1
|
Vicidomini C, Borbone N, Roviello V, Roviello GN, Oliviero G. Summary of the Current Status of DNA Vaccination for Alzheimer Disease. Vaccines (Basel) 2023; 11:1706. [PMID: 38006038 PMCID: PMC10674988 DOI: 10.3390/vaccines11111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer disease (AD) is one of the most common and disabling neuropathies in the ever-growing aged population around the world, that especially affects Western countries. We are in urgent need of finding an effective therapy but also a valid prophylactic means of preventing AD. There is a growing attention currently paid to DNA vaccination, a technology particularly used during the COVID-19 era, which can be used also to potentially prevent or modify the course of neurological diseases, including AD. This paper aims to discuss the main features and hurdles encountered in the immunization and therapy against AD using DNA vaccine technology. Ultimately, this work aims to effectively promote the efforts in research for the development of safe and effective DNA and RNA vaccines for AD.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Valentina Roviello
- Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Giang Phan VH, Duong HTT, Thambi T, Nguyen TL, Turabee MH, Yin Y, Kim SH, Kim J, Jeong JH, Lee DS. Modularly engineered injectable hybrid hydrogels based on protein-polymer network as potent immunologic adjuvant in vivo. Biomaterials 2019; 195:100-110. [PMID: 30623788 DOI: 10.1016/j.biomaterials.2018.12.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/07/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022]
Abstract
Lymphoid organs, which are populated by dendritic cells (DCs), are highly specialized tissues and provide an ideal microenvironment for T-cell priming. However, intramuscular or subcutaneous delivery of vaccine to DCs, a subset of antigen-presenting cells, has failed to stimulate optimal immune response for effective vaccination and need for adjuvants to induce immune response. To address this issue, we developed an in situ-forming injectable hybrid hydrogel that spontaneously assemble into microporous network upon subcutaneous administration, which provide a cellular niche to host immune cells, including DCs. In situ-forming injectable hybrid hydrogelators, composed of protein-polymer conjugates, formed a hydrogel depot at the close proximity to the dermis, resulting in a rapid migration of immune cells to the hydrogel boundary and infiltration to the microporous network. The biocompatibility of the watery microporous network allows recruitment of DCs without a DC enhancement factor, which was significantly higher than that of traditional hydrogel releasing chemoattractants, granulocyte-macrophage colony-stimulating factor. Owing to the sustained degradation of microporous hydrogel network, DNA vaccine release can be sustained, and the recruitment of DCs and their homing to lymph node can be modulated. Furthermore, immunization of a vaccine encoding amyloid-β fusion proteinbearing microporous network induced a robust antigen-specific immune response in vivo and strong recall immune response was exhibited due to immunogenic memory. These hybrid hydrogels can be administered in a minimally invasive manner using hypodermic needle, bypassing the need for cytokine or DC enhancement factor and provide niche to host immune cells. These findings highlight the potential of hybrid hydrogels that may serve as a simple, yet multifunctional, platform for DNA vaccine delivery to modulate immune response.
Collapse
Affiliation(s)
- V H Giang Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Md Hasan Turabee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yue Yin
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Han Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Kuznetsov IA, Kuznetsov AV. Simulating the effect of formation of amyloid plaques on aggregation of tau protein. Proc Math Phys Eng Sci 2018; 474:20180511. [PMID: 30602936 PMCID: PMC6304026 DOI: 10.1098/rspa.2018.0511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
In this paper, we develop a mathematical model that enables the investigation of the production and intracellular transport of amyloid precursor protein (APP) and tau protein in a neuron. We also investigate the aggregation of APP fragments into amyloid-β (Aβ) as well as tau aggregation into tau oligomers and neurofibrillary tangles. Using the developed model, we investigate how Aβ aggregation can influence tau transport and aggregation in both the soma and the axon. We couple the Aβ and tau agglomeration processes by assuming that the value of the kinetic constant that describes the autocatalytic growth (self-replication) reaction step of tau aggregation is proportional to the Aβ concentration. The model predicts that APP and tau are distributed differently in the axon. While APP has a uniform distribution along the axon, tau's concentration first decreases and then increases towards the synapse. Aβ is uniformly produced along the axon while misfolded tau protein is mostly produced in the proximal axon. The number of Aβ and tau polymers originating from the axon is much smaller than the number of Aβ and tau polymers originating from the soma. The rate of production of misfolded tau polymers depends on how strongly their production is facilitated by Aβ.
Collapse
Affiliation(s)
- I. A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A. V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
| |
Collapse
|
4
|
Duong HTT, Kim NW, Thambi T, Giang Phan V, Lee MS, Yin Y, Jeong JH, Lee DS. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J Control Release 2018; 269:225-234. [DOI: 10.1016/j.jconrel.2017.11.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 02/02/2023]
|
5
|
Martins YA, Tsuchida CJ, Antoniassi P, Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer's Disease in Animal Models: A Systematic Review from Literature. J Alzheimers Dis Rep 2017; 1:195-217. [PMID: 30480238 PMCID: PMC6159633 DOI: 10.3233/adr-170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that does not have a proven cure; however, one of the most promising strategies for its treatment has been DNA vaccines. OBJECTIVE The present review is aimed to report the new developments of the efficacy and safety of DNA vaccines for AD in animal models. METHOD The method PRISMA was used for this review. The article search was made in the electronic databases PubMed, LILACS, and Scopus using the descriptors ''Alzheimer disease" and ''Vaccine, DNA". Articles published between January 2001 and September 2017 in English, Portuguese, and Spanish were included. RESULTS Upon the consensus, the researchers identified 28 original articles. The studies showed satisfying results as for the decrease of amyloid plaques in mouse, rabbits, and monkeys brains using mostly the DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11, mainly with a gene gun. In addition to a reduction in tau by the first DNA vaccine (AV-1980D) targeting this protein. The use of adjuvants and boosters also had positive results as they increased the destruction of the amyloid plaques and induced an anti-inflammatory response profile without side effects. CONCLUSION The results of DNA vaccines targeting the amyloid-β and the tau protein with or without adjuvants and boosters were promising in reducing amyloid plaques and tau protein without side effects in animals. Although there are many vaccines being tested in animals, few reach clinical trials. Thus, as a future perspective, we suggest that clinical studies should be conducted with vaccines that have been promising in animal models (e.g., DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11).
Collapse
|
6
|
Lin X, Bai G, Lin L, Wu H, Cai J, Ugen KE, Cao C. Vaccination induced changes in pro-inflammatory cytokine levels as an early putative biomarker for cognitive improvement in a transgenic mouse model for Alzheimer disease. Hum Vaccin Immunother 2016; 10:2024-31. [PMID: 25424812 DOI: 10.4161/hv.28735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several pieces of experimental evidence suggest that administration of anti-β amyloid (Aβ) vaccines, passive anti-Aβ antibodies or anti-inflammatory drugs can reduce Aβ deposition as well as associated cognitive/behavioral deficits in an Alzheimer disease (AD) transgenic (Tg) mouse model and, as such, may have some efficacy in human AD patients as well. In the investigation reported here an Aβ 1-42 peptide vaccine was administered to 16-month old APP+PS1 transgenic (Tg) mice in which Aβ deposition, cognitive memory deficits as well as levels of several pro-inflammatory cytokines were measured in response to the vaccination regimen. After vaccination, the anti-Aβ 1-42 antibody-producing mice demonstrated a significant reduction in the sera levels of 4 pro-inflammatory cytokines (TNF-α, IL-6, IL-1 α, and IL-12). Importantly, reductions in the cytokine levels of TNF-α and IL-6 were correlated with cognitive/behavioral improvement in the Tg mice. However, no differences in cerebral Aβ deposition in these mice were noted among the different control and experimental groups, i.e., Aβ 1-42 peptide vaccinated, control peptide vaccinated, or non-vaccinated mice. However, decreased levels of pro-inflammatory cytokines as well as improved cognitive performance were noted in mice vaccinated with the control peptide as well as those immunized with the Aβ 1-42 peptide. These findings suggest that reduction in pro-inflammatory cytokine levels in these mice may be utilized as an early biomarker for vaccination/treatment induced amelioration of cognitive deficits and are independent of Aβ deposition and, interestingly, antigen specific Aβ 1-42 vaccination. Since cytokine changes are typically related to T cell activation, the results imply that T cell regulation may have an important role in vaccination or other immunotherapeutic strategies in an AD mouse model and potentially in AD patients. Overall, these cytokine changes may serve as a predictive marker for AD development and progression as well as having potential therapeutic implications.
