of GPCRs. The structural mechanism of G protein activation by GPCRs has been of a great interest, and a number of biochemical and biophysical studies have been performed since the late 80's. These studies investigated the interface between GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. Recently, arrestins are also reported to be important molecular switches in GPCR-mediated signal transduction, and the physiological output of arrestin-mediated signal transduction is different from that of G protein-mediated signal transduction. Understanding the structural mechanism of the activation of G proteins and arrestins would provide fundamental information for the downstream signaling-selective GPCR-targeting drug development. This review will discuss the structural mechanism of GPCR-induced G protein activation by comparing previous biochemical and biophysical studies.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
10
|
Murai M, Miyoshi H. Chemical modifications of respiratory complex I for structural and functional studies. J Bioenerg Biomembr 2014; 46:313-21. [DOI: 10.1007/s10863-014-9562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 01/07/2023]
|
11
|
Mnpotra JS, Qiao Z, Cai J, Lynch DL, Grossfield A, Leioatts N, Hurst DP, Pitman MC, Song ZH, Reggio PH. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. J Biol Chem 2014; 289:20259-72. [PMID: 24855641 DOI: 10.1074/jbc.m113.539916] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins.
Collapse
Affiliation(s)
- Jagjeet S Mnpotra
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402
| | - Zhuanhong Qiao
- the Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - Jian Cai
- the Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - Diane L Lynch
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402
| | - Alan Grossfield
- the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Nicholas Leioatts
- the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Dow P Hurst
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402
| | - Michael C Pitman
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402, the Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
| | - Zhao-Hui Song
- the Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40292,
| | - Patricia H Reggio
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402,
| |
Collapse
|
12
|
Thaker TM, Sarwar M, Preininger AM, Hamm HE, Iverson TM. A transient interaction between the phosphate binding loop and switch I contributes to the allosteric network between receptor and nucleotide in Gαi1. J Biol Chem 2014; 289:11331-11341. [PMID: 24596087 DOI: 10.1074/jbc.m113.539064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor-mediated activation of the Gα subunit of heterotrimeric G proteins requires allosteric communication between the receptor binding site and the guanine nucleotide binding site, which are separated by >30 Å. Structural changes in the allosteric network connecting these sites are predicted to be transient in the wild-type Gα subunit, making studies of these connections challenging. In the current work, site-directed mutants that alter the energy barriers between the activation states are used as tools to better understand the transient features of allosteric signaling in the Gα subunit. The observed differences in relative receptor affinity for intact Gαi1 subunits versus C-terminal Gαi1 peptides harboring the K345L mutation are consistent with this mutation modulating the allosteric network in the protein subunit. Measurement of nucleotide exchange rates, affinity for metarhodopsin II, and thermostability suggest that the K345L Gαi1 variant has reduced stability in both the GDP-bound and nucleotide-free states as compared with wild type but similar stability in the GTPγS-bound state. High resolution x-ray crystal structures reveal conformational changes accompanying the destabilization of the GDP-bound state. Of these, the conformation for Switch I was stabilized by an ionic interaction with the phosphate binding loop. Further site-directed mutagenesis suggests that this interaction between Switch I and the phosphate binding loop is important for receptor-mediated nucleotide exchange in the wild-type Gαi1 subunit.
Collapse
Affiliation(s)
- Tarjani M Thaker
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maruf Sarwar
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| | - T M Iverson
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| |
Collapse
|
13
|
Chung KY. Structural Aspects of GPCR-G Protein Coupling. Toxicol Res 2014; 29:149-55. [PMID: 24386514 PMCID: PMC3877993 DOI: 10.5487/tr.2013.29.3.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the Gα subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.
Collapse
Affiliation(s)
- Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
14
|
Alexander NS, Preininger AM, Kaya AI, Stein RA, Hamm HE, Meiler J. Energetic analysis of the rhodopsin-G-protein complex links the α5 helix to GDP release. Nat Struct Mol Biol 2014; 21:56-63. [PMID: 24292645 PMCID: PMC3947367 DOI: 10.1038/nsmb.2705] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/02/2013] [Indexed: 01/19/2023]
Abstract
We present a model of interaction of Gi protein with the activated receptor (R*) rhodopsin, which pinpoints energetic contributions to activation and reconciles the β2 adrenergic receptor-Gs crystal structure with new and previously published experimental data. In silico analysis demonstrated energetic changes when the Gα C-terminal helix (α5) interacts with the R* cytoplasmic pocket, thus leading to displacement of the helical domain and GDP release. The model features a less dramatic domain opening compared with the crystal structure. The α5 helix undergoes a 63° rotation, accompanied by a 5.7-Å translation, that reorganizes interfaces between α5 and α1 helices and between α5 and β6-α5. Changes in the β6-α5 loop displace αG. All of these movements lead to opening of the GDP-binding pocket. The model creates a roadmap for experimental studies of receptor-mediated G-protein activation.
