1
|
Parra M, Coppola M, Hellmann H. PDX proteins from Arabidopsis thaliana as novel substrates of cathepsin B: implications for vitamin B 6 biosynthesis regulation. FEBS J 2024; 291:2372-2387. [PMID: 38431778 DOI: 10.1111/febs.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Vitamin B6 is a critical molecule for metabolism, development, and stress sensitivity in plants. It is a cofactor for numerous biochemical reactions, can serve as an antioxidant, and has the potential to increase tolerance against both biotic and abiotic stressors. Due to the importance of vitamin B6, its biosynthesis is likely tightly regulated. Plants can synthesize vitamin B6 de novo via the concerted activity of Pyridoxine Biosynthesis Protein 1 (PDX1) and PDX2. Previously, PDX proteins have been identified as targets for ubiquitination, indicating they could be marked for degradation by two highly conserved pathways: the Ubiquitin Proteasome Pathway (UPP) and the autophagy pathway. Initial experiments show that PDXs are in fact degraded, but surprisingly, in a ubiquitin-independent manner. Inhibitor studies pointed toward cathepsin B, a conserved lysosomal cysteine protease, which is implicated in both programed cell death and autophagy in humans and plants. In plants, cathepsin Bs are poorly described, and no confirmed substrates have been identified. Here, we present PDX proteins from Arabidopsis thaliana as interactors and substrates of a plant Cathepsin B. These findings not only describe a novel cathepsin B substrate in plants, but also provide new insights into how plants regulate de novo biosynthesis of vitamin B6.
Collapse
Affiliation(s)
- Marcelina Parra
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Barra ALC, Ullah N, Brognaro H, Gutierrez RF, Wrenger C, Betzel C, Nascimento AS. Structure and dynamics of the staphylococcal pyridoxal 5-phosphate synthase complex reveal transient interactions at the enzyme interface. J Biol Chem 2024; 300:107404. [PMID: 38782204 PMCID: PMC11237949 DOI: 10.1016/j.jbc.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious diseases are a significant cause of death, and recent studies estimate that common bacterial infectious diseases were responsible for 13.6% of all global deaths in 2019. Among the most significant bacterial pathogens is Staphylococcus aureus, accounting for more than 1.1 million deaths worldwide in 2019. Vitamin biosynthesis has been proposed as a promising target for antibacterial therapy. Here, we investigated the biochemical, structural, and dynamic properties of the enzyme complex responsible for vitamin B6 (pyridoxal 5-phosphate, PLP) biosynthesis in S. aureus, which comprises enzymes SaPdx1 and SaPdx2. The crystal structure of the 24-mer complex of SaPdx1-SaPdx2 enzymes indicated that the S. aureus PLP synthase complex forms a highly dynamic assembly with transient interaction between the enzymes. Solution scattering data indicated that SaPdx2 typically binds to SaPdx1 at a substoichiometric ratio. We propose a structure-based view of the PLP synthesis mechanism initiated with the assembly of SaPLP synthase complex that proceeds in a highly dynamic interaction between Pdx1 and Pdx2. This interface interaction can be further explored as a potentially druggable site for the design of new antibiotics.
Collapse
Affiliation(s)
- Angélica Luana C Barra
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany; Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Raissa F Gutierrez
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany; Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
3
|
Klem H, Alegre-Requena JV, Paton RS. Catalytic Effects of Active Site Conformational Change in the Allosteric Activation of Imidazole Glycerol Phosphate Synthase. ACS Catal 2023; 13:16249-16257. [PMID: 38125975 PMCID: PMC10729027 DOI: 10.1021/acscatal.3c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Imidazole glycerol phosphate synthase (IGPS) is a class-I glutamine amidotransferase (GAT) that hydrolyzes glutamine. Ammonia is produced and transferred to a second active site, where it reacts with N1-(5'-phosphoribosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide (PrFAR) to form precursors to purine and histidine biosynthesis. Binding of PrFAR over 25 Å away from the active site increases glutaminase efficiency by ∼4500-fold, primarily altering the glutamine turnover number. IGPS has been the focus of many studies on allosteric communication; however, atomic details for how the glutamine hydrolysis rate increases in the presence of PrFAR are lacking. We present a density functional theory study on 237-atom active site cluster models of IGPS based on crystallized structures representing the inactive and allosterically active conformations and investigate the multistep reaction leading to thioester formation and ammonia production. The proposed mechanism is supported by similar, well-studied enzyme mechanisms, and the corresponding energy profile is consistent with steady-state kinetic studies of PrFAR + IGPS. Additional active site models are constructed to examine the relationship between active site structural change and transition-state stabilization via energy decomposition schemes. The results reveal that the inactive IGPS conformation does not provide an adequately formed oxyanion hole structure and that repositioning of the oxyanion strand relative to the substrate is vital for a catalysis-competent oxyanion hole, with or without the hVal51 dihedral flip. These findings are valuable for future endeavors in modeling the IGPS allosteric mechanism by providing insight into the atomistic changes required for rate enhancement that can inform suitable reaction coordinates for subsequent investigations.
