1
|
Szkaradek K, Góra RW. Theoretical insight into photodeactivation mechanisms of adenine-uracil and adenine-thymine nucleobase pairs. Phys Chem Chem Phys 2024; 26:27807-27816. [PMID: 39470622 DOI: 10.1039/d4cp02817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this work, several plausible intra- and intermolecular photoinduced processes of the Watson-Crick base pairs of adenine with uracil (A-U) or thymine (A-T) according to the results of spin component scaling variant of algebraic diagrammatic construction up to the second order [SCS-ADC(2)] calculations are discussed. Although widely explored, these systems lack complete characterization of possible intramolecular relaxation channels perturbed by intermolecular interactions. In particular, we address the still open debate on photodeactivation via purine-ring puckering at the C2 or C6-atom position of adenine. We also show that the presence of low-lying, long-lived 1nπ* states can be a significant factor in hindering relaxation via an electron-driven proton transfer process, as the population of these states can lead to an efficient intersystem crossing to a triplet manifold, the estimated rate of which is 1.6 × 1010 s-1 which exceeds the corresponding internal conversion to the ground state by an order of magnitude. Additionally, the SCS variant of the ADC(2) method is shown to provide a more balanced description of valence and charge-transfer excited states.
Collapse
Affiliation(s)
- Kinga Szkaradek
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Robert W Góra
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
Datta M, Liu J. A DNA Aptamer for 2-Aminopurine: Binding-Induced Fluorescence Quenching. Chem Asian J 2024:e202400817. [PMID: 39251403 DOI: 10.1002/asia.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
2-Aminopurine (2AP) is a fluorescent analog of adenine, and its unique properties make it valuable in various biochemical and biotechnological applications. Its fluorescence property probes local dynamics in DNA and RNA because stacking with the surrounding bases quench its fluorescence. 2AP-labeled DNA or RNA sequences have been used for the detection of genetic mutations, viral RNA, or other nucleic acid-based markers associated with diseases like cancer and infectious diseases. In this study, we isolated aptamers for 2AP using the library immobilization capture-SELEX technique. A dominating aptamer family was isolated after 15 rounds of selection. The Kd values for the most abundant 2AP1 aptamer are 209 nM in a fluorescence assay and 72 nM in an isothermal titration calorimetry test. A 32 nM 2AP limit of detection was tested based on its intrinsic fluorescence change upon aptamer binding. Additionally, we conducted some mutation analysis. Furthermore, we tested the selectivity of this aptamer and discovered that it can bind adenine and adenosine with approximately 100-fold lower affinity than 2AP.
Collapse
Affiliation(s)
- Meheta Datta
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| |
Collapse
|
3
|
Riera Aroche R, Ortiz García YM, Martínez Arellano MA, Riera Leal A. DNA as a perfect quantum computer based on the quantum physics principles. Sci Rep 2024; 14:11636. [PMID: 38773193 PMCID: PMC11109248 DOI: 10.1038/s41598-024-62539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
DNA is a complex multi-resolution molecule whose theoretical study is a challenge. Its intrinsic multiscale nature requires chemistry and quantum physics to understand the structure and quantum informatics to explain its operation as a perfect quantum computer. Here, we present theoretical results of DNA that allow a better description of its structure and the operation process in the transmission, coding, and decoding of genetic information. Aromaticity is explained by the oscillatory resonant quantum state of correlated electron and hole pairs due to the quantized molecular vibrational energy acting as an attractive force. The correlated pairs form a supercurrent in the nitrogenous bases in a single band π -molecular orbital ( π -MO). The MO wave function ( Φ ) is assumed to be the linear combination of the n constituent atomic orbitals. The central Hydrogen bond between Adenine (A) and Thymine (T) or Guanine (G) and Cytosine (C) functions like an ideal Josephson Junction. The approach of a Josephson Effect between two superconductors is correctly described, as well as the condensation of the nitrogenous bases to obtain the two entangled quantum states that form the qubit. Combining the quantum state of the composite system with the classical information, RNA polymerase teleports one of the four Bell states. DNA is a perfect quantum computer.
Collapse
Affiliation(s)
- R Riera Aroche
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, Mexico
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico
| | - Y M Ortiz García
- Research Institute of Dentistry, University of Guadalajara, Guadalajara Jalisco, Mexico
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico
| | - M A Martínez Arellano
- General Hospital of the State of Sonora, Boulevar José María Escrivá de Balaguer 157, Colonia Villa del Palmar, C.P. 83105, Hermosillo, Sonora, Mexico
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico
| | - A Riera Leal
- General Hospital of the State of Sonora, Boulevar José María Escrivá de Balaguer 157, Colonia Villa del Palmar, C.P. 83105, Hermosillo, Sonora, Mexico.
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico.
| |
Collapse
|
4
|
Koga M, Kang DH, Heim ZN, Meyer P, Erickson BA, Haldar N, Baradaran N, Havenith M, Neumark DM. Extreme ultraviolet time-resolved photoelectron spectroscopy of adenine, adenosine and adenosine monophosphate in a liquid flat jet. Phys Chem Chem Phys 2024; 26:13106-13117. [PMID: 38629206 DOI: 10.1039/d4cp00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Time-resolved photoelectron spectroscopy using an extreme-ultraviolet (XUV) probe pulse was used to investigate the UV photoinduced dynamics of adenine (Ade), adenosine (Ado), and adenosine-5-monophosphate (AMP) in a liquid water jet. In contrast to previous studies using UV probe pulses, the XUV pulse at 21.7 eV can photoionize all excited states of a molecule, allowing for full relaxation pathways to be addressed after excitation at 4.66 eV. This work was carried out using a gas-dynamic flat liquid jet, resulting in considerably enhanced signal compared to a cylindrical jet. All three species decay on multiple time scales that are assigned based on their decay associated spectra; the fastest decay of ∼100 fs is assigned to ππ* decay to the ground state, while a smaller component with a lifetime of ∼500 fs is attributed to the nπ* state. An additional slower channel in Ade is assigned to the 7H Ade conformer, as seen previously. This work demonstrates the capability of XUV-TRPES to disentangle non-adiabatic dynamics in an aqueous solution in a state-specific manner and represents the first identification of the nπ* state in the relaxation dynamics of adenine and its derivatives.