Collapse
Affiliation(s)
- Nathan S Alexander
- 1] Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA. [2]
| | - Anita M Preininger
- 1] Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA. [2]
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jens Meiler
- 1] Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA. [2] Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Grunbeck A, Sakmar TP. Probing G Protein-Coupled Receptor—Ligand Interactions with Targeted Photoactivatable Cross-Linkers. Biochemistry 2013; 52:8625-32. [DOI: 10.1021/bi401300y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amy Grunbeck
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New
York 10065, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New
York 10065, United States
| |
Collapse
|
16
|
Jastrzebska B. GPCR: G protein complexes--the fundamental signaling assembly. Amino Acids 2013; 45:1303-14. [PMID: 24052187 DOI: 10.1007/s00726-013-1593-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/15/2022]
Abstract
G protein coupled receptors (GPCR) constitute the largest group of cell surface receptors that transmit various signals across biological membranes through the binding and activation of heterotrimeric G proteins, which amplify the signal and activate downstream effectors leading to the biological responses. Thus, the first critical step in this signaling cascade is the interaction between receptor and its cognate G protein. Understanding this critical event at the molecular level is of high importance because abnormal function of GPCRs is associated with many diseases. Thus, these receptors are targets for drug development.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-4965, USA,
| |
Collapse
|
17
|
Naganathan S, Grunbeck A, Tian H, Huber T, Sakmar TP. Genetically-encoded molecular probes to study G protein-coupled receptors. J Vis Exp 2013. [PMID: 24056801 DOI: 10.3791/50588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Collapse
Affiliation(s)
- Saranga Naganathan
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University
| | | | | | | | | |
Collapse
|
18
|
Moreira IS. Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta Gen Subj 2013; 1840:16-33. [PMID: 24016604 DOI: 10.1016/j.bbagen.2013.08.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies. SCOPE OF REVIEW The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined. MAJOR CONCLUSIONS Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered. GENERAL SIGNIFICANCE In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
19
|
Grunbeck A, Huber T, Sakmar TP. Mapping a ligand binding site using genetically encoded photoactivatable crosslinkers. Methods Enzymol 2013; 520:307-22. [PMID: 23332706 DOI: 10.1016/b978-0-12-391861-1.00014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
G protein-coupled receptor (GPCR) signaling complexes are important for mediating many different biological processes. Uncovering the mechanism for how a ligand triggers a GPCR to elicit a specific response is an active area of research. One step toward understanding this mechanism is through identifying a ligand's binding site on a GPCR. We have optimized a targeted photocrosslinking technology to detect the residues in a receptor that are within a precise distance from a bound ligand in the receptor-ligand complex. Here, we describe the method for introducing photoactivable crosslinkers into a GPCR using the amber stop codon suppression technology. In addition, we review the steps to identify the binding site of a fluorescein-tagged peptide ligand and a tritium-labeled small molecule ligand.
Collapse
Affiliation(s)
- Amy Grunbeck
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, USA
| | | | | |
Collapse
|
20
|
Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: A critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol 2013; 182:209-18. [DOI: 10.1016/j.jsb.2013.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/05/2023]
|
21
|
Hamm HE, Kaya AI, Gilbert JA, Preininger AM. Linking receptor activation to changes in Sw I and II of Gα proteins. J Struct Biol 2013; 184:63-74. [PMID: 23466875 DOI: 10.1016/j.jsb.2013.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/28/2012] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
G-protein coupled receptors catalyze nucleotide exchange on G proteins, which results in subunit dissociation and effector activation. In the recent β2AR-Gs structure, portions of Switch I and II of Gα are not fully elucidated. We paired fluorescence studies of receptor-Gαi interactions with the β2AR-Gs and other Gi structures to investigate changes in Switch I and II during receptor activation and GTP binding. The β2/β3 loop containing Leu194 of Gαi is located between Switches I and II, in close proximity to IC2 of the receptor and the C-terminus of Gα, thus providing an allosteric connection between these Switches and receptor activation. We compared the environment of residues in myristoylated Gαi proteins in the heterotrimer to that upon receptor activation and subsequent GTP binding. Upon receptor activation, residues in both Switch regions are less solvent-exposed, as compared to the heterotrimer. Upon GTPγS binding, the environment of several residues in Switch I resemble the receptor-bound state, while Switch II residues display effects on their environment which are consistent with their role in GTP binding and Gβγ dissociation. The ability to merge available crystal structures with solution studies is a powerful tool to gain insight into conformational changes associated with receptor-mediated Gi protein activation.
Collapse
Affiliation(s)
- Heidi E Hamm
- Vanderbilt University Medical Center, Department of Pharmacology, Nashville, TN 37232-6600, United States
| | | | | | | |
Collapse
|
22
|
New insights into structural determinants for prostanoid thromboxane A2 receptor- and prostacyclin receptor-G protein coupling. Mol Cell Biol 2012; 33:184-93. [PMID: 23109431 DOI: 10.1128/mcb.00725-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) interact with heterotrimeric G proteins and initiate a wide variety of signaling pathways. The molecular nature of GPCR-G protein interactions in the clinically important thromboxane A2 (TxA(2)) receptor (TP) and prostacyclin (PGI(2)) receptor (IP) is poorly understood. The TP activates its cognate G protein (Gαq) in response to the binding of thromboxane, while the IP signals through Gαs in response to the binding of prostacyclin. Here, we utilized a combination of approaches consisting of chimeric receptors, molecular modeling, and site-directed mutagenesis to precisely study the specificity of G protein coupling. Multiple chimeric receptors were constructed by replacing the TP intracellular loops (ICLs) with the ICL regions of the IP. Our results demonstrate that both the sequences and lengths of ICL2 and ICL3 influenced G protein specificity. Importantly, we identified a precise ICL region on the prostanoid receptors TP and IP that can switch G protein specificities. The validities of the chimeric technique and the derived molecular model were confirmed by introducing clinically relevant naturally occurring mutations (R60L in the TP and R212C in the IP). Our findings provide new molecular insights into prostanoid receptor-G protein interactions, which are of general significance for understanding the structural basis of G protein activation by GPCRs in basic health and cardiovascular disease.
