1
|
Ness N, Schultz SR. A computational grid-to-place-cell transformation model indicates a synaptic driver of place cell impairment in early-stage Alzheimer's Disease. PLoS Comput Biol 2021; 17:e1009115. [PMID: 34133417 PMCID: PMC8238223 DOI: 10.1371/journal.pcbi.1009115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 06/28/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's Disease (AD) is characterized by progressive neurodegeneration and cognitive impairment. Synaptic dysfunction is an established early symptom, which correlates strongly with cognitive decline, and is hypothesised to mediate the diverse neuronal network abnormalities observed in AD. However, how synaptic dysfunction contributes to network pathology and cognitive impairment in AD remains elusive. Here, we present a grid-cell-to-place-cell transformation model of long-term CA1 place cell dynamics to interrogate the effect of synaptic loss on network function and environmental representation. Synapse loss modelled after experimental observations in the APP/PS1 mouse model was found to induce firing rate alterations and place cell abnormalities that have previously been observed in AD mouse models, including enlarged place fields and lower across-session stability of place fields. Our results support the hypothesis that synaptic dysfunction underlies cognitive deficits, and demonstrate how impaired environmental representation may arise in the early stages of AD. We further propose that dysfunction of excitatory and inhibitory inputs to CA1 pyramidal cells may cause distinct impairments in place cell function, namely reduced stability and place map resolution.
Collapse
Affiliation(s)
- Natalie Ness
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
tDCS over posterior parietal cortex increases cortical excitability but decreases learning: An ERPs and TMS-EEG study. Brain Res 2020; 1753:147227. [PMID: 33385376 DOI: 10.1016/j.brainres.2020.147227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
The application of anodal transcranial direct current stimulation (AtDCS) is generally associated with increased neuronal excitability and enhanced cognitive functioning. Nevertheless, previous work showed that applying this straight reasoning does not always lead to the desired results at behavioural level. Here, we investigated electrophysiological markers of AtDCS-mediated effects on visuo-spatial contextual learning (VSCL). In order to assess cortical excitability changes after 3 mA AtDCS applied over posterior parietal cortex, event-related potentials (ERPs) were collected during task performance. Additionally, AtDCS-induced effects on cortical excitability were explored by measuring TMS-evoked potentials (TEPs) collected before AtDCS, after AtDCS and after AtDCS and VSCL interaction. Behavioural results revealed that the application of AtDCS induced a reduction of VSCL. At the electrophysiological level, ERPs showed enhanced cortical response (P2 component) in the group receiving Real-AtDCS as compared to Sham-AtDCS. Cortical responsiveness at rest as measured by TEP, did not indicate any significant difference between Real- and Sham-tDCS groups, albeit a trend was present. Overall, our results suggest that AtDCS increases cortical response to incoming visuo-spatial stimuli, but with no concurrent increase in learning. Detrimental effects on behaviour could result from the interaction between AtDCS- and task-mediated cortical activation. This interaction might enhance cortical excitability and hinder normal task-related neuroplastic phenomena subtending learning.
Collapse
|
3
|
Witzig VS, Komnig D, Falkenburger BH. Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible. Cells 2020; 9:cells9112441. [PMID: 33182316 PMCID: PMC7695336 DOI: 10.3390/cells9112441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
The classical motor symptoms of Parkinson’s disease (PD) are caused by degeneration of dopaminergic neurons in the substantia nigra, which is followed by secondary dendritic pruning and spine loss at striatal medium spiny neurons (MSN). We hypothesize that these morphological changes at MSN underlie at least in part long-term motor complications in PD patients. In order to define the potential benefits and limitations of dopamine substitution, we tested in a mouse model whether dendritic pruning and spine loss can be reversible when dopaminergic axon terminals regenerate. In order to induce degeneration of nigrostriatal dopaminergic neurons we used the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice; 30 mg/kg MPTP was applied i.p. on five consecutive days. In order to assess the consequences of dopamine depletion, mice were analyzed 21 days after the last injection. In order to test reversibility of MSN changes we exploited the property of this model that striatal axon terminals regenerate by sprouting within 90 days and analyzed a second cohort 90 days after MPTP. Degeneration of dopaminergic neurons was confirmed by counting TH-positive neurons in the substantia nigra and by analyzing striatal catecholamines. Striatal catecholamine recovered 90 days after MPTP. MSN morphology was visualized by Golgi staining and quantified as total dendritic length, number of dendritic branch points, and density of dendritic spines. All morphological parameters of striatal MSN were reduced 21 days after MPTP. Statistical analysis indicated that dendritic pruning and the reduction of spine density represent two distinct responses to dopamine depletion. Ninety days after MPTP, all morphological changes recovered. Our findings demonstrate that morphological changes in striatal MSN resulting from dopamine depletion are reversible. They suggest that under optimal conditions, symptomatic dopaminergic therapy might be able to prevent maladaptive plasticity and long-term motor complications in PD patients.
Collapse
Affiliation(s)
- Victoria Sofie Witzig
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany; (V.S.W.); (D.K.)
| | - Daniel Komnig
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany; (V.S.W.); (D.K.)
| | - Björn H. Falkenburger
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany; (V.S.W.); (D.K.)
- JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 01307 Dresden, Germany
- Correspondence: or ; Tel.: +49-351-458-2532; Fax: +49-351-458-4365
| |
Collapse
|
4
|
Grasso PA, Tonolli E, Miniussi C. Effects of different transcranial direct current stimulation protocols on visuo-spatial contextual learning formation: evidence of homeostatic regulatory mechanisms. Sci Rep 2020; 10:4622. [PMID: 32165722 PMCID: PMC7067887 DOI: 10.1038/s41598-020-61626-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
In the present study we tested the effects of different transcranial direct current stimulation (tDCS) protocols in the formation of visuo-spatial contextual learning (VSCL). The study comprised three experiments designed to evaluate tDCS-induced changes in VSCL measures collected during the execution of a visual search task widely used to examine statistical learning in the visuo-spatial domain. In Experiment 1, we probed for the effects of left-posterior parietal cortex (PPC) anodal-tDCS (AtDCS) at different timings (i.e. offline and online) and intensities (i.e. 3 mA and 1.5 mA). The protocol producing the more robust effect in Experiment 1 was used in Experiment 2 over the right-PPC, while in Experiment 3, cathodal-tDCS (CtDCS) was applied over the left-PPC only at a high intensity (i.e. 3 mA) but varying timing of application (offline and online). Results revealed that high intensity offline AtDCS reduced VSCL regardless of the stimulation side (Experiment 1 and 2), while no significant behavioral changes were produced by both online AtDCS protocols (Experiment 1) and offline/online CtDCS (Experiment 3). The reduced VSCL could result from homeostatic regulatory mechanisms hindering normal task-related neuroplastic phenomena.