Collapse
Affiliation(s)
- Xiaoyang Lin
- a Department of Pharmacuetical Sciences College of Pharmacy; University of South Florida; Tampa, FL USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Guo W, Sha S, Jiang T, Xing X, Cao Y. A new DNA vaccine fused with the C3d-p28 induces a Th2 immune response against amyloid-beta. Neural Regen Res 2014; 8:2581-90. [PMID: 25206569 PMCID: PMC4145937 DOI: 10.3969/j.issn.1673-5374.2013.27.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/02/2013] [Indexed: 01/11/2023] Open
Abstract
To enhance anti-amyloid-beta (Aβ) antibody generation and induce a Th2 immune response, we constructed a new DNA vaccine p(Aβ3–10)10-C3d-p28.3 encoding ten repeats of Aβ3–10 and three copies of C3d-p28 as a molecular adjuvant. In this study, we administered this adjuvant cularly to female C57BL/6J mice at 8–10 weeks of age. Enzyme linked immunosorbent assay was used to detect the titer of serum anti-Aβ antibody, isotypes, and cytokines in splenic T cells. A 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to detect the prolifera-tion rate of splenic T cells. Brain sections from a 12-month-old APP/PS1 transgenic mouse were used for detecting the binding capacities of anti-Aβ antibodies to Aβ plaques. The p(Aβ3–10)10-C3d-p28.3 vaccine induced high titers of anti-amyloid-β antibodies, which bound to Aβ plaques in APP/PS1 transgenic mouse brain tissue, demonstrating that the vaccine is effective against plaques in a mouse model of Alzheimer's disease. Moreover, the vaccine elicited a predo-minantly IgG1 humoral response and low levels of interferon-γ in ex vivo cultured splenocytes, dicating that the vaccine could shift the cellular immune response towards a Th2 phenotype. This indicated that the vaccine did not elicit a detrimental immune response and had a favorable safety profile. Our results indicate that the p(Aβ3–10)10-C3d-p28.3 vaccine is a promising immunothe-peutic option for Aβ vaccination in Alzheimer's disease.
Collapse
Affiliation(s)
- Wanshu Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Sha Sha
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Tongzi Jiang
- Department of Neurology, First People's Hospital of Shenyang City, Shenyang 110041, Liaoning Province, China
| | - Xiaona Xing
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
8
|
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 2014; 142:244-57. [DOI: 10.1016/j.pharmthera.2013.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
|
9
|
Abstract
PURPOSE OF REVIEW We reviewed clinical trials on active and passive anti-β-amyloid (Aβ) immunotherapy for the treatment of Alzheimer's disease with a particular focus on monoclonal antibodies against Aβ. RECENT FINDINGS Studies on anti-Alzheimer's disease immunotherapy published in the period from January 2012 to October 2013 were reviewed. SUMMARY Both active and passive anti-Aβ immunotherapies were shown to clear brain Aβ deposits. However, an active anti-Aβ vaccine (AN1792) has been discontinued because it caused meningoencephalitis in 6% of Alzheimer's disease patients treated. Among passive immunotherapeutics, two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients with bapineuzumab, a humanized monoclonal antibody directed at the N-terminal sequence of Aβ, were disappointing. Another antibody, solanezumab, directed at the mid-region of Aβ, failed in two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients. A third Phase III study with solanezumab is ongoing in mildly affected Alzheimer's disease patients based on encouraging results in this subgroup of patients. Second-generation active Aβ vaccines (ACC-001, CAD106, and Affitope AD02) and new passive anti-Aβ immunotherapies (gantenerumab and crenezumab) are being tested in prodromal Alzheimer's disease patients, in presymptomatic individuals with Alzheimer's disease-related mutations, or in asymptomatic individuals at risk of developing Alzheimer's disease to definitely test the Aβ cascade hypothesis of Alzheimer's disease.
Collapse
|
10
|
Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol 2014; 10:405-19. [DOI: 10.1586/1744666x.2014.883921] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J Control Release 2014; 179:11-7. [PMID: 24462900 DOI: 10.1016/j.jconrel.2014.01.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/23/2022]
Abstract
Microneedle (MN)-based DNA vaccines have many advantages over conventional vaccines administered by hypodermic needles. However, an efficient strategy for delivering DNA vaccines to intradermal cells has not yet been established. Here, we report a new approach for delivering polyplex-based DNA vaccines using MN arrays coated with a pH-responsive polyelectrolyte multilayer assembly (PMA). This approach enabled rapid release of polyplex upon application to the skin. In addition to the polyplex-releasing MNs, we attempted to further maximize the vaccination by developing a polymeric carrier that targeted resident antigen presenting cells (APCs) rich in the intradermal area, as well as a DNA vaccine encoding a secretable fusion protein containing amyloid beta monomer (Aβ1-42), an antigenic determinant. The resulting vaccination system was able to successfully induce a robust humoral immune response compared to conventional subcutaneous injection with hypodermal needles. In addition, antigen challenge after immunization elicited an immediate and strong recall immune response due to immunogenic memory. These results suggest the potential utility of MN-based polyplex delivery systems for enhanced DNA vaccination.
Collapse
|
12
|
Matsumoto Y, Niimi N, Kohyama K. Development of a new DNA vaccine for Alzheimer disease targeting a wide range of aβ species and amyloidogenic peptides. PLoS One 2013; 8:e75203. [PMID: 24086465 PMCID: PMC3785508 DOI: 10.1371/journal.pone.0075203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/10/2013] [Indexed: 12/01/2022] Open
Abstract
It has recently been determined that not only Aβ oligomers, but also other Aβ species and amyloidogenic peptides are neurotoxic in Alzheimer disease (AD) and play a pivotal role in AD pathogenesis. In the present study, we attempted to develop new DNA vaccines targeting a wide range of Aβ species. For this purpose, we first performed in vitro assays with newly developed vaccines to evaluate Aβ production and Aβ secretion abilities and then chose an IgL-Aβx4-Fc-IL-4 vaccine (designated YM3711) for further studies. YM3711 was vaccinated to mice, rabbits and monkeys to evaluate anti-Aβ species antibody-producing ability and Aβ reduction effects. It was found that YM3711 vaccination induced significantly higher levels of antibodies not only to Aβ1-42 but also to AD-related molecules including AβpE3-42, Aβ oligomers and Aβ fibrils. Importantly, YM3711 significantly reduced these Aβ species in the brain of model mice. Binding and competition assays using translated YM3711 protein products clearly demonstrated that a large part of antibodies induced by YM3711 vaccination are directed at conformational epitopes of the Aβ complex and oligomers. Taken together, we demonstrate that YM3711 is a powerful DNA vaccine targeting a wide range of AD-related molecules and is worth examining in preclinical and clinical trials.
Collapse
Affiliation(s)
- Yoh Matsumoto
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
- Department of Immunotherapy Development, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail: .
| | - Naoko Niimi
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
- Department of Immunotherapy Development, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniko Kohyama
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
- Department of Immunotherapy Development, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
13
|
Monsonego A, Nemirovsky A, Harpaz I. CD4 T cells in immunity and immunotherapy of Alzheimer's disease. Immunology 2013; 139:438-46. [PMID: 23534386 DOI: 10.1111/imm.12103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with prevalence progressively increasing with aging. Pathological hallmarks of the disease include accumulation of amyloid β-protein (Aβ) peptides and neurofibrillary tangles in the brain associated with glial activation and synaptotoxicity. In addition, AD involves peripheral and brain endogenous inflammatory processes that appear to enhance disease progression. More than a decade ago a new therapeutic paradigm emerged for AD, namely the activation of the adaptive immune system directly against the self-peptide Aβ, aimed at lowering its accumulation in the brain. This was the first time that a brain peptide was used to vaccinate human subjects in a manner similar to classic viral or bacterial vaccines. The vaccination approach has taken several forms, from initially active to passive and then back to modified active vaccines. As the first two approaches to date failed to show sufficient efficacy, the last is presently being evaluated in ongoing clinical trials. The present review summarizes the immunogenic characteristics of Aβ in humans and mice and discusses past, present and future Aβ-based immunotherapeutic approaches for AD. We emphasize potential pathogenic and beneficial roles of CD4 T cells in light of the pathogenesis and the general decline in T-cell responsiveness evident in the disease.