Collapse
|
23
|
Hyung SJ, Ruotolo BT. Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 2012; 12:1547-64. [PMID: 22611037 DOI: 10.1002/pmic.201100520] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MS analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other MS approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative MS approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly advancing area.
Collapse
Affiliation(s)
- Suk-Joon Hyung
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
24
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
25
|
Abstract
G protein-Coupled Receptors (GPCRs) use a complex series of intramolecular conformational changes to couple agonist binding to the binding and activation of cognate heterotrimeric G protein (Gαβγ). The mechanisms underlying this long-range activation have been identified using a variety of biochemical and structural approaches and have primarily used visual signal transduction via the GPCR rhodopsin and cognate heterotrimeric G protein transducin (G(t)) as a model system. In this chapter, we review the methods that have revealed allosteric signaling through rhodopsin and transducin. These methods can be applied to a variety of GPCR-mediated signaling pathways.
Collapse
|
26
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
27
|
Shim JY, Bertalovitz AC, Kendall DA. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation. J Biol Chem 2011; 286:33422-35. [PMID: 21795705 PMCID: PMC3190901 DOI: 10.1074/jbc.m111.261651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/20/2011] [Indexed: 12/16/2022] Open
Abstract
The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210.
Collapse
Affiliation(s)
- Joong-Youn Shim
- JL Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707, USA.
| | | | | |
Collapse
|
28
|
Peng Z, Tang Y, Luo H, Jiang F, Yang J, Sun L, Li JD. Disease-causing mutation in PKR2 receptor reveals a critical role of positive charges in the second intracellular loop for G-protein coupling and receptor trafficking. J Biol Chem 2011; 286:16615-22. [PMID: 21454486 DOI: 10.1074/jbc.m111.223784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prokineticins are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors, PKR1 and PKR2. Recently, mutations in prokineticin 2 (PK2) and PKR2 are found to be associated with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, disorders characterized by delayed puberty and infertility. However, little is known how PKRs interact and activate G-proteins to elicit signal transduction. In the present study, we took advantage of one disease-associated mutation (R164Q) located in the second intracellular (IL2) loop of PKR2, to investigate the role of IL2 loop in the cell signaling, G-protein binding and receptor trafficking. R164Q mutant PKR2 showed normal cell surface expression and ligand binding capacity. However, the PKR2 signaling was abolished by R164Q mutation. We demonstrated that R164Q mutation disrupted the interaction of IL2 loop to the Gα(q), Gα(i), and Gα(16)-proteins. A positive-charged amino acid at this position is required for proper function, and the signaling efficacy and potency depend on the net amount of positive charges. We also demonstrated that the interactive partner of Arg-164 may localize in the C-terminal five residues of Gα(q)-protein. A series of mutation analysis indicated that the basic amino acids at the C terminus of IL2 loop may function cooperatively in GPCRs. Furthermore, R164Q mutation also results in minimal ligand-induced endocytosis of PKR2. As many GPCRs share structural homology in the C terminus of IL2 loop, our findings may have general application in understanding structure and function of GPCRs.
Collapse
Affiliation(s)
- Zhen Peng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Temple BRS, Jones CD, Jones AM. Evolution of a signaling nexus constrained by protein interfaces and conformational States. PLoS Comput Biol 2010; 6:e1000962. [PMID: 20976244 PMCID: PMC2954821 DOI: 10.1371/journal.pcbi.1000962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/17/2010] [Indexed: 01/03/2023] Open
Abstract
Heterotrimeric G proteins act as the physical nexus between numerous receptors that respond to extracellular signals and proteins that drive the cytoplasmic response. The Gα subunit of the G protein, in particular, is highly constrained due to its many interactions with proteins that control or react to its conformational state. Various organisms contain differing sets of Gα-interacting proteins, clearly indicating that shifts in sequence and associated Gα functionality were acquired over time. These numerous interactions constrained much of Gα evolution; yet Gα has diversified, through poorly understood processes, into several functionally specialized classes, each with a unique set of interacting proteins. Applying a synthetic sequence-based approach to mammalian Gα subunits, we established a set of seventy-five evolutionarily important class-distinctive residues, sites where a single Gα class is differentiated from the three other classes. We tested the hypothesis that shifts at these sites are important for class-specific functionality. Importantly, we mapped known and well-studied class-specific functionalities from all four mammalian classes to sixteen of our class-distinctive sites, validating the hypothesis. Our results show how unique functionality can evolve through the recruitment of residues that were ancestrally functional. We also studied acquisition of functionalities by following these evolutionarily important sites in non-mammalian organisms. Our results suggest that many class-distinctive sites were established early on in eukaryotic diversification and were critical for the establishment of new Gα classes, whereas others arose in punctuated bursts throughout metazoan evolution. These Gα class-distinctive residues are rational targets for future structural and functional studies.