Collapse
Affiliation(s)
- Paolo A Grasso
- Centre for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy.
| | - Elena Tonolli
- Centre for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Carlo Miniussi
- Centre for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy.
| |
Collapse
|
5
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
6
|
Quarta E, Fulgenzi G, Bravi R, Cohen EJ, Yanpallewar S, Tessarollo L, Minciacchi D. Deletion of the endogenous TrkB.T1 receptor isoform restores the number of hippocampal CA1 parvalbumin-positive neurons and rescues long-term potentiation in pre-symptomatic mSOD1(G93A) ALS mice. Mol Cell Neurosci 2018; 89:33-41. [PMID: 29580900 DOI: 10.1016/j.mcn.2018.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) causes rapidly progressive paralysis and death within 5 years from diagnosis due to degeneration of the motor circuits. However, a significant population of ALS patients also shows cognitive impairments and progressive hippocampal pathology. Likewise, the mutant SOD1(G93A) mouse model of ALS (mSOD1), in addition to loss of spinal motor neurons, displays altered spatial behavior and hippocampal abnormalities including loss of parvalbumin-positive interneurons (PVi) and enhanced long-term potentiation (LTP). However, the cellular and molecular mechanisms underlying these morpho-functional features are not well understood. Since removal of TrkB.T1, a receptor isoform of the brain-derived neurotrophic factor, can partially rescue the phenotype of the mSOD1 mice, here we tested whether removal of TrkB.T1 can normalize the number of PVi and the LTP in this model. Stereological analysis of hippocampal PVi in control, TrkB.T1-/-, mSOD1, and mSOD1 mice deficient for TrkB.T1 (mSOD1/T1-/-) showed that deletion of TrkB.T1 restored the number of PVi to physiological level in the mSOD1 hippocampus. The rescue of PVi neuron number is paralleled by a normalization of high-frequency stimulation-induced LTP in the pre-symptomatic mSOD1/T1-/- mice. Our experiments identified TrkB.T1 as a cellular player involved in the homeostasis of parvalbumin expressing interneurons and, in the context of murine ALS, show that TrkB.T1 is involved in the mechanism underlying structural and functional hippocampal degeneration. These findings have potential implications for hippocampal degeneration and cognitive impairments reported in ALS patients at early stages of the disease.
Collapse
Affiliation(s)
- Eros Quarta
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy; Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA
| | - Gianluca Fulgenzi
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA; Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Riccardo Bravi
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Erez James Cohen
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA
| | - Diego Minciacchi
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy.
| |
Collapse
|
7
|
Naro A, Bramanti A, Leo A, Bramanti P, Calabrò RS. Metaplasticity: A Promising Tool to Disentangle Chronic Disorders of Consciousness Differential Diagnosis. Int J Neural Syst 2017; 28:1750059. [PMID: 29370729 DOI: 10.1142/s0129065717500599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The extent of cortical reorganization after brain injury in patients with Vegetative State/Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS) depends on the residual capability of modulating synaptic plasticity. Neuroplasticity is largely abnormal in patients with UWS, although the fragments of cortical activity may exist, while patients MCS show a better cortical organization. The aim of this study was to evaluate cortical excitability in patients with disorders of consciousness (DoC) using a transcranial direct current stimulation (TDCS) metaplasticity protocol. To this end, we tested motor-evoked potential (MEP) amplitude, short intracortical inhibition (SICI), and intracortical facilitation (ICF). These measures were correlated with the level of consciousness (by the Coma Recovery Scale-Revised, CRS-R). MEP amplitude, SICI, and ICF strength were significantly modulated following different metaplasticity TDCS protocols only in the patients with MCS. SICI modulations showed a significant correlation with the CRS-R score. Our findings demonstrate, for the first time, a partial preservation of metaplasticity properties in some patients with DoC, which correlates with the level of awareness. Thus, metaplasticity assessment may help the clinician in differentiating the patients with DoC, besides the clinical evaluation. Moreover, the responsiveness to metaplasticity protocols may identify the subjects who could benefit from neuromodulation protocols.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Antonino Leo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
- S.S. 113, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
8
|
Gupta VK, Pech U, Bhukel A, Fulterer A, Ender A, Mauermann SF, Andlauer TFM, Antwi-Adjei E, Beuschel C, Thriene K, Maglione M, Quentin C, Bushow R, Schwärzel M, Mielke T, Madeo F, Dengjel J, Fiala A, Sigrist SJ. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release. PLoS Biol 2016; 14:e1002563. [PMID: 27684064 PMCID: PMC5042543 DOI: 10.1371/journal.pbio.1002563] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/26/2016] [Indexed: 01/24/2023] Open
Abstract
Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.