Collapse
Affiliation(s)
- Heidi Klem
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Juan V Alegre-Requena
- Dpto.de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Shah M, Anwar A, Qasim A, Jaan S, Sarfraz A, Ullah R, Ali EA, Nishan U, Shehroz M, Zaman A, Ojha SC. Proteome level analysis of drug-resistant Prevotella melaninogenica for the identification of novel therapeutic candidates. Front Microbiol 2023; 14:1271798. [PMID: 37808310 PMCID: PMC10556700 DOI: 10.3389/fmicb.2023.1271798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
The management of infectious diseases has become more critical due to the development of novel pathogenic strains with enhanced resistance. Prevotella melaninogenica, a gram-negative bacterium, was found to be involved in various infections of the respiratory tract, aerodigestive tract, and gastrointestinal tract. The need to explore novel drug and vaccine targets against this pathogen was triggered by the emergence of antimicrobial resistance against reported antibiotics to combat P. melaninogenica infections. The study involves core genes acquired from 14 complete P. melaninogenica strain genome sequences, where promiscuous drug and vaccine candidates were explored by state-of-the-art subtractive proteomics and reverse vaccinology approaches. A stringent bioinformatics analysis enlisted 18 targets as novel, essential, and non-homologous to humans and having druggability potential. Moreover, the extracellular and outer membrane proteins were subjected to antigenicity, allergenicity, and physicochemical analysis for the identification of the candidate proteins to design multi-epitope vaccines. Two candidate proteins (ADK95685.1 and ADK97014.1) were selected as the best target for the designing of a vaccine construct. Lead B- and T-cell overlapped epitopes were joined to generate potential chimeric vaccine constructs in combination with adjuvants and linkers. Finally, a prioritized vaccine construct was found to have stable interactions with the human immune cell receptors as confirmed by molecular docking and MD simulation studies. The vaccine construct was found to have cloning and expression ability in the bacterial cloning system. Immune simulation ensured the elicitation of significant immune responses against the designed vaccine. In conclusion, our study reported novel drug and vaccine targets and designed a multi-epitope vaccine against the P. melaninogenica infection. Further experimental validation will help open new avenues in the treatment of this multi-drug-resistant pathogen.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Amna Anwar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Aqsa Qasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Samavia Jaan
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, Pakistan
| | - Aqal Zaman
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Webster N, Thomas T. Identification, classification, and functional characterization of novel sponge-associated acidimicrobiial species. Syst Appl Microbiol 2023; 46:126426. [PMID: 37141831 DOI: 10.1016/j.syapm.2023.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Antarctic Division, Hobart, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Exploring Nucleation Pathways in Distinct Physicochemical Environments Unveiling Novel Options to Modulate and Optimize Protein Crystallization. CRYSTALS 2022. [DOI: 10.3390/cryst12030437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The scientific discussion about classical and nonclassical nucleation theories has lasted for two decades so far. Recently, multiple nucleation pathways and the occurrence and role of metastable intermediates in crystallization processes have attracted increasing attention, following the discovery of functional phase separation, which is now under investigation in different fields of cellular life sciences, providing interesting and novel aspects for conventional crystallization experiments. In this context, more systematic investigations need to be carried out to extend the current knowledge about nucleation processes. In terms of the data we present, a well-studied model protein, glucose isomerase (GI), was employed first to investigate systematically the early stages of the crystallization process, covering condensing and prenucleation ordering of protein molecules in diverse scenarios, including varying ionic and crowding agent conditions, as well as the application of a pulsed electric field (pEF). The main method used to characterize the early events of nucleation was synchronized polarized and depolarized dynamic light scattering (DLS/DDLS), which is capable of collecting the polarized and depolarized component of scattered light from a sample suspension in parallel, thus monitoring the time-resolved evolution of the condensation and geometrical ordering of proteins at the early stages of nucleation. A diffusion interaction parameter, KD, of GI under varying salt conditions was evaluated to discuss how the proportion of specific and non-specific protein–protein interactions affects the nucleation process. The effect of mesoscopic ordered clusters (MOCs) on protein crystallization was explored further by adding different ratios of MOCs induced by a pEF to fresh GI droplets in solution with different PEG concentrations. To emphasize and complement the data and results obtained with GI, a recombinant pyridoxal 5-phosphate (vitamin B6) synthase (Pdx) complex of Staphylococcus aureus assembled from twelve monomers of Pdx1 and twelve monomers of Pdx2 was employed to validate the ability of the pEF influencing the nucleation of complex macromolecules and the effect of MOCs on adjusting the crystallization pathway. In summary, our data revealed multiple nucleation pathways by tuning the proportion of specific and non-specific protein interactions, or by utilizing a pEF which turned out to be efficient to accelerate the nucleation process. Finally, a novel and reproducible experimental strategy, which can adjust and facilitate a crystallization process by pEF-induced MOCs, was summarized and reported for the first time.