Collapse
Affiliation(s)
- Brenda R S Temple
- R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | |
Collapse
|
30
|
Hu J, Wang Y, Zhang X, Lloyd JR, Li J, Karpiak J, Costanzi S, Wess J. Structural basis of G protein-coupled receptor-G protein interactions. Nat Chem Biol 2010; 6:541-8. [PMID: 20512139 PMCID: PMC3104732 DOI: 10.1038/nchembio.385] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/30/2010] [Indexed: 01/31/2023]
Abstract
The interaction of G protein-coupled receptors (GPCRs) with heterotrimeric G proteins represents one of the most fundamental biological processes. However, the molecular architecture of the GPCR-G protein complex remains poorly defined. In the present study, we applied a comprehensive GPCR-G protein alpha subunit (Galpha) chemical cross-linking strategy to map a receptor-Galpha interface, both before and after agonist-induced receptor activation. Using the M(3) muscarinic acetylcholine receptor (M3R)-Galpha(q) system as a model system, we examined the ability of approximately 250 combinations of cysteine-substituted M3R and Galpha(q) proteins to undergo cross-link formation. We identified many specific M3R-Galpha(q) contact sites, in both the inactive and active receptor conformations, allowing us to draw conclusions regarding the basic architecture of the M3R-Galpha(q) interface and the nature of the conformational changes following receptor activation. As heterotrimeric G proteins as well as most GPCRs share a high degree of structural homology, our findings should be of broad general relevance.
Collapse
Affiliation(s)
- Jianxin Hu
- Molecular Signaling Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yan Wang
- Molecular Signaling Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaohong Zhang
- Molecular Signaling Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John R. Lloyd
- Mass Spectrometry Group, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jianhua Li
- Molecular Signaling Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joel Karpiak
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stefano Costanzi
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jürgen Wess
- Molecular Signaling Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Chen Y, Wu Y, Henklein P, Li X, Hofmann KP, Nakanishi K, Ernst O. A Photo-Cross-Linking Strategy to Map Sites of Protein-Protein Interactions. Chemistry 2010; 16:7389-94. [DOI: 10.1002/chem.201000441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Abstract
Activation of GPCRs (G-protein-coupled receptors) leads to conformational changes that ultimately initiate signal transduction. Activated GPCRs transiently combine with and activate heterotrimeric G-proteins resulting in GTP replacement of GDP on the G-protein alpha subunit. Both the detailed structural changes essential for productive GDP/GTP exchange on the G-protein alpha subunit and the structure of the GPCR-G-protein complex itself have yet to be elucidated. Nevertheless, transient GPCR-G-protein complexes can be trapped by nucleotide depletion, yielding an empty-nucleotide G-protein-GPCR complex that can be isolated. Whereas early biochemical studies indicated formation of a complex between G-protein and activated receptor only, more recent results suggest that G-protein can bind to pre-activated states of receptor or even couple transiently to non-activated receptor to facilitate rapid responses to stimuli. Efficient and reproducible formation of physiologically relevant, conformationally homogenous GPCR-G-protein complexes is a prerequisite for structural studies designed to address these possibilities.
Collapse
|
33
|
Tikhonova IG, Costanzi S. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr Pharm Des 2010; 15:4003-16. [PMID: 20028318 DOI: 10.2174/138161209789824803] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Sgourakis NG, Garcia AE. The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations. J Mol Biol 2010; 398:161-73. [PMID: 20184892 DOI: 10.1016/j.jmb.2010.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/16/2022]
Abstract
Rhodopsin, the prototype class A G-protein-coupled receptor, is a very important model system for all seven-transmembrane domain proteins. Characterization of the interactions between rhodopsin and transducin, its intracellular G-protein counterpart, and the fluctuations in these interactions due to thermal motions is required for an understanding of early events in the mechanism of signal transduction. In this study, we used all-atom molecular dynamics simulations of a transmembrane protein complex between rhodopsin and the heterotrimeric transducin (G alpha beta gamma) in an all-atom DOPC (1,2-dioleoylsn-glycero-3-phosphocholine) membrane-water environment. Based on the analysis of a microsecond-timescale simulation trajectory, we characterized the dynamics of the system and its effects in the structural features of the protein subunits. Our simulations describe a highly dynamic interaction interface where the system is alternating between distinct domain orientations at the 10- to 100-ns timescale that can be further classified into interaction modes involving contacts between distinct structural features on the protein subunits. We related our results with experimental measurements from a variety of studies and high-resolution models of activated rhodopsin. Monitoring key structural features that are involved in the activation process along our simulation trajectory indicates the presence of extensive dynamics in the dark-adapted state, including a motion of Y223 from helix 3 toward the "ionic-lock" interactions of the conserved ERY motif. The dynamic picture shown here is consistent with a framework in which the dark-state fluctuations sample conformations consistent with the activated state. These results provide an atomic-level description of the dynamics of the full complex and further suggest novel mutagenesis experiments that can be used to investigate the stability and dynamics of this model membrane protein receptor system.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | |
Collapse
|
35
|
Distinct interactions between the human adrenergic β2 receptor and Gαs—an in silico study. J Mol Model 2010; 16:1307-18. [DOI: 10.1007/s00894-010-0646-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 12/21/2009] [Indexed: 10/19/2022]
|
36
|
Pang JJ, Alexander J, Lei B, Deng W, Zhang K, Li Q, Chang B, Hauswirth WW. Achromatopsia as a potential candidate for gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:639-46. [PMID: 20238068 DOI: 10.1007/978-1-4419-1399-9_73] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Achromatopsia is an autosomal recessive retinal disease involving loss of cone function that afflicts approximately 1 in 30,000 individuals. Patients with achromatopsia usually have visual acuities lower than 20/200 because of the central vision loss, photophobia, complete color blindness and reduced cone-mediated electroretinographic (ERG) amplitudes. Mutations in three genes have been found to be the primary causes of achromatopsia, including CNGB3 (beta subunit of the cone cyclic nucleotide-gated cation channel), CNGA3 (alpha subunit of the cone cyclic nucleotide-gated cation channel), and GNAT2 (cone specific alpha subunit of transducin). Naturally occurring mouse models with mutations in Cnga3 (cpfl5 mice) and Gnat2 (cpfl3 mice) were discovered at The Jackson Laboratory. A natural occurring canine model with CNGB3 mutations has also been found. These animal models have many of the central phenotypic features of the corresponding human diseases. Using adeno-associated virus (AAV)-mediated gene therapy, we and others show that cone function can be restored in all three models. These data suggest that human achromatopsia may be a good candidate for corrective gene therapy.