Collapse
Affiliation(s)
- Varun K. Gupta
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Ulrike Pech
- Georg-August-Universität Göttingen, Molecular Neurobiology of Behavior, Göttingen, Germany
| | - Anuradha Bhukel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Andreas Fulterer
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Anatoli Ender
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan F. Mauermann
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | | | | | - Christine Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Thriene
- Centre for Systems Biological Analysis, University of Freiburg, Freiburg, Germany
| | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Christine Quentin
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - René Bushow
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Schwärzel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Joern Dengjel
- Centre for Systems Biological Analysis, University of Freiburg, Freiburg, Germany
| | - André Fiala
- Georg-August-Universität Göttingen, Molecular Neurobiology of Behavior, Göttingen, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| |
Collapse
|
9
|
Tropea D, Mortimer N, Bellini S, Molinos I, Sanfeliu A, Shovlin S, McAllister D, Gill M, Mitchell K, Corvin A. Expression of nuclear Methyl-CpG binding protein 2 (Mecp2) is dependent on neuronal stimulation and application of Insulin-like growth factor 1. Neurosci Lett 2016; 621:111-116. [PMID: 27080430 DOI: 10.1016/j.neulet.2016.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 10/22/2022]
Abstract
Methyl-CpG binding protein 2 (MECP2) is a chromosome-binding protein that regulates the development and maintenance of brain circuits. Altered function of the protein product of MECP2 plays an important role in the etiology of many neurodevelopmental disorders. Mutations involving a loss of function are implicated in the etiology of Rett syndrome, intellectual disability, psychosis and severe encephalopathy. Conversely, MECP2 duplications have been identified in autism and intellectual disability. MECP2 action is dependent on neuronal function, as the DNA binding is modulated by activity, and it is phosphorylated in response to stimulation. Although MECP2 is considered a major risk factor for neurodevelopmental disorders, and it is a mediator of activity-dependent mechanisms, the expression levels in response to neuronal activity have never been measured. We studied the expression of Mecp2 protein and RNA in mice neuronal cultures in response to different stimulation conditions and in the presence of insulin-like growth factor1 (IGF1): a growth factor involved in brain development and plasticity. The stimulation protocols were selected according to their ability to induce different forms of synaptic plasticity: rapid depolarization, feed-forward plasticity (LTP, LTD) and feedback forms of plasticity (TTX, KCl). We find a significant reduction of Mecp2 protein nuclear expression in neurons in response to stimuli that induce a potentiation of neuronal response, suggesting that Mecp2 protein expression is modulated by neuronal activation. Application of IGF1 to the cultures induces an increase in the expression of Mecp2 transcript and nuclear Mecp2 protein in neurons. These results show that Mecp2 is responsive to neuronal stimulation and IGF1, and different stimuli have different effects on Mecp2 expression; this differential response may have downstream effects on functional mechanisms regulating brain development and plasticity.
Collapse
Affiliation(s)
- Daniela Tropea
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland.
| | - Niall Mortimer
- Department of Genetics, Smurfit Institute and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, College Green 2, Dublin 2, Ireland
| | - Stefania Bellini
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland
| | - Ines Molinos
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland
| | - Albert Sanfeliu
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland
| | - Stephen Shovlin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland
| | - Donna McAllister
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland
| | - Kevin Mitchell
- Department of Genetics, Smurfit Institute and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, College Green 2, Dublin 2, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience-TCIN, Trinity College Dublin, ST James Hospital, Dublin 8, Ireland
| |
Collapse
|
10
|
Tønnesen J, Nägerl UV. Dendritic Spines as Tunable Regulators of Synaptic Signals. Front Psychiatry 2016; 7:101. [PMID: 27340393 PMCID: PMC4899469 DOI: 10.3389/fpsyt.2016.00101] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023] Open
Abstract
Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity.
Collapse
Affiliation(s)
- Jan Tønnesen
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France; CNRS UMR 5297, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France; CNRS UMR 5297, Bordeaux, France
| |
Collapse
|
11
|
Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Med Rev 2015; 30:53-62. [PMID: 26803484 DOI: 10.1016/j.smrv.2015.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023]
Abstract
Therapeutic sleep deprivation (SD) is a rapid acting treatment for major depressive disorder (MDD). Within hours, SD leads to a dramatic decrease in depressive symptoms in 50-60% of patients with MDD. Scientifically, therapeutic SD presents a unique paradigm to study the neurobiology of MDD. Yet, up to now, the neurobiological basis of the antidepressant effect, which is most likely different from today's first-line treatments, is not sufficiently understood. This article puts the idea forward that sleep/wake-dependent shifts in synaptic plasticity, i.e., the neural basis of adaptive network function and behavior, represent a critical mechanism of therapeutic SD in MDD. Particularly, this article centers on two major hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, and on how they can be integrated into a novel synaptic plasticity model of therapeutic SD in MDD. As a major component, the model proposes that therapeutic SD, by homeostatically enhancing cortical synaptic strength, shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP) in patients with MDD in a more favorable window of associative plasticity. Research on the molecular effects of SD in animals and humans, including observations in the neurotrophic, adenosinergic, monoaminergic, and glutamatergic system, provides some support for the hypothesis of associative synaptic plasticity facilitation after therapeutic SD in MDD. The model proposes a novel framework for a mechanism of action of therapeutic SD that can be further tested in humans based on non-invasive indices and in animals based on direct studies of synaptic plasticity. Further determining the mechanisms of action of SD might contribute to the development of novel fast acting treatments for MDD, one of the major health problems worldwide.
