1
|
Jiang M, Cao F, Zhang Q, Qi Z, Gao Y, Zhang Y, Song B, Wu C, Li M, Xu Y, Zhang X, Wang Y, Wei M, Ji X. Model-predicted brain temperature computational imaging by multimodal noninvasive functional neuromonitoring of cerebral oxygen metabolism and hemodynamics: MRI-derived and clinical validation. J Cereb Blood Flow Metab 2024:271678X241270485. [PMID: 39129194 DOI: 10.1177/0271678x241270485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Brain temperature, a crucial yet under-researched neurophysiological parameter, is governed by the equilibrium between cerebral oxygen metabolism and hemodynamics. Therapeutic hypothermia has been demonstrated as an effective intervention for acute brain injuries, enhancing survival rates and prognosis. The success of this treatment hinges on the precise regulation of brain temperature. However, the absence of comprehensive brain temperature monitoring methods during therapy, combined with a limited understanding of human brain heat transmission mechanisms, significantly hampers the advancement of hypothermia-based neuroprotective therapies. Leveraging the principles of bioheat transfer and MRI technology, this study conducted quantitative analyses of brain heat transfer during mild hypothermia therapy. Utilizing MRI, we reconstructed brain structures, estimated cerebral blood flow and oxygen consumption parameters, and developed a brain temperature calculation model founded on bioheat transfer theory. Employing computational cerebral hemodynamic simulation analysis, we established an intracranial arterial fluid dynamics model to predict brain temperature variations across different therapeutic hypothermia modalities. We introduce a noninvasive, spatially resolved, and optimized mathematical bio-heat model that synergizes model-predicted and MRI-derived data for brain temperature prediction and imaging. Our findings reveal that the brain temperature images generated by our model reflect distinct spatial variations across individual participants, aligning with experimentally observed temperatures.
Collapse
Affiliation(s)
- Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Fuzhi Cao
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Qihan Zhang
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhengfei Qi
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yuan Gao
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yang Zhang
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Baoyin Song
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ming Li
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yongbo Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300203, China
| | - Xin Zhang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Wang
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ming Wei
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300203, China
- Tianjin University, Tianjin Huanhu Hospital, Tianjin 300203, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Department of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
2
|
Bagheri M, Habibzadeh S, Moeini M. Transient Changes in Cerebral Tissue Oxygen, Glucose, and Temperature by Microstrokes: A Computational Study. Microcirculation 2024; 31:e12872. [PMID: 38944839 DOI: 10.1111/micc.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE This study focuses on evaluating the disruptions in key physiological parameters during microstroke events to assess their severity. METHODS A mathematical model was developed to simulate the changes in cerebral tissue pO2, glucose concentration, and temperature due to blood flow interruptions. The model considers variations in baseline cerebral blood flow (CBF), capillary density, and blood oxygen/glucose levels, as well as ambient temperature changes. RESULTS Simulations indicate that complete blood flow obstruction still allows for limited glucose availability, supporting nonoxidative metabolism and potentially exacerbating lactate buildup and acidosis. Partial obstructions decrease tissue pO2, with minimal impact on glucose level, which can remain almost unchanged or even slightly increase. Reduced CBF, capillary density, or blood oxygen due to aging or disease enhances hypoxia risk at lower obstruction levels, with capillary density having a significant effect on stroke severity by influencing both pO2 and glucose levels. Conditions could lead to co-occurrence of hypoxia/hypoglycemia or hypoxia/hyperglycemia, each worsening outcomes. Temperature effects were minimal in deep brain regions but varied near the skull by 0.2-0.8°C depending on ambient temperature. CONCLUSIONS The model provides insights into the conditions driving severe stroke outcomes based on estimated levels of hypoxia, hypoglycemia, hyperglycemia, and temperature changes.
Collapse
Affiliation(s)
- Marzieh Bagheri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
3
|
Yoo SS, Kim E, Kowsari K, Van Reet J, Kim HC, Yoon K. Non-invasive enhancement of intracortical solute clearance using transcranial focused ultrasound. Sci Rep 2023; 13:12339. [PMID: 37524783 PMCID: PMC10390479 DOI: 10.1038/s41598-023-39640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Transport of interstitial fluid and solutes plays a critical role in clearing metabolic waste from the brain. Transcranial application of focused ultrasound (FUS) has been shown to promote localized cerebrospinal fluid solute uptake into the brain parenchyma; however, its effects on the transport and clearance of interstitial solutes remain unknown. We demonstrate that pulsed application of low-intensity FUS to the rat brain enhances the transport of intracortically injected fluorescent tracers (ovalbumin and high molecular-weight dextran), yielding greater parenchymal tracer volume distribution compared to the unsonicated control group (ovalbumin by 40.1% and dextran by 34.6%). Furthermore, FUS promoted the drainage of injected interstitial ovalbumin to both superficial and deep cervical lymph nodes (cLNs) ipsilateral to sonication, with 78.3% higher drainage observed in the superficial cLNs compared to the non-sonicated hemisphere. The application of FUS increased the level of solute transport visible from the dorsal brain surface, with ~ 43% greater area and ~ 19% higher fluorescence intensity than the unsonicated group, especially in the pial surface ipsilateral to sonication. The sonication did not elicit tissue-level neuronal excitation, measured by an electroencephalogram, nor did it alter the molecular weight of the tracers. These findings suggest that nonthermal transcranial FUS can enhance advective transport of interstitial solutes and their subsequent removal in a completely non-invasive fashion, offering its potential non-pharmacological utility in facilitating clearance of waste from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA.
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Kyungho Yoon
- School of Computational Science and Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Iorga M, Schneider N, Cho J, Tate MC, Parrish TB. A Novel Intraoperative Mapping Device Detects the Thermodynamic Response Function. Brain Sci 2023; 13:1091. [PMID: 37509021 PMCID: PMC10377735 DOI: 10.3390/brainsci13071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Functional activation leads to an increase in local brain temperature via an increase in local perfusion. In the intraoperative setting, these cortical surface temperature fluctuations may be imaged using infrared thermography such that the activated brain areas are inferred. While it is known that temperature increases as a result of activation, a quantitative spatiotemporal description has yet to be achieved. A novel intraoperative infrared thermography device with data collection software was developed to isolate the thermal impulse response function. Device performance was validated using data from six patients undergoing awake craniotomy who participated in motor and sensory mapping tasks during infrared imaging following standard mapping with direct electrical stimulation. Shared spatiotemporal patterns of cortical temperature changes across patients were identified using group principal component analysis. Analysis of component time series revealed a thermal activation peak present across all patients with an onset delay of five seconds and a peak duration of ten seconds. Spatial loadings were converted to a functional map which showed strong correspondence to positive stimulation results for similar tasks. This component demonstrates the presence of a previously unknown impulse response function for functional mapping with infrared thermography.
Collapse
Affiliation(s)
- Michael Iorga
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nils Schneider
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaden Cho
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew C. Tate
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Todd B. Parrish
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Le TA, Hadadian Y, Yoon J. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 235:107546. [PMID: 37068450 DOI: 10.1016/j.cmpb.2023.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain tumor is a global health concern at the moment. Thus far, the only treatments available are radiotherapy and chemotherapy, which have several drawbacks such as low survival rates and low treatment efficacy due to obstruction of the blood-brain barrier. Magnetic hyperthermia (MH) using magnetic nanoparticles (MNPs) is a promising non-invasive approach that has the potential for tumor treatment in deep tissues. Due to the limitations of the current drug-targeting systems, only a small proportion of the injected MNPs can be delivered to the desired area and the rest are distributed throughout the body. Thus, the application of conventional MH can lead to damage to healthy tissues. METHODS Magnetic particle imaging (MPI)-guided treatment platform for MH is an emerging approach that can be used for spatial localization of MH to arbitrarily selected regions by using the MPI magnetic field gradient. Although the feasibility of this method has been demonstrated experimentally, a multidimensional prediction model, which is of crucial importance for treatment planning, has not yet been developed. Hence, in this study, the time dependent magnetization equation derived by Martsenyuk, Raikher, and Shliomis (which is a macroscopic equation of motion derived from the Fokker-Planck equation for particles with Brownian relaxation mechanism) and the bio-heat equations have been used to develop and investigate a three-dimensional model that predicts specific loss power (SLP), its spatio-thermal resolution (temperature distribution), and the fraction of damage in brain tumors. RESULTS Based on the simulation results, the spatio-thermal resolution in focused heating depends, in a complex manner, on several parameters ranging from MNPs properties to magnetic fields characteristics, and coils configuration. However, to achieve a high performance in focused heating, the direction and the relative amplitude of the AC magnetic heating field with respect to the magnetic field gradient are among the most important parameters that need to be optimized. The temperature distribution and fraction of the damage in a simple brain model bearing a tumor were also obtained. CONCLUSIONS The complexity in the relationship between the MNPs properties and fields parameter imposes a trade-off between the heating efficiency of MNPs and the accuracy (resolution) of the focused heating. Therefore, the system configuration and field parameters should be chosen carefully for each specific treatment scenario. In future, the results of the model are expected to lead to the development of an MPI-guided MH treatment platform for brain tumor therapy. However, for more accurate quantitative results in such a platform, a magnetization dynamics model that takes into account coupled Néel-Brownian relaxation mechanism in the MNPs should be developed.