Collapse
Affiliation(s)
- Ji-Jing Pang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Preininger AM, Funk MA, Oldham WM, Meier SM, Johnston CA, Adhikary S, Kimple AJ, Siderovski DP, Hamm HE, Iverson TM. Helix dipole movement and conformational variability contribute to allosteric GDP release in Galphai subunits. Biochemistry 2009; 48:2630-42. [PMID: 19222191 DOI: 10.1021/bi801853a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterotrimeric G proteins (Galphabetagamma) transmit signals from activated G protein-coupled receptors (GPCRs) to downstream effectors through a guanine nucleotide signaling cycle. Numerous studies indicate that the carboxy-terminal alpha5 helix of Galpha subunits participates in Galpha-receptor binding, and previous EPR studies suggest this receptor-mediated interaction induces a rotation and translation of the alpha5 helix of the Galpha subunit [Oldham, W. M., et al. (2006) Nat. Struct. Mol. Biol. 13, 772-777]. On the basis of this result, an engineered disulfide bond was designed to constrain the alpha5 helix of Galpha(i1) into its EPR-measured receptor-associated conformation through the introduction of cysteines at position 56 in the alpha1 helix and position 333 in the alpha5 helix (I56C/Q333C Galpha(i1)). A functional mimetic of the EPR-measured alpha5 helix dipole movement upon receptor association was additionally created by introduction of a positive charge at the amino terminus of this helix, D328R Galpha(i1). Both proteins exhibit a dramatically elevated level of basal nucleotide exchange. The 2.9 A resolution crystal structure of I56C/Q333C Galpha(i1) in complex with GDP-AlF(4)(-) reveals the shift of the alpha5 helix toward the guanine nucleotide binding site that is anticipated by EPR measurements. The structure of the I56C/Q333C Galpha(i1) subunit further revealed altered positions for the switch regions and throughout the Galpha(i1) subunit, accompanied by significantly elevated crystallographic temperature factors. Combined with previous evidence in the literature, the structural analysis supports the critical role of electrostatics of the alpha5 helix dipole and overall conformational variability during nucleotide release.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chu F, Baker PR, Burlingame AL, Chalkley RJ. Finding chimeras: a bioinformatics strategy for identification of cross-linked peptides. Mol Cell Proteomics 2009; 9:25-31. [PMID: 19809093 DOI: 10.1074/mcp.m800555-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemical cross-linking, followed by identification of the cross-linked residues, is a powerful approach to probe the topologies and interacting surfaces of protein assemblies. In this work, we demonstrate a new bioinformatics approach using multiple program modules within the software package "Protein Prospector" that greatly facilitates the discovery of cross-linked peptides in chemical cross-linking studies. Examples are given for how this approach has been used for defining interfaces in heterodimeric and homodimeric protein complexes, both of which provide results in close agreement with crystal structures, verifying the reliability of the approach.
Collapse
Affiliation(s)
- Feixia Chu
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
39
|
Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface. Proc Natl Acad Sci U S A 2009; 106:10660-5. [PMID: 19541654 DOI: 10.1073/pnas.0900072106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular signals prompt G protein-coupled receptors (GPCRs) to adopt an active conformation (R*) and catalyze GDP/GTP exchange in the alpha-subunit of intracellular G proteins (Galphabetagamma). Kinetic analysis of transducin (G(t)alphabetagamma) activation shows that an intermediary R*xG(t)alphabetagamma.GDP complex is formed that precedes GDP release and formation of the nucleotide-free R*xG protein complex. Based on this reaction sequence, we explore the dynamic interface between the proteins during formation of these complexes. We start from the R* conformation stabilized by a G(t)alpha C-terminal peptide (GalphaCT) obtained from crystal structures of the GPCR opsin. Molecular modeling allows reconstruction of the fully elongated C-terminal alpha-helix of G(t)alpha (alpha5) and shows how alpha5 can be docked to the open binding site of R*. Two modes of interaction are found. One of them--termed stable or S-interaction--matches the position of the GalphaCT peptide in the crystal structure and reproduces the hydrogen-bonding networks between the C-terminal reverse turn of GalphaCT and conserved E(D)RY and NPxxY(x)(5,6)F regions of the GPCR. The alternative fit--termed intermediary or I-interaction--is distinguished by a tilt (42 degrees ) and rotation (90 degrees ) of alpha5 relative to the S-interaction and shows different alpha5 contacts with the NPxxY(x)(5,6)F region and the second cytoplasmic loop of R*. From the 2 alpha5 interactions, we derive a "helix switch" mechanism for the transition of R*xG(t)alphabetagamma.GDP to the nucleotide-free R*xG protein complex that illustrates how alpha5 might act as a transmission rod to propagate the conformational change from the receptor-G protein interface to the nucleotide binding site.