Collapse
|
12
|
El-Gaby M, Shipton OA, Paulsen O. Synaptic Plasticity and Memory: New Insights from Hippocampal Left-Right Asymmetries. Neuroscientist 2015; 21:490-502. [PMID: 25239943 DOI: 10.1177/1073858414550658] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
All synapses are not the same. They differ in their morphology, molecular constituents, and malleability. A striking left-right asymmetry in the distribution of different types of synapse was recently uncovered at the CA3-CA1 projection in the mouse hippocampus, whereby afferents from the CA3 in the left hemisphere innervate small, highly plastic synapses on the apical dendrites of CA1 pyramidal neurons, whereas those originating from the right CA3 target larger, more stable synapses. Activity-dependent modification of these synapses is thought to participate in circuit formation and remodeling during development, and further plastic changes may support memory encoding in adulthood. Therefore, exploiting the CA3-CA1 asymmetry provides a promising opportunity to investigate the roles that different types of synapse play in these fundamental properties of the CNS. Here we describe the discovery of these segregated synaptic populations in the mouse hippocampus, and discuss what we have already learnt about synaptic plasticity from this asymmetric arrangement. We then propose models for how the asymmetry could be generated during development, and how the adult hippocampus might use these distinct populations of synapses differentially during learning and memory. Finally, we outline the potential implications of this left-right asymmetry for human hippocampal function, as well as dysfunction in memory disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamady El-Gaby
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Olivia A Shipton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Meadows JP, Guzman-Karlsson MC, Phillips S, Holleman C, Posey JL, Day JJ, Hablitz JJ, Sweatt JD. DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal 2015; 8:ra61. [PMID: 26106219 DOI: 10.1126/scisignal.aab0715] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhanced receptiveness at all synapses on a neuron that receive glutamatergic input is called cell-wide synaptic upscaling. We hypothesize that this type of synaptic plasticity may be critical for long-term memory storage within cortical circuits, a process that may also depend on epigenetic mechanisms, such as covalent chemical modification of DNA. We found that DNA cytosine demethylation mediates multiplicative synaptic upscaling of glutamatergic synaptic strength in cultured cortical neurons. Inhibiting neuronal activity with tetrodotoxin (TTX) decreased the cytosine methylation of and increased the expression of genes encoding glutamate receptors and trafficking proteins, in turn increasing the amplitude but not frequency of miniature excitatory postsynaptic currents (mEPSCs), indicating synaptic upscaling rather than increased spontaneous activity. Inhibiting DNA methyltransferase (DNMT) activity, either by using the small-molecule inhibitor RG108 or by knocking down Dnmt1 and Dnmt3a, induced synaptic upscaling to a similar magnitude as exposure to TTX. Moreover, upscaling induced by DNMT inhibition required transcription; the RNA polymerase inhibitor actinomycin D blocked upscaling induced by DNMT inhibition. Knocking down the cytosine demethylase TET1 also blocked the upscaling effects of RG108. DNMT inhibition induced a multiplicative increase in mEPSC amplitude, indicating that the alterations in glutamate receptor abundance occurred in a coordinated manner throughout a neuron and were not limited to individual active synapses. Our data suggest that DNA methylation status controls transcription-dependent regulation of glutamatergic synaptic homeostasis. Furthermore, covalent DNA modifications may contribute to synaptic plasticity events that underlie the formation and stabilization of memories.
Collapse
Affiliation(s)
- Jarrod P Meadows
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mikael C Guzman-Karlsson
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Phillips
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cassie Holleman
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica L Posey
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John J Hablitz
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Two-Photon Correlation Spectroscopy in Single Dendritic Spines Reveals Fast Actin Filament Reorganization during Activity-Dependent Growth. PLoS One 2015; 10:e0128241. [PMID: 26020927 PMCID: PMC4447372 DOI: 10.1371/journal.pone.0128241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
Two-photon fluorescence correlation spectroscopy (2P-FCS) within single dendritic spines of living hippocampal pyramidal neurons was used to resolve various subpopulations of mobile F-actin during activity-dependent structural changes such as potentiation induced spine head growth. Two major classes of mobile F-actin were discovered: very dynamic and about a hundred times less dynamic F-actin. Spine head enlargement upon application of Tetraethylammonium (TEA), a protocol previously used for the chemical induction of long-term potentiation (cLTP) strictly correlated to changes in the dynamics and filament numbers in the different actin filament fractions. Our observations suggest that spine enlargement is governed by a mechanism in which longer filaments are first cut into smaller filaments that cooperate with the second, increasingly dynamic shorter actin filament population to quickly reorganize and expand the actin cytoskeleton within the spine head. This process would allow a fast and efficient spine head enlargement using a major fraction of the actin filament population that was already present before spine head growth.
Collapse
|
15
|
Abstract
The endocannabinoid system negatively regulates the release of various neurotransmitters in an activity-dependent manner, thereby influencing the excitability of neuronal circuits. In the hippocampus, cannabinoid type 1 (CB1) receptor is present on both GABAergic and glutamatergic axon terminals. CB1 receptor-deficient mice were previously shown to have increased hippocampal long-term potentiation (LTP). In this study, we have investigated the consequences of cell-type-specific deletion of the CB1 receptor on the induction of hippocampal LTP and on CA1 pyramidal cell morphology. Deletion of CB1 receptor in GABAergic neurons in GABA-CB1-KO mice leads to a significantly decreased hippocampal LTP compared with WT controls. Concomitantly, CA1 pyramidal neurons have a significantly reduced dendritic branching both on the apical and on the basal dendrites. Moreover, the average spine density on the apical dendrites of CA1 pyramidal neurons is significantly diminished. In contrast, in mice lacking CB1 receptor in glutamatergic cells (Glu-CB1-KO), hippocampal LTP is significantly enhanced and CA1 pyramidal neurons show an increased branching and an increased spine density in the apical dendritic region. Together, these results indicate that the CB1 receptor signaling system both on inhibitory and excitatory neurons controls functional and structural synaptic plasticity of pyramidal neurons in the hippocampal CA1 region to maintain an appropriate homeostatic state upon neuronal activation. Consequently, if the CB1 receptor is lost in either neuronal population, an allostatic shift will occur leading to a long-term dysregulation of neuronal functions.
Collapse
|
16
|
The interaction with task-induced activity is more important than polarization: a tDCS study. Brain Stimul 2014; 8:269-76. [PMID: 25464828 DOI: 10.1016/j.brs.2014.11.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Anodal transcranial direct current stimulation (A-tDCS) is a non-invasive technique in which cortical polarization can be used to increase excitability and facilitate learning through the modulation of neuroplasticity. Although the facilitatory effects of A-tDCS are well documented, there is evidence that they are not always present and may even be reversed during task execution. OBJECTIVE In this study, we explored the interaction between A-tDCS and task execution. We aimed to test how the excitability induced by the task interacts with the excitability induced by A-tDCS and determines the behavioral outcome. METHODS We performed an experiment in which A-tDCS or a control stimulation (Ctrl) were combined with one of two motor practices (MP), one inducing learning and increasing cortical excitability (F-MP) and the other neither inducing learning nor changing cortical excitability (S-MP). Six blocks of MP were performed while the primary motor cortex was stimulated. Moreover, one block of F-MP was performed before the stimulation (baseline) and one after. In an additional experiment, motor evoked potentials (MEPs) were recorded before the baseline block (TMS-pre) and after the MP (TMS-post). RESULTS We observed that A-tDCS reduced learning when participants performed the F-MP and facilitated learning for the S-MP. MEPs data paralleled behavioral results, confirming that the effects generated by A-tDCS depend on the excitability changes induced by the task. CONCLUSIONS Our results demonstrate that tDCS-induced plasticity is task-dependent, and the concurrent combination of A-tDCS with another excitability-increasing event, e.g., motor practice, may trigger non-additive mechanisms, hindering neuroplasticity.