Collapse
Affiliation(s)
- Masafumi Koga
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Do Hyung Kang
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Zachary N Heim
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Philipp Meyer
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801, Germany
| | - Blake A Erickson
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Neal Haldar
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Negar Baradaran
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801, Germany
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Poddar S, Levitus M. Buffer-Dependent Photophysics of 2-Aminopurine: Insights into Fluorescence Quenching and Excited-State Interactions. J Phys Chem B 2024; 128:2640-2651. [PMID: 38452253 DOI: 10.1021/acs.jpcb.3c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
2-Aminopurine (2AP) is the most widely used fluorescent nucleobase analogue in DNA and RNA research. Its unique photophysical properties and sensitivity to environmental changes make it a useful tool for understanding nucleic acid dynamics and DNA-protein interactions. We studied the effect of ions present in commonly used buffer solutions on the excited-state photophysical properties of 2AP. Fluorescence quenching was negligible for tris(hydroxymethyl)aminomethane (TRIS), but significant for phosphate, carbonate, 3-(N-morpholino) propanesulfonic acid (MOPS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffers. Results indicate that the two tautomers of 2AP (7H, 9H) are quenched by phosphate ions to different extents. Quenching by the H2PO4- ion is more pronounced for the 7H tautomer, while the opposite is true for the HPO42- ion. For phosphate ions, the results of the time-resolved fluorescence study cannot be explained using a simple collisional quenching mechanism. Instead, results are consistent with transient interactions between 2AP and the phosphate ions. We postulate that excited-state interactions between the 2AP tautomers and an H-bond acceptor (phosphate and carbonate) result in significant quenching of the singlet-excited state of 2AP. Such interactions manifest in biexponential fluorescence intensity decays with pre-exponential factors that vary with quencher concentration, and downward curvatures of the Stern-Volmer plots.
Collapse
Affiliation(s)
- Souvik Poddar
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Gate G, Williams A, Boldissar S, Šponer J, Szabla R, de Vries M. The tautomer-specific excited state dynamics of 2,6-diaminopurine using resonance-enhanced multiphoton ionization and quantum chemical calculations. Photochem Photobiol 2024; 100:404-418. [PMID: 38124372 DOI: 10.1111/php.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
2,6-Diaminopurine (2,6-dAP) is an alternative nucleobase that potentially played a role in prebiotic chemistry. We studied its excited state dynamics in the gas phase by REMPI, IR-UV hole burning, and ps pump-probe spectroscopy and performed quantum chemical calculations at the SCS-ADC(2) level of theory to interpret the experimental results. We found the 9H tautomer to have a small barrier to ultrafast relaxation via puckering of its 6-membered ring. The 7H tautomer has a larger barrier to reach a conical intersection and also has a sizable triplet yield. These results are discussed relative to other purines, for which 9H tautomerization appears to be more photostable than 7H and homosubstituted purines appear to be less photostable than heterosubstituted or singly substituted purines.
Collapse
Affiliation(s)
- Gregory Gate
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Ann Williams
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Samuel Boldissar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc-Holice, Czech Republic
| | - Rafal Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mattanjah de Vries
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| |
Collapse
|
7
|
Cuéllar-Zuquin J, Pepino AJ, Fdez. Galván I, Rivalta I, Aquilante F, Garavelli M, Lindh R, Segarra-Martí J. Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size. J Chem Theory Comput 2023; 19:8258-8272. [PMID: 37882796 PMCID: PMC10851440 DOI: 10.1021/acs.jctc.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) algorithms. We benchmark two different basis set contractions and several active spaces for each nucleobase and conical intersection type, measuring for the first time how active space size affects conical intersection topographies in these systems and the potential implications these may have toward their description of photoinduced phenomena. Our results show that conical intersection topographies are highly sensitive to the electron correlation included in the model: by changing the amount (and type) of correlated orbitals, conical intersection topographies vastly change, and the changes observed do not follow any converging pattern toward the topographies obtained with the largest and most correlated active spaces. Comparison across systems shows analogous topographies for almost all intersections mediating population transfer to the dark 1nO/Nπ* states, while no similarities are observed for the "ethylene-like" conical intersection ascribed to mediate the ultrafast decay component to the ground state in all DNA/RNA nucleobases. Basis set size seems to have a minor effect, appearing to be relevant only for purine-based derivatives. We rule out structural changes as a key factor in classifying the different conical intersections, which display almost identical geometries across active space and basis set change, and we highlight instead the importance of correctly describing the electronic states involved at these crossing points. Our work shows that careful active space selection is essential to accurately describe conical intersection topographies and therefore to adequately account for their active role in molecular photochemistry.
Collapse
Affiliation(s)
- Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Ana Julieta Pepino
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Francesco Aquilante
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
8
|
Russel NS, Kodali G, Stanley RJ, Narayanan M. Screening for Novel Fluorescent Nucleobase Analogues Using Computational and Experimental Methods: 2-Amino-6-chloro-8-vinylpurine (2A6Cl8VP) as a Case Study. J Phys Chem B 2023; 127:7858-7871. [PMID: 37698525 DOI: 10.1021/acs.jpcb.3c03618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Novel fluorescent nucleic acid base analogues (FBAs) with improved optical properties are needed in a variety of biological applications. 2-Amino-6-chloro-8-vinylpurine (2A6Cl8VP) is structural analogue of two existing highly fluorescent FBAs, 2-aminopurine (2AP) and 8-vinyladenine (8VA), and can therefore be expected to have similar base pairing as well as better optical properties compared to its counterparts. In order to determine the absorption and fluorescence properties of 2A6Cl8VP, as a first step, we used TD-DFT calculations and the polarizable continuum model for simulating the solvents and computationally predicted absorption and fluorescence maxima. To test the computational predictions, we also synthesized 2A6Cl8VP and measured its UV/vis absorbance, fluorescence emission, and fluorescence lifetime. The computationally predicted absorbance and fluorescence maxima of 2A6Cl8VP are in reasonable agreement to the experimental values and are significantly redshifted compared to 2AP and 8VA, allowing for its specific excitation. The fluorescence quantum yield of 2A6Cl8VP, however, is significantly lower than those of 2AP and 8VA. Overall, 2A6Cl8VP is a novel fluorescent nucleobase analogue, which can be useful in studying structural, biophysical, and biochemical applications.
Collapse
Affiliation(s)
- Nadim Shahriar Russel
- Department of Chemistry, Temple University, 1901 N. Broad Street, Philadelphia, Pennsylvania 19122, United States
| | - Goutham Kodali
- GlowDNA LLC., Malvern, Pennsylvania 19355, United States
| | - Robert J Stanley
- Department of Chemistry, Temple University, 1901 N. Broad Street, Philadelphia, Pennsylvania 19122, United States
| | - Madhavan Narayanan
- Department of Physical Sciences, Benedictine University, 5700 College Rd, Lisle, Illinois 60532, United States
| |
Collapse
|
9
|
Monari A, Burger A, Dumont E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 2023; 22:2081-2092. [PMID: 37166569 DOI: 10.1007/s43630-023-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.
Collapse
Affiliation(s)
- Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France.