Collapse
Affiliation(s)
- Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|
6
|
Yoo SS, Kim HC, Kim J, Kim E, Kowsari K, Van Reet J, Yoon K. Enhancement of cerebrospinal fluid tracer movement by the application of pulsed transcranial focused ultrasound. Sci Rep 2022; 12:12940. [PMID: 35902724 PMCID: PMC9334279 DOI: 10.1038/s41598-022-17314-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Efficient transport of solutes in the cerebrospinal fluid (CSF) plays a critical role in their clearance from the brain. Convective bulk flow of solutes in the CSF in the perivascular space (PVS) is considered one of the important mechanisms behind solute movement in the brain, before their ultimate drainage to the systemic lymphatic system. Acoustic pressure waves can impose radiation force on a medium in its path, inducing localized and directional fluidic flow, known as acoustic streaming. We transcranially applied low-intensity focused ultrasound (FUS) to rats that received an intracisternal injection of fluorescent CSF tracers (dextran and ovalbumin, having two different molecular weights-Mw). The sonication pulsing parameter was determined on the set that propelled the aqueous solution of toluidine blue O dye into a porous media (melamine foam) at the highest level of infiltration. Fluorescence imaging of the brain showed that application of FUS increased the uptake of ovalbumin at the sonicated plane, particularly around the ventricles, whereas the uptake of high-Mw dextran was unaffected. Numerical simulation showed that the effects of sonication were non-thermal. Sonication did not alter the animals' behavior or disrupt the blood-brain barrier (BBB) while yielding normal brain histology. The results suggest that FUS may serve as a new non-invasive means to promote interstitial CSF solute transport in a region-specific manner without disrupting the BBB, providing potential for enhanced clearance of waste products from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Jaeho Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Wakuya M, Inoue T, Imoto H, Maruta Y, Nomura S, Suzuki M, Yamakawa T. Epileptic seizure–related changes in electrocorticogram, cortical temperature, and cerebral hemodynamics obtained via an implantable multimodal multichannel probe during preoperative monitoring: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21694. [PMID: 36130540 PMCID: PMC9379634 DOI: 10.3171/case21694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Electrocorticography (EcoG) plays an essential role in the preoperative evaluation of epilepsy, despite its high invasiveness. Brain temperature and cerebral hemodynamics also reflect brain activity. This study examined whether a multimodal multichannel probe that simultaneously records EcoG, cortical temperature, and cerebral hemodynamics can contribute to improving the assessment of epileptic seizures. After preoperative monitoring was performed in a patient with epilepsy, three generalized seizures and two focal seizures were observed. OBSERVATIONS A short-term power increase in the alternating current spectrogram, high-amplitude slow waves in direct current potential, an increase in cortical temperature, an increase in oxyhemoglobin (HbO2) concentration and total hemoglobin (HbT) concentration, and a decrease in deoxyhemoglobin (HHb) concentration, followed by a decrease in HbO2 and HbT concentrations and an increase in HHb concentration, were observed in generalized seizures. However, no changes in these pathophysiological signals were observed in focal seizures. LESSONS Seizure-related changes regarding generalized seizures were consistent with the results of previous studies. The results of generalized and focal seizures indicate that epileptic brain activity propagated from the epileptic focus in the right frontal lobe to the measurement area near the motor cortex in generalized seizures but not in focal seizures.
Collapse
Affiliation(s)
- Manami Wakuya
- Department of Computer Science and Electrical Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, Japan; and
| | - Takao Inoue
- Departments of Advanced ThermoNeuroBiology and
| | - Hirochika Imoto
- Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Yuich Maruta
- Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Sadahiro Nomura
- Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, Japan; and
| |
Collapse
|
8
|
Paul PS, Cho JY, Wu Q, Karthivashan G, Grabovac E, Wille H, Kulka M, Kar S. Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer's disease pathology. J Nanobiotechnology 2022; 20:67. [PMID: 35120558 PMCID: PMC8817552 DOI: 10.1186/s12951-022-01269-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/16/2022] [Indexed: 12/26/2022] Open
Abstract
Conversion of β-amyloid (Aβ) peptides from soluble random-coil to aggregated protein enriched with β-sheet-rich intermediates has been suggested to play a role in the degeneration of neurons and development of Alzheimer's disease (AD) pathology. Aggregation of Aβ peptide can be prompted by a variety of environmental factors including temperature which can influence disease pathogenesis. Recently, we reported that FDA-approved unconjugated poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles can have beneficial effects in cellular and animal models of AD by targeting different facets of the Aβ axis. In this study, using biochemical, structural and spectroscopic analyses, we evaluated the effects of native PLGA on temperature-dependent Aβ aggregation and its ability to protect cultured neurons from degeneration. Our results show that the rate of spontaneous Aβ1-42 aggregation increases with a rise in temperature from 27 to 40 °C and PLGA with 50:50 resomer potently inhibits Aβ aggregation at all temperatures, but the effect is more profound at 27 °C than at 40 °C. It appears that native PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards β-sheet structure, thus precluding the formation of Aβ aggregates. Additionally, PLGA triggers disassembly of matured Aβ1-42 fibers at a faster rate at 40 °C than at 27 °C. PLGA-treated Aβ samples can significantly enhance viability of cortical cultured neurons compared to neurons treated with Aβ alone by attenuating phosphorylation of tau protein. Injection of native PLGA is found to influence the breakdown/clearance of Aβ peptide in the brain. Collectively, these results suggest that PLGA nanoparticles can inhibit Aβ aggregation and trigger disassembly of Aβ aggregates at temperatures outside the physiological range and can protect neurons against Aβ-mediated toxicity thus validating its unique therapeutic potential in the treatment of AD pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Qi Wu
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Govindarajan Karthivashan
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Emily Grabovac
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Mariana Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
- Departments of Medicine (Neurology) and Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| |
Collapse
|
9
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
10
|
Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction. SENSORS 2021; 21:s21020490. [PMID: 33445603 PMCID: PMC7827727 DOI: 10.3390/s21020490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/01/2023]
Abstract
Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.
Collapse
|
11
|
Howarth C, Mishra A, Hall CN. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190630. [PMID: 33190598 PMCID: PMC7116385 DOI: 10.1098/rstb.2019.0630] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain-local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons-contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
12
|
Bosque JJ, Calvo GF, Pérez-García VM, Navarro MC. The interplay of blood flow and temperature in regional hyperthermia: a mathematical approach. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201234. [PMID: 33614070 PMCID: PMC7890498 DOI: 10.1098/rsos.201234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 05/04/2023]
Abstract
In recent decades, hyperthermia has been used to raise oxygenation levels in tumours undergoing other therapeutic modalities, of which radiotherapy is the most prominent one. It has been hypothesized that oxygenation increases would come from improved blood flow associated with vasodilation. However, no test has determined whether this is a relevant assumption or other mechanisms might be acting. Additionally, since hyperthermia and radiotherapy are not usually co-administered, the crucial question arises as to how temperature and perfusion in tumours will change during and after hyperthermia. Overall, it would seem necessary to find a research framework that clarifies the current knowledge, delimits the scope of the different effects and guides future research. Here, we propose a simple mathematical model to account for temperature and perfusion dynamics in brain tumours subjected to regional hyperthermia. Our results indicate that tumours in well-perfused organs like the brain might only reach therapeutic temperatures if their vasculature is highly disrupted. Furthermore, the characteristic times of return to normal temperature levels are markedly shorter than those required to deliver adjuvant radiotherapy. According to this, a mechanistic coupling of perfusion and temperature would not explain any major oxygenation boost in brain tumours immediately after hyperthermia.