Collapse
|
40
|
Kang S, Mou L, Brouillette WJ, Prevelige PE. Synthesis of biotin-tagged chemical cross-linkers and their applications for mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1719-26. [PMID: 19412923 PMCID: PMC2748246 DOI: 10.1002/rcm.4066] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical cross-linking combined with mass spectrometry (MS) has been used to elucidate protein structures and protein-protein interactions. However, heterogeneity of the samples and the relatively low abundance of cross-linked peptides make this approach challenging. As an effort to overcome this hurdle, we have synthesized lysine-reactive homobifunctional cross-linkers with the biotin in the middle of the linker and used them to enrich cross-linked peptides. The reaction of biotin-tagged cross-linkers with purified HIV-1 CA resulted in the formation of hanging and intramolecular cross-links. The peptides modified with biotinylated cross-linkers were effectively enriched and recovered using a streptavidin-coated plate and MS-friendly buffers. The enrichment of modified peptides and removal of the dominantly unmodified peptides simplify mass spectra and their analyses. The combination of the high mass accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS and the tandem mass spectrometric (MS/MS) capability of the linear ion trap allows us to unambiguously identify the cross-linking sites and additional modification, such as oxidation.
Collapse
Affiliation(s)
- Sebyung Kang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- UAB Biomedical FT-ICR Mass Spectrometry Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Liyuan Mou
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Wayne J. Brouillette
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Peter E. Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- UAB Biomedical FT-ICR Mass Spectrometry Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Reprint requests to: Peter E. Prevelige Jr., Department of Microbiology, University of Alabama at Birmingham, BBRB 416, 845 19 St South, Birmingham, AL 35294-2170, USA; E-mail: ; phone: (205) 975-5327; fax: (205) 975-5479
| |
Collapse
|
41
|
Yu MY, Ho MK, Liu AM, Wong YH. Mutations on the Switch III region and the alpha3 helix of Galpha16 differentially affect receptor coupling and regulation of downstream effectors. J Mol Signal 2008; 3:17. [PMID: 19025606 PMCID: PMC2613389 DOI: 10.1186/1750-2187-3-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/22/2008] [Indexed: 12/18/2022] Open
Abstract
Background Gα16 can activate phospholipase Cβ (PLCβ) directly like Gαq. It also couples to tetratricopeptide repeat 1 (TPR1) which is linked to Ras activation. It is unknown whether PLCβ and TPR1 interact with the same regions on Gα16. Previous studies on Gαq have defined two minimal clusters of amino acids that are essential for the coupling to PLCβ. Cognate residues in Gα16 might also be essential for interacting with PLCβ, and possibly contribute to TPR1 interaction and other signaling events. Results Alanine mutations were introduced to the two amino acid clusters (246–248 and 259–260) in the switch III region and α3 helix of Gα16. Regulations of PLCβ and STAT3 were partially weakened by each cluster mutant. A mutant harboring mutations at both clusters generally produced stronger suppressions. Activation of Jun N-terminal kinase (JNK) by Gα16 was completely abolished by mutating either clusters. Contrastingly, phosphorylations of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) were not significantly affected by these mutations. The interactions between the mutants and PLCβ2 and TPR1 were also reduced in co-immunoprecipitation assays. Coupling between G16 and different categories of receptors was impaired by the mutations, with the effect of switch III mutations being more pronounced than those in the α3 helix. Mutations of both clusters almost completely abolished the receptor coupling and prevent receptor-induced Gβγ release. Conclusion The integrity of the switch III region and α3 helix of Gα16 is critical for the activation of PLCβ, STAT3, and JNK but not ERK or NF-κB. Binding of Gα16 to PLCβ2 or TPR1 was reduced by the mutations of either cluster. The same region could also differentially affect the effectiveness of receptor coupling to G16. The studied region was shown to bear multiple functionally important roles of G16.
Collapse
Affiliation(s)
- May Ym Yu
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | |
Collapse
|
42
|
Wacker JL, Feller DB, Tang XB, Defino MC, Namkung Y, Lyssand JS, Mhyre AJ, Tan X, Jensen JB, Hague C. Disease-causing mutation in GPR54 reveals the importance of the second intracellular loop for class A G-protein-coupled receptor function. J Biol Chem 2008; 283:31068-78. [PMID: 18772143 PMCID: PMC2576551 DOI: 10.1074/jbc.m805251200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/26/2008] [Indexed: 11/06/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) GPR54 is essential for the development and maintenance of reproductive function in mammals. A point mutation (L148S) in the second intracellular loop (IL2) of GPR54 causes idiopathic hypogonadotropic hypogonadism, a disorder characterized by delayed puberty and infertility. Here, we characterize the molecular mechanism by which the L148S mutation causes disease and address the role of IL2 in Class A GPCR function. Biochemical, immunocytochemical, and pharmacological analysis demonstrates that the mutation does not affect the expression, ligand binding properties, or protein interaction network of GPR54. In contrast, diverse GPR54 functional responses are markedly inhibited by the L148S mutation. Importantly, the leucine residue at this position is highly conserved among class A GPCRs. Indeed, mutating the corresponding leucine of the alpha(1A)-AR recapitulates the effects observed with L148S GPR54, suggesting the critical importance of this hydrophobic IL2 residue for Class A GPCR functional coupling. Interestingly, co-immunoprecipitation studies indicate that L148S does not hinder the association of Galpha subunits with GPR54. However, fluorescence resonance energy transfer analysis strongly suggests that L148S impairs the ligand-induced catalytic activation of Galpha. Combining our data with a predictive Class A GPCR/Galpha model suggests that IL2 domains contain a conserved hydrophobic motif that, upon agonist stimulation, might stabilize the switch II region of Galpha. Such an interaction could promote opening of switch II of Galpha to facilitate GDP-GTP exchange and coupling to downstream signaling responses. Importantly, mutations that disrupt this key hydrophobic interface can manifest as human disease.