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
- Institut Universitaire de France, 5 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
10
|
Brash DE, Goncalves LCP. Chemiexcitation: Mammalian Photochemistry in the Dark †. Photochem Photobiol 2023; 99:251-276. [PMID: 36681894 PMCID: PMC10065968 DOI: 10.1111/php.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023]
Abstract
Light is one way to excite an electron in biology. Another is chemiexcitation, birthing a reaction product in an electronically excited state rather than exciting from the ground state. Chemiexcited molecules, as in bioluminescence, can release more energy than ATP. Excited states also allow bond rearrangements forbidden in ground states. Molecules with low-lying unoccupied orbitals, abundant in biology, are particularly susceptible. In mammals, chemiexcitation was discovered to transfer energy from excited melanin, neurotransmitters, or hormones to DNA, creating the lethal and carcinogenic cyclobutane pyrimidine dimer. That process was initiated by nitric oxide and superoxide, radicals triggered by ultraviolet light or inflammation. Several poorly understood chronic diseases share two properties: inflammation generates those radicals across the tissue, and cells that die are those containing melanin or neuromelanin. Chemiexcitation may therefore be a pathogenic event in noise- and drug-induced deafness, Parkinson's disease, and Alzheimer's; it may prevent macular degeneration early in life but turn pathogenic later. Beneficial evolutionary selection for excitable biomolecules may thus have conferred an Achilles heel. This review of recent findings on chemiexcitation in mammalian cells also describes the underlying physics, biochemistry, and potential pathogenesis, with the goal of making this interdisciplinary phenomenon accessible to researchers within each field.
Collapse
Affiliation(s)
- Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| | - Leticia C. P. Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| |
Collapse
|
11
|
Ullah N, Chen S, Zhang R. Excited‐state nonadiabatic dynamics simulations on the heptazine and adenine in a water environment: A mini review. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Naeem Ullah
- Department of Physics City University of Hong Kong Kowloon Hong Kong SAR China
- Department of Physics Government Degree College Dara Adam Khel, Higher Education Department Khyber Pakhtunkhwah Pakistan
| | - Shunwei Chen
- Department of Physics City University of Hong Kong Kowloon Hong Kong SAR China
- School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Ruiqin Zhang
- Department of Physics City University of Hong Kong Kowloon Hong Kong SAR China
| |
Collapse
|
12
|
Valverde D, Mai S, Canuto S, Borin AC, González L. Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. JACS AU 2022; 2:1699-1711. [PMID: 35911449 PMCID: PMC9327080 DOI: 10.1021/jacsau.2c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rationalizing the photochemistry of nucleobases where an oxygen is replaced by a heavier atom is essential for applications that exploit near-unity triplet quantum yields. Herein, we report on the ultrafast excited-state deactivation mechanism of 6-selenoguanine (6SeGua) in water by combining nonadiabatic trajectory surface-hopping dynamics with an electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. We find that the predominant relaxation mechanism after irradiation starts on the bright singlet S2 state that converts internally to the dark S1 state, from which the population is transferred to the triplet T2 state via intersystem crossing and finally to the lowest T1 state. This S2 → S1 → T2 → T1 deactivation pathway is similar to that observed for the lighter 6-thioguanine (6tGua) analogue, but counterintuitively, the T1 lifetime of the heavier 6SeGua is shorter than that of 6tGua. This fact is explained by the smaller activation barrier to reach the T1/S0 crossing point and the larger spin-orbit couplings of 6SeGua compared to 6tGua. From the dynamical simulations, we also calculate transient absorption spectra (TAS), which provide two time constants (τ1 = 131 fs and τ2 = 191 fs) that are in excellent agreement with the experimentally reported value (τexp = 130 ± 50 fs) (Farrel et al. J. Am. Chem. Soc. 2018, 140, 11214). Intersystem crossing itself is calculated to occur with a time scale of 452 ± 38 fs, highlighting that the TAS is the result of a complex average of signals coming from different nonradiative processes and not intersystem crossing alone.
Collapse
Affiliation(s)
- Danillo Valverde
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Sylvio Canuto
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
13
|
Caldero-Rodríguez NE, Arpa EM, Cárdenas DJ, Martínez-Fernández L, Jockusch S, Seth SK, Corral I, Crespo-Hernández CE. 2-Oxopurine Riboside: A Dual Fluorescent Analog and Photosensitizer for RNA/DNA Research. J Phys Chem B 2022; 126:4483-4490. [PMID: 35679327 DOI: 10.1021/acs.jpcb.2c01113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is significant interest in developing suitable nucleoside analogs exhibiting high fluorescence and triplet yields to investigate the structure, dynamics, and binding properties of nucleic acids and promote selective photosensitized damage to DNA/RNA, respectively. In this study, steady-state, laser flash photolysis, time-resolved IR luminescence, and femtosecond broad-band transient absorption spectroscopies are combined with quantum chemical calculations to elucidate the excited-state dynamics of 2-oxopurine riboside in aqueous solution and to investigate its prospective use as a fluorescent or photosensitizer analog. The Franck-Condon population in the S1 (ππ*) state decays through a combination of solvent and conformational relaxation to its minimum in 1.9 ps. The population trapped in the 1ππ* minimum bifurcates to either fluoresce or intersystem cross to the triplet manifold within ca. 5 ns, while another fraction of the population decays nonradiatively to the ground state. It is demonstrated that 2-oxopurine riboside exhibits both high fluorescent (48%) and significant triplet (between 10% and 52%) yields, leading to a yield of singlet oxygen generation of 10%, making this nucleoside analog a dual fluorescent and photosensitizer analog for DNA and RNA research.
Collapse
Affiliation(s)
| | - Enrique M Arpa
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - Diego J Cárdenas
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lara Martínez-Fernández
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Inés Corral
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
14
|
T. do Casal M, Toldo JM, Pinheiro Jr M, Barbatti M. Fewest switches surface hopping with Baeck-An couplings. OPEN RESEARCH EUROPE 2022; 1:49. [PMID: 37645211 PMCID: PMC10446015 DOI: 10.12688/openreseurope.13624.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 08/31/2023]
Abstract
In the Baeck-An (BA) approximation, first-order nonadiabatic coupling vectors are given in terms of adiabatic energy gaps and the second derivative of the gaps with respect to the coupling coordinate. In this paper, a time-dependent (TD) BA approximation is derived, where the couplings are computed from the energy gaps and their second time-derivatives. TD-BA couplings can be directly used in fewest switches surface hopping, enabling nonadiabatic dynamics with any electronic structure methods able to provide excitation energies and energy gradients. Test results of surface hopping with TD-BA couplings for ethylene and fulvene show that the TD-BA approximation delivers a qualitatively correct picture of the dynamics and a semiquantitative agreement with reference data computed with exact couplings. Nevertheless, TD-BA does not perform well in situations conjugating strong couplings and small velocities. Considered the uncertainties in the method, TD-BA couplings could be a competitive approach for inexpensive, exploratory dynamics with a small trajectories ensemble. We also assessed the potential use of TD-BA couplings for surface hopping dynamics with time-dependent density functional theory (TDDFT), but the results are not encouraging due to singlet instabilities near the crossing seam with the ground state.