Collapse
Affiliation(s)
- Jesús J. Bosque
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Author for correspondence: Jesús J. Bosque e-mail:
| | - Gabriel F. Calvo
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Víctor M. Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - María Cruz Navarro
- Department of Mathematics-IMACI, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
13
|
Pereira LC, Barros M. Social buffering of cortisol release and tympanic temperature asymmetries during novelty and isolation stress in marmoset monkeys. Brain Res 2020; 1751:147198. [PMID: 33166510 DOI: 10.1016/j.brainres.2020.147198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
Novel environments induce a conflicting emotional approach-withdrawal state that triggers stress-related reactions. Social support through the presence of a highly familiar conspecific buffers the individual against such challenges. Although aversive events seem to be predominantly processed by the right hemisphere, this is still under debate and little is known about functional cerebral asymmetries in nonhuman primates during novelty stress, isolation and social buffering. Here we isolated adult marmoset monkeys in a new open-field arena or in their familiar home-cages to establish hemisphere activity and whether the pairmate's presence buffers the response. Monkeys socially isolated in either location had higher circulating cortisol levels than non-isolated marmosets, but different hemisphere activity patterns indicated by changes in baseline tympanic membrane temperatures (TMT). The bilateral increase in the monkeys that were isolated in the unfamiliar location may reflect an approach-withdrawal conflict. The left-sided increase in the home-cage isolation group was negatively related to cortisol release, this being potentially associated with a more proactive/approach-prone temperament. Interestingly, TMT and cortisol were unaltered when the pairmate was present. Thus, positive social interaction reduces the perceived intensity of the threat, alters hemisphere asymmetries and blocks the hormonal response to novelty stress, consistent with a buffering effect.
Collapse
Affiliation(s)
- Lucas C Pereira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
14
|
Kosari E, Vafai K. Thermal tissue damage analysis for magnetothermal neuromodulation and lesion size minimization. BRAIN MULTIPHYSICS 2020. [DOI: 10.1016/j.brain.2020.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Dehkharghani S, Yaghi S, Bowen MT, Pisani L, Scher E, Haussen DC, Nogueira RG. Mild fever as a catalyst for consumption of the ischaemic penumbra despite endovascular reperfusion. Brain Commun 2020; 2:fcaa116. [PMID: 33033801 PMCID: PMC7532660 DOI: 10.1093/braincomms/fcaa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022] Open
Abstract
Cerebrovascular ischaemia is potentiated by hyperthermia, and even mild temperature elevation has proved detrimental to ischaemic brain. Infarction progression following endovascular reperfusion relates to multiple patient-specific and procedural variables; however, the potential influence of mild systemic temperature fluctuations is not fully understood. This study aims to assess the relationship between systemic temperatures in the early aftermath of acute ischaemic stroke and the loss of at-risk penumbral tissues, hypothesizing consumption of the ischaemic penumbra as a function of systemic temperatures, irrespective of reperfusion status. A cross-sectional, retrospective evaluation of a single-institution, prospectively collected endovascular therapy registry was conducted. Patients with anterior circulation, large vessel occlusion acute ischaemic stroke who underwent initial CT perfusion, and in whom at least four-hourly systemic temperatures were recorded beginning from presentation and until the time of final imaging outcome were included. Initial CT perfusion core and penumbra volumes and final MRI infarction volumes were computed. Systemic temperature indices including temperature maxima were recorded, and pre-defined temperature thresholds varying between 37°C and 38°C were examined in unadjusted and adjusted regression models which included glucose, collateral status, reperfusion status, CT perfusion-to-reperfusion delay, general anaesthesia and antipyretic exposure. The primary outcome was the relative consumption of the penumbra, reflecting normalized growth of the at-risk tissue volume ≥10%. The final study population comprised 126 acute ischaemic stroke subjects (mean 63 ± 14.5 years, 63% women). The primary outcome of penumbra consumption ≥10% occurred in 51 (40.1%) subjects. No significant differences in baseline characteristics were present between groups, with the exception of presentation glucose (118 ± 26.6 without versus 143.1 ± 61.6 with penumbra consumption, P = 0.009). Significant differences in the likelihood of penumbra consumption relating to systemic temperature maxima were observed [37°C (interquartile range 36.5 − 37.5°C) without versus 37.5°C (interquartile range 36.8 − 38.2°C) with penumbra consumption, P = 0.001]. An increased likelihood of penumbra consumption was observed for temperature maxima in unadjusted (odds ratio 3.57, 95% confidence interval 1.65 − 7.75; P = 0.001) and adjusted (odds ratio 3.06, 95% confidence interval 1.33 − 7.06; P = 0.009) regression models. Significant differences in median penumbra consumption were present at a pre-defined temperature maxima threshold of 37.5°C [4.8 ml (interquartile range 0 − 11.5 ml) versus 21.1 ml (0 − 44.7 ml) for subjects not reaching or reaching the threshold, respectively, P = 0.007]. Mild fever may promote loss of the ischaemic penumbra irrespective of reperfusion, potentially influencing successful salvage of at-risk tissue volumes following acute ischaemic stroke.
Collapse
Affiliation(s)
- Seena Dehkharghani
- Department of Radiology, New York University Langone Health, New York, NY, USA
| | - Shadi Yaghi
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Meredith T Bowen
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Leonardo Pisani
- Department of Neurology, Emory University Hospital, Atlanta, GA, USA
| | - Erica Scher
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Diogo C Haussen
- Department of Neurology, Emory University Hospital, Atlanta, GA, USA.,Department of Neurology, Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, GA 30303, USA
| | - Raul G Nogueira
- Department of Neurology, Emory University Hospital, Atlanta, GA, USA.,Department of Neurology, Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, GA 30303, USA
| |
Collapse
|
16
|
Pereira LC, Maior RS, Barros M. Time-Dependent Changes in Cortisol and Tympanic Temperature Lateralization During Food Deprivation Stress in Marmoset Monkeys. Front Behav Neurosci 2020; 14:123. [PMID: 32765232 PMCID: PMC7378730 DOI: 10.3389/fnbeh.2020.00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022] Open
Abstract
Temporal information about food availability can be easily entrained, as in the case of fixed feeding routines of captive animals. A sudden unintentional or deliberate delay (e.g., food deprivation—FD) leads to frustration and psychological stress due to the loss of temporal predictability. How marmosets—an increasingly used small primate—process and respond to FD stress has not been previously assessed. Here we delayed the routine feeding of adult captive marmosets for 3 or 6 h. Blood cortisol concentration was used as a hormonal measure of the stress response. Changes in the left/right baseline tympanic membrane temperature (TMT) were used as an indirect ipsilateral indicator of hemisphere activity. Marmosets that were deprived for 3 h had higher cortisol levels than non-deprived controls. Cortisol concentration in the marmosets deprived for 6 h did not differ from controls possibly due to adaptative mechanisms against the detrimental effects of prolonged high cortisol levels. Interestingly, FD stress may have been processed more symmetrically at first, as indicated by the bilateral increase in TMT at the 3 h interval. As the event progressed (i.e., 6 h), a clear rightward TMT bias suggests that hemisphere activity had become asymmetrical. Therefore, the sudden loss of temporal predictability of an entrained routine feeding schedule induces time-dependent changes in the cortisol stress response and shifts in the TMT (and potentially hemisphere activity) lateralization bias of adult captive marmosets.
Collapse
Affiliation(s)
- Lucas C. Pereira
- Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Rafael S. Maior
- Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Marilia Barros
- Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
- *Correspondence: Marilia Barros
| |
Collapse
|
17
|
Cortex senses environmental temperature earlier than the hypothalamus in awake rats. J Therm Biol 2020; 91:102652. [DOI: 10.1016/j.jtherbio.2020.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
|
18
|
Dehkharghani S, Qiu D. MR Thermometry in Cerebrovascular Disease: Physiologic Basis, Hemodynamic Dependence, and a New Frontier in Stroke Imaging. AJNR Am J Neuroradiol 2020; 41:555-565. [PMID: 32139425 DOI: 10.3174/ajnr.a6455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
The remarkable temperature sensitivity of the brain is widely recognized and has been studied for its role in the potentiation of ischemic and other neurologic injuries. Pyrexia frequently complicates large-vessel acute ischemic stroke and develops commonly in critically ill neurologic patients; the profound sensitivity of the brain even to minor intraischemic temperature changes, together with the discovery of brain-to-systemic as well as intracerebral temperature gradients, has thus compelled the exploration of cerebral thermoregulation and uncovered its immutable dependence on cerebral blood flow. A lack of pragmatic and noninvasive tools for spatially and temporally resolved brain thermometry has historically restricted empiric study of cerebral temperature homeostasis; however, MR thermometry (MRT) leveraging temperature-sensitive nuclear magnetic resonance phenomena is well-suited to bridging this long-standing gap. This review aims to introduce the reader to the following: 1) fundamental aspects of cerebral thermoregulation, 2) the physical basis of noninvasive MRT, and 3) the physiologic interdependence of cerebral temperature, perfusion, metabolism, and viability.