Collapse
Affiliation(s)
- Alon Monsonego
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | |
Collapse
|
14
|
Shimada M, Abe S, Takahashi T, Shiozaki K, Okuda M, Mizukami H, Klinman DM, Ozawa K, Okuda K. Prophylaxis and treatment of Alzheimer's disease by delivery of an adeno-associated virus encoding a monoclonal antibody targeting the amyloid Beta protein. PLoS One 2013; 8:e57606. [PMID: 23555563 PMCID: PMC3610755 DOI: 10.1371/journal.pone.0057606] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/23/2013] [Indexed: 02/03/2023] Open
Abstract
We previously reported on a monoclonal antibody (mAb) that targeted amyloid beta (Aß) protein. Repeated injection of that mAb reduced the accumulation of Aß protein in the brain of human Aß transgenic mice (Tg2576). In the present study, cDNA encoding the heavy and light chains of this mAb were subcloned into an adeno-associated virus type 1 (AAV) vector with a 2A/furin adapter. A single intramuscular injection of 3.0×1010 viral genome of these AAV vectors into C57BL/6 mice generated serum anti-Aß Ab levels up to 0.3 mg/ml. Anti-Aß Ab levels in excess of 0.1 mg/ml were maintained for up to 64 weeks. The effect of AAV administration on Aß levels in vivo was examined. A significant decrease in Aß levels in the brain of Tg2576 mice treated at 5 months (prophylactic) or 10 months (therapeutic) of age was observed. These results support the use of AAV vector encoding anti-Aß Ab for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Masaru Shimada
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Shinya Abe
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toru Takahashi
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kazumasa Shiozaki
- Department of Psychiatry, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi-ken, Japan
| | - Dennis M. Klinman
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi-ken, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
15
|
Leclerc B, Abulrob A. Perspectives in molecular imaging using staging biomarkers and immunotherapies in Alzheimer's disease. ScientificWorldJournal 2013; 2013:589308. [PMID: 23476143 PMCID: PMC3576798 DOI: 10.1155/2013/589308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is an emerging chronic illness characterized by a progressive pleiotropic pathophysiological mode of actions triggered during the senescence process and affecting the elderly worldwide. The complex molecular mechanisms of AD not only are supported by cholinergic, beta-amyloid, and tau theories but also have a genetic basis that accounts for the difference in symptomatology processes activation among human population which will evolve into divergent neuropathological features underlying cognitive and behaviour alterations. Distinct immune system tolerance could also influence divergent responses among AD patients treated by immunotherapy. The complexity in nature increases when taken together the genetic/immune tolerance with the patient's brain reserve and with neuropathological evolution from early till advance AD clinical stages. The most promising diagnostic strategies in today's world would consist in performing high diagnostic accuracy of combined modality imaging technologies using beta-amyloid 42 peptide-cerebrospinal fluid (CSF) positron emission tomography (PET), Pittsburgh compound B-PET, fluorodeoxyglucose-PET, total and phosphorylated tau-CSF, and volumetric magnetic resonance imaging hippocampus biomarkers for criteria evaluation and validation. Early diagnosis is the challenge task that needs to look first at plausible mechanisms of actions behind therapies, and combining them would allow for the development of efficient AD treatment in a near future.
Collapse
Affiliation(s)
- Benoît Leclerc
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Abedelnasser Abulrob
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
- Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Building M-54, Ottawa, ON, Canada K1A 0R6
| |
Collapse
|
16
|
Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, Greco A, Seripa D, Pilotto A. Immunotherapy for Alzheimer's disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 2012; 4:213-38. [PMID: 22339463 DOI: 10.2217/imt.11.170] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The exact mechanisms leading to Alzheimer's disease (AD) are largely unknown, limiting the identification of effective disease-modifying therapies. The two principal neuropathological hallmarks of AD are extracellular β-amyloid (Aβ), peptide deposition (senile plaques) and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. During the last decade, most of the efforts of the pharmaceutical industry were directed against the production and accumulation of Aβ. The most innovative of the pharmacological approaches was the stimulation of Aβ clearance from the brain of AD patients via the administration of Aβ antigens (active vaccination) or anti-Aβ antibodies (passive vaccination). Several active and passive anti-Aβ vaccines are under clinical investigation. Unfortunately, the first active vaccine (AN1792, consisting of preaggregate Aβ and an immune adjuvant, QS-21) was abandoned because it caused meningoencephalitis in approximately 6% of treated patients. Anti-Aβ monoclonal antibodies (bapineuzumab and solanezumab) are now being developed. The clinical results of the initial studies with bapineuzumab were equivocal in terms of cognitive benefit. The occurrence of vasogenic edema after bapineuzumab, and more rarely brain microhemorrhages (especially in Apo E ε4 carriers), has raised concerns on the safety of these antibodies directed against the N-terminus of the Aβ peptide. Solanezumab, a humanized anti-Aβ monoclonal antibody directed against the midregion of the Aβ peptide, was shown to neutralize soluble Aβ species. Phase II studies showed a good safety profile of solanezumab, while studies on cerebrospinal and plasma biomarkers documented good signals of pharmacodynamic activity. Although some studies suggested that active immunization may be effective against tau in animal models of AD, very few studies regarding passive immunization against tau protein are currently available. The results of the large, ongoing Phase III trials with bapineuzumab and solanezumab will tell us if monoclonal anti-Aβ antibodies may slow down the rate of deterioration of AD. Based on the new diagnostic criteria of AD and on recent major failures of anti-Aβ drugs in mild-to-moderate AD patients, one could argue that clinical trials on potential disease-modifying drugs, including immunological approaches, should be performed in the early stages of AD.
Collapse
Affiliation(s)
- Francesco Panza
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer's disease: challenges, methods, and implications. Neurobiol Aging 2012; 34:169-83. [PMID: 22464953 DOI: 10.1016/j.neurobiolaging.2012.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 11/18/2022]
Abstract
Substantial resources and effort have been invested into the development of therapeutic agents for Alzheimer's disease (AD) with mixed and limited success. Research into the etiology of AD with animal models mimicking aspects of the disorder has substantially contributed to the advancement of potential therapies. Although these models have shown utility in testing novel therapeutic candidates, large variability still exists in terms of methodology and how the models are utilized. No model has yet predicted a successful disease-modifying therapy for AD. This report reviews several of the widely accepted transgenic and nontransgenic animal models of AD, highlighting the pathological and behavioral characteristics of each. Methodological considerations for conducting preclinical animal research are discussed, such as which behavioral tasks and histological markers may be associated with the greatest insight into therapeutic benefit. An overview of previous and current therapeutic interventions being investigated in AD models is presented, with an emphasis on factors that may have contributed to failure in past clinical trials. Finally, we propose a multitiered approach for investigating candidate therapies for AD that may reduce the likelihood of inappropriate conclusions from models and failed trials in humans.
Collapse
Affiliation(s)
- Jonathan J Sabbagh
- Behavioral Neuroscience Laboratory, University of Nevada, Las Vegas, NV, USA
| | | | | |
Collapse
|
18
|
Kou J, Song M, Pattanayak A, Lim JE, Yang J, Cao D, Li L, Fukuchi KI. Combined treatment of Aβ immunization with statin in a mouse model of Alzheimer's disease. J Neuroimmunol 2012; 244:70-83. [PMID: 22326143 DOI: 10.1016/j.jneuroim.2012.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/22/2011] [Accepted: 01/18/2012] [Indexed: 01/02/2023]
Abstract
We evaluated the therapeutic efficacy of combined treatment of Aβ-immunization with simvastatin in an Alzheimer mouse model at age 22 months. DNA prime-adenovirus boost immunization induced modest anti-Aβ titers and simvastatin increased the seropositive rate. Aβ-KLH was additionally administered to boost the titers. Irrespective of simvastatin, the immunization did not decrease cerebral Aβ deposits but increased soluble Aβ and tended to exacerbate amyloid angiopathy in the hippocampus. The immunization increased cerebral invasion of leukocytes and simvastatin counteracted the increase. Thus, modest anti-Aβ titers can increase soluble Aβ and simvastatin may reduce inflammation associated with vaccination in aged Alzheimer mouse models.