Collapse
|
15
|
T. do Casal M, Toldo JM, Pinheiro Jr M, Barbatti M. Fewest switches surface hopping with Baeck-An couplings. OPEN RESEARCH EUROPE 2022; 1:49. [PMID: 37645211 PMCID: PMC10446015 DOI: 10.12688/openreseurope.13624.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 03/12/2024]
Abstract
In the Baeck-An (BA) approximation, first-order nonadiabatic coupling vectors are given in terms of adiabatic energy gaps and the second derivative of the gaps with respect to the coupling coordinate. In this paper, a time-dependent (TD) BA approximation is derived, where the couplings are computed from the energy gaps and their second time-derivatives. TD-BA couplings can be directly used in fewest switches surface hopping, enabling nonadiabatic dynamics with any electronic structure methods able to provide excitation energies and energy gradients. Test results of surface hopping with TD-BA couplings for ethylene and fulvene show that the TD-BA approximation delivers a qualitatively correct picture of the dynamics and a semiquantitative agreement with reference data computed with exact couplings. Nevertheless, TD-BA does not perform well in situations conjugating strong couplings and small velocities. Considered the uncertainties in the method, TD-BA couplings could be a competitive approach for inexpensive, exploratory dynamics with a small trajectories ensemble. We also assessed the potential use of TD-BA couplings for surface hopping dynamics with time-dependent density functional theory (TDDFT), but the results are not encouraging due to singlet instabilities near the crossing seam with the ground state.
Collapse
|
16
|
Zucolotto Cocca LH, Pelosi A, Sciuti LF, M. G. Abegão L, Kamada K, Piguel S, Renato Mendonça C, De Boni L. Two-photon brightness of highly fluorescent imidazopyridine derivatives: Two-photon and ultrafast transient absorption studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Ray J, Ramesh SG. Excited-state proton transfer in the 2-aminopyridine dimer: A surface hopping study. Phys Chem Chem Phys 2022; 24:7274-7292. [DOI: 10.1039/d1cp05517h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a theoretical investigation of the excited-state intermolecular proton transfer process in the 2-aminopyridine dimer. Prior experimental and theoretical studies on this doubly hydrogen bonded system have attributed an...
Collapse
|
18
|
Shahrokh L, Omidyan R, Azimi G. Excited State Deactivation Mechanisms of Protonated Adenine: a Theoretical study. Phys Chem Chem Phys 2022; 24:14898-14908. [DOI: 10.1039/d2cp00106c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical computational method as well as the adiabatic dynamics simulation have been employed to investigate the non-radiative relaxation mechanism of protonated 9H- and 7H-adenine (AH+). We have located three...
Collapse
|
19
|
Ullah N, Chen S, Zhang R. Adenine ultrafast photorelaxation via electron-driven proton transfer. Phys Chem Chem Phys 2021; 23:23090-23095. [PMID: 34617085 DOI: 10.1039/d1cp03162g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photorelaxation of adenine in water was reported to be ultrafast (within 180 fs) primarily due to radiationless relaxation. However, in the last two decades, several experimental and theoretical investigations on photoexcitation of adenine have revealed diverse types of decay mechanisms. Using time-dependent density functional excited-state nonadiabatic dynamics simulations we show that it is the water to adenine electron-driven proton transfer (EDPT) barrierless reaction responsible for the ultrafast component of the adenine relaxation, which, however, occurred only in the case of the 7H isomer of adenine with five water molecules. This result reveals a known reaction pathway, however not found in previous simulations, with inference for the ultrafast relaxation mechanisms of adenine reported in experiments. The 9H isomer of adenine with six water molecules relaxing in a water cluster followed the previously known structural distortion (C2) decay pathway. The observations of the adenine EDPT reaction with water provide the origin of the experimental ultrafast adenine decay component and present a possible method to tackle future computational challenges in molecular-level biological processes.
Collapse
Affiliation(s)
- Naeem Ullah
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China.
| | - Shunwei Chen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China. .,Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
20
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
21
|
Li Y, Liu J. Aptamer-based strategies for recognizing adenine, adenosine, ATP and related compounds. Analyst 2021; 145:6753-6768. [PMID: 32909556 DOI: 10.1039/d0an00886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenine is a key nucleobase, adenosine is an endogenous regulator of the immune system, while adenosine triphosphate (ATP) is the energy source of many biological reactions. Selective detection of these molecules is useful for understanding biological processes, biochemical reactions and signaling. Since 1993, various aptamers have been reported to bind to adenine and its derivatives. In addition, the adenine riboswitch was later discovered. This review summarizes the efforts for the selection of RNA and DNA aptamers for adenine derivatives, and we pay particular attention to the specificity of binding. In addition, other molecular recognition strategies based on rational sequence design are also introduced. Most of the work in the field was performed on the classic DNA aptamer for adenosine and ATP reported by the Szostak group. Based on this aptamer, some representative applications such as the design of fluorescent, colorimetric and electrochemical biosensors, intracellular imaging, and ATP-responsive materials are also described. In addition, we critically review the limit of the reported aptamers and also important problems in the field, which can give future research opportunities.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
22
|
Castellani ME, Avagliano D, Verlet JRR. Ultrafast Dynamics of the Isolated Adenosine-5'-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J Phys Chem A 2021; 125:3646-3652. [PMID: 33882670 DOI: 10.1021/acs.jpca.1c01646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The excited state dynamics of the doubly deprotonated dianion of adenosine-5'-triphosphate, [ATP-H2]2-, has been spectroscopically explored by time-resolved photoelectron spectroscopy following excitation at 4.66 eV. Time-resolved photoelectron spectra show that two competing processes occur for the initially populated 1ππ* state. The first is rapid electron emission by tunneling through a repulsive Coulomb barrier as the 1ππ* state is a resonance. The second is nuclear motion on the 1ππ* state surface leading to an intermediate that no longer tunnels and subsequently decays by internal conversion to the ground electronic state. The spectral signatures of the features are similar to those observed for other adenine-derivatives, suggesting that this nucleobase is quite insensitive to the nearby negative charges localized on the phosphates, except of course for the appearance of the additional electron tunneling channel, which is open in the dianion.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, DH1 3LE Durham, U.K
| |
Collapse
|
23
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
24
|
Lamas I, Montero R, Martínez-Martínez V, Longarte A, Blancafort L. An nπ* gated decay mediates excited-state lifetimes of isolated azaindoles. Phys Chem Chem Phys 2020; 22:18639-18645. [PMID: 32789383 DOI: 10.1039/d0cp02635b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aiming to serve as a guide to understand the relaxation mechanisms of more complex aza-aromatic compounds, such as purine bases, we have studied the non-radiative channels of a set of azaindole structural isomers: 4-, 5-, 6- and 7-azaindole (AI). The relaxation of the isolated molecules, after excitation at the low energy portion of their spectra, has been tracked by femtosecond time-resolved ionization, and the decay paths have been obtained with MS-CASPT2//TD-DFT calculations. Although the ultrashort measured lifetimes for 5- and 6-AI are in contrast to the long-living excited state found in 7-AI, the calculations describe a common relaxation pathway. Along it, the initially excited ππ* states decay to the ground state through a conical intersection accessed through an nπ* state that functions as a gate state. The work reveals that the position of the nitrogen atoms in the purine ring determines the barrier to access the gate state and therefore, the rate of the non-radiative relaxation.