Collapse
Affiliation(s)
- S Dehkharghani
- From the Department of Radiology (S.D.), New York University Langone Health, New York, New York
| | - D Qiu
- Department of Radiology (D.Q.), Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
19
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
20
|
Schneider R. Essential oil inhaler (AromaStick®) improves heat tolerance in the Hot Immersion Test (HIT). Results from two randomized, controlled experiments. J Therm Biol 2019; 87:102478. [PMID: 31999606 DOI: 10.1016/j.jtherbio.2019.102478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/30/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND A recent review article on an aromatherapeutic inhaler demonstrated clinical effects on a number of bodily systems, like the cardiovascular system, the respiratory system, the nervous system and the endocrine system. OBJECTIVE This paper extends these findings and investigates whether specially designed essential oils inhalers are capable to counter experimentally induced stressful heat sensations. METHOD Two prospective, randomized, controlled experiments using the Hot Immersion Test Paradigm (HIT) were conducted to investigate whether deep odor inhalations increase heat tolerance. RESULTS In both experiments, the inhaler strongly prolonged pain tolerance and increased blood oxygenation (1 < d < 1.3). In the second experiment, the inhaler also increased heart rate variability (d = 1.3) as a mechanism to cope with heat stress. CONCLUSION The ability to resist a stressful thermal stimulus can be exogenously improved by short and deep inhalations of essential scents directly delivered to the olfactory system.
Collapse
Affiliation(s)
- Rainer Schneider
- RECON - Research and Consulting, Unterer Mühlenweg 38B, 79114, Freiburg, Germany.
| |
Collapse
|
21
|
Gentilal N, Salvador R, Miranda PC. Temperature control in TTFields therapy of GBM: impact on the duty cycle and tissue temperature. Phys Med Biol 2019; 64:225008. [PMID: 31671414 DOI: 10.1088/1361-6560/ab5323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In TTFields therapy, Optune® is used to deliver the electric field to the tumor via 4 transducer arrays. This device monitors the temperature of the transducers and reduces the current whenever a transducer reaches 41 °C. Our aim is to quantify Optune's duty cycle and to predict the steady-state temperature distribution in the head during GBM treatment. We used a realistic head model and the finite element method to solve Pennes equation and to simulate how Optune operates considering that current reduces to zero when the thermal limit is reached. The thermal impact was evaluated considering the maximum temperature reached by each tissue and using the CEM 43 °C metric. We observed that Optune switches the current on and off intermittently. In our model, one transducer reached the temperature limit quicker than the others and consequently it was the one that controlled current injection. This led to different duty cycles for the anterior-posterior and left-right array pairs. The thermal analysis indicated that the highest temperature in the model, 41.7 °C, was reached on the scalp under a transducer. However, TTFields may lead to significant changes only at the brain level such as BBB permeability increase, cerebral blood flow variation and changes in the concentration of some neurotransmitters. The duty cycle may be increased, e.g. by controlling the current at the transducer level. These predictions should be validated by comparison with experimental data and reconciled with the lack of evidence of thermal impact in clinical trials.
Collapse
Affiliation(s)
- Nichal Gentilal
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Author to whom correspondence should be addressed
| | | | | |
Collapse
|
22
|
El-Atab N, Shaikh SF, Hussain MM. Nano-scale transistors for interfacing with brain: design criteria, progress and prospect. NANOTECHNOLOGY 2019; 30:442001. [PMID: 31342924 DOI: 10.1088/1361-6528/ab3534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
According to the World Health Organization, one quarter of the world's population suffers from various neurological disorders ranging from depression to Alzheimer's disease. Thus, understanding the operation mechanism of the brain enables us to help those who are suffering from these diseases. In addition, recent clinical medicine employs electronic brain implants, despite the fact of being invasive, to treat disorders ranging from severe coronary conditions to traumatic injuries. As a result, the deaf could hear, the blind could see, and the paralyzed could control robotic arms and legs. Due to the requirement of high data management capability with a power consumption as low as possible, designing nanoscale transistors as essential I/O electronics is a complex task. Herein, we review the essential design criteria for such nanoscale transistors, progress and prospect for implantable brain-machine-interface electronics. This article also discusses their technological challenges for practical implementation.
Collapse
Affiliation(s)
- Nazek El-Atab
- MMH Labs, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | | |
Collapse
|
23
|
Pereira LC, Maior RS, Barros M. Rightward Tympanic Membrane Temperature Bias During Acute Restraint-Isolation Stress in Marmoset Monkeys. Front Neurosci 2019; 13:913. [PMID: 31543757 PMCID: PMC6729121 DOI: 10.3389/fnins.2019.00913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/16/2019] [Indexed: 01/11/2023] Open
Abstract
Restraint is widely used to experimentally assess stress-induced effects. Surprisingly, little is known on how marmosets - an increasingly used small primate - process and respond to restraint stress. Here, we assessed blood cortisol concentration and tympanic membrane temperatures (TMT) in adult marmoset monkeys (Callithrix penicillata) during 0, 15, or 30 min of restraint and social isolation in a small cage. TMT reflects blood flow to the cerebral hemispheres, which in turn reflects neural activity. Baseline TMT were subtracted from post-test measures to establish shifts in blood flow possibly induced by ipsilateral brain activity. Cortisol was assayed immediately after the post-test assessment of the TMT. Marmosets restrained-isolated for 15 or 30 min had higher cortisol levels than the non-restrained-isolated group. Furthermore, significant changes in TMT were detected only in the right ear of the restrained-isolated groups, this effect being unrelated to overall body temperature or the time needed to capture/measure the TMT. Adult marmosets thus readily perceive a significant reduction in their range of movement as an event of sufficient negative intensity and/or duration to activate a pertinent neuroendocrine response. Also, an asymmetrical shift in their TMT reflects that such an aversive event may be rightwardly biased in this primate.
Collapse
Affiliation(s)
- Lucas C Pereira
- Primate Center, Institute of Biology, University of Brasília, Brasília, Brazil.,Department of Pharmacy, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Rafael S Maior
- Primate Center, Institute of Biology, University of Brasília, Brasília, Brazil.,Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Marilia Barros
- Primate Center, Institute of Biology, University of Brasília, Brasília, Brazil.,Department of Pharmacy, School of Health Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
24
|
Lutz Y, Loewe A, Meckel S, Dössel O, Cattaneo G. Combined local hypothermia and recanalization therapy for acute ischemic stroke: Estimation of brain and systemic temperature using an energetic numerical model. J Therm Biol 2019; 84:316-322. [PMID: 31466769 DOI: 10.1016/j.jtherbio.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
Abstract
Local brain hypothermia is an attractive method for providing cerebral neuroprotection for ischemic stroke patients and at the same time reducing systemic side effects of cooling. In acute ischemic stroke patients with large vessel occlusion, combination with endovascular mechanical recanalization treatment could potentially allow for an alleviation of inflammatory and apoptotic pathways in the critical phase of reperfusion. The direct cooling of arterial blood by means of an intra-carotid heat exchange catheter compatible with recanalization systems is a novel promising approach. Focusing on the concept of "cold reperfusion", we developed an energetic model to calculate the rate of temperature decrease during intra-carotid cooling in case of physiological as well as decreased perfusion. Additionally, we discussed and considered the effect and biological significance of temperature decrease on resulting brain perfusion. Our model predicted a 2 °C brain temperature decrease in 8.3, 11.8 and 26.2 min at perfusion rates of 50, 30 and 10ml100g⋅min, respectively. The systemic temperature decrease - caused by the venous blood return to the main circulation - was limited to 0.5 °C in 60 min. Our results underline the potential of catheter-assisted, intracarotid blood cooling to provide a fast and selective brain temperature decrease in the phase of vessel recanalization. This method can potentially allow for a tissue hypothermia during the restoration of the physiological flow and thus a "cold reperfusion" in the setting of mechanical recanalization.
Collapse
Affiliation(s)
- Yannick Lutz
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Stephan Meckel
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | |
Collapse
|
25
|
Theoretical Analysis for Wireless Magnetothermal Deep Brain Stimulation Using Commercial Nanoparticles. Int J Mol Sci 2019; 20:ijms20122873. [PMID: 31212841 PMCID: PMC6627245 DOI: 10.3390/ijms20122873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
A wireless magnetothermal stimulation (WMS) is suggested as a fast, tetherless, and implanted device-free stimulation method using low-radio frequency (100 kHz to 1 MHz) alternating magnetic fields (AMF). As magnetic nanoparticles (MNPs) can transduce alternating magnetic fields into heat, they are targeted to a region of the brain expressing the temperature-sensitive ion channel (TRPV1). The local temperature of the targeted area is increased up to 44 °C to open the TRPV1 channels and cause an influx of Ca2+ sensitive promoter, which can activate individual neurons inside the brain. The WMS has initially succeeded in showing the potential of thermomagnetics for the remote control of neural cell activity with MNPs that are internally targeted to the brain. In this paper, by using the steady-state temperature rise defined by Fourier’s law, the bio-heat equation, and COMSOL Multiphysics software, we investigate most of the basic parameters such as the specific loss power (SLP) of MNPs, the injection volume of magnetic fluid, stimulation and cooling times, and cytotoxic effects at high temperatures (43–44 °C) to provide a realizable design guideline for WMS.