Collapse
Affiliation(s)
- Jennifer L Wacker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maximal efficiency of coupling between ATP hydrolysis and translocation of polypeptides mediated by SecB requires two protomers of SecA. J Bacteriol 2008; 191:978-84. [PMID: 18978043 DOI: 10.1128/jb.01321-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA is the ATPase that provides energy for translocation of precursor polypeptides through the SecYEG translocon in Escherichia coli during protein export. We showed previously that when SecA receives the precursor from SecB, the ternary complex is fully active only when two protomers of SecA are bound. Here we used variants of SecA and of SecB that populate complexes containing two protomers of SecA to different degrees to examine both the hydrolysis of ATP and the translocation of polypeptides. We conclude that the low activity of the complexes with only one protomer is the result of a low efficiency of coupling between ATP hydrolysis and translocation.
Collapse
|
44
|
Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP. Crystal structure of opsin in its G-protein-interacting conformation. Nature 2008; 455:497-502. [PMID: 18818650 DOI: 10.1038/nature07330] [Citation(s) in RCA: 857] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/08/2008] [Indexed: 12/14/2022]
Abstract
Opsin, the ligand-free form of the G-protein-coupled receptor rhodopsin, at low pH adopts a conformationally distinct, active G-protein-binding state known as Ops*. A synthetic peptide derived from the main binding site of the heterotrimeric G protein-the carboxy terminus of the alpha-subunit (GalphaCT)-stabilizes Ops*. Here we present the 3.2 A crystal structure of the bovine Ops*-GalphaCT peptide complex. GalphaCT binds to a site in opsin that is opened by an outward tilt of transmembrane helix (TM) 6, a pairing of TM5 and TM6, and a restructured TM7-helix 8 kink. Contacts along the inner surface of TM5 and TM6 induce an alpha-helical conformation in GalphaCT with a C-terminal reverse turn. Main-chain carbonyl groups in the reverse turn constitute the centre of a hydrogen-bonded network, which links the two receptor regions containing the conserved E(D)RY and NPxxY(x)(5,6)F motifs. On the basis of the Ops*-GalphaCT structure and known conformational changes in Galpha, we discuss signal transfer from the receptor to the G protein nucleotide-binding site.
Collapse
Affiliation(s)
- Patrick Scheerer
- Institut für Medizinische Physik und Biophysik (CC2), Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Preininger AM, Parello J, Meier SM, Liao G, Hamm HE. Receptor-mediated changes at the myristoylated amino terminus of Galpha(il) proteins. Biochemistry 2008; 47:10281-93. [PMID: 18771287 DOI: 10.1021/bi800741r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs) catalyze nucleotide release in heterotrimeric G proteins, the slow step in G protein activation. G i/o family proteins are permanently, cotranslationally myristoylated at the extreme amino terminus. While myristoylation of the amino terminus has long been known to aid in anchoring G i proteins to the membrane, the role of myristoylation with regard to interaction with activated receptors is not known. Previous studies have characterized activation-dependent changes in the amino terminus of Galpha proteins in solution [Medkova, M. (2002) Biochemistry 41, 9963-9972; Preininger, A. M. (2003) Biochemistry 42, 7931-7941], but changes in the environment of specific residues within the Galpha i1 amino terminus during receptor-mediated G i activation have not been reported. Using site-specific fluorescence labeling of individual residues along a stretch of the Galpha il amino terminus, we found specific changes in the environment of these residues upon interaction with the activated receptor and following GTPgammaS binding. These changes map to a distinct surface of the amino-terminal helix opposite the Gbetagamma binding interface. The receptor-dependent fluorescence changes are consistent with a myristoylated amino terminus in the proximity of the membrane and/or receptor. Myristoylation affects both the rate and intensity of receptor activation-dependent changes detected at several residues along the amino terminus (with no significant effect on the rate of receptor-mediated GTPgammaS binding). This work demonstrates that the myristoylated amino terminus of Galpha il proteins undergoes receptor-mediated changes during the dynamic process of G protein signaling.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | |
Collapse
|
46
|
Shimamura T, Hiraki K, Takahashi N, Hori T, Ago H, Masuda K, Takio K, Ishiguro M, Miyano M. Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J Biol Chem 2008; 283:17753-6. [PMID: 18463093 PMCID: PMC2440622 DOI: 10.1074/jbc.c800040200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/15/2008] [Indexed: 01/26/2023] Open
Abstract
G-protein-coupled receptors play a key step in cellular signal transduction cascades by transducing various extracellular signals via G-proteins. Rhodopsin is a prototypical G-protein-coupled receptor involved in the retinal visual signaling cascade. We determined the structure of squid rhodopsin at 3.7A resolution, which transduces signals through the G(q) protein to the phosphoinositol cascade. The structure showed seven transmembrane helices and an amphipathic helix H8 has similar geometry to structures from bovine rhodopsin, coupling to G(t), and human beta(2)-adrenergic receptor, coupling to G(s). Notably, squid rhodopsin contains a well structured cytoplasmic region involved in the interaction with G-proteins, and this region is flexible or disordered in bovine rhodopsin and human beta(2)-adrenergic receptor. The transmembrane helices 5 and 6 are longer and extrude into the cytoplasm. The distal C-terminal tail contains a short hydrophilic alpha-helix CH after the palmitoylated cysteine residues. The residues in the distal C-terminal tail interact with the neighboring residues in the second cytoplasmic loop, the extruded transmembrane helices 5 and 6, and the short helix H8. Additionally, the Tyr-111, Asn-87, and Asn-185 residues are located within hydrogen-bonding distances from the nitrogen atom of the Schiff base.