Collapse
Affiliation(s)
- Jinghong Kou
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Xing X, Sha S, Li Y, Zong L, Jiang T, Cao Y. Immunization with a new DNA vaccine for Alzheimer's disease elicited Th2 immune response in BALB/c mice by in vivo electroporation. J Neurol Sci 2011; 313:17-21. [PMID: 22029939 DOI: 10.1016/j.jns.2011.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 12/18/2022]
Abstract
Immunization with synthetic amyloid β-protein (Aβ) peptide has resulted in preventing and clearing Aβ deposits as well as improving cognitive function in transgenic mouse models of Alzheimer's disease (AD). But similar immunization studies in humans were halted due to the risk of inducing T cell-mediated meningoencephalitis. A safe and effective vaccine for AD requires not only therapeutic levels of anti-Aβ antibodies but also the prevention of an adverse T cell-mediated, proinflammatory autoimmune response. In this study, we developed a DNA vaccine, p(Aβ(3-10))(10)-IL-4, encoding ten tandem repeats of Aβ(3-10) fused with mouse cytokine interleukin-4 (IL-4) as a molecular adjuvant. Wild-type mice were injected intramuscularly with p(Aβ(3-10))(10)-IL-4 followed by in vivo electroporation. The p(Aβ(3-10))(10)-IL-4 vaccine elicited high titer anti-Aβ antibodies which bound to Aβ plaque in brain tissue from a ten-month-old APP/PS1 transgenic mouse. The antibody isotype was mainly IgG(1) and the IgG(1)/IgG(2a) ratio in the p(Aβ(3-10))(10)-IL-4 group was approximately eight times greater than that of the Aβ(42) group. Ex vivo cultured splenocytes isolated from mice immunized with p(Aβ(3-10))(10)-IL-4 exhibited a low IFN-γ response and a high IL-4 response compared with the control group. These results indicate that immunization with the p(Aβ(3-10))(10)-IL-4 vaccine induced effective anti-Aβ antibodies and elicited a Th2-polarized immune response that had a lower potential to cause an inflammatory T cell response. Thus, the DNA vaccine, p(Aβ(3-10))(10)-IL-4, may be a safe and efficient vaccine for AD.
Collapse
Affiliation(s)
- Xiaona Xing
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | | | | | | | | | | |
Collapse
|
20
|
Hara H, Mouri A, Yonemitsu Y, Nabeshima T, Tabira T. Mucosal immunotherapy in an Alzheimer mouse model by recombinant Sendai virus vector carrying Aβ1-43/IL-10 cDNA. Vaccine 2011; 29:7474-82. [PMID: 21803105 DOI: 10.1016/j.vaccine.2011.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/28/2011] [Accepted: 07/17/2011] [Indexed: 11/18/2022]
Abstract
Based on the amyloid cascade hypothesis, many reports have indicated that immunotherapy is beneficial for Alzheimer's disease (AD). We developed a mucosal immunotherapy for AD by nasal administration of recombinant Sendai virus vector carrying Aβ1-43 and mouse IL-10 cDNA. Nasal but not intramuscular administration of the vaccine induced good antibody responses to Aβ. When APP transgenic mice (Tg2576) received this vaccine once nasally, the Aβ plaque burden was significantly decreased 8 weeks after without inducing inflammation in the brain. The amount of Aβ measured by ELISA was also reduced in both soluble and insoluble fractions of the brain homogenates, and notably the Aβ oligomer (12-mer) was also apparently decreased. Tg2576 mice showed significant improvement in cognitive functions examined at 3 months after vaccination. Thus, this is an alternative immunotherapy for AD, which has an advantage in non-invasive, safe and relatively long lasting features.
Collapse
Affiliation(s)
- Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Ahsan MF, Gore MM. Comparative analysis of macrophage associated vectors for use in genetic vaccine. GENETIC VACCINES AND THERAPY 2011; 9:10. [PMID: 21682913 PMCID: PMC3146807 DOI: 10.1186/1479-0556-9-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/18/2011] [Indexed: 11/30/2022]
Abstract
Background Antigen presentation by non professional antigen presenting cells (APC) can lead to anergy. In genetic vaccines, targeting the macrophages and APC for efficient antigen presentation might lead to balanced immune response. One such approach is to incorporate APC specific promoter in the vector to be used. Methods Three promoters known to be active in macrophage were selected and cloned in mammalian expressing vector (pAcGFP1-N1) to reconstruct (pAcGFP-MS), (pAcGFP-EMR) and (pAcGFP-B5I) with macrosialin, EmrI and Beta-5 Integrin promoters respectively. As a positive control (pAcGFP-CMV) was used with CMV promoter and promoterless vector (pAcGFP-NIX) which served as a negative control. GFP gene was used as readout under the control of each of the promoter. The expression of GFP was analyzed on macrophage and non-macrophage cell lines using Flow cytometry and qRT-PCR with TaqMan probe chemistries. Results All the promoters in question were dominant to macrophage lineage cell lines as observed by fluorescence, Western blot and quantitative RT-PCR. The activity of macrosialin was significantly higher than other macrophage promoters. CMV promoter showed 1.83 times higher activity in macrophage cell lines. The expression of GFP driven by macrosialin promoter after 24 hours was 4.40 times higher in macrophage derived cell lines in comparison with non macrophage cell lines. Conclusions Based on this study, macrosialin promoter can be utilized for targeting macrophage dominant expression. In vivo study needs to be carried out for its utility as a vaccine candidate.
Collapse
Affiliation(s)
- Mohammad Feraz Ahsan
- National Institute of Virology, Pashan Campus, 130/1, Sus Road, Pashan, Pune, 411021, India.
| | | |
Collapse
|
23
|
Fuentealba J, Dibarrart AJ, Fuentes-Fuentes MC, Saez-Orellana F, Quiñones K, Guzmán L, Perez C, Becerra J, Aguayo LG. Synaptic failure and adenosine triphosphate imbalance induced by amyloid-β aggregates are prevented by blueberry-enriched polyphenols extract. J Neurosci Res 2011; 89:1499-508. [PMID: 21647937 DOI: 10.1002/jnr.22679] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/23/2011] [Accepted: 03/31/2011] [Indexed: 12/29/2022]
Abstract
The potential neuroprotective properties of fruits have been widely recognized. In this study, we evaluated the protective properties of a blueberry extract (BB-4), rich in polyphenols, in a neurodegenerative model induced by amyloid-β peptide (Aβ). Chronic treatment with Aβ drastically reduced synaptic transmission and the extent of secretory vesicles, which were recovered partially with BB-4. Also, the extract recovered Ca(2+) transients in hippocampal neurons preincubated with Aβ (0.5 and 5 μM) by about 25% ± 3% and 30% ± 2, respectively. In this work, we demonstrate a novel effect of the BB-4 extract on Aβ-induced ATP leakage, in which this extract was able to antagonize the acute ATP leakage but not chronic ATP depletion. On the other hand, BB-4 prevented the uncoupling of mitochondrial function induced by FCCP by about 85%, but it was unable to modify the uncoupling induced by Aβ. The present results strongly indicate that BB-4 plays a role in the process of Aβ aggregation by reducing the toxic species (i.e., 40 kDa). These findings suggest that a blueberry extract can protect neuronal tissue from Aβ toxicity mainly through its antiaggregation property, and its antioxidant properties and mitochondrial membrane potential capacities are secondary mechanisms important in chronic stages. Our work suggests that BB-4 could be an important nutritional complement to neuronal health as well as a potential nutraceutical formulation useful as a dietary supplement in the elderly.
Collapse
Affiliation(s)
- Jorge Fuentealba
- Neuroactive Drugs Screening Unit, Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepcion, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shah S, Federoff HJ. Therapeutic potential of vaccines for Alzheimer's disease. Immunotherapy 2011; 3:287-98. [PMID: 21322764 DOI: 10.2217/imt.10.94] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD) are amyloid-β (Aβ) plaques and Tau-containing neurofibrillary tangles. Although the relationship between neuronal loss and the presence of plaques/tangles is not well understood, the prevailing Aβ hypothesis posits that excessive accumulation of conformers and assemblies of Aβ protein precedes AD-related dementia and neuronal loss. Consequently, most disease-modifying immunotherapy approaches are directed towards modulating the levels of Aβ. The first AD vaccine clinical trial (AN1792) was suspended after the patients developed meningoencephalitis. In spite of the setback, the trial provided insights to refine development second-generation vaccines, which are attempting to resolve the side effects observed in the trial. This article provides an analysis of these efforts.
Collapse
Affiliation(s)
- Salim Shah
- Georgetown University Medical Center, 4000 Reservoir Road, NW 120 Building D, Washington, DC 20007, USA
| | | |
Collapse
|
25
|
Nemirovsky A, Fisher Y, Baron R, Cohen IR, Monsonego A. Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer's disease. Vaccine 2011; 29:4043-50. [PMID: 21473952 DOI: 10.1016/j.vaccine.2011.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 11/24/2022]
Abstract
Active vaccination with amyloid beta peptide (Aβ) to induce beneficial antibodies was found to be effective in mouse models of Alzheimer's disease (AD), but human vaccination trials led to adverse effects, apparently caused by exuberant T-cell reactivity. Here, we sought to develop a safer active vaccine for AD with reduced T-cell activation. We treated a mouse model of AD carrying the HLA-DR DRB1*1501 allele, with the Aβ B-cell epitope (Aβ 1-15) conjugated to the self-HSP60 peptide p458. Immunization with the conjugate led to the induction of Aβ-specific antibodies associated with a significant reduction of cerebral amyloid burden and of the accompanying inflammatory response in the brain; only a mild T-cell response specific to the HSP peptide but not to the Aβ peptide was found. This type of vaccination, evoking a gradual increase in antibody titers accompanied by a mild T-cell response is likely due to the unique adjuvant and T-cell stimulating properties of the self-HSP peptide used in the conjugate and might provide a safer approach to effective AD vaccination.