Collapse
|
26
|
Yufik YM. The Understanding Capacity and Information Dynamics in the Human Brain. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E308. [PMID: 33267023 PMCID: PMC7514789 DOI: 10.3390/e21030308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
This article proposes a theory of neuronal processes underlying cognition, focusing on the mechanisms of understanding in the human brain. Understanding is a product of mental modeling. The paper argues that mental modeling is a form of information production inside the neuronal system extending the reach of human cognition "beyond the information given" (Bruner, J.S., Beyond the Information Given, 1973). Mental modeling enables forms of learning and prediction (learning with understanding and prediction via explanation) that are unique to humans, allowing robust performance under unfamiliar conditions having no precedents in the past history. The proposed theory centers on the notions of self-organization and emergent properties of collective behavior in the neuronal substrate. The theory motivates new approaches in the design of intelligent artifacts (machine understanding) that are complementary to those underlying the technology of machine learning.
Collapse
Affiliation(s)
- Yan M Yufik
- Virtual Structures Research, Inc., Potomac, MD 20854, USA
| |
Collapse
|
27
|
Pereira LC, Duarte RB, Maior RS, Barros M. Natural predator and a human stimulus differently affect the behavior, cortisol and cerebral hemisphere activity of marmoset monkeys. Physiol Behav 2018; 195:112-117. [DOI: 10.1016/j.physbeh.2018.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023]
|
28
|
Dubois A, Chiang CC, Smekens F, Jan S, Cuplov V, Palfi S, Chuang KS, Senova S, Pain F. Optical and thermal simulations for the design of optodes for minimally invasive optogenetics stimulation or photomodulation of deep and large cortical areas in non-human primate brain. J Neural Eng 2018; 15:065004. [PMID: 30190446 DOI: 10.1088/1741-2552/aadf97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of optogenetics or photobiomodulation in non-human primate (NHP) requires the ability to noninvasively stimulate large and deep cortical brain tissues volumes. In this context, the optical and geometrical parameters of optodes are critical. Methods and general guidelines to optimize these parameters have to be defined. OBJECTIVE We propose the design of an optode for safe and efficient optical stimulation of a large volume of NHP cortex, down to 3-5 mm depths without inserting fibers into the cortex. APPROACH Monte Carlo simulations of optical and thermal transport have been carried out using the Geant4 application for tomographic emission (GATE) platform. Parameters such as the fiber diameter, numerical aperture, number of fibers and their geometrical arrangement have been studied. Optimal hardware parameters are proposed to obtain homogeneous fluence above the fluence threshold for opsin activation without detrimental thermal effects. MAIN RESULTS The simulations show that a large fiber diameter and a large numerical aperture are preferable since they allow limiting power concentration and hence the resulting thermal increases at the brain surface. To obtain a volume of 200-500 mm3 of brain tissues receiving a fluence above the opsin activation threshold for optogenetics or below a phototocixity threshold for photobiomodulation, a 4 fibers configuration is proposed. The optimal distance between the fibers was found to be 4 mm. A practical implementation of the optode has been performed and the corresponding fluence and thermal maps have been simulated. SIGNIFICANCE The present study defines a method to optimize the design of optode and the choice of stimulation parameters for optogenetics and more generally light delivery to deep and large volumes of tissues in NHP brain with a controlled irradiance dosimetry. The general guidelines are the use of silica fibers with a large numerical aperture and a large diameter. The combination of several fibers is required if large volumes need to be stimulated while avoiding thermal effects.
Collapse
Affiliation(s)
- A Dubois
- IMNC, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Harris SS, Boorman LW, Das D, Kennerley AJ, Sharp PS, Martin C, Redgrave P, Schwartz TH, Berwick J. Physiological and Pathological Brain Activation in the Anesthetized Rat Produces Hemodynamic-Dependent Cortical Temperature Increases That Can Confound the BOLD fMRI Signal. Front Neurosci 2018; 12:550. [PMID: 30154690 PMCID: PMC6102348 DOI: 10.3389/fnins.2018.00550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/20/2018] [Indexed: 11/24/2022] Open
Abstract
Anesthetized rodent models are ubiquitous in pre-clinical neuroimaging studies. However, because the associated cerebral morphology and experimental methodology results in a profound negative brain-core temperature differential, cerebral temperature changes during functional activation are likely to be principally driven by local inflow of fresh, core-temperature, blood. This presents a confound to the interpretation of blood-oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data acquired from such models, since this signal is also critically temperature-dependent. Nevertheless, previous investigation on the subject is surprisingly sparse. Here, we address this issue through use of a novel multi-modal methodology in the urethane anesthetized rat. We reveal that sensory stimulation, hypercapnia and recurrent acute seizures induce significant increases in cortical temperature that are preferentially correlated to changes in total hemoglobin concentration (Hbt), relative to cerebral blood flow and oxidative metabolism. Furthermore, using a phantom-based evaluation of the effect of such temperature changes on the BOLD fMRI signal, we demonstrate a robust inverse relationship between both variables. These findings suggest that temperature increases, due to functional hyperemia, should be accounted for to ensure accurate interpretation of BOLD fMRI signals in pre-clinical neuroimaging studies.
Collapse
Affiliation(s)
- Samuel S Harris
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Luke W Boorman
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Devashish Das
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Aneurin J Kennerley
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Paul S Sharp
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Chris Martin
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Peter Redgrave
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Theodore H Schwartz
- Department of Neurological Surgery, Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Jason Berwick
- Neurovascular and Neuroimaging Research Group, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
How does blood regulate cerebral temperatures during hypothermia? Sci Rep 2018; 8:7877. [PMID: 29777174 PMCID: PMC5959945 DOI: 10.1038/s41598-018-26063-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/27/2018] [Indexed: 11/30/2022] Open
Abstract
Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant, CR. These methods exhibit larger average brain cooling (from 0.56 °C ± <0.01 °C to 0.58 °C ± <0.01 °C) compared with previous models (0.39 °C) when scalp temperature is reduced. An greater reduction in core brain temperature is observed (from 0.29 °C ± <0.01 °C to 0.45 °C ± <0.01 °C) compared to previous models (0.11 °C) due to the inclusion of counter-current cooling effects. The VaPor model also predicts that a hypothermic average temperature (<36 °C) can be reached in core regions of neonatal models using scalp cooling alone.
Collapse
|
31
|
Kiyatkin EA. Brain temperature: from physiology and pharmacology to neuropathology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:483-504. [DOI: 10.1016/b978-0-444-64074-1.00030-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
32
|
Arterial CO2 Fluctuations Modulate Neuronal Rhythmicity: Implications for MEG and fMRI Studies of Resting-State Networks. J Neurosci 2017; 36:8541-50. [PMID: 27535903 PMCID: PMC4987431 DOI: 10.1523/jneurosci.4263-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/09/2016] [Indexed: 01/25/2023] Open
Abstract
A fast emerging technique for studying human resting state networks (RSNs) is based on spontaneous temporal fluctuations in neuronal oscillatory power, as measured by magnetoencephalography. However, it has been demonstrated recently that this power is sensitive to modulations in arterial CO2 concentration. Arterial CO2 can be modulated by natural fluctuations in breathing pattern, as might typically occur during the acquisition of an RSN experiment. Here, we demonstrate for the first time the fine-scale dependence of neuronal oscillatory power on arterial CO2 concentration, showing that reductions in alpha, beta, and gamma power are observed with even very mild levels of hypercapnia (increased arterial CO2). We use a graded hypercapnia paradigm and participant feedback to rule out a sensory cause, suggesting a predominantly physiological origin. Furthermore, we demonstrate that natural fluctuations in arterial CO2, without administration of inspired CO2, are of a sufficient level to influence neuronal oscillatory power significantly in the delta-, alpha-, beta-, and gamma-frequency bands. A more thorough understanding of the relationship between physiological factors and cortical rhythmicity is required. In light of these findings, existing results, paradigms, and analysis techniques for the study of resting-state brain data should be revisited. SIGNIFICANCE STATEMENT In this study, we show for the first time that neuronal oscillatory power is intimately linked to arterial CO2 concentration down to the fine-scale modulations that occur during spontaneous breathing. We extend these results to demonstrate a correlation between neuronal oscillatory power and spontaneous arterial CO2 fluctuations in awake humans at rest. This work identifies a need for studies investigating resting-state networks in the human brain to measure and account for the impact of spontaneous changes in arterial CO2 on the neuronal signals of interest. Changes in breathing pattern that are time locked to task performance could also lead to confounding effects on neuronal oscillatory power when considering the electrophysiological response to functional stimulation.