Collapse
|
7
|
Rodrigues MJ, Giri N, Royant A, Zhang Y, Bolton R, Evans G, Ealick SE, Begley T, Tews I. Trapping and structural characterisation of a covalent intermediate in vitamin B6 biosynthesis catalysed by the Pdx1 PLP synthase. RSC Chem Biol 2022; 3:227-230. [PMID: 35360887 PMCID: PMC8827014 DOI: 10.1039/d1cb00160d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
The Pdx1 enzyme catalyses condensation of two carbohydrates and ammonia to form pyridoxal 5-phosphate (PLP) via an imine relay mechanism of carbonyl intermediates. The I333 intermediate characterised here using structural, UV-vis absorption spectroscopy and mass spectrometry analyses rationalises stereoselective deprotonation and subsequent substrate assisted phosphate elimination, central to PLP biosynthesis. Explaining stereoselective deprotonation and phosphate elimination in PLP biosynthesis through crystal structure, UV-vis absorption spectroscopic and mass spectrometric characterisation of a chromophoric intermediate.![]()
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Nitai Giri
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), CS 10090, Grenoble Cedex 9 38044, France
- European Synchrotron Radiation Facility, CS 40220, Grenoble Cedex 9 38043, France
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Rachel Bolton
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Steve E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tadhg Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
8
|
Pina AF, Sousa SF, Cerqueira NMFSA. The Catalytic Mechanism of Pdx2 Glutaminase Driven by a Cys-His-Glu Triad: A Computational Study. Chembiochem 2021; 23:e202100555. [PMID: 34762772 DOI: 10.1002/cbic.202100555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Indexed: 11/08/2022]
Abstract
The catalytic mechanism of Pdx2 was studied with atomic detail employing the computational ONIOM hybrid QM/MM methodology. Pdx2 employs a Cys-His-Glu catalytic triad to deaminate glutamine to glutamate and ammonia - the source of the nitrogen of pyridoxal 5'-phosphate (PLP). This enzyme is, therefore, a rate-limiting step in the PLP biosynthetic pathway of Malaria and Tuberculosis pathogens that rely on this mechanism to obtain PLP. For this reason, Pdx2 is considered a novel and promising drug target to treat these diseases. The results obtained show that the catalytic mechanism of Pdx2 occurs in six steps that can be divided into four stages: (i) activation of Cys87 , (ii) deamination of glutamine with the formation of the glutamyl-thioester intermediate, (iii) hydrolysis of the formed intermediate, and (iv) enzymatic turnover. The kinetic data available in the literature (19.1-19.5 kcal mol-1 ) agree very well with the calculated free energy barrier of the hydrolytic step (18.2 kcal.mol-11 ), which is the rate-limiting step of the catalytic process when substrate is readily available in the active site. This catalytic mechanism differs from other known amidases in three main points: i) it requires the activation of the nucleophile Cys87 to a thiolate; ii) the hydrolysis occurs in a single step and therefore does not require the formation of a second tetrahedral reaction intermediate, as it is proposed, and iii) Glu198 does not have a direct role in the catalytic process. Together, these results can be used for the synthesis of new transition state analogue inhibitors capable of inhibiting Pdx2 and impair diseases like Malaria and Tuberculosis.
Collapse
Affiliation(s)
- André F Pina
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Nuno M F S A Cerqueira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| |
Collapse
|
9
|
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Top Catal 2021; 65:165-186. [DOI: 10.1007/s11244-021-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Sinthusiri A, Champasri C, Trongpanich Y. Recombinant Expression, Purification and Characterization of Pyridoxal 5'-phosphate Synthase from Geobacillus sp. H6a, Thermophilic Bacterium Producing Extracellular Vitamin B6. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2575. [PMID: 35350642 PMCID: PMC8926315 DOI: 10.30498/ijb.2021.201202.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Pyridoxal 5' -phosphate synthase (PLPS) is present in deoxyxylose 5'-phosphate-independent of the de novo vitamin B6 biosynthesis pathway. This enzyme complex consists of PdxS and PdxT, which function as synthase and glutamine amidotranferase respectively to produce PLP. Objectives This study aimed to clone, express, and purify PLPS of Geobacillus sp. H6a, followed by its characterization. Material and Methods The PdxS and PdxT genes were amplified from Geobacillus (Gh) sp. H6a. Recombinant vectors pET28a-GhpdxS and pET28a-GhpdxT were constructed and the resulting His-tagged proteins were expressed in E. coli BL21(DE3). The soluble rGhpdxS and rGhpdxT were purified via nickel-affinity chromatography and cation-exchange chromatography. The mixture of rGhpdxS and rGhpdxT was further characterized. Results The molecular weights of rGhpdxS and rGhpdxT were estimated to be 35 and 23 kDa by SDS-PAGE, respectively. The native form of rGhpdxS showed hexamer and dodecamer, whereas those of rGhpdxT were a monomer upon detection with non-denaturing gel electrophoresis and gel filtration. A molar ratio of 1:1 of rGhpdxS:rGhpdxT showed the highest PLP synthesis activity (4.16 U.mg-1) and was used for analyzing the biochemical properties. The kinetic values were obtained by using glyceraldehyde 3-phosphate, ribose 5-phosphate, and glutamine as the substrates. The rGhPLPS showed pentose phosphate isomerization without triose phosphate isomerase activity. The metal ions affected PLP synthesis activity. The optimum pH and optimum temperature of rGhPLPS were 9 and 70 °C, respectively. The rGhPLPS was active over a broad range of temperatures and pH values. Conclusions These results support the potential of rGhPLPS as a candidate for industrial application.