Collapse
|
17
|
Schacher S, Hu JY. The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learn Mem 2014; 21:128-34. [PMID: 24532836 PMCID: PMC3929853 DOI: 10.1101/lm.027326.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.
Collapse
Affiliation(s)
- Samuel Schacher
- Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
18
|
Guzman-Karlsson MC, Meadows JP, Gavin CF, Hablitz JJ, Sweatt JD. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 2014; 80:3-17. [PMID: 24418102 DOI: 10.1016/j.neuropharm.2014.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 01/02/2023]
Abstract
The epigenome is uniquely positioned as a point of convergence, integrating multiple intracellular signaling cascades into a cohesive gene expression profile necessary for long-term behavioral change. The last decade of neuroepigenetic research has primarily focused on learning-induced changes in DNA methylation and chromatin modifications. Numerous studies have independently demonstrated the importance of epigenetic modifications in memory formation and retention as well as Hebbian plasticity. However, how these mechanisms operate in the context of other forms of plasticity is largely unknown. In this review, we examine evidence for epigenetic regulation of Hebbian plasticity. We then discuss how non-Hebbian forms of plasticity, such as intrinsic plasticity and synaptic scaling, may also be involved in producing the cellular adaptations necessary for learning-related behavioral change. Furthermore, we consider the likely roles for transcriptional and epigenetic mechanisms in the regulation of these plasticities. In doing so, we aim to expand upon the idea that epigenetic mechanisms are critical regulators of both Hebbian and non-Hebbian forms of plasticity that ultimately drive learning and memory.
Collapse
Affiliation(s)
| | - Jarrod P Meadows
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristin F Gavin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Flordellis CS, Kyriazis D. Brain plasticity as a convergence of intrapsychic and intersubjective. INTERNATIONAL FORUM OF PSYCHOANALYSIS 2012. [DOI: 10.1080/0803706x.2012.661876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Calcium-dependent but action potential-independent BCM-like metaplasticity in the hippocampus. J Neurosci 2012; 32:6785-94. [PMID: 22593048 DOI: 10.1523/jneurosci.0634-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Bienenstock, Cooper and Munro (BCM) computational model, which incorporates a metaplastic sliding threshold for LTP induction, accounts well for experience-dependent changes in synaptic plasticity in the visual cortex. BCM-like metaplasticity over a shorter timescale has also been observed in the hippocampus, thus providing a tractable experimental preparation for testing specific predictions of the model. Here, using extracellular and intracellular electrophysiological recordings from acute rat hippocampal slices, we tested the critical BCM predictions (1) that high levels of synaptic activation will induce a metaplastic state that spreads across dendritic compartments, and (2) that postsynaptic cell-firing is the critical trigger for inducing that state. In support of the first premise, high-frequency priming stimulation inhibited subsequent long-term potentiation and facilitated subsequent long-term depression at synapses quiescent during priming, including those located in a dendritic compartment different to that of the primed pathway. These effects were not dependent on changes in synaptic inhibition or NMDA/metabotropic glutamate receptor function. However, in contrast to the BCM prediction, somatic action potentials during priming were neither necessary nor sufficient to induce the metaplasticity effect. Instead, in broad agreement with derivatives of the BCM model, calcium as released from intracellular stores and triggered by M1 muscarinic acetylcholine receptor activation was critical for altering subsequent synaptic plasticity. These results indicate that synaptic plasticity in stratum radiatum of CA1 can be homeostatically regulated by the cell-wide history of synaptic activity through a calcium-dependent but action potential-independent mechanism.
Collapse
|
21
|
Hou Q, Gilbert J, Man HY. Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation. Neuron 2012; 72:806-18. [PMID: 22153376 DOI: 10.1016/j.neuron.2011.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2011] [Indexed: 11/17/2022]
Abstract
During homeostatic adjustment in response to alterations in neuronal activity, synaptic expression of AMPA receptors (AMPARs) is globally tuned up or down so that the neuronal activity is restored to a physiological range. Given that a central neuron receives multiple presynaptic inputs, whether and how AMPAR synaptic expression is homeostatically regulated at individual synapses remain unclear. In cultured hippocampal neurons we report that when activity of an individual presynaptic terminal is selectively elevated by light-controlled excitation, AMPAR abundance at the excited synapses is selectively downregulated in an NMDAR-dependent manner. The reduction in surface AMPARs is accompanied by enhanced receptor endocytosis and dependent on proteasomal activity. Synaptic activation also leads to a site-specific increase in the ubiquitin ligase Nedd4 and polyubiquitination levels, consistent with AMPAR ubiquitination and degradation in the spine. These results indicate that AMPAR accumulation at individual synapses is subject to autonomous homeostatic regulation in response to synaptic activity.