Collapse
|
33
|
Nippert AR, Biesecker KR, Newman EA. Mechanisms Mediating Functional Hyperemia in the Brain. Neuroscientist 2017; 24:73-83. [PMID: 28403673 DOI: 10.1177/1073858417703033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal activity within the brain evokes local increases in blood flow, a response termed functional hyperemia. This response ensures that active neurons receive sufficient oxygen and nutrients to maintain tissue function and health. In this review, we discuss the functions of functional hyperemia, the types of vessels that generate the response, and the signaling mechanisms that mediate neurovascular coupling, the communication between neurons and blood vessels. Neurovascular coupling signaling is mediated primarily by the vasoactive metabolites of arachidonic acid (AA), by nitric oxide, and by K+. While much is known about these pathways, many contentious issues remain. We highlight two controversies, the role of glial cell Ca2+ signaling in mediating neurovascular coupling and the importance of capillaries in generating functional hyperemia. We propose signaling pathways that resolve these controversies. In this scheme, capillary dilations are generated by Ca2+ increases in astrocyte endfeet, leading to production of AA metabolites. In contrast, arteriole dilations are generated by Ca2+ increases in neurons, resulting in production of nitric oxide and AA metabolites. Arachidonic acid from neurons also diffuses into astrocyte endfeet where it is converted into additional vasoactive metabolites. While this scheme resolves several discrepancies in the field, many unresolved challenges remain and are discussed in the final section of the review.
Collapse
Affiliation(s)
- Amy R Nippert
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kyle R Biesecker
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Eric A Newman
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
34
|
Holper L, Mitra S, Bale G, Robertson N, Tachtsidis I. Prediction of brain tissue temperature using near-infrared spectroscopy. NEUROPHOTONICS 2017; 4:021106. [PMID: 28630878 PMCID: PMC5469395 DOI: 10.1117/1.nph.4.2.021106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 08/17/2023]
Abstract
Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications.
Collapse
Affiliation(s)
- Lisa Holper
- University of Zurich, Hospital of Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Zurich, Switzerland
| | - Subhabrata Mitra
- University College London and Neonatal Unit, University College London Hospitals Trust, Institute for Women’s Health, London, United Kingdom
| | - Gemma Bale
- University College London, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Nicola Robertson
- University College London and Neonatal Unit, University College London Hospitals Trust, Institute for Women’s Health, London, United Kingdom
| | - Ilias Tachtsidis
- University College London, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
35
|
Dehkharghani S, Fleischer CC, Qiu D, Yepes M, Tong F. Cerebral Temperature Dysregulation: MR Thermographic Monitoring in a Nonhuman Primate Study of Acute Ischemic Stroke. AJNR Am J Neuroradiol 2017; 38:712-720. [PMID: 28126752 DOI: 10.3174/ajnr.a5059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/06/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral thermoregulation remains poorly understood. Temperature dysregulation is deeply implicated in the potentiation of cerebrovascular ischemia. We present a multiphasic, MR thermographic study in a nonhuman primate model of MCA infarction, hypothesizing detectable brain temperature disturbances and brain-systemic temperature decoupling. MATERIALS AND METHODS Three Rhesus Macaque nonhuman primates were sourced for 3-phase MR imaging: 1) baseline MR imaging, 2) 7-hour continuous MR imaging following minimally invasive, endovascular MCA stroke induction, and 3) poststroke day 1 MR imaging follow-up. MR thermometry was achieved by multivoxel spectroscopy (semi-localization by adiabatic selective refocusing) by using the proton resonance frequency chemical shift. The relationship of brain and systemic temperatures with time and infarction volumes was characterized by using a mixed-effects model. RESULTS Following MCA infarction, progressive cerebral hyperthermia was observed in all 3 subjects, significantly outpacing systemic temperature fluctuations. Highly significant associations were observed for systemic, hemispheric, and global brain temperatures (F-statistic, P = .0005 for all regressions) relative to the time from stroke induction. Significant differences in the relationship between temperature and time following stroke onset were detected when comparing systemic temperatures with ipsilateral (P = .007), contralateral (P = .004), and infarction core (P = .003) temperatures following multiple-comparisons correction. Significant associations were observed between infarction volumes and both systemic (P ≤ .01) and ipsilateral (P = .04) brain temperatures, but not contralateral brain temperature (P = .08). CONCLUSIONS Successful physiologic and continuous postischemic cerebral MR thermography was conducted and prescribed in a nonhuman primate infarction model to facilitate translatability. The results confirm hypothesized temperature disturbance and decoupling of physiologic brain-systemic temperature gradients. These findings inform a developing paradigm of brain thermoregulation and the applicability of brain temperature as a neuroimaging biomarker in CNS injury.
Collapse
Affiliation(s)
- S Dehkharghani
- From the Departments of Radiology and Imaging Sciences (S.D., D.Q., F.T.)
- Neurology (S.D., M.Y.), Emory University Hospital, Atlanta, Georgia
| | - C C Fleischer
- Department of Biomedical Engineering (C.C.F.), Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - D Qiu
- From the Departments of Radiology and Imaging Sciences (S.D., D.Q., F.T.)
| | - M Yepes
- Neurology (S.D., M.Y.), Emory University Hospital, Atlanta, Georgia
| | - F Tong
- From the Departments of Radiology and Imaging Sciences (S.D., D.Q., F.T.)
| |
Collapse
|
36
|
Kiyatkin EA, Ren SE. MDMA, Methylone, and MDPV: Drug-Induced Brain Hyperthermia and Its Modulation by Activity State and Environment. Curr Top Behav Neurosci 2017; 32:183-207. [PMID: 27677782 PMCID: PMC6112168 DOI: 10.1007/7854_2016_35] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Psychomotor stimulants are frequently used by humans to intensify the subjective experience of different types of social interactions. Since psychomotor stimulants enhance metabolism and increase body temperatures, their use under conditions of physiological activation and in warm humid environments could result in pathological hyperthermia, a life-threatening symptom of acute drug intoxication. Here, we will describe the brain hyperthermic effects of MDMA, MDPV, and methylone, three structurally related recreational drugs commonly used by young adults during raves and other forms of social gatherings. After a short introduction on brain temperature and basic mechanisms underlying its physiological fluctuations, we will consider how MDMA, MDPV, and methylone affect brain and body temperatures in awake freely moving rats. Here, we will discuss the role of drug-induced heat production in the brain due to metabolic brain activation and diminished heat dissipation due to peripheral vasoconstriction as two primary contributors to the hyperthermic effects of these drugs. Then, we will consider how the hyperthermic effects of these drugs are modulated under conditions that model human drug use (social interaction and warm ambient temperature). Since social interaction results in brain and body heat production, coupled with skin vasoconstriction that impairs heat loss to the external environment, these physiological changes interact with drug-induced changes in heat production and loss, resulting in distinct changes in the hyperthermic effects of each tested drug. Finally, we present our recent data, in which we compared the efficacy of different pharmacological strategies for reversing MDMA-induced hyperthermia in both the brain and body. Specifically, we demonstrate increased efficacy of the centrally acting atypical neuroleptic compound clozapine over the peripherally acting vasodilator drug, carvedilol. These data could be important for understanding the potential dangers of MDMA in humans and the development of pharmacological tools to alleviate drug-induced hyperthermia - potentially saving the lives of highly intoxicated individuals.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, NIH, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Suelynn E Ren
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, NIH, 333 Cassell Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
37
|
Pereira LC, Barros M. Relationship between body temperature, weight, and hematological parameters of black tufted-ear marmosets (Callithrix penicillata
). J Med Primatol 2016; 45:118-25. [DOI: 10.1111/jmp.12214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Lucas Cardoso Pereira
- Primate Center and Department of Physiological Sciences; Institute of Biology; University of Brasilia; Brasilia DF Brazil
| | - Marilia Barros
- Department of Pharmaceutical Sciences; School of Health Sciences; University of Brasilia; Brasilia DF Brazil
| |
Collapse
|
38
|
Rango M, Bonifati C, Bresolin N. Post-Activation Brain Warming: A 1-H MRS Thermometry Study. PLoS One 2015; 10:e0127314. [PMID: 26011731 PMCID: PMC4444346 DOI: 10.1371/journal.pone.0127314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 04/14/2015] [Indexed: 11/24/2022] Open
Abstract
Purpose Temperature plays a fundamental role for the proper functioning of the brain. However, there are only fragmentary data on brain temperature (Tbr) and its regulation under different physiological conditions. Methods We studied Tbr in the visual cortex of 20 normal subjects serially with a wide temporal window under different states including rest, activation and recovery by a visual stimulation-Magnetic Resonance Spectroscopy Thermometry combined approach. We also studied Tbr in a control region, the centrum semiovale, under the same conditions. Results Visual cortex mean baseline Tbr was higher than mean body temperature (37.38 vs 36.60, P<0.001). During activation Tbr remained unchanged at first and then showed a small decrease (-0.20 C°) around the baseline value. After the end of activation Tbr increased consistently (+0.60 C°) and then returned to baseline values after some minutes. Centrum semiovale Tbr remained unchanged through rest, visual stimulation and recovery. Conclusion These findings have several implications, among them that neuronal firing itself is not a major source of heat release in the brain and that there is an aftermath of brain activation that lasts minutes before returning to baseline conditions.