Collapse
Affiliation(s)
- Iker Lamas
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain.
| | | | | | | | | |
Collapse
|
25
|
Sanches de Araújo AV, Valverde D, Canuto S, Borin AC. Solvation Structures and Deactivation Pathways of Luminescent Isothiazole-Derived Nucleobases: tzA, tzG, and tzI. J Phys Chem A 2020; 124:6834-6844. [PMID: 32786984 DOI: 10.1021/acs.jpca.0c03398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The photophysical relaxation pathways of tzA, tzG, and tzI luminescent nucleobases were investigated with the MS-CASPT2 quantum-chemical method and double-ζ basis sets (cc-pVDZ) in gas and condensed phases (1,4-dioxane and water) with the sequential Monte Carlo/CASPT2 and free energy gradient (FEG) methods. Solvation shell structures, in the ground and excited states, were examined with the pairwise radial distribution function (G(r)) and solute-solvent hydrogen-bond networks. Site-specific hydrogen bonding analysis evidenced relevant changes between both electronic states. The three luminescent nucleobases share a common photophysical pattern, summarized as the lowest-lying 1(ππ*) bright state that is populated directly after the absorption of radiation and evolves barrierless to the minimum energy structure, from where the excess of energy is released by fluorescence. From the 1(ππ*)min region, the conical intersection with the ground state ((ππ*/GS)CI) is not accessible due to the presence of high energetic barriers. By combining the present results with those reported earlier by us for the pyrimidine fluorescent nucleobases, we present a comprehensive description of the photophysical properties of this important class of new fluorescent nucleosides.
Collapse
Affiliation(s)
| | - Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
26
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
27
|
Martinez-Fernandez L, Gustavsson T, Diederichsen U, Improta R. Excited State Dynamics of 8-Vinyldeoxyguanosine In Aqueous Solution Studied by Time-Resolved Fluorescence Spectroscopy and Quantum Mechanical Calculations. Molecules 2020; 25:E824. [PMID: 32070032 PMCID: PMC7071107 DOI: 10.3390/molecules25040824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The fluorescent base guanine analog, 8-vinyl-deoxyguanosine (8vdG), is studied in solution using a combination of optical spectroscopies, notably femtosecond fluorescence upconversion and quantum chemical calculations, based on time-dependent density functional theory (TD-DFT) and including solvent effect by using a mixed discrete-continuum model. In all investigated solvents, the fluorescence is very long lived (3-4 ns), emanating from a stable excited state minimum with pronounced intramolecular charge-transfer character. The main non-radiative decay channel features a sizeable energy barrier and it is affected by the polarity and the H-bonding properties of the solvent. Calculations provide a picture of dynamical solvation effects fully consistent with the experimental results and show that the photophysical properties of 8vdG are modulated by the orientation of the vinyl group with respect to the purine ring, which in turn depends on the solvent. These findings may have importance for the understanding of the fluorescence properties of 8vdG when incorporated in a DNA helix.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and IADCHEM (Institute for Advanced Research in Chemistry) Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain;
| | - Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Ulf Diederichsen
- Univ Goettingen, Inst Organ & Biomol Chem, Tammannstr 2, D-37077 Goettingen, Germany;
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| |
Collapse
|
28
|
Imperatore JA, McAninch DS, Valdez-Sinon AN, Bassell GJ, Mihailescu MR. FUS Recognizes G Quadruplex Structures Within Neuronal mRNAs. Front Mol Biosci 2020; 7:6. [PMID: 32118033 PMCID: PMC7018707 DOI: 10.3389/fmolb.2020.00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Fused in sarcoma (FUS), identified as the heterogeneous nuclear ribonuclear protein P2, is expressed in neuronal and non-neuronal tissue, and among other functions, has been implicated in messenger RNA (mRNA) transport and possibly local translation regulation. Although FUS is mainly localized to the nucleus, in the neurons FUS has also been shown to localize to the post-synaptic density, as well as to the pre-synapse. Additionally, the FUS deletion in cultured hippocampal cells results in abnormal spine and dendrite morphology. Thus, FUS may play a role in synaptic function regulation, mRNA localization, and local translation. Many dendritic mRNAs have been shown to form G quadruplex structures in their 3'-untranslated region (3'-UTR). Since FUS contains three arginine-glycine-glycine (RGG) boxes, an RNA binding domain shown to bind with high affinity and specificity to RNA G quadruplex structures, in this study we hypothesized that FUS recognizes these structural elements in its neuronal mRNA targets. Two neuronal mRNAs found in the pre- and post-synapse are the post-synaptic density protein 95 (PSD-95) and Shank1 mRNAs, which encode for proteins involved in synaptic plasticity, maintenance, and function. These mRNAs have been shown to form 3'-UTR G quadruplex structures and were also enriched in FUS hydrogels. In this study, we used native gel electrophoresis and steady-state fluorescence spectroscopy to demonstrate specific nanomolar binding of the FUS C-terminal RGG box and of full-length FUS to the RNA G quadruplex structures formed in the 3'-UTR of PSD-95 and Shank1a mRNAs. These results point toward a novel mechanism by which FUS targets neuronal mRNA and given that these PSD-95 and Shank1 3'-UTR G quadruplex structures are also targeted by the fragile X mental retardation protein (FMRP), they raise the possibility that FUS and FMRP might work together to regulate the translation of these neuronal mRNA targets.
Collapse
Affiliation(s)
- Joshua A. Imperatore
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| | - Damian S. McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| | | | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Cadena-Caicedo A, Gonzalez-Cano B, López-Arteaga R, Esturau-Escofet N, Peon J. Ultrafast Fluorescence Signals from β-Dihydronicotinamide Adenine Dinucleotide: Resonant Energy Transfer in the Folded and Unfolded Forms. J Phys Chem B 2020; 124:519-530. [PMID: 31876417 DOI: 10.1021/acs.jpcb.9b10012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
β-Dihydronicotinamide adenine dinucleotide (NADH) plays a critical role in biological redox processes. Inside the cell, NADH can be in a folded or an unfolded conformation, depending on the chemical environment that surrounds it. It is known that selective excitation of adenine in NADH can induce energy transfer events from this nucleotide to the reduced nicotinamide chromophore. From the anticipated time scales, this process must compete with adenine's internal conversion channel, which is known to occur in the sub-picosecond time scale. In this work, we studied the dynamics of the excited states of both chromophores in NADH through the time resolution of the spontaneous emission from both nucleotides. Through these experiments, we extend the knowledge about the competition between the different photophysical channels both in the folded and unfolded states. The study involved the folded and unfolded states of NADH by experiments in water and methanol solutions. Our femtosecond fluorescence results were complemented by the first nuclear magnetic resonance through space magnetization transfer measurements on NADH, which establish the solvent-dependent folded versus unfolded states. We determined the dynamics of the excited states by direct excitation of dihydronicotinamide at 380 nm and adenine at 266 nm. From this, we were able to measure for the folded state, a time constant of 90 fs for energy transfer. Additionally, we determined that even in what is referred to as an unfolded state in methanol, non-negligible excitation transfer events do take place. Spontaneous emission anisotropy measurements were used in order to confirm the presence of a minor energy transfer channel in the methanol solutions where the unfolded state dominates.