Collapse
Affiliation(s)
- Anna Nemirovsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
26
|
Panza F, Frisardi V, Imbimbo BP, D’Onofrio G, Pietrarossa G, Seripa D, Pilotto A, Solfrizzi V. Bapineuzumab: anti-β-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy 2010; 2:767-82. [DOI: 10.2217/imt.10.80] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the last decade, new therapeutic approaches targeting β-amyloid (Aβ) have been discovered and developed with the hope of modifying the natural history of Alzheimer’s disease (AD). The most revolutionary of these approaches consists in the removal of brain Aβ via anti-Aβ antibodies. After an active vaccine (AN1792) was discontinued in 2002 due to occurrence of meningoencephalitis in approximately 6% of patients, several other second-generation active Aβ vaccines and passive Aβ immunotherapies have been developed and are under clinical investigation with the aim of accelerating Aβ clearance from the brain of AD patients. The most advanced of these immunological approaches is bapineuzumab, which is composed of humanized anti-Aβ monoclonal antibodies that has been tested in two Phase II trials. Bapineuzumab has been shown to reduce Aβ burden in the brain of AD patients. However, its preliminary cognitive efficacy appears uncertain, particularly in ApoE ε4 carriers, and vasogenic edema may limit its clinical use. The results of four ongoing large Phase III trials on bapineuzumab will provide answers regarding whether passive anti-Aβ immunization is able to alter the course of this devastating disease.
Collapse
Affiliation(s)
| | - Vincenza Frisardi
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Bari, Italy
| | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Grazia D’Onofrio
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Davide Seripa
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alberto Pilotto
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Solfrizzi
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Bari, Italy
| |
Collapse
|
27
|
Ishii-Katsuno R, Nakajima A, Katsuno T, Nojima J, Futai E, Sasagawa N, Yoshida T, Watanabe Y, Ishiura S. Reduction of amyloid beta-peptide accumulation in Tg2576 transgenic mice by oral vaccination. Biochem Biophys Res Commun 2010; 399:593-9. [PMID: 20682291 DOI: 10.1016/j.bbrc.2010.07.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is pathologically characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid beta-peptide (Abeta) is the main component of senile plaques, and the pathological load of Abeta in the brain has been shown to be a marker of the severity of AD. Abeta is produced from the amyloid precursor protein by membrane proteases and is known to aggregate. Recently, immune-mediated cerebral clearance of Abeta has been studied extensively as potential therapeutic strategy. In previous studies that used a purified Abeta challenge in a mouse model of AD, symptomatic improvement was reported. However, a clinical Alzheimer's vaccine trial in the United States was stopped because of severe side effects. Immunization with the strong adjuvant used in these trials might have activated an inflammatory Th1 response. In this study, to establish a novel, safer, lower-cost therapy for AD, we tested an oral vaccination in a wild-type and a transgenic mouse model of AD administered via green pepper leaves expressing GFP-Abeta. Anti-Abeta antibodies were effectively induced after oral immunization. We examined the immunological effects in detail and identified no inflammatory reactions. Furthermore, we demonstrated a reduction of Abeta in the immunized AD-model mice. These results suggest this edible vehicle for Abeta vaccination has a potential clinical application in the treatment of AD.
Collapse
Affiliation(s)
- Rika Ishii-Katsuno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fu HJ, Liu B, Frost JL, Lemere CA. Amyloid-beta immunotherapy for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:197-206. [PMID: 20205640 DOI: 10.2174/187152710791012017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/12/2009] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the brain and the most common form of dementia among the elderly. As the population grows and lifespan is extended, the number of AD patients will continue to rise. Current clinical therapies for AD provide partial symptomatic benefits for some patients; however, none of them modify disease progression. Amyloid-beta (Abeta) peptide, the major component of senile plaques in AD patients, is considered to play a crucial role in the pathogenesis of AD thereby leading to Abeta as a target for treatment. Abeta immunotherapy has been shown to induce a marked reduction in amyloid burden and an improvement in cognitive function in animal models. Although preclinical studies were successful, the initial human clinical trial of an active Abeta vaccine was halted due to the development of meningoencephalitis in approximately 6% of the vaccinated AD patients. Some encouraging outcomes, including signs of cognitive stabilization and apparent plaque clearance, were obtained in subset of patients who generated antibody titers. These promising preliminary data support further efforts to refine Abeta immunotherapy to produce highly effective and safer active and passive vaccines for AD. Furthermore, some new human clinical trials for both active and passive Abeta immunotherapy are underway. In this review, we will provide an update of Abeta immunotherapy in animal models and in human beings, as well as discuss the possible mechanisms underlying Abeta immunotherapy for AD.
Collapse
Affiliation(s)
- H J Fu
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Alzheimer disease (AD) is the most common form of dementia. The amyloid-beta (Abeta) peptide has become a major therapeutic target in AD on the basis of pathological, biochemical and genetic evidence that supports a role for this molecule in the disease process. Active and passive Abeta immunotherapies have been shown to lower cerebral Abeta levels and improve cognition in animal models of AD. In humans, dosing in the phase II clinical trial of the AN1792 Abeta vaccine was stopped when approximately 6% of the immunized patients developed meningoencephalitis. However, some plaque clearance and modest clinical improvements were observed in patients following immunization. As a result of this study, at least seven passive Abeta immunotherapies are now in clinical trials in patients with mild to moderate AD. Several second-generation active Abeta vaccines are also in early clinical trials. On the basis of preclinical studies and the limited data from clinical trials, Abeta immunotherapy might be most effective in preventing or slowing the progression of AD when patients are immunized before or in the very earliest stages of disease onset. Biomarkers for AD and imaging technology have improved greatly over the past 10 years and, in the future, might be used to identify presymptomatic, at-risk individuals who might benefit from Abeta immunization.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, New Research Building 636F, Boston, MA 02115, USA.
| | | |
Collapse
|
30
|
Tabira T. Immunization Therapy for Alzheimer Disease: A Comprehensive Review of Active Immunization Strategies. TOHOKU J EXP MED 2010; 220:95-106. [DOI: 10.1620/tjem.220.95] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takeshi Tabira
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Juntendo University
| |
Collapse
|
31
|
|
32
|
Panza F, Solfrizzi V, Frisardi V, Imbimbo BP, Capurso C, D'Introno A, Colacicco AM, Seripa D, Vendemiale G, Capurso A, Pilotto A. Beyond the neurotransmitter-focused approach in treating Alzheimer's disease: drugs targeting beta-amyloid and tau protein. Aging Clin Exp Res 2009; 21:386-406. [PMID: 20154508 DOI: 10.1007/bf03327445] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs currently used to treat Alzheimer's Disease (AD) have limited therapeutic value and do not affect the main neuropathological hallmarks of the disease, i.e., senile plaques and neurofibrillar tangles. Senile plaques are mainly formed of beta-amyloid (Abeta), a 42-aminoacid peptide. Neurofibrillar tangles are composed of paired helical filaments of hyperphosphorylated tau protein. New, potentially disease-modifying, therapeutic approaches are targeting Abeta and tau protein. Drugs directed against Abeta include active and passive immunization, that have been found to accelerate Abeta clearance from the brain. The most developmentally advanced monoclonal antibody directly targeting Abeta is bapineuzumab, now being studied in a large Phase III clinical trial. Compounds that interfere with proteases regulating Abeta formation from amyloid precursor protein (APP) are also actively pursued. The discovery of inhibitors of beta-secretase, the enzyme that regulates the first step of the amyloidogenic metabolism of APP, has been revealed to be particularly difficult due to inherent medicinal chemistry problems, and only one compound (CTS-21166) has reached clinical testing. Conversely, several compounds that inhibit gamma-secretase, the pivotal enzyme that generates Abeta, have been identified, the most advanced being LY-450139 (semagacestat), now in Phase III clinical development. Compounds that stimulate alpha-secretase, the enzyme responsible for the non-amyloidogenic metabolism of APP, are also being developed, and one of them, EHT-0202, has recently entered Phase II testing. Potent inhibitors of Abeta aggregation have also been identified, and one of such compounds, PBT-2, has provided encouraging neuropsychological results in a recently completed Phase II study. Therapeutic approaches directed against tau protein include inhibitors of glycogen synthase kinase- 3 (GSK-3), the enzyme responsible for tau phosphorylation and tau protein aggregation inhibitors. NP-12, a promising GSK-3 inhibitor, is being tested in a Phase II study, and methylthioninium chloride, a tau protein aggregation inhibitor, has given initial encouraging results in a 50-week study. With all these approaches on their way, the hope for disease-modifying therapy in this devastating disease may become a reality in the next 5 years.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, 70124, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Since AN-1792 vaccine induced autoimmune encephalitis, several pharmaceutical companies are now concentrated in developing antibody therapy in Alzheimer's disease (AD). Each antibody has own characteristics. Thus, it is unpredictable at present which antibody is the most beneficial until we see the result of clinical trials. If disease modifying antibodies were found, they will be widely used for treatment of AD in near future. As a candidate of such antibodies, we have developed TAPIR-like antibody with much higher affinity to Abeta42 than Abeta40, and it effectively deleted senile plaque amyloid and Abeta oligomers without increasing microhemorrhages. Although passive immunization can avoid autoimmune encephalitis, it is expensive and it is not suitable for prevention. Thus, safe vaccines by active immunization would be better. Vaccines that induce Th2 type immune responses such as oral vaccine or per-nasal vaccine would be promising.