Collapse
Affiliation(s)
- Qingming Hou
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
22
|
Interaction between long-term potentiation and depression in CA1 synapses: temporal constrains, functional compartmentalization and protein synthesis. PLoS One 2012; 7:e29865. [PMID: 22272255 PMCID: PMC3260185 DOI: 10.1371/journal.pone.0029865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/05/2011] [Indexed: 12/17/2022] Open
Abstract
Information arriving at a neuron via anatomically defined pathways undergoes spatial and temporal encoding. A proposed mechanism by which temporally and spatially segregated information is encoded at the cellular level is based on the interactive properties of synapses located within and across functional dendritic compartments. We examined cooperative and interfering interactions between long-term synaptic potentiation (LTP) and depression (LTD), two forms of synaptic plasticity thought to be key in the encoding of information in the brain. Two approaches were used in CA1 pyramidal neurons of the mouse hippocampus: (1) induction of LTP and LTD in two separate synaptic pathways within the same apical dendritic compartment and across the basal and apical dendritic compartments; (2) induction of LTP and LTD separated by various time intervals (0–90 min). Expression of LTP/LTD interactions was spatially and temporally regulated. While they were largely restricted within the same dendritic compartment (compartmentalized), the nature of the interaction (cooperation or interference) depended on the time interval between inductions. New protein synthesis was found to regulate the expression of the LTP/LTD interference. We speculate that mechanisms for compartmentalization and protein synthesis confer the spatial and temporal modulation by which neurons encode multiplex information in plastic synapses.
Collapse
|
23
|
Sajikumar S, Korte M. Different compartments of apical CA1 dendrites have different plasticity thresholds for expressing synaptic tagging and capture. Learn Mem 2011; 18:327-31. [PMID: 21511882 DOI: 10.1101/lm.2095811] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The consolidation process from short- to long-term memory depends on the type of stimulation received from a specific neuronal network and on the cooperativity and associativity between different synaptic inputs converging onto a specific neuron. We show here that the plasticity thresholds for inducing LTP are different in proximal and distal compartments of apical dendrites. In addition, we show interactions between the proximal and distal compartments of the apical dendrites by providing evidence that even a subthreshold stimulus can activate plasticity-related proteins, such as PKMζ, enabling associativity between two distinct dendritic compartments in apical dendrites to occur.
Collapse
Affiliation(s)
- Sreedharan Sajikumar
- Division of Cellular Neurobiology, Zoological Institute, TU, Braunschweig D-38106, Germany
| | | |
Collapse
|
24
|
NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci U S A 2011; 108:2569-74. [PMID: 21262805 DOI: 10.1073/pnas.1013322108] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Whereas the role of NogoA in limiting axonal fiber growth and regeneration following an injury of the mammalian central nervous system (CNS) is well known, its physiological functions in the mature uninjured CNS are less well characterized. NogoA is mainly expressed by oligodendrocytes, but also by subpopulations of neurons, in particular in plastic regions of the CNS, e.g., in the hippocampus where it is found at synaptic sites. We analyzed synaptic transmission as well as long-term synaptic plasticity (long-term potentiation, LTP) in the presence of function blocking anti-NogoA or anti-Nogo receptor (NgR) antibodies and in NogoA KO mice. Whereas baseline synaptic transmission, short-term plasticity and long-term depression were not affected by either approach, long-term potentiation was significantly increased following NogoA or NgR1 neutralization. Synaptic potentiation thus seems to be restricted by NogoA. Surprisingly, synaptic weakening was not affected by interfering with NogoA signaling. Mechanistically of interest is the observation that by blockade of the GABA(A) receptors normal synaptic strengthening reoccurred in the absence of NogoA signaling. The present results show a unique role of NogoA expressed in the adult hippocampus in restricting physiological synaptic plasticity on a very fast time scale. NogoA could thus serve as an important negative regulator of functional and structural plasticity in mature neuronal networks.
Collapse
|
25
|
Schulz K, Korz V. Emotional and cognitive information processing: Relations to behavioral performance and hippocampal long-term potentiation in vivo during a spatial water maze training in rats. Learn Mem 2010; 17:552-60. [DOI: 10.1101/lm.1855610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Mix A, Benali A, Eysel UT, Funke K. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently. Eur J Neurosci 2010; 32:1575-86. [PMID: 20950358 DOI: 10.1111/j.1460-9568.2010.07425.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability in a stimulus-frequency-dependent manner. Two kinds of theta burst stimulation (TBS) [intermittent TBS (iTBS) and continuous TBS (cTBS)] modulate human cortical excitability differently, with iTBS increasing it and cTBS decreasing it. In rats, we recently showed that this is accompanied by changes in the cortical expression of proteins related to the activity of inhibitory neurons. Expression levels of the calcium-binding protein parvalbumin (PV) and of the 67-kDa isoform of glutamic acid decarboxylase (GAD67) were strongly reduced following iTBS, but not cTBS, whereas both increased expression of the 65-kDa isoform of glutamic acid decarboxylase. In the present study, to investigate possible functional consequences, we applied iTBS and cTBS to rats learning a tactile discrimination task. Conscious rats received either verum or sham rTMS prior to the task. Finally, to investigate how rTMS and learning effects interact, protein expression was determined for cortical areas directly involved in the task and for those either not, or indirectly, involved. We found that iTBS, but not cTBS, improved learning and strongly reduced cortical PV and GAD67 expression. However, the combination of learning and iTBS prevented this effect in those cortical areas involved in the task, but not in unrelated areas. We conclude that the improved learning found following iTBS is a result of the interaction of two effects, possibly in a homeostatic manner: a general weakening of inhibition mediated by the fast-spiking interneurons, and re-established activity in those neurons specifically involved in the learning task, leading to enhanced contrast between learning-induced and background activity.
Collapse
Affiliation(s)
- Annika Mix
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
Small conductance Ca(2+)-activated K(+) type 2 (SK2) channels are expressed in the postsynaptic density of CA1 neurons where they are activated by synaptically evoked Ca(2+) influx to limit the size of EPSPs and spine Ca(2+) transients. At Schaffer collateral synapses, the induction of long-term potentiation (LTP) increases the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated contribution to synaptic transmission and decreases the synaptic SK2 channel contribution through protein kinase A-dependent channel endocytosis. Using a combination of electrophysiology and immunoelectron microscopy in mice, the relationship between the dynamics of spine SK2 channels and AMPARs was investigated. Unlike AMPARs, synaptic SK2 channels under basal conditions do not rapidly recycle. Furthermore, SK2 channels occupy a distinct population of endosomes separate from AMPARs. However, blocking vesicular exocytosis or the delivery of synaptic GluA1-containing AMPARs during the induction of LTP blocks SK2 channel endocytosis. By approximately 2 h after the induction of LTP, synaptic SK2 channel expression and function are restored. Thus, LTP-dependent endocytosis of SK2 is coupled to LTP-dependent AMPA exocytosis, and the approximately 2 h window after the induction of LTP during which synaptic SK2 activity is absent may be important for consolidating the later phases of LTP.