Collapse
Affiliation(s)
| | | | - Yanee Trongpanich
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
11
|
Agarwal G, Gitaitis RD, Dutta B. Pan-Genome of Novel Pantoea stewartii subsp. indologenes Reveals Genes Involved in Onion Pathogenicity and Evidence of Lateral Gene Transfer. Microorganisms 2021; 9:1761. [PMID: 34442840 PMCID: PMC8399035 DOI: 10.3390/microorganisms9081761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Pantoea stewartii subsp. indologenes (Psi) is a causative agent of leafspot on foxtail millet and pearl millet; however, novel strains were recently identified that are pathogenic on onions. Our recent host range evaluation study identified two pathovars; P. stewartii subsp. indologenes pv. cepacicola pv. nov. and P. stewartii subsp. indologenes pv. setariae pv. nov. that are pathogenic on onions and millets or on millets only, respectively. In the current study, we developed a pan-genome using the whole genome sequencing of newly identified/classified Psi strains from both pathovars [pv. cepacicola (n = 4) and pv. setariae (n = 13)]. The full spectrum of the pan-genome contained 7030 genes. Among these, 3546 (present in genomes of all 17 strains) were the core genes that were a subset of 3682 soft-core genes (present in ≥16 strains). The accessory genome included 1308 shell genes and 2040 cloud genes (present in ≤2 strains). The pan-genome showed a clear linear progression with >6000 genes, suggesting that the pan-genome of Psi is open. Comparative phylogenetic analysis showed differences in phylogenetic clustering of Pantoea spp. using PAVs/wgMLST approach in comparison with core genome SNPs-based phylogeny. Further, we conducted a horizontal gene transfer (HGT) study using Psi strains from both pathovars along with strains from other Pantoea species, namely, P. stewartii subsp. stewartii LMG 2715T, P. ananatis LMG 2665T, P. agglomerans LMG L15, and P. allii LMG 24248T. A total of 317 HGT events among four Pantoea species were identified with most gene transfer events occurring between Psi pv. cepacicola and Psi pv. setariae. Pan-GWAS analysis predicted a total of 154 genes, including seven gene-clusters, which were associated with the pathogenicity phenotype (necrosis on seedling) on onions. One of the gene-clusters contained 11 genes with known functions and was found to be chromosomally located.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| | | | - Bhabesh Dutta
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
12
|
Barra ALC, Ullah N, Morão LG, Wrenger C, Betzel C, Nascimento AS. Structural Dynamics and Perspectives of Vitamin B6 Biosynthesis Enzymes in Plasmodium: Advances and Open Questions. Front Cell Infect Microbiol 2021; 11:688380. [PMID: 34327152 PMCID: PMC8313854 DOI: 10.3389/fcimb.2021.688380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is still today one of the most concerning diseases, with 219 million infections in 2019, most of them in Sub-Saharan Africa and Latin America, causing approx. 409,000 deaths per year. Despite the tremendous advances in malaria treatment and prevention, there is still no vaccine for this disease yet available and the increasing parasite resistance to already existing drugs is becoming an alarming issue globally. In this context, several potential targets for the development of new drug candidates have been proposed and, among those, the de novo biosynthesis pathway for the B6 vitamin was identified to be a promising candidate. The reason behind its significance is the absence of the pathway in humans and its essential presence in the metabolism of major pathogenic organisms. The pathway consists of two enzymes i.e. Pdx1 (PLP synthase domain) and Pdx2 (glutaminase domain), the last constituting a transient and dynamic complex with Pdx1 as the prime player and harboring the catalytic center. In this review, we discuss the structural biology of Pdx1 and Pdx2, together with and the understanding of the PLP biosynthesis provided by the crystallographic data. We also highlight the existing evidence of the effect of PLP synthesis inhibition on parasite proliferation. The existing data provide a flourishing environment for the structure-based design and optimization of new substrate analogs that could serve as inhibitors or even suicide inhibitors.
Collapse
Affiliation(s)
- Angélica Luana C Barra
- Pólo TerRa, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.,Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Luana G Morão
- Pólo TerRa, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
13
|
Yu P, Ma J, Zhu P, Chen Q, Zhang Q. Enhancing the production of γ-aminobutyric acid in Escherichia coli BL21 by engineering the enzymes of the regeneration pathway of the coenzyme factor pyridoxal 5'-phosphate. World J Microbiol Biotechnol 2021; 37:130. [PMID: 34236514 DOI: 10.1007/s11274-021-03103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
The compound γ-aminobutyric acid (GABA) was widely used in various fields. To enhance the production of GABA in Escherichia coli BL21(DE3), the enzymes of the regeneration pathway of the coenzyme factor pyridoxal 5'-phosphate (PLP) were engineered. The recombinant E. coli strain was screened and identified. The initial concentrations of L-monosodium glutamate (L-MSG) had an obvious influence on the production of GABA. The highest concentration of GABA in recombinant E. coli BL21/pET28a-gadA was 5.54 g/L when the initial L-MSG concentration was 10 g/L, whereas it was 8.45 g/L in recombinant E. coli BL21/pET28a-gadA-SNO1-SNZ1 at an initial L-MSG concentration of 15 g/L. The corresponding conversion yields of GABA in these two strains were 91.0% and 92.7%, respectively. When the initial concentrations of L-MSG were more than 15 g/L, the concentrations of GABA in E. coli BL21/pET28a-gadA-SNO1-SNZ1 were significantly higher as compared to those in recombinant E. coli BL21/pET28a-gadA, and it reached a maximum of 13.20 g/L at an initial L-MSG concentration of 25 g/L, demonstrating that the introduction of the enzymes of the regeneration pathway of PLP favored to enhance the production of GABA. This study provides new insight into producing GABA effectively in E. coli BL21(DE3).