Collapse
Affiliation(s)
- Takeshi Tabira
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Juntendo University
| |
Collapse
|
34
|
Abstract
Patients with Alzheimer's disease (AD) express severe cognitive deficiencies with a concurrent increase in brain deposits of aggregated amyloid-beta (Abeta), a catabolic derivative of the ubiquitous amyloid precursor protein (APP). Interference in the homeostasis of Abeta has been suggested as a treatment for AD patients. In AD murine models it has been shown that active and passive immunization against Abeta alters the equilibrium of the different forms of Abeta in brain and serum, leading to a concomitant cognitive improvement. Generally, the clinical trials that followed the study of the murine AD model confirmed the results of the AD models, although safety issues advocate the passive vaccination approach rather than the active one. However, passive vaccination of patients with monoclonal antibodies derived from nonhuman sources is limited. Anti-Abeta IgM and IgG antibodies, which are present in the serum of every healthy individual and probably play a role in the homeostasis of Abeta in healthy subjects, might be beneficial to AD patients, as shown for the effect exerted by the commercial preparation of intravenous immunoglobulin. Human monoclonal anti-Abeta antibodies, which correspond to the ubiquitous anti-Abeta antibodies, are plausible candidates for future immunotherapy of AD patients.
Collapse
Affiliation(s)
- Michael Steinitz
- Department of Pathology, The Hebrew University-Hadassah Medical School, Israel.
| |
Collapse
|
35
|
|
36
|
Neuroprotection by hypothalamic peptide proline-rich peptide-1 in Abeta25-35 model of Alzheimer's disease. Alzheimers Dement 2008; 4:332-44. [PMID: 18790460 DOI: 10.1016/j.jalz.2007.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 05/06/2007] [Accepted: 10/25/2007] [Indexed: 12/29/2022]
Abstract
BACKGROUND This work sought to determine the effects of hypothalamic proline-rich peptide (PRP)-1 in a rat model of Alzheimer's disease. METHODS Complex histochemical, electrophysiologic, and behavioral analyses were performed on intact or diseased Wistar rats (n = 28). Pathologic conditions were induced by bilateral intracerebroventricular injection of amyloid peptide Abeta25-35. The diseased rats received systemic administration of PRP-1 or placebo control. RESULTS Abeta25-35 caused cellular neurodegeneration with marked glial reaction in the hippocampal complex and almost full destruction of the dentate fascia, which was not observed in conditions of PRP-1 administration after Abeta25-35 injection. Hippocampal neurons of intact animals responded to high-frequency (tetanic) stimulation of entorhinal cortex of ipsilateral cerebral hemisphere by tetanic and posttetanic potentiation of a different intensity and duration, which was accompanied by posttetanic depression. Abeta25-35 led to significant changes in the level and pattern of hippocampal neuronal activity, indicating the absence of both tetanic and posttetanic activity. Poststimulus activity manifestations rarely occurred and rapidly decreased after repeated trials. This indicated the focal character of lesion. Regular administration of PRP-1 for 4 weeks resulted in optimal restoration of electrophysiologic parameters. PRP-1 maintained the initial learning level achieved in a behavioral study in a Morris water maze. CONCLUSIONS Systemic administration of PRP-1 possesses neuroprotective effects and can prevent the neurodegeneration in hippocampus induced by Abeta25-35. This suggests that PRP-1 could be a potential therapeutic agent for specific neurodegenerative diseases.
Collapse
|
37
|
Nonviral DNA vaccination augments microglial phagocytosis of beta-amyloid deposits as a major clearance pathway in an Alzheimer disease mouse model. J Neuropathol Exp Neurol 2008; 67:1063-71. [PMID: 18957895 DOI: 10.1097/nen.0b013e31818b48db] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunotherapies markedly reduce beta-amyloid (Abeta) burden and reverse behavioral impairment in mouse models of Alzheimer disease. We previously showed that new Abeta DNA vaccines reduced Abeta deposits in Alzheimer disease model mice without detectable side effects. Although they are effective, the mechanisms of Abeta reduction by the DNA vaccines remain to be elucidated. Here, we analyzed vaccinated and control Alzheimer disease model mice from 4 months to 15 months of age to assess which of several proposed mechanisms may underlie the beneficial effects of this vaccination. Immunohistochemical analysis revealed that activated microglial numbers increased significantly in the brains of vaccinated mice after DNA vaccination both around Abeta plaques and in areas remote from them. Microglia in treated mice phagocytosed Abeta debris more frequently than they did in untreated mice. Although microglia had an activated morphological phenotype, they did not produce significant amounts of tumor necrosis factor. Amyloid plaque immunoreactivity and Abeta concentrations in plasma increased slightly in vaccinated mice compared with controls at 9 but not at 15 months of age. Collectively, these data suggest that phagocytosis of Abeta deposits by microglia plays a central role in Abeta reduction after DNA vaccination.
Collapse
|
38
|
Movsesyan N, Mkrtichyan M, Petrushina I, Ross TM, Cribbs DH, Agadjanyan MG, Ghochikyan A. DNA epitope vaccine containing complement component C3d enhances anti-amyloid-beta antibody production and polarizes the immune response towards a Th2 phenotype. J Neuroimmunol 2008; 205:57-63. [PMID: 18838175 PMCID: PMC2637203 DOI: 10.1016/j.jneuroim.2008.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 12/26/2022]
Abstract
We have engineered a DNA epitope vaccine that expresses 3 self-B cell epitopes of Abeta(42) (3Abeta(1-11)), a non-self T helper (Th) cell epitope (PADRE), and 3 copies of C3d (3C3d), a component of complement as a molecular adjuvant, designed to safely reduce CNS Abeta. Immunization of mice with 3Abeta(1-11)-PADRE epitope vaccine alone generated only moderate levels of anti-Abeta antibodies and a pro-inflammatory T helper (Th1 phenotype) cellular immune response. However, the addition of 3C3d to the vaccine construct significantly augmented the anti-Abeta humoral immune response and, importantly, shifted the cellular immune response towards the potentially safer anti-inflammatory Th2 phenotype.
Collapse
Affiliation(s)
- Nina Movsesyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, United States
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697, United States
| | - Mikayel Mkrtichyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, United States
| | - Irina Petrushina
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697, United States
| | - Ted M. Ross
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - David H. Cribbs
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697, United States
- Department of Neurology, School of Medicine, University of California, Irvine, CA 92697, United States
| | - Michael G. Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, United States
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697, United States
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, United States
| |
Collapse
|
39
|
Okura Y, Matsumoto Y. DNA vaccine therapy for Alzheimer's disease: present status and future direction. Rejuvenation Res 2008; 11:301-8. [PMID: 18442321 DOI: 10.1089/rej.2007.0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia characterized by progressive neurodegeneration. Based on the amyloid cascade hypothesis, a vaccine therapy for Alzheimer's disease (AD) was developed as a curative treatment. In 1999, the amyloid beta (Abeta) reduction in AD model transgenic mice with active vaccination with Abeta peptide was first reported. Although the clinical trials of active vaccination for AD patients were halted due to the development of meningoencephalitis in some patients, from the analysis of the clinical and pathological findings of treated patients, the vaccine therapy is thought to be effective. Based on such information, the vaccines for clinical application of human AD have been improved to control excessive immune reaction. Recently, we have developed non-viral DNA vaccines and obtained substantial Abeta reduction in transgenic mice without side effects. DNA vaccines have many advantages over conventional active or passive immunization. In this article, we review conventional vaccine therapies and further explain our non-viral DNA vaccine therapy. Finally, we show some data regarding the mechanisms of Abeta reduction after administration of DNA vaccines. DNA vaccination may open up new avenues of vaccine therapy for AD.