Collapse
|
28
|
Watt AJ, Desai NS. Homeostatic Plasticity and STDP: Keeping a Neuron's Cool in a Fluctuating World. Front Synaptic Neurosci 2010; 2:5. [PMID: 21423491 PMCID: PMC3059670 DOI: 10.3389/fnsyn.2010.00005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) offers a powerful means of forming and modifying neural circuits. Experimental and theoretical studies have demonstrated its potential usefulness for functions as varied as cortical map development, sharpening of sensory receptive fields, working memory, and associative learning. Even so, it is unlikely that STDP works alone. Unless changes in synaptic strength are coordinated across multiple synapses and with other neuronal properties, it is difficult to maintain the stability and functionality of neural circuits. Moreover, there are certain features of early postnatal development (e.g., rapid changes in sensory input) that threaten neural circuit stability in ways that STDP may not be well placed to counter. These considerations have led researchers to investigate additional types of plasticity, complementary to STDP, that may serve to constrain synaptic weights and/or neuronal firing. These are collectively known as “homeostatic plasticity” and include schemes that control the total synaptic strength of a neuron, that modulate its intrinsic excitability as a function of average activity, or that make the ability of synapses to undergo Hebbian modification depend upon their history of use. In this article, we will review the experimental evidence for homeostatic forms of plasticity and consider how they might interact with STDP during development, and learning and memory.
Collapse
Affiliation(s)
- Alanna J Watt
- Wolfson Institute for Biomedical Research, University College London London, UK
| | | |
Collapse
|
29
|
Abstract
Homeostatic synaptic plasticity is a negative feedback mechanism that neurons use to offset excessive excitation or inhibition by adjusting their synaptic strengths. Recent findings reveal a complex web of signaling processes involved in this compensatory form of synaptic strength regulation, and in contrast to the popular view of homeostatic plasticity as a slow, global phenomenon, neurons may also rapidly tune the efficacy of individual synapses on demand. Here we review our current understanding of cellular and molecular mechanisms of homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Karine Pozo
- MRC Cell Biology Unit and MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
30
|
Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J Neurosci 2009; 29:8764-73. [PMID: 19587283 DOI: 10.1523/jneurosci.1014-09.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivo experience induces changes in synaptic NMDA receptor (NMDAR) subunit components, which are correlated with subsequent modifications of synaptic plasticity. However, little is known about how these subunit changes regulate the induction threshold of subsequent plasticity. At hippocampal Schaffer collateral-CA1 synapses, we first examined whether a recent history of neuronal activity could affect subsequent synaptic plasticity through its actions on NMDAR subunit components. We found that prior activity history produced by priming stimulations (PSs) across a wide range of frequencies (1-100 Hz) could induce bidirectional changes in the NR2A/NR2B ratio, which governs the threshold for subsequent long-term potentiation/long-term depression (LTP/LTD). Manipulating the NR2A/NR2B ratio through partial NR2 subunit blockade mimicked the PS regulation of the LTP/LTD threshold. Our results demonstrate that activity-dependent changes in the NR2A/NR2B ratio can be critical factors in metaplastic regulation of the LTP/LTD threshold.
Collapse
|
31
|
Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. ACTA ACUST UNITED AC 2009; 186:85-97. [PMID: 19596849 PMCID: PMC2712993 DOI: 10.1083/jcb.200901084] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The releasable factor adenosine blocks the formation of long-term potentiation (LTP). These experiments used this observation to uncover the synaptic processes that stabilize the potentiation effect. Brief adenosine infusion blocked stimulation-induced actin polymerization within dendritic spines along with LTP itself in control rat hippocampal slices but not in those pretreated with the actin filament stabilizer jasplakinolide. Adenosine also blocked activity-driven phosphorylation of synaptic cofilin but not of synaptic p21-activated kinase (PAK). A search for the upstream origins of these effects showed that adenosine suppressed RhoA activity but only modestly affected Rac and Cdc42. A RhoA kinase (ROCK) inhibitor reproduced adenosine's effects on cofilin phosphorylation, spine actin polymerization, and LTP, whereas a Rac inhibitor did not. However, inhibitors of Rac or PAK did prolong LTP's vulnerability to reversal by latrunculin, a toxin which blocks actin filament assembly. Thus, LTP induction initiates two synaptic signaling cascades: one (RhoA-ROCK-cofilin) leads to actin polymerization, whereas the other (Rac-PAK) stabilizes the newly formed filaments.
Collapse
Affiliation(s)
- Christopher S Rex
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Navigational expertise may compromise anterograde associative memory. Neuropsychologia 2009; 47:1088-95. [PMID: 19171158 PMCID: PMC2670971 DOI: 10.1016/j.neuropsychologia.2008.12.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 11/24/2022]
Abstract
Grey matter volume increases have been associated with expertise in a range of domains. Much less is known, however, about the broader cognitive advantages or costs associated with skills and their concomitant neuroanatomy. In this study we investigated a group of highly skilled navigators, licensed London taxi drivers. We replicated findings from previous studies by showing taxi drivers had greater grey matter volume in posterior hippocampus and less grey matter volume in anterior hippocampus compared to matched control subjects. We then employed an extensive battery of tests to investigate the neuropsychological consequences of being a skilled taxi driver. Their learning of and recognition memory for individual items was comparable with control subjects, as were working memory, retrograde memory, perceptual and executive functions. By contrast, taxi drivers were significantly more knowledgeable about London landmarks and their spatial relationships. However, they were significantly worse at forming and retaining new associations involving visual information. We consider possible reasons for this decreased performance including the reduced grey matter volume in the anterior hippocampus of taxi drivers, similarities with models of aging, and saturation of long-term potentiation which may reduce information-storage capacity.