Collapse
|
47
|
Abstract
Heterotrimeric G proteins couple the activation of heptahelical receptors at the cell surface to the intracellular signaling cascades that mediate the physiological responses to extracellular stimuli. G proteins are molecular switches that are activated by receptor-catalyzed GTP for GDP exchange on the G protein alpha subunit, which is the rate-limiting step in the activation of all downstream signaling. Despite the important biological role of the receptor-G protein interaction, relatively little is known about the structure of the complex and how it leads to nucleotide exchange. This chapter will describe what is known about receptor and G protein structure and outline a strategy for assembling the current data into improved models for the receptor-G protein complex that will hopefully answer the question as to how receptors flip the G protein switch.
Collapse
Affiliation(s)
- William M Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
48
|
Chen Y, Herrmann R, Fishkin N, Henklein P, Nakanishi K, Ernst OP. Synthesis and spectroscopic characterization of photo-affinity peptide ligands to study rhodopsin-G protein interaction. Photochem Photobiol 2008; 84:831-8. [PMID: 18282180 DOI: 10.1111/j.1751-1097.2008.00304.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in the control of virtually all aspects of our behavior and physiology. Activated receptors catalyze nucleotide exchange in heterotrimeric G proteins (composed of alpha.GDP, beta and gamma subunits) on the inner surface of the cell membrane. The GPCR rhodopsin and the G protein transducin (G(t)) are key proteins in the early steps of the visual cascade. The main receptor interaction sites on G(t) are the C-terminal tail of the G(t)alpha-subunit and the farnesylated C-terminal tail of the G(t)gamma-subunit. Synthetic peptides derived from these C-termini specifically bind and stabilize the active rhodopsin conformation (R*). Here we report the synthesis of R*-interacting peptides containing photo-reactive groups with a specific isotope pattern, which can facilitate detection of cross-linked products by mass spectrometry. In a preliminary set of experiments, we characterized such peptides derived from the farnesylated G(t)gamma C-terminus (G(t)gamma(60-71)far) in terms of their capability to bind R*. Here, we describe novel peptides with photo-affinity labels that bind R* with affinities similar to that of the native G(t)gamma(60-71)far peptide. Such peptides will enable an improved experimental strategy to probe rhodopsin-G(t) interaction and to map so far unknown interaction sites between both proteins.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
49
|
Melcher K, Chen HT. Identification and analysis of multiprotein complexes through chemical crosslinking. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 17:Unit 17.10. [PMID: 18228499 DOI: 10.1002/0471143030.cb1710s33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemical crosslinking provides information about protein-protein interactions in the context of intact protein complexes; therefore, it is particularly suited to the analysis of multiprotein complexes. Rather than a single distinct technique, chemical crosslinking represents a smorgasbord of techniques that differ significantly both in chemistry and in scope. This unit will attempt to guide the reader through the complexities of crosslinking to find the most suitable approach for a given biological question. Sample protocols for two crosslinking methods considered to be particularly useful for the analysis of large multiprotein complexes are provided: His6-mediated crosslinking and photoinducible label transfer crosslinking.
Collapse
|
50
|
Kinns H, Howorka S. The surface location of individual residues in a bacterial S-layer protein. J Mol Biol 2008; 377:589-604. [PMID: 18262545 DOI: 10.1016/j.jmb.2008.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/22/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Bacterial surface layer (S-layer) proteins self-assemble into large two-dimensional crystalline lattices that form the outermost cell-wall component of all archaea and many eubacteria. Despite being a large class of self-assembling proteins, little is known about their molecular architecture. We investigated the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 to identify residues located at the subunit-subunit interface and to determine the S-layer's topology. Twenty-three single cysteine mutants, which were previously mapped to the surface of the SbsB monomer, were subjected to a cross-linking screen using the photoactivatable, sulfhydryl-reactive reagent N-[4-(p-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide. Gel electrophoretic analysis on the formation of cross-linked dimers indicated that 8 out of the 23 residues were located at the interface. In combination with surface accessibility data for the assembled protein, 10 residues were assigned to positions at the inner, cell-wall-facing lattice surface, while 5 residues were mapped to the outer, ambient-exposed lattice surface. In addition, the cross-linking screen identified six positions of intramolecular cross-linking within the assembled protein but not in the monomeric S-layer protein. Most likely, these intramolecular cross-links result from conformational changes upon self-assembly. The results are an important step toward the further structural elucidation of the S-layer protein via, for example, X-ray crystallography and cryo-electron microscopy. Our approach of identifying the surface location of residues is relevant to other planar supramolecular protein assemblies.
Collapse
Affiliation(s)
- Helen Kinns
- Department of Chemistry, University College London, Christopher Ingold Building, 20 Gordon Street, London WC1H 0AJ, England, UK
| | | |
Collapse
|