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China.
| | - Jian Ma
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Pengzhi Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| |
Collapse
|
14
|
Wurm JP, Sung S, Kneuttinger AC, Hupfeld E, Sterner R, Wilmanns M, Sprangers R. Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. Nat Commun 2021; 12:2748. [PMID: 33980881 PMCID: PMC8115485 DOI: 10.1038/s41467-021-22968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Imidazole glycerol phosphate synthase (HisFH) is a heterodimeric bienzyme complex operating at a central branch point of metabolism. HisFH is responsible for the HisH-catalyzed hydrolysis of glutamine to glutamate and ammonia, which is then used for a cyclase reaction by HisF. The HisFH complex is allosterically regulated but the underlying mechanism is not well understood. Here, we elucidate the molecular basis of the long range, allosteric activation of HisFH. We establish that the catalytically active HisFH conformation is only formed when the substrates of both HisH and HisF are bound. We show that in this conformation an oxyanion hole in the HisH active site is established, which rationalizes the observed 4500-fold allosteric activation compared to the inactive conformation. In solution, the inactive and active conformations are in a dynamic equilibrium and the HisFH turnover rates correlate with the population of the active conformation, which is in accordance with the ensemble model of allostery. The allosteric regulation of the bienzyme complex imidazole glycerol phosphate synthase (HisFH) remains to be elucidated. Here, the authors provide structural insights into the dynamic allosteric mechanism by which ligand binding to the cyclase and glutaminase active sites of HisFH regulate enzyme activation.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sihyun Sung
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Andrea Christa Kneuttinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Enrico Hupfeld
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany. .,University Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
15
|
Richts B, Lentes S, Poehlein A, Daniel R, Commichau FM. A Bacillus subtilis ΔpdxT mutant suppresses vitamin B6 limitation by acquiring mutations enhancing pdxS gene dosage and ammonium assimilation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:218-233. [PMID: 33559288 DOI: 10.1111/1758-2229.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Pyridoxal-5'-phosphate (PLP), the biologically active form of vitamin B6, serves as a cofactor for many enzymes. The Gram-positive model bacterium Bacillus subtilis synthesizes PLP via the PdxST enzyme complex, consisting of the PdxT glutaminase and the PdxS PLP synthase subunits, respectively. PdxT converts glutamine to glutamate and ammonia of which the latter is channelled to PdxS. At high extracellular ammonium concentrations, the PdxS PLP synthase subunit does not depend on PdxT. Here, we assessed the potential of a B. subtilis ΔpdxT mutant to adapt to PLP limitation at the genome level. The majority of ΔpdxT suppressors had amplified a genomic region containing the pdxS gene. We also identified mutants having acquired as yet undescribed mutations in ammonium assimilation genes, indicating that the overproduction of PdxS and the NrgA ammonium transporter partially relieve vitamin B6 limitation in a ΔpdxT mutant when extracellular ammonium is scarce. Furthermore, we found that PdxS positively affects complex colony formation in B. subtilis. The catalytic mechanism of the PdxS PLP synthase subunit could be the reason for the limited evolution of the enzyme and why we could not identify a PdxS variant producing PLP independently of PdxT at low ammonium concentrations.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
16
|
Richts B, Commichau FM. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis. Appl Microbiol Biotechnol 2021; 105:2297-2305. [PMID: 33665688 PMCID: PMC7954711 DOI: 10.1007/s00253-021-11199-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Abstract The term vitamin B6 is a designation for the vitamers pyridoxal, pyridoxamine, pyridoxine and the respective phosphate esters pyridoxal-5′-phosphate (PLP), pyridoxamine-5′-phosphate and pyridoxine-5′-phosphate. Animals and humans are unable to synthesise vitamin B6. These organisms have to take up vitamin B6 with their diet. Therefore, vitamin B6 is of commercial interest as a food additive and for applications in the pharmaceutical industry. As yet, two naturally occurring routes for de novo synthesis of PLP are known. Both routes have been genetically engineered to obtain bacteria overproducing vitamin B6. Still, major genetic engineering efforts using the existing pathways are required for developing fermentation processes that could outcompete the chemical synthesis of vitamin B6. Recent suppressor screens using mutants of the Gram-negative and Gram-positive model bacteria Escherichia coli and Bacillus subtilis, respectively, carrying mutations in the native pathways or heterologous genes uncovered novel routes for PLP biosynthesis. These pathways consist of promiscuous enzymes and enzymes that are already involved in vitamin B6 biosynthesis. Thus, E. coli and B. subtilis contain multiple promiscuous enzymes causing a so-called underground metabolism allowing the bacteria to bypass disrupted vitamin B6 biosynthetic pathways. The suppressor screens also show the genomic plasticity of the bacteria to suppress a genetic lesion. We discuss the potential of the serendipitous pathways to serve as a starting point for the development of bacteria overproducing vitamin B6. Key points • Known vitamin B6 routes have been genetically engineered. • Underground metabolism facilitates the emergence of novel vitamin B6 biosynthetic pathways. • These pathways may be suitable to engineer bacteria overproducing vitamin B6.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany.