Collapse
|
33
|
Alzoubi KH, Aleisa AM, Alkadhi KA. In vivo expression of ganglionic long-term potentiation in superior cervical ganglia from hypertensive aged rats. Neurobiol Aging 2008; 31:805-12. [PMID: 18649973 DOI: 10.1016/j.neurobiolaging.2008.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/15/2008] [Accepted: 06/11/2008] [Indexed: 01/11/2023]
Abstract
Sustained increase in central sympathetic outflow to ganglia may provide the repeated high frequency presynaptic activity required for induction of long-term potentiation in sympathetic ganglia (gLTP), which is known to be involved in the manifestation of a neurogenic form of hypertension, namely stress-hypertension. Aging is often viewed as a progressive decline in physiological competence with a corresponding impaired ability to adapt to stressful stimuli. Old animals have exaggerated sympathetic activity as well as increased morbidity and mortality during prolonged exposure to stressful stimuli. Using the superior cervical ganglion (SCG) as a model for sympathetic ganglia, electrophysiological and biochemical evidence show that mildly hypertensive aged rats (22-month old) have expressed gLTP in vivo. This is suggested by a number of lines of evidence. Firstly, a shift in input/output (I/O) curve of ganglia from aged rats to the left side of I/O curve of ganglia from 6-month old (adult) rats indicating expression of gLTP. Secondly, failure of in vitro high frequency stimulation to induce gLTP in ganglia isolated from aged rats, which indicates occlusion due to saturation, which, in turn, suggests in vivo expression of gLTP in these ganglia. Thirdly, in vitro inhibition of basal ganglionic transmission by blockers of gLTP (5-HT(3) antagonists) is observed in ganglia isolated from aged rats, but not in those from adult rats. Finally, immunoblot analysis revealed that protein levels of signaling molecules such as calcium-calmodulin kinase II (CaMKII; phosphorylated and total), which normally increase during expression of LTP, are elevated in ganglia isolated from aged rats compared to those from adult ones. Protein levels of calcineurin, which dephosphorylates P-CaMKII, were reduced in ganglia isolated from aged rats, probably as a support mechanism to allow prolonged phosphorylation of CaMKII. Our findings suggest in vivo expression of gLTP in sympathetic ganglia of aged animals, which may contribute to the moderate hypertension often seen in aged subjects.
Collapse
Affiliation(s)
- K H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
34
|
Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 2008; 9:387. [PMID: 18401345 DOI: 10.1038/nrn2356] [Citation(s) in RCA: 669] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synaptic plasticity is a key component of the learning machinery in the brain. It is vital that such plasticity be tightly regulated so that it occurs to the proper extent at the proper time. Activity-dependent mechanisms that have been collectively termed metaplasticity have evolved to help implement these essential computational constraints. Various intercellular signalling molecules can trigger lasting changes in the ability of synapses to express plasticity; their mechanisms of action are reviewed here, along with a consideration of how metaplasticity might affect learning and clinical conditions.
Collapse
Affiliation(s)
- Wickliffe C Abraham
- Department of Psychology and the Brain Health and Repair Research Centre, University of Otago, BOX 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
35
|
Lin MT, Luján R, Watanabe M, Adelman JP, Maylie J. SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nat Neurosci 2008; 11:170-7. [PMID: 18204442 DOI: 10.1038/nn2041] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 12/17/2007] [Indexed: 02/07/2023]
Abstract
Long-term potentiation (LTP) of synaptic strength at Schaffer collateral synapses has largely been attributed to changes in the number and biophysical properties of AMPA receptors (AMPARs). Small-conductance Ca(2+)-activated K(+) channels (SK2 channels) are functionally coupled with NMDA receptors (NMDARs) in CA1 spines such that their activity modulates the shape of excitatory postsynaptic potentials (EPSPs) and increases the threshold for induction of LTP. Here we show that LTP induction in mouse hippocampus abolishes SK2 channel activity in the potentiated synapses. This effect is due to SK2 channel internalization from the postsynaptic density (PSD) into the spine. Blocking PKA or cell dialysis with a peptide representing the C-terminal domain of SK2 that contains three known PKA phosphorylation sites blocks the internalization of SK2 channels after LTP induction. Thus the increase in AMPARs and the decrease in SK2 channels combine to produce the increased EPSP underlying LTP.
Collapse
Affiliation(s)
- Mike T Lin
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
36
|
Rioult-Pedotti MS, Donoghue JP, Dunaevsky A. Plasticity of the synaptic modification range. J Neurophysiol 2007; 98:3688-95. [PMID: 17913995 DOI: 10.1152/jn.00164.2007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activity-dependent synaptic plasticity is likely to provide a mechanism for learning and memory. Cortical synaptic responses that are strengthened within a fixed synaptic modification range after 5 days of motor skill learning are driven near the top of their range, leaving only limited room for additional synaptic strengthening. If synaptic strengthening is a requisite step for acquiring new skills, near saturation of long-term potentiation (LTP) should impede further learning or the LTP mechanism should recover after single-task learning. Here we show that the initial learning-induced synaptic enhancement is sustained even long after training has been discontinued and that the synaptic modification range shifts upward. This range shift places increased baseline synaptic efficacy back within the middle of its operating range, allowing prelearning levels of LTP and long-term depression. Persistent synaptic strengthening might be a substrate for long-term retention in motor cortex, whereas the shift in synaptic modification range ensures the availability for new synaptic strengthening.
Collapse
Affiliation(s)
- M-S Rioult-Pedotti
- Department of Neuroscience, Brown University, Sidney Frank Hall of Life Sciences, Providence, RI 02912, USA.
| | | | | |
Collapse
|
37
|
Induction of synaptic depression by high-frequency stimulation in area CA1 of the rat hippocampus: Modeling and experimental studies. Neurocomputing 2007. [DOI: 10.1016/j.neucom.2006.10.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|