Collapse
Affiliation(s)
- Yoshio Okura
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | |
Collapse
|
40
|
Movsesyan N, Ghochikyan A, Mkrtichyan M, Petrushina I, Davtyan H, Olkhanud PB, Head E, Biragyn A, Cribbs DH, Agadjanyan MG. Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine - a novel immunotherapeutic strategy. PLoS One 2008; 3:e2124. [PMID: 18461171 PMCID: PMC2358976 DOI: 10.1371/journal.pone.0002124] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/02/2008] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The development of a safe and effective AD vaccine requires a delicate balance between providing an adequate anti-Abeta antibody response sufficient to provide therapeutic benefit, while eliminating an adverse T cell-mediated proinflammatory autoimmune response. To achieve this goal we have designed a prototype chemokine-based DNA epitope vaccine expressing a fusion protein that consists of 3 copies of the self-B cell epitope of Abeta(42) (Abeta(1-11)) , a non-self T helper cell epitope (PADRE), and macrophage-derived chemokine (MDC/CCL22) as a molecular adjuvant to promote a strong anti-inflammatory Th2 phenotype. METHODS AND FINDINGS We generated pMDC-3Abeta(1-11)-PADRE construct and immunized 3xTg-AD mouse model starting at age of 3-4 months old. We demonstrated that prophylactic immunizations with the DNA epitope vaccine generated a robust Th2 immune response that induced high titers of anti-Abeta antibody, which in turn inhibited accumulation of Abeta pathology in the brains of older mice. Importantly, vaccination reduced glial activation and prevented the development of behavioral deficits in aged animals without increasing the incidence of microhemorrhages. CONCLUSIONS Data from this transitional pre-clinical study suggest that our DNA epitope vaccine could be used as a safe and effective strategy for AD therapy. Future safety and immunology studies in large animals with the goal to achieve effective humoral immunity without adverse effects should help to translate this study to human clinical trials.
Collapse
Affiliation(s)
- Nina Movsesyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, California, United States of America
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California, United States of America
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, California, United States of America
| | - Mikayel Mkrtichyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, California, United States of America
| | - Irina Petrushina
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California, United States of America
| | - Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, California, United States of America
| | - Purevdorj B. Olkhanud
- Immunotherapeutics Unit, Laboratory of Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Elizabeth Head
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California, United States of America
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| | - Arya Biragyn
- Immunotherapeutics Unit, Laboratory of Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - David H. Cribbs
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California, United States of America
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| | - Michael G. Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, California, United States of America
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Tarawneh R, Galvin JE. Distinguishing Lewy body dementias from Alzheimer's disease. Expert Rev Neurother 2008; 7:1499-516. [PMID: 17997699 DOI: 10.1586/14737175.7.11.1499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lewy body dementia (LBD) is the second most common dementia after Alzheimer's disease (AD). LBD is characterized clinically by visual hallucinations, extrapyramidal symptoms, cognitive fluctuations and neuroleptic sensitivity. LBD and AD share many common features in pathology, genetics and biochemical alterations; however, correct clinical distinction between these disorders has prognostic and therapeutic implications. There are currently no definitive radiological or biological markers for LBD, but studies suggest that premorbid differences in cognitive domains and personality traits, differences in clinical presentation, and alterations in autonomic function and sleep may improve diagnosis. Cholinergic dysfunction plays a major role in both AD and LBD; however, dysfunction is greater in LBD. This may account for the more prominent hallucinations, and offers the possibility of a greater response to cholinesterase inhibitors in LBD. The treatment of LBD is symptomatic and is based on a limited number of clinical trials and extension of results from trials in AD. Current research is focused on the role of synuclein aggregation with possible roles for synuclein-derived peptides as aggregation inhibitors. Other approaches target amyloid, neuroinflammation, oxidative injury, proteolysis, lipid peroxidation and immunotherapies with variable results. Improved understanding of disease mechanisms may open new therapeutic avenues for LBD in the future.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63108, USA.
| | | |
Collapse
|
42
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized pathologically by the deposition of beta-amyloid (A beta)-containing extracellular neuritic plaques, intracellular neurofibrillary tangles and neuronal loss. Much evidence supports the hypothesis that A beta peptide aggregation contributes to AD pathogenesis, however, currently approved therapeutic treatments do nothing to stop or reverse A beta deposition. The success of active and passive anti-A beta immunotherapies in both preventing and clearing parenchymal amyloid in transgenic mouse models led to the initiation of an active anti-A beta vaccination (AN1792) trial in human patients with mild-to-moderate AD, but was prematurely halted when 6% of inoculated patients developed aseptic meningoencephalitis. Autopsy results from the brains of four individuals treated with AN1792 revealed decreased plaque burden in select brain areas, as well as T-cell lymphocytes in three of the patients. Furthermore, antibody responders showed some improvement in memory task measures. These findings indicated that anti-A beta therapy might still be a viable option for the treatment of AD, if potentially harmful proinflammatory processes can be avoided. Over the past 6 years, this target has led to the development of novel experimental immunization strategies, including selective A beta epitope targeting, antibody and adjuvant modifications, as well as alternative routes and mechanisms of vaccine delivery, to generate anti-A beta antibodies that selectively target and remove specific A beta species without evoking autoimmunity. Results from the passive vaccination AD clinical trials that are currently underway will provide invaluable information about both the effectiveness of newly improved anti-A beta vaccines in clinical treatment, as well as the role of the A beta peptide in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
43
|
Spencer B, Rockenstein E, Crews L, Marr R, Masliah E. Novel strategies for Alzheimer's disease treatment. Expert Opin Biol Ther 2007; 7:1853-67. [PMID: 18034651 DOI: 10.1517/14712598.7.12.1853] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable progress has been made in recent years towards better understanding the pathogenesis of Alzheimer's disease (AD), a dementing neurodegenerative disorder that affects > 10 million individuals in the US and Europe combined. Recent studies suggest that alterations in the processing of amyloid precursor protein (APP), resulting in the accumulation of amyloid-beta protein (Abeta) and the formation of oligomers leads to synaptic damage and neurodegeneration. Therefore, strategies for treatment development have been focused on reducing Abeta accumulation using, among other approaches, antiaggregation molecules, regulators of the APP proteolysis and processing, reducing APP production (e.g., small-interfering RNA), and increasing Abeta clearance with antibodies, apolipoprotein E and Abeta-degrading enzymes (e.g., neprilysin). The main focus of this review is on novel treatments for AD with a special emphasis on delivering neuroprotective and antiamyloidogenic molecules by gene therapy and by promoting neurogenesis.
Collapse
Affiliation(s)
- Brian Spencer
- University of California, Department of Neurosciences, San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
44
|
Obregon D, Hou H, Bai Y, Nikolic WV, Mori T, Luo D, Zeng J, Ehrhart J, Fernandez F, Morgan D, Giunta B, Town T, Tan J. CD40L disruption enhances Abeta vaccine-mediated reduction of cerebral amyloidosis while minimizing cerebral amyloid angiopathy and inflammation. Neurobiol Dis 2007; 29:336-53. [PMID: 18055209 DOI: 10.1016/j.nbd.2007.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/31/2007] [Accepted: 09/19/2007] [Indexed: 12/24/2022] Open
Abstract
Amyloid-beta (Abeta) immunization efficiently reduces amyloid plaque load and memory impairment in transgenic mouse models of Alzheimer's disease (AD). Active Abeta immunization has also yielded favorable results in a subset of AD patients. However, a small percentage of patients developed severe aseptic meningoencephalitis associated with brain inflammation and infiltration of T-cells. We have shown that blocking the CD40-CD40 ligand (L) interaction mitigates Abeta-induced inflammatory responses and enhances Abeta clearance. Here, we utilized genetic and pharmacologic approaches to test whether CD40-CD40L blockade could enhance the efficacy of Abeta(1-42) immunization, while limiting potentially damaging inflammatory responses. We show that genetic or pharmacologic interruption of the CD40-CD40L interaction enhanced Abeta(1-42) immunization efficacy to reduce cerebral amyloidosis in the PSAPP and Tg2576 mouse models of AD. Potentially deleterious pro-inflammatory immune responses, cerebral amyloid angiopathy (CAA) and cerebral microhemorrhage were reduced or absent in these combined approaches. Pharmacologic blockade of CD40L decreased T-cell neurotoxicity to Abeta-producing neurons. Further reduction of cerebral amyloidosis in Abeta-immunized PSAPP mice completely deficient for CD40 occurred in the absence of Abeta immunoglobulin G (IgG) antibodies or efflux of Abeta from brain to blood, but was rather correlated with anti-inflammatory cytokine profiles and reduced plasma soluble CD40L. These results suggest CD40-CD40L blockade promotes anti-inflammatory cellular immune responses, likely resulting in promotion of microglial phagocytic activity and Abeta clearance without generation of neurotoxic Abeta-reactive T-cells. Thus, combined approaches of Abeta immunotherapy and CD40-CD40L blockade may provide for a safer and more effective Abeta vaccine.