| |
Collapse
|
17
|
Han H, Xu B, Zeng W, Zhou J. Regulating the biosynthesis of pyridoxal 5'-phosphate with riboswitch to enhance L-DOPA production by Escherichia coli whole-cell biotransformation. J Biotechnol 2020; 321:68-77. [DOI: 10.1016/j.jbiotec.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
|
18
|
Ullah N, Andaleeb H, Mudogo CN, Falke S, Betzel C, Wrenger C. Solution Structures and Dynamic Assembly of the 24-Meric Plasmodial Pdx1-Pdx2 Complex. Int J Mol Sci 2020; 21:ijms21175971. [PMID: 32825141 PMCID: PMC7504066 DOI: 10.3390/ijms21175971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
Plasmodium species are protozoan parasites causing the deadly malaria disease. They have developed effective resistance mechanisms against most antimalarial medication, causing an urgent need to identify new antimalarial drug targets. Ideally, new drugs would be generated to specifically target the parasite with minimal or no toxicity to humans, requiring these drug targets to be distinctly different from the host’s metabolic processes or even absent in the host. In this context, the essential presence of vitamin B6 biosynthesis enzymes in Plasmodium, the pyridoxal phosphate (PLP) biosynthesis enzyme complex, and its absence in humans is recognized as a potential drug target. To characterize the PLP enzyme complex in terms of initial drug discovery investigations, we performed structural analysis of the Plasmodium vivax PLP synthase domain (Pdx1), glutaminase domain (Pdx2), and Pdx1–Pdx2 (Pdx) complex (PLP synthase complex) by utilizing complementary bioanalytical techniques, such as dynamic light scattering (DLS), X-ray solution scattering (SAXS), and electron microscopy (EM). Our investigations revealed a dodecameric Pdx1 and a monodispersed Pdx complex. Pdx2 was identified in monomeric and in different oligomeric states in solution. Interestingly, mixing oligomeric and polydisperse Pdx2 with dodecameric monodisperse Pdx1 resulted in a monodispersed Pdx complex. SAXS measurements revealed the low-resolution dodecameric structure of Pdx1, different oligomeric structures for Pdx2, and a ring-shaped dodecameric Pdx1 decorated with Pdx2, forming a heteromeric 24-meric Pdx complex.
Collapse
Affiliation(s)
- Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- Department of Biochemistry, Bahauddin Zakariya University, Multan-60800, Punjab, Pakistan
| | - Hina Andaleeb
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- Department of Biochemistry, Bahauddin Zakariya University, Multan-60800, Punjab, Pakistan
| | - Celestin Nzanzu Mudogo
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa BP834 KinXI, Congo
| | - Sven Falke
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
- Correspondence: (C.B.); (C.W.); Tel.: +49-(40)-8998-4744 (C.B.); +55-(11)-3091-7265 (C.W.)
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
- Correspondence: (C.B.); (C.W.); Tel.: +49-(40)-8998-4744 (C.B.); +55-(11)-3091-7265 (C.W.)
| |
Collapse
|
19
|
Britstein M, Cerrano C, Burgsdorf I, Zoccarato L, Kenny NJ, Riesgo A, Lalzar M, Steindler L. Sponge microbiome stability during environmental acquisition of highly specific photosymbionts. Environ Microbiol 2020; 22:3593-3607. [PMID: 32656901 DOI: 10.1111/1462-2920.15165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
Abstract
In this study, we used in situ transplantations to provide the first evidence of horizontal acquisition of cyanobacterial symbionts by a marine sponge. The acquisition of the symbionts by the host sponge Petrosia ficiformis, which was observed in distinct visible patches, appeared several months after transplantation and at different times on different sponge specimens. We further used 16S rRNA gene amplicon sequencing of genomic DNA (gDNA) and complementary DNA (cDNA) and metatranscriptomics to investigate how the acquisition of the symbiotic cyanobacterium Candidatus Synechococcus feldmannii perturbed the diverse microbiota associated with the host P. ficiformis. To our surprise, the microbiota remained relatively stable during cyanobacterial symbiont acquisition at both structural (gDNA content) and activity (cDNA expression) levels. At the transcriptomic level, photosynthesis was the primary function gained following the acquisition of cyanobacteria. Genes involved in carotene production and oxidative stress tolerance were among those highly expressed by Ca. S. feldmannii, suggesting that this symbiont may protect itself and its host from damaging light radiation.