Collapse
Affiliation(s)
- Mario Rango
- Department of Neurological Sciences, IRCCS Ca’ Granda-Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
- Magnetic Resonance Spectroscopy Center, IRCCS Ca’ Granda-Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
- * E-mail:
| | - Cristiana Bonifati
- Department of Neurological Sciences, IRCCS Ca’ Granda-Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
- Magnetic Resonance Spectroscopy Center, IRCCS Ca’ Granda-Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Department of Neurological Sciences, IRCCS Ca’ Granda-Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
- Magnetic Resonance Spectroscopy Center, IRCCS Ca’ Granda-Ospedale Maggiore Policlinico Foundation, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science 2015; 347:1477-80. [DOI: 10.1126/science.1261821] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
KHANDAY MA, AIJAZ MIR, RAFIQ AASMA. NUMERICAL ESTIMATION OF THE FLUID DISTRIBUTION PATTERN IN HUMAN DERMAL REGIONS WITH HETEROGENEOUS METABOLIC FLUID GENERATION. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The composition of fluid distribution in human body is consisting of various intra-cellular and extra-cellular fluids. Dehydration and other changes in the system may lead to various disorders and diseases in the normal functioning. It is therefore imperative to study the fluid distribution and its balance in the human body systems. In this study, we estimate the pattern of fluid in human dermal regions with heterogeneous metabolic fluid generation. The model is based on radial diffusion equation with appropriate boundary and interface conditions. The variational finite element method has been used to solve the model. The results of fluid concentrations at the dermal and subdermal regions were calculated and interpreted graphically at various levels of humidities and perspirations.
Collapse
Affiliation(s)
- M. A. KHANDAY
- Department of Mathematics, University of Kashmir, Srinagar 190006, India
| | - MIR AIJAZ
- Department of Mathematics, University of Kashmir, Srinagar 190006, India
| | - AASMA RAFIQ
- Department of Mathematics, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
41
|
Dehkharghani S, Mao H, Howell L, Zhang X, Pate KS, Magrath PR, Tong F, Wei L, Qiu D, Fleischer C, Oshinski JN. Proton resonance frequency chemical shift thermometry: experimental design and validation toward high-resolution noninvasive temperature monitoring and in vivo experience in a nonhuman primate model of acute ischemic stroke. AJNR Am J Neuroradiol 2015; 36:1128-35. [PMID: 25655874 DOI: 10.3174/ajnr.a4241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/27/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Applications for noninvasive biologic temperature monitoring are widespread in biomedicine and of particular interest in the context of brain temperature regulation, where traditionally costly and invasive monitoring schemes limit their applicability in many settings. Brain thermal regulation, therefore, remains controversial, motivating the development of noninvasive approaches such as temperature-sensitive nuclear MR phenomena. The purpose of this work was to compare the utility of competing approaches to MR thermometry by using proton resonance frequency chemical shift. We tested 3 methodologies, hypothesizing the feasibility of a fast and accurate approach to chemical shift thermometry, in a phantom study at 3T. MATERIALS AND METHODS A conventional, paired approach (difference [DIFF]-1), an accelerated single-scan approach (DIFF-2), and a new, further accelerated strategy (DIFF-3) were tested. Phantom temperatures were modulated during real-time fiber optic temperature monitoring, with MR thermometry derived simultaneously from temperature-sensitive changes in the water proton chemical shift (∼0.01 ppm/°C). MR thermometry was subsequently performed in a series of in vivo nonhuman primate experiments under physiologic and ischemic conditions, testing its reproducibility and overall performance. RESULTS Chemical shift thermometry demonstrated excellent agreement with phantom temperatures for all 3 approaches (DIFF-1: linear regression R(2) = 0.994; P < .001; acquisition time = 4 minutes 40 seconds; DIFF-2: R(2) = 0.996; P < .001; acquisition time = 4 minutes; DIFF-3: R(2) = 0.998; P < .001; acquisition time = 40 seconds). CONCLUSIONS These findings confirm the comparability in performance of 3 competing approaches to MR thermometry and present in vivo applications under physiologic and ischemic conditions in a primate stroke model.
Collapse
Affiliation(s)
- S Dehkharghani
- From the Department of Radiology and Imaging Sciences (S.D., H.M., K.S.P., F.T., D.Q., J.N.O.), Emory University Hospital, Atlanta, Georgia
| | - H Mao
- From the Department of Radiology and Imaging Sciences (S.D., H.M., K.S.P., F.T., D.Q., J.N.O.), Emory University Hospital, Atlanta, Georgia
| | - L Howell
- Yerkes National Primate Research Center (L.H., X.Z.), Emory University, Atlanta, Georgia
| | - X Zhang
- Yerkes National Primate Research Center (L.H., X.Z.), Emory University, Atlanta, Georgia
| | - K S Pate
- From the Department of Radiology and Imaging Sciences (S.D., H.M., K.S.P., F.T., D.Q., J.N.O.), Emory University Hospital, Atlanta, Georgia
| | - P R Magrath
- Department of Biomedical Engineering (P.R.M.), Northwestern University, Evanston, Illinois
| | - F Tong
- From the Department of Radiology and Imaging Sciences (S.D., H.M., K.S.P., F.T., D.Q., J.N.O.), Emory University Hospital, Atlanta, Georgia
| | - L Wei
- Department of Biomedical Engineering (L.W., C.F.), Emory University-Georgia Institute of Technology, Atlanta, Georgia
| | - D Qiu
- From the Department of Radiology and Imaging Sciences (S.D., H.M., K.S.P., F.T., D.Q., J.N.O.), Emory University Hospital, Atlanta, Georgia
| | - C Fleischer
- Department of Biomedical Engineering (L.W., C.F.), Emory University-Georgia Institute of Technology, Atlanta, Georgia
| | - J N Oshinski
- From the Department of Radiology and Imaging Sciences (S.D., H.M., K.S.P., F.T., D.Q., J.N.O.), Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
42
|
Damasceno WC, Pires W, Lima MRM, Lima NRV, Wanner SP. The dynamics of physical exercise-induced increases in thalamic and abdominal temperatures are modified by central cholinergic stimulation. Neurosci Lett 2015; 590:193-8. [PMID: 25655022 DOI: 10.1016/j.neulet.2015.01.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/14/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Evidence has shown that brain and abdominal (T abd) temperatures are regulated by distinct physiological mechanisms. Thus, the present study examined whether central cholinergic stimulation would change the dynamics of exercise-induced increases in T abd and thalamic temperature (T thal), an index of brain temperature. Adult male Wistar rats were used in all of the experiments. Two guide cannulae were implanted in the rats, one in the thalamus and the other in the right lateral cerebral ventricle, to measure T thal and to centrally inject a cholinergic agonist, respectively. Then, a temperature sensor was implanted in the abdominal cavity. On the day of the experiments, the rats received an intracerebroventricular injection of 2 μL of 10(-2)M physostigmine (Phy) or a vehicle solution (Veh) and were subjected to treadmill running until volitional fatigue occurred. T thal was measured using a thermistor connected to a multimeter, and T abd was recorded by telemetry. Phy injection delayed the exercise-induced increases in T thal (37.6 ± 0.2°C Phy vs 38.7 ± 0.1°C Veh at the 10th min of exercise) and in T abd. Despite the delayed hyperthermia, Phy did not change the rats' physical performance. In addition, the more rapid exercise-induced increase in T thal relative to Tabd in the rats treated with Veh was abolished by Phy. Collectively, our data indicate that central cholinergic stimulation affects the dynamics of exercise-induced increases in T thal and T abd. These results also provide evidence of the involvement of cholinoceptors in the modulation of brain heat loss during physical exercise.