Collapse
Affiliation(s)
- Andrea Cadena-Caicedo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior , Ciudad Universitaria , Ciudad de México 04510 , Mexico
| | - Beatriz Gonzalez-Cano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior , Ciudad Universitaria , Ciudad de México 04510 , Mexico
| | - Rafael López-Arteaga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior , Ciudad Universitaria , Ciudad de México 04510 , Mexico
| | - Nuria Esturau-Escofet
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior , Ciudad Universitaria , Ciudad de México 04510 , Mexico
| | - Jorge Peon
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior , Ciudad Universitaria , Ciudad de México 04510 , Mexico
| |
Collapse
|
30
|
Jaiswal VK, Segarra-Martí J, Marazzi M, Zvereva E, Assfeld X, Monari A, Garavelli M, Rivalta I. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Phys Chem Chem Phys 2020; 22:15496-15508. [DOI: 10.1039/d0cp01823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TD-DFT characterization of the high-energy singlet excited state manifold of the canonical DNA/RNA nucleobasesin vacuumis assessed against RASPT2 reference computations for reliable simulations of linear and non-linear electronic spectra.
Collapse
Affiliation(s)
- Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Marco Marazzi
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Elena Zvereva
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Xavier Assfeld
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| |
Collapse
|
31
|
Snyder JA, Charnay AP, Kohl FR, Zhang Y, Kohler B. DNA-like Photophysics in Self-Assembled Silver(I)–Nucleobase Nanofibers. J Phys Chem B 2019; 123:5985-5994. [PMID: 31283245 DOI: 10.1021/acs.jpcb.9b00660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Joshua A. Snyder
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Aaron P. Charnay
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Forrest R. Kohl
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
32
|
Levine BG, Esch MP, Fales BS, Hardwick DT, Peng WT, Shu Y. Conical Intersections at the Nanoscale: Molecular Ideas for Materials. Annu Rev Phys Chem 2019; 70:21-43. [DOI: 10.1146/annurev-physchem-042018-052425] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to predict and describe nonradiative processes in molecules via the identification and characterization of conical intersections is one of the greatest recent successes of theoretical chemistry. Only recently, however, has this concept been extended to materials science, where nonradiative recombination limits the efficiencies of materials for various optoelectronic applications. In this review, we present recent advances in the theoretical study of conical intersections in semiconductor nanomaterials. After briefly introducing conical intersections, we argue that specific defects in materials can induce conical intersections between the ground and first excited electronic states, thus introducing pathways for nonradiative recombination. We present recent developments in theoretical methods, computational tools, and chemical intuition for the prediction of such defect-induced conical intersections. Through examples in various nanomaterials, we illustrate the significance of conical intersections for nanoscience. We also discuss challenges facing research in this area and opportunities for progress.
Collapse
Affiliation(s)
- Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael P. Esch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - B. Scott Fales
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dylan T. Hardwick
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Wei-Tao Peng
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yinan Shu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
33
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
34
|
Park JW, Al-Saadon R, Strand NE, Shiozaki T. Imaginary Shift in CASPT2 Nuclear Gradient and Derivative Coupling Theory. J Chem Theory Comput 2019; 15:4088-4098. [DOI: 10.1021/acs.jctc.9b00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju, Chungbuk 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| | - Nils E. Strand
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
FMRP - G-quadruplex mRNA - miR-125a interactions: Implications for miR-125a mediated translation regulation of PSD-95 mRNA. PLoS One 2019; 14:e0217275. [PMID: 31112584 PMCID: PMC6529005 DOI: 10.1371/journal.pone.0217275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome, the most common inherited form of intellectual disability, is caused by the CGG trinucleotide expansion in the 5'-untranslated region of the Fmr1 gene on the X chromosome, which silences the expression of the fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA, which encodes for the postsynaptic density protein 95, and together with microRNA-125a to mediate the reversible inhibition of the PSD-95 mRNA translation in neurons. The miR-125a binding site within the PSD-95 mRNA 3'-untranslated region (UTR) is embedded in a G-rich region bound by FMRP, which we have previously demonstrated folds into two parallel G-quadruplex structures. The FMRP regulation of PSD-95 mRNA translation is complex, being mediated by its phosphorylation. While the requirement for FMRP in the regulation of PSD-95 mRNA translation is clearly established, the exact mechanism by which this is achieved is not known. In this study, we have shown that both unphosphorylated FMRP and its phosphomimic FMRP S500D bind to the PSD-95 mRNA G-quadruplexes with high affinity, whereas only FMRP S500D binds to miR-125a. These results point towards a mechanism by which, depending on its phosphorylation status, FMRP acts as a switch that potentially controls the stability of the complex formed by the miR-125a-guided RNA induced silencing complex (RISC) and PSD-95 mRNA.
Collapse
|
36
|
Martinez-Fernandez L, Gavvala K, Sharma R, Didier P, Richert L, Segarra Martì J, Mori M, Mely Y, Improta R. Excited-State Dynamics of Thienoguanosine, an Isomorphic Highly Fluorescent Analogue of Guanosine. Chemistry 2019; 25:7375-7386. [PMID: 30882930 DOI: 10.1002/chem.201900677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Indexed: 12/27/2022]
Abstract
Thienoguanosine (th G) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, th G exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto-amino tautomers. We herein investigate the photophysics of th G in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5-20.5 and 7-13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of th G, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias, Modúlo13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Javier Segarra Martì
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100, Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134, Napoli, Italy
| |
Collapse
|
37
|
Sanches de Araújo AV, Borin AC. Photochemical Relaxation Pathways of 9 H-8-Azaguanine and 8 H-8-Azaguanine. J Phys Chem A 2019; 123:3109-3120. [PMID: 30901221 DOI: 10.1021/acs.jpca.9b01397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The photochemical reaction path approach, the MS-CASPT2 quantum-chemical method, and double-ζ basis sets (cc-pVDZ) were used to study 9 H-8-azaguanine and 8 H-8-azaguanine relaxation pathways. Several potential energy hypersurfaces were characterized by means of equilibrium geometries, surface crossings (conical intersections and singlet-triplet intersystem crossings), minimum energy paths, and linear interpolation in internal coordinates. The 9 H-8-azaguanine main photochemical event begins with the direct population of the 1(ππ* La) state, which evolves toward a conical intersection with the ground state after surmounting a small energy barrier, explaining why it is nonfluorescent. For 8 H-8-azaguanine, two relaxation mechanisms are possible, depending on the excitation energy. If the S1 1(ππ*) state is initially populated (lower-energy region), the system evolves barrierless to the S1 1(ππ*)min region, from where the excess energy is released. If the 1(ππ* La) state is populated (higher-energy radiation), the system will encounter conical intersections with the S2 1(nOπ*) and S1 1(ππ*) states before evolving to the 1(ππ* La)min region, from where a conical intersection with the ground state is accessible, favoring radiationless deactivation to the ground state. However, because a fraction of the population can be transferred from 1(ππ* La) to the S1 1(ππ*) state, emission from the S1 1(ππ*)min region is also expected, although weaker than it would be if the S1 1(ππ*) state were populated directly. Irrespective of the excitation energy, the emissive state is the same and a single fluorescence band is observed, with the strongest emission occurring upon excitation in the lower-energy region, as observed experimentally. Therefore, our computational study corroborates experimental results, attributing the emission of the neutral form of 8-azaguanine in solution to the presence of the minor 8 H-8-azaguanine tautomer, while the 9 H-8-azaguanine major tautomer is nonfluorescent.