Collapse
Affiliation(s)
- Maya Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Luca Zoccarato
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nathan J Kenny
- Life Sciences Department, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
20
|
Barra ALC, Dantas LDOC, Morão LG, Gutierrez RF, Polikarpov I, Wrenger C, Nascimento AS. Essential Metabolic Routes as a Way to ESKAPE From Antibiotic Resistance. Front Public Health 2020; 8:26. [PMID: 32257985 PMCID: PMC7093009 DOI: 10.3389/fpubh.2020.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2020] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance is a worldwide concern that requires a concerted action from physicians, patients, governmental agencies, and academia to prevent infections and the spread of resistance, track resistant bacteria, improve the use of current antibiotics, and develop new antibiotics. Despite the efforts spent so far, the current antibiotics in the market are restricted to only five general targets/pathways highlighting the need for basic research focusing on the discovery and evaluation of new potential targets. Here we interrogate two biosynthetic pathways as potentially druggable pathways in bacteria. The biosynthesis pathway for thiamine (vitamin B1), absent in humans, but found in many bacteria, including organisms in the group of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter sp.) and the biosynthesis pathway for pyridoxal 5'-phosphate and its vitamers (vitamin B6), found in S. aureus. Using current genomic data, we discuss the possibilities of inhibition of enzymes in the pathway and review the current state of the art in the scientific literature.
Collapse
Affiliation(s)
| | | | - Luana Galvão Morão
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Raíssa F. Gutierrez
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
21
|
Li Q, Tao Q, Teixeira JS, Shu-Wei Su M, Gänzle MG. Contribution of glutaminases to glutamine metabolism and acid resistance in Lactobacillus reuteri and other vertebrate host adapted lactobacilli. Food Microbiol 2019; 86:103343. [PMID: 31703887 DOI: 10.1016/j.fm.2019.103343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023]
Abstract
The bacterial conversion of glutamine to glutamate is catalyzed by glutamine-amidotransferases or glutaminases. Glutamine deamination contributes to the formation of the bioactive metabolites glutamate, γ-aminobutyrate (GABA) and γ-glutamyl peptides, and to acid resistance. This study aimed to investigate the distribution of glutaminase(s) in lactobacilli, and to evaluate their contribution in L. reuteri to amino acid metabolism and acid resistance. Phylogenetic analysis of the glutaminases gls1, gls2 and gls3 in the genus Lactobacillus demonstrated that glutaminase is exclusively present in host-adapted species of lactobacilli. The disruption gls1, gls2 and gls3 in L. reuteri 100-23 had only a limited effect on the conversion of glutamine to glutamate, GABA, or γ-glutamyl peptides in sourdough. The disruption of all glutaminases in L. reuteri 100-23Δgls1Δgls2Δgls3 but not disruption of gls2 and gls3 eliminated the protective effect of glutamine on the survival of the strain at pH 2.5. Glutamine also enhanced acid resistance of L. reuteri 100-23ΔgadB and L. taiwanensis 107q, strains without glutamate decarboxylase activity. Taken together, the study demonstrates that glutaminases of lactobacilli do not contribute substantially to glutamine metabolism but enhance acid resistance. Their exclusive presence in host-adapted lactobacilli provides an additional link between the adaptation of lactobacilli to specific habitats and their functionality when used as probiotics and starter cultures.
Collapse
Affiliation(s)
- Qing Li
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - QianYing Tao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Jaunana S Teixeira
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Marcia Shu-Wei Su
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.
| |
Collapse
|
22
|
McBride Z, Chen D, Lee Y, Aryal UK, Xie J, Szymanski DB. A Label-free Mass Spectrometry Method to Predict Endogenous Protein Complex Composition. Mol Cell Proteomics 2019; 18:1588-1606. [PMID: 31186290 PMCID: PMC6683005 DOI: 10.1074/mcp.ra119.001400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Information on the composition of protein complexes can accelerate mechanistic analyses of cellular systems. Protein complex composition identifies genes that function together and provides clues about regulation within and between cellular pathways. Cytosolic protein complexes control metabolic flux, signal transduction, protein abundance, and the activities of cytoskeletal and endomembrane systems. It has been estimated that one third of all cytosolic proteins in leaves exist in an oligomeric state, yet the composition of nearly all remain unknown. Subunits of stable protein complexes copurify, and combinations of mass-spectrometry-based protein correlation profiling and bioinformatic analyses have been used to predict protein complex subunits. Because of uncertainty regarding the power or availability of bioinformatic data to inform protein complex predictions across diverse species, it would be highly advantageous to predict composition based on elution profile data alone. Here we describe a mass spectrometry-based protein correlation profiling approach to predict the composition of hundreds of protein complexes based on biochemical data. Extracts were obtained from an intact organ and separated in parallel by size and charge under nondenaturing conditions. More than 1000 proteins with reproducible elution profiles across all replicates were subjected to clustering analyses. The resulting dendrograms were used to predict the composition of known and novel protein complexes, including many that are likely to assemble through self-interaction. An array of validation experiments demonstrated that this new method can drive protein complex discovery, guide hypothesis testing, and enable systems-level analyses of protein complex dynamics in any organism with a sequenced genome.