Collapse
Affiliation(s)
- William Coutinho Damasceno
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene Rodrigues Malheiros Lima
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nilo Resende Viana Lima
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
43
|
Kiyatkin EA. State-dependent and environmental modulation of brain hyperthermic effects of psychoactive drugs of abuse. Temperature (Austin) 2014; 1:201-13. [PMID: 27626047 PMCID: PMC5008710 DOI: 10.4161/23328940.2014.969074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Hyperthermia is a known effect induced by psychomotor stimulants and pathological hyperthermia is a prominent symptom of acute intoxication with these drugs in humans. In this manuscript, I will review our recent work concerning the brain hyperthermic effects of several known and recently appeared psychostimulant drugs of abuse (cocaine, methamphetamine, MDMA, methylone, and MDPV). Specifically, I will consider the role of activity state and environmental conditions in modulating the brain temperature effects of these drugs and their acute toxicity. Although some of these drugs are structurally similar and interact with the same brain substrates, there are important differences in their temperature effects in quiet resting conditions and the type of modulation of these temperature effects under conditions that mimic basic aspects of human drug use (social interaction, moderately warm environments). These data could be important for understanding the potential dangers of each drug and ultimately preventing adverse health complications associated with acute drug-induced intoxication.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research, Program, NIH , Baltimore, MD USA
| |
Collapse
|
44
|
Iwata S, Tachtsidis I, Takashima S, Matsuishi T, Robertson NJ, Iwata O. Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant. Int J Dev Neurosci 2014; 37:1-7. [DOI: 10.1016/j.ijdevneu.2014.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sachiko Iwata
- Centre for Developmental and Cognitive NeuroscienceDepartment of Paediatrics and Child HealthKurume University School of MedicineKurumeFukuokaJapan
- Institute for Women's HealthUniversity College LondonLondonUK
| | - Ilias Tachtsidis
- Department of Medical Physics and BioengineeringUniversity College LondonLondonUK
| | - Sachio Takashima
- Yanagawa Institute for Developmental DisabilitiesInternational University of Health and WelfareFukuokaJapan
| | - Toyojiro Matsuishi
- Centre for Developmental and Cognitive NeuroscienceDepartment of Paediatrics and Child HealthKurume University School of MedicineKurumeFukuokaJapan
| | | | - Osuke Iwata
- Centre for Developmental and Cognitive NeuroscienceDepartment of Paediatrics and Child HealthKurume University School of MedicineKurumeFukuokaJapan
- Institute for Women's HealthUniversity College LondonLondonUK
| |
Collapse
|
45
|
Papo D. Measuring brain temperature without a thermometer. Front Physiol 2014; 5:124. [PMID: 24723893 PMCID: PMC3973909 DOI: 10.3389/fphys.2014.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- David Papo
- Computational Systems Biology Group, Center for Biomedical Technology, Universidad Politécnica de Madrid Madrid, Spain
| |
Collapse
|
46
|
Bruner E, de la Cuétara JM, Masters M, Amano H, Ogihara N. Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 2014; 8:19. [PMID: 24765064 PMCID: PMC3980103 DOI: 10.3389/fnana.2014.00019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/13/2014] [Indexed: 11/28/2022] Open
Abstract
Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawbacks associated with the evolution of large brains. The study of the spatial relationships between skull and brain in the human genus has direct relevance in cranial surgery. Geometrical modeling can provide functional perspectives in evolution and brain physiology, like in simulations to investigate metabolic heat production and dissipation in the endocranial form. Analysis of the evolutionary constraints between facial and neural blocks can provide new information on visual impairment. The study of brain form variation in fossil humans can supply a different perspective for interpreting the processes behind neurodegeneration and Alzheimer’s disease. Following these examples, it is apparent that paleontology and biomedicine can exchange relevant information and contribute at the same time to the development of robust evolutionary hypotheses on brain evolution, while offering more comprehensive biological perspectives with regard to the interpretation of pathological processes.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana Burgos, Spain
| | | | | | | | | |
Collapse
|
47
|
Karbowski J. Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex. Front Neural Circuits 2014; 8:9. [PMID: 24574975 PMCID: PMC3920482 DOI: 10.3389/fncir.2014.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian brains span about four orders of magnitude in cortical volume and have to operate in different environments that require diverse behavioral skills. Despite these geometric and behavioral diversities, the examination of cerebral cortex across species reveals that it contains a substantial number of conserved characteristics that are associated with neuroanatomy and metabolism, i.e., with neuronal connectivity and function. Some of these cortical constants or invariants have been known for a long time but not sufficiently appreciated, and others were only recently discovered. The focus of this review is to present the cortical invariants and discuss their role in the efficient information processing. Global conservation in neuroanatomy and metabolism, as well as their correlated regional and developmental variability suggest that these two parallel systems are mutually coupled. It is argued that energetic constraint on cortical organization can be strong if cerebral blood supplied is either below or above a certain level, and it is rather soft otherwise. Moreover, because maximization or minimization of parameters associated with cortical connectivity, function and cost often leads to conflicts in design, it is argued that the architecture of the cerebral cortex is a result of structural and functional compromises.
Collapse
Affiliation(s)
- Jan Karbowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences Warsaw, Poland ; Department of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw Warsaw, Poland ; Division of Biology Caltech, Pasadena, CA, USA
| |
Collapse
|
48
|
Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR, Glaser JI, Amodei D, Stranges PB, Kalhor R, Dalrymple DA, Seo D, Alon E, Maharbiz MM, Carmena JM, Rabaey JM, Boyden ES, Church GM, Kording KP. Physical principles for scalable neural recording. Front Comput Neurosci 2013; 7:137. [PMID: 24187539 PMCID: PMC3807567 DOI: 10.3389/fncom.2013.00137] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022] Open
Abstract
Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power-bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices.
Collapse
Affiliation(s)
- Adam H. Marblestone
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
| | | | - Yael G. Maguire
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
- Plum Labs LLCCambridge, MA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadena, CA, USA
| | | | - Joshua I. Glaser
- Interdepartmental Neuroscience Program, Northwestern UniversityChicago, IL, USA
| | - Dario Amodei
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Reza Kalhor
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - David A. Dalrymple
- Biophysics Program, Harvard UniversityBoston, MA, USA
- NemaloadSan Francisco, CA, USA
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Dongjin Seo
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Elad Alon
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Michel M. Maharbiz
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Jose M. Carmena
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California at BerkeleyBerkeley, CA, USA
| | - Jan M. Rabaey
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Edward S. Boyden
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
- Departments of Brain and Cognitive Sciences and Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - George M. Church
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - Konrad P. Kording
- Departments of Physical Medicine and Rehabilitation and of Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Sensory Motor Performance Program, The Rehabilitation Institute of ChicagoChicago, IL, USA
| |
Collapse
|
49
|
Abstract
The aim of this study was revealing the temperature changes in rats' brain tissue caused by whole body hyperthermia. The analysis of received results allows to conclude that the brain has a highly secured system of temperature autoregulation against the exogenous temperature changes. The upper limit of this autoregulation (for rats, at least) is in the range of 45°C of environment. An important role in the normal functioning of the brain temperature autoregulation system belongs to Nitric Oxide. The behavioral disorders, observed in animals after whole body hyperthermia (sure within the range of brain temperature autoregulation) are hardly associated with the changes in temperature of the Central Nervous System, but rather have to be mediated by impaired blood circulation and oxygen supply to the brain tissues, caused by the rapid deterioration of the blood rheological properties.
Collapse
|
50
|
Ghavami M, Rezaei M, Ejtehadi R, Lotfi M, Shokrgozar MA, Abd Emamy B, Raush J, Mahmoudi M. Physiological temperature has a crucial role in amyloid β in the absence and presence of hydrophobic and hydrophilic nanoparticles. ACS Chem Neurosci 2013; 4:375-8. [PMID: 23509973 DOI: 10.1021/cn300205g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amyloid beta fibrillation can lead to major disorder of neurons processes and is associated with several neuronal diseases (e.g., Alzheimer's disease). We report here an importance of slight temperature changes, in the physiological range (35-42 °C), on the amyloid fibrillation process in the presence and absence of hydrophilic (silica) and hydrophobic (polystyrene) nanoparticles (NPs). The results highlight the fact that slight increases in temperature can induce inhibitory and acceleratory effects of hydrophobic and hydrophilic NPs on the fibrillation process, respectively. Using further in vivo considerations, the outcomes of this study can be used for considerable modifications on the current diagnosis and treatment approaches in amyloid-involved diseases.
Collapse
Affiliation(s)
- Mahdi Ghavami
- National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Meisam Rezaei
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Reza Ejtehadi
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Mina Lotfi
- Department
of Nanotechnology,
Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Jens Raush
- Systems
Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Morteza Mahmoudi
- Department
of Nanotechnology,
Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center,
Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|