Collapse
Affiliation(s)
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry , Institute of Chemistry, University of São Paulo , Av. Prof. Lineu Prestes 748 , 05508-000 São Paulo , SP , Brazil
| |
Collapse
|
38
|
Zhou Z, Wang X, Chen J, Xu J. Direct observation of an intramolecular charge transfer state in epigenetic nucleobase N6-methyladenine. Phys Chem Chem Phys 2019; 21:6878-6885. [PMID: 30887998 DOI: 10.1039/c9cp00325h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
N6-Methyladenine (6MeAde), the most abundant internal modification in mRNA, has proved to be an important epigenetic biomarker for gene regulation just like 5-methylcytosine in DNA. Recently, a unique UV-induced response of 6MeAde was reported, which makes it instructive and intriguing to reveal the excited state relaxation mechanism in this methylated adenine and its derivatives. In this work, we investigated 6MeAde and its ribose species N6-methyladenosine (6MeAdo) by using femtosecond time-resolved fluorescence up-conversion (FUC) and broadband transient absorption (TA) spectroscopy. Both 6MeAde and 6MeAdo exhibit a hundreds of femtoseconds lifetime, which originates from the efficient depletion of the ππ* (La) state. A several picoseconds lifetime is also observed and it should be attributed to the ππ* (Lb) state. Surprisingly, dual peak fluorescence emission is observed in 6MeAde and the long wavelength emission is ascribed to an intramolecular charge transfer (ICT) state. The lifetime of this ICT state is determined to be 107 ps. The kinetic isotope effect shows that the ICT state is closely associated with the solute-solvent H-bonding in aqueous solution. In 6MeAdo, the ICT state is apparently quenched and adenine-like excited state dynamics suggests that DNA/RNA containing such modification could still possess excellent photostability under UV irradiation. Our results contain an important insight for understanding excited state properties in epigenetic modified DNA/RNA.
Collapse
Affiliation(s)
- Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | | | | | | |
Collapse
|
39
|
Zhou Z, Hu Z, Zhang X, Jia M, Wang X, Su H, Sun H, Chen J, Xu J. pH Controlled Intersystem Crossing and Singlet Oxygen Generation of 8-Azaadenine in Aqueous Solution. Chemphyschem 2019; 20:757-765. [PMID: 30702794 DOI: 10.1002/cphc.201800969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Indexed: 01/01/2023]
Abstract
Azabases are intriguing DNA and RNA analogues and have been used as effective antiviral and anticancer medicines. However, photosensitivity of these drugs has also been reported. Here, pH-controlled intersystem crossing (ISC) process of 9H 8-azaadenine (8-AA) in aqueous solution is reported. Broadband transient absorption measurements reveal that the hydrogen atom at N9 position can greatly affect ISC of 8-AA and ISC is more favorable when 8-AA is in its neutral form in aqueous solution. The initial excited ππ* (S2 ) state evolves through ultrafast internal conversion (IC) (4.2 ps) to the lower-lying nπ* state (S1 ), which further stands as a door way state for ISC with a time constant of 160 ps. The triplet state has a lifetime of 6.1 μs. On the other hand, deprotonation at N9 position promotes the IC from the ππ* (S2 ) state to the ground state (S0 ) and the lifetime of the S2 state is determined to be 10 ps. The experimental results are further supported by time-dependent density functional theory (TDDFT) calculations. Singlet oxygen generation yield is measured to be 13.8 % for the neutral 8-AA while the deprotonated one exhibit much lower yield (<2 %), implying that this compound could be a potential pH-sensitized photodynamic therapy agent.
Collapse
Affiliation(s)
- Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xianwang Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Menghui Jia
- Shanghai Institute of Optics and Fine Mechanics, Shanghai, 201800, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
40
|
Wu X, Ehrmaier J, Sobolewski AL, Karsili TNV, Domcke W. Mechanisms of photoreactivity in hydrogen-bonded adenine-H 2O complexes. Phys Chem Chem Phys 2019; 21:14238-14249. [PMID: 30543228 DOI: 10.1039/c8cp05305g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms of photoinduced reactions of adenine with water molecules in hydrogen-bonded adenine-water complexes were investigated with ab initio wave-function-based electronic-structure calculations. Two excited-state electron/proton transfer reaction mechanisms have been characterized: H-atom abstraction from water by photoexcited adenine as well as H-atom transfer from photoexcited adenine or the (adenine+H) radical to water. In the water-to-adenine H-atom transfer reaction, an electron from one of the p orbitals of the water molecule fills the hole in the n (π) orbital of the nπ* (ππ*) excited state of adenine, resulting in a charge-separated electronic state. The electronic charge separation is neutralized by the transfer of a proton from the water molecule to adenine, resulting in the (adenine+H)OH biradical in the electronic ground state. In the adenine-to-water H-atom transfer reaction, πσ* states localized at the acidic sites of adenine provide the mechanism for the photoejection of an electron from adenine, which is followed by proton transfer to the hydrogen-bonded water molecule, resulting in the (adenine-H)H3O biradical. The energy profiles of the photoreactions have been computed as relaxed scans with the ADC(2) electronic-structure method. These reactions, which involve the reactivity of adenine with hydrogen-bonded water molecules, compete with the well-established intrinsic excited-state deactivation mechanisms of adenine via ring-puckering or ring-opening conical intersections. By providing additional decay channels, the electron/proton exchange reactions with water can account for the observed significantly shortened excited-state lifetime of adenine in aqueous environments. These findings indicate that adenine possibly was not only a photostabilizer at the beginning of life, but also a primordial photocatalyst for water splitting.