Collapse
Affiliation(s)
- D Obregon
- Neuroimmunology Laboratory, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim HD, Jin JJ, Maxwell JA, Fukuchi KI. Enhancing Th2 immune responses against amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer's disease. Immunol Lett 2007; 112:30-8. [PMID: 17686533 PMCID: PMC2001313 DOI: 10.1016/j.imlet.2007.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 06/22/2007] [Accepted: 06/24/2007] [Indexed: 12/26/2022]
Abstract
Accumulation of aggregated amyloid beta-protein (Abeta) in the brain is thought to be the initiating event leading to neurodegeneration and dementia in Alzheimer's disease (AD). Therefore, therapeutic strategies that clear accumulated Abeta and/or prevent Abeta production and its aggregation are predicted to be effective against AD. Immunization of AD mouse models with synthetic Abeta prevented or reduced Abeta load in the brain and ameliorated their memory and learning deficits. The clinical trials of Abeta immunization elicited immune responses in only 20% of AD patients and caused T-lymphocyte meningoencephalitis in 6% of AD patients. In attempting to develop safer vaccines, we previously demonstrated that an adenovirus vector, AdPEDI-(Abeta1-6)11, which encodes 11 tandem repeats of Abeta1-6 can induce anti-inflammatory Th2 immune responses in mice. Here, we investigated whether a DNA prime-adenovirus boost regimen could elicit a more robust Th2 response using AdPEDI-(Abeta1-6)11 and a DNA plasmid encoding the same antigen. All mice (n=7) subjected to the DNA prime-adenovirus boost regimen were positive for anti-Abeta antibody, while, out of 7 mice immunized with only AdPEDI-(Abeta1-6)11, four mice developed anti-Abeta antibody. Anti-Abeta titers were indiscernible in mice (n=7) vaccinated with only DNA plasmid. The mean anti-Abeta titer induced by the DNA prime-adenovirus boost regimen was approximately 7-fold greater than that by AdPEDI-(Abeta1-6)11 alone. Furthermore, anti-Abeta antibodies induced by the DNA prime-adenovirus boost regimen were predominantly of the IgG1 isotype. These results indicate that the DNA prime-adenovirus boost regimen can enhance Th2-biased responses with AdPEDI-(Abeta1-6)11 in mice and suggest that heterologous prime-boost strategies may make AD immunotherapy more effective in reducing accumulated Abeta.
Collapse
Affiliation(s)
- Hong-Duck Kim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL 61656, USA
| | | | | | | |
Collapse
|
46
|
Qu BX, Xiang Q, Li L, Johnston SA, Hynan LS, Rosenberg RN. Abeta42 gene vaccine prevents Abeta42 deposition in brain of double transgenic mice. J Neurol Sci 2007; 260:204-13. [PMID: 17574274 PMCID: PMC2587214 DOI: 10.1016/j.jns.2007.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 01/10/2023]
Abstract
Abeta42 peptide aggregation and deposition is an important component of the neuropathology of Alzheimer's disease (AD). Gene-gun mediated gene vaccination targeting Abeta42 is a potential method to prevent and treat AD. APPswe/PS1DeltaE9 transgenic (Tg) mice were immunized with an Abeta42 gene construct delivered by the gene gun. The vaccinated mice developed Th2 antibodies (IgG1) against Abeta42. The Abeta42 levels in brain were decreased by 41% and increased in plasma 43% in the vaccinated compared with control mice as assessed by ELISA analysis. Abeta42 plaque deposits in cerebral cortex and hippocampus were reduced by 51% and 52%, respectively, as shown by quantitative immunolabeling. Glial cell activation was also significantly attenuated in vaccinated compared with control mice. One rhesus monkey was vaccinated and developed anti-Abeta42 antibody. These new findings advance significantly our knowledge that gene-gun mediated Abeta42 gene immunization effectively induces a Th2 immune response and reduces the Abeta42 levels in brain in APPswe/PS1DeltaE9 mice. Abeta42 gene vaccination may be safe and efficient immunotherapy for AD.
Collapse
Affiliation(s)
- Bao-Xi Qu
- Alzheimer's Disease Center, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qun Xiang
- Alzheimer's Disease Center, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liping Li
- Alzheimer's Disease Center, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen Albert Johnston
- The Center for Innovations in Medicine/Biodesign Institute, The Arizona State University, Tempe, Arizona, USA
| | - Linda S. Hynan
- Alzheimer's Disease Center, Departments of Clinical Sciences (Biostatistics) and Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Roger N. Rosenberg
- Alzheimer's Disease Center, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Corresponding author. Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9036, USA. Tel.: +1 214 648 3239; fax: +1 214 648 6824. E-mail address: (R.N. Rosenberg)
| |
Collapse
|
47
|
Tahira T. [Progress in the studies of Alzheimer's disease]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2007; 96:521-8. [PMID: 17419420 DOI: 10.2169/naika.96.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
|
48
|
Abstract
Currently, there are no disease-modifying therapies available for Alzheimer's disease (AD). Acetylcholinesterase inhibitors and memantine are licensed for AD and have moderate symptomatic benefits. Epidemiological studies have suggested that NSAIDs, estrogen, HMG-CoA reductase inhibitors (statins) or tocopherol (vitamin E) can prevent AD. However, prospective, randomised studies have not convincingly been able to demonstrate clinical efficacy. Major progress in molecular medicine suggests further drug targets. The metabolism of the amyloid-precursor protein and the aggregation of its Abeta fragment are the focus of current studies. Abeta peptides are produced by the enzymes beta- and gamma-secretase. Inhibition of gamma-secretase has been shown to reduce Abeta production. However, gamma-secretase activity is also involved in other vital physiological pathways. Involvement of gamma-secretase in cell differentiation may preclude complete blockade of gamma-secretase for prolonged times in vivo. Inhibition of beta-secretase seems to be devoid of serious adverse effects according to studies with knockout animals. However, targeting beta-secretase is hampered by the lack of suitable inhibitors to date. Other approaches focus on enzymes that cut inside the Abeta sequence such as alpha-secretase and neprilysin. Stimulation of the expression or activity of alpha-secretase or neprilysin has been shown to enhance Abeta degradation. Furthermore, inhibitors of Abeta aggregation have been described and clinical trials have been initiated. Peroxisome proliferator activated receptor-gamma agonists and selected NSAIDs may be suitable to modulate both Abeta production and inflammatory activation. On the basis of autopsy reports, active immunisation against Abeta in humans seems to have proven its ability to clear amyloid deposits from the brain. However, a first clinical trial with active vaccination against the full length Abeta peptide has been halted because of adverse effects. Further trials with vaccination or passive transfer of antibodies are planned.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
49
|
Abstract
The pathological hallmarks of Alzheimer's disease (AD) include beta-amyloid (Abeta) plaques, dystrophic neurites and neurofibrillary pathology, which eventually result in the degeneration of neurons and subsequent dementia. In 1999, international interest in a new therapeutic approach to the treatment of AD was ignited following transgenic mouse studies that indicated that it might be possible to immunise against the pathological alterations in Abeta that lead to aggregation of this protein in the brain. A subsequent phase I human trial for safety, tolerability and immunogenicity using an active immunisation strategy against Abeta had a positive outcome. However, phase IIA human trials involving active immunisation were halted following the diagnosis of aseptic meningoencephalitis in 6% of immunised subjects. Research into immunisation strategies involving transgenic AD mouse models has subsequently been refocused to determine the mechanisms by which plaque clearance and reduced memory deficits are attained, and to establish safer therapeutic approaches that may reduce potentially harmful brain inflammation. The vigour of international research on immunotherapy for AD provides significant hope for a strong therapeutic lead for the escalating number of individuals who will develop this otherwise incurable condition.
Collapse
Affiliation(s)
- Adele Woodhouse
- School of Medicine, NeuroRepair Group, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | |
Collapse
|