Collapse
Affiliation(s)
- Xiuxiu Wu
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany.
| | | | | | | | | |
Collapse
|
41
|
Martínez-Fernández L, Arslancan S, Ivashchenko D, Crespo-Hernández CE, Corral I. Tracking the origin of photostability in purine nucleobases: the photophysics of 2-oxopurine. Phys Chem Chem Phys 2019; 21:13467-13473. [DOI: 10.1039/c9cp00879a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molding purine PES through functionalization: whilst purine C2-substitution maintains the features of the spectroscopic PES of the heterocycle, C6-functionalization reshapes its topography leading to photostable systems.
Collapse
Affiliation(s)
| | - Serra Arslancan
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Dmytro Ivashchenko
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Departamento de Química e Bioquímica
| | | | - Inés Corral
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- IADCHEM
| |
Collapse
|
42
|
Plasser F, Gómez S, Menger MFSJ, Mai S, González L. Highly efficient surface hopping dynamics using a linear vibronic coupling model. Phys Chem Chem Phys 2018; 21:57-69. [PMID: 30306987 DOI: 10.1039/c8cp05662e] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report an implementation of the linear vibronic coupling (LVC) model within the surface hopping dynamics approach and present utilities for parameterizing this model in a blackbox fashion. This results in an extremely efficient method to obtain qualitative and even semi-quantitative information about the photodynamical behavior of a molecule, and provides a new route toward benchmarking the results of surface hopping computations. The merits and applicability of the method are demonstrated in a number of applications. First, the method is applied to the SO2 molecule showing that it is possible to compute its absorption spectrum beyond the Condon approximation, and that all the main features and timescales of previous on-the-fly dynamics simulations of intersystem crossing are reproduced while reducing the computational effort by three orders of magnitude. The dynamics results are benchmarked against exact wavepacket propagations on the same LVC potentials and against a variation of the electronic structure level. Four additional test cases are presented to exemplify the broader applicability of the model. The photodynamics of the isomeric adenine and 2-aminopurine molecules are studied and it is shown that the LVC model correctly predicts ultrafast decay in the former and an extended excited-state lifetime in the latter. Futhermore, the method correctly predicts ultrafast intersystem crossing in the modified nucleobase 2-thiocytosine and its absence in 5-azacytosine while it fails to describe the ultrafast internal conversion to the ground state in the latter.
Collapse
Affiliation(s)
- Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | | | | | |
Collapse
|
43
|
Khani SK, Faber R, Santoro F, Hättig C, Coriani S. UV Absorption and Magnetic Circular Dichroism Spectra of Purine, Adenine, and Guanine: A Coupled Cluster Study in Vacuo and in Aqueous Solution. J Chem Theory Comput 2018; 15:1242-1254. [DOI: 10.1021/acs.jctc.8b00930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Karbalaei Khani
- Arbeitsgruppe Quantenchemie, Ruhr-Universität, Bochum D-44780, Germany
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Rasmus Faber
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organo-Metallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Christof Hättig
- Arbeitsgruppe Quantenchemie, Ruhr-Universität, Bochum D-44780, Germany
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
44
|
Stange UC, Temps F. Ultrafast electronic deactivation of UV-excited adenine and its ribo- and deoxyribonucleosides and -nucleotides: A comparative study. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Williams HL, Erickson BA, Neumark DM. Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets. J Chem Phys 2018; 148:194303. [PMID: 30307253 DOI: 10.1063/1.5027258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69-4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69-4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ∼210 to 250 fs in adenosine and ∼220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ∼320 fs and was measureable only in adenosine monophosphate.
Collapse
Affiliation(s)
- Holly L Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Blake A Erickson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
46
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
47
|
Böhnke H, Röttger K, Ingle RA, Marroux HJB, Bohnsack M, Orr-Ewing AJ, Temps F. Efficient intersystem crossing in 2-aminopurine riboside probed by femtosecond time-resolved transient vibrational absorption spectroscopy. Phys Chem Chem Phys 2018; 20:20033-20042. [DOI: 10.1039/c8cp02664e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The photophysical dynamics of 2-aminopurine, a fluorescent analogue of the canonical nucleobase adenine, has been studied by femtosecond transient vibrational absorption spectroscopy.
Collapse
Affiliation(s)
- Hendrik Böhnke
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
| | - Katharina Röttger
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
- School of Chemistry
| | | | | | - Mats Bohnsack
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
| | | | - Friedrich Temps
- Institute of Physical Chemistry
- Christian-Albrechts-University Kiel
- 24098 Kiel
- Germany
| |
Collapse
|
48
|
Valverde D, Vasconcelos Sanches de Araujo A, Carlos Borin A, Canuto S. Electronic structure and absorption spectra of fluorescent nucleoside analogues. Phys Chem Chem Phys 2017; 19:29354-29363. [PMID: 29075734 DOI: 10.1039/c7cp04885h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work presents a systematic investigation of the electronic and conformational properties of five new fluorescent nucleobases belonging to the alphabet based on the isothiazole[4,3-d]pyrimidine molecule, very recently synthesized. This is of particular importance in the characterization of the main electronic aspects of these fluorescent nucleosides. The solvent effects of 1,4-dioxane and water were included combining the Sequential Monte Carlo/CASPT2 and the Free Energy Gradient (FEG) methods. For comparison, the Polarizable Continuum method was also used. The geometries of all compounds were optimized in solvent with the largest effects observed in water using the average solvent electrostatic configuration (ASEC) and the FEG approaches. Statistical analysis of the solute-solvent hydrogen bonds is performed and their effect on the absorption spectra analyzed. The dipole moments were calculated and the value obtained from the ASEC-FEG method in water follows the same trend as the natural canonical bases (adenine → uracil → guanine → cytosine). The theoretical results for the absorption spectra obtained from CASPT2(18,13) calculations using the geometries obtained with the ASEC-FEG procedure are in very good agreement with the experimental data. A detailed elucidation of the main aspects of the absorption spectra of the five new fluorescent nucleoside analogues is successfully attempted.
Collapse
Affiliation(s)
- Danillo Valverde
- Universidade de São Paulo, Instituto de Física, Rua do Matão 1371, São Paulo, SP CEP 05508-090, Brazil.
| | | | | | | |
Collapse
|
49
|
Lin GSM, Xie C, Xie D. Three-Dimensional Diabatic Potential Energy Surfaces for the Photodissociation of Thiophenol. J Phys Chem A 2017; 121:8432-8439. [DOI: 10.1021/acs.jpca.7b09070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guang-Shuang-Mu Lin
- Institute
of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Changjian Xie
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute
of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
50
|
Gutiérrez-Arzaluz L, Ramírez-Palma D, Buitrón-Cabrera F, Rocha-Rinza T, Cortés-Guzmán F, Peon J. Evolution of electron density towards the conical intersection of a nucleic acid purine. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|