Collapse
Affiliation(s)
- Zachary McBride
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
| | - Donglai Chen
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Youngwoo Lee
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
| | - Uma K Aryal
- ¶Purdue Proteomics Facility, Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Jun Xie
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Daniel B Szymanski
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana; ‖Department of Biological Sciences,Purdue University, West Lafayette, Indiana.
| |
Collapse
|
23
|
Mapping the Allosteric Communication Network of Aminodeoxychorismate Synthase. J Mol Biol 2019; 431:2718-2728. [DOI: 10.1016/j.jmb.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
|
24
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
25
|
Robinson GC, Kaufmann M, Roux C, Martinez-Font J, Hothorn M, Thore S, Fitzpatrick TB. Crystal structure of the pseudoenzyme PDX1.2 in complex with its cognate enzyme PDX1.3: a total eclipse. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:400-415. [PMID: 30988257 DOI: 10.1107/s2059798319002912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022]
Abstract
Pseudoenzymes have burst into the limelight recently as they provide another dimension to regulation of cellular protein activity. In the eudicot plant lineage, the pseudoenzyme PDX1.2 and its cognate enzyme PDX1.3 interact to regulate vitamin B6 biosynthesis. This partnership is important for plant fitness during environmental stress, in particular heat stress. PDX1.2 increases the catalytic activity of PDX1.3, with an overall increase in vitamin B6 biosynthesis. However, the mechanism by which this is achieved is not known. In this study, the Arabidopsis thaliana PDX1.2-PDX1.3 complex was crystallized in the absence and presence of ligands, and attempts were made to solve the X-ray structures. Three PDX1.2-PDX1.3 complex structures are presented: the PDX1.2-PDX1.3 complex as isolated, PDX1.2-PDX1.3-intermediate (in the presence of substrates) and a catalytically inactive complex, PDX1.2-PDX1.3-K97A. Data were also collected from a crystal of a selenomethionine-substituted complex, PDX1.2-PDX1.3-SeMet. In all cases the protein complexes assemble as dodecamers, similar to the recently reported individual PDX1.3 homomer. Intriguingly, the crystals of the protein complex are statistically disordered owing to the high degree of structural similarity of the individual PDX1 proteins, such that the resulting configuration is a composite of both proteins. Despite the differential methionine content, selenomethionine substitution of the PDX1.2-PDX1.3 complex did not resolve the problem. Furthermore, a comparison of the catalytically competent complex with a noncatalytic complex did not facilitate the resolution of the individual proteins. Interestingly, another catalytic lysine in PDX1.3 (Lys165) that pivots between the two active sites in PDX1 (P1 and P2), and the corresponding glutamine (Gln169) in PDX1.2, point towards P1, which is distinctive to the initial priming for catalytic action. This state was previously only observed upon trapping PDX1.3 in a catalytically operational state, as Lys165 points towards P2 in the resting state. Overall, the study shows that the integration of PDX1.2 into a heteromeric dodecamer assembly with PDX1.3 does not cause a major structural deviation from the overall architecture of the homomeric complex. Nonetheless, the structure of the PDX1.2-PDX1.3 complex highlights enhanced flexibility in key catalytic regions for the initial steps of vitamin B6 biosynthesis. This report highlights what may be an intrinsic limitation of X-ray crystallography in the structural investigation of pseudoenzymes.
Collapse
Affiliation(s)
- Graham C Robinson
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Markus Kaufmann
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Céline Roux
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Jacobo Martinez-Font
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
26
|
SNZ3 Encodes a PLP Synthase Involved in Thiamine Synthesis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:335-344. [PMID: 30498136 PMCID: PMC6385983 DOI: 10.1534/g3.118.200831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyridoxal 5′-phosphate (the active form of vitamin B6) is a cofactor that is important for a broad number of biochemical reactions and is essential for all forms of life. Organisms that can synthesize pyridoxal 5′-phosphate use either the deoxyxylulose phosphate-dependent or -independent pathway, the latter is encoded by a two-component pyridoxal 5′-phosphate synthase. Saccharomyces cerevisiae contains three paralogs of the two-component SNZ/SNO pyridoxal 5′-phosphate synthase. Past work identified the biochemical activity of Snz1p, Sno1p and provided in vivo data that SNZ1 was involved in pyridoxal 5′-phosphate biosynthesis. Snz2p and Snz3p were considered redundant isozymes and no growth condition requiring their activity was reported. Genetic data herein showed that either SNZ2 or SNZ3 are required for efficient thiamine biosynthesis in Saccharomyces cerevisiae. Further, SNZ2 or SNZ3 alone could satisfy the cellular requirement for pyridoxal 5′-phosphate (and thiamine), while SNZ1 was sufficient for pyridoxal 5′-phosphate synthesis only if thiamine was provided. qRT-PCR analysis determined that SNZ2,3 are repressed ten-fold by the presence thiamine. In total, the data were consistent with a requirement for PLP in thiamine synthesis, perhaps in the Thi5p enzyme, that could only be satisfied by SNZ2 or SNZ3. Additional data showed that Snz3p is a pyridoxal 5′-phosphate synthase in vitro and is sufficient to satisfy the pyridoxal 5′-phosphate requirement in Salmonella enterica when the medium has excess ammonia.
Collapse
|
27
|
Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells 2018; 7:cells7070084. [PMID: 30037155 PMCID: PMC6071262 DOI: 10.3390/cells7070084] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Vitamin B6 is one of the most central molecules in cells of living organisms. It is a critical co-factor for a diverse range of biochemical reactions that regulate basic cellular metabolism, which impact overall physiology. In the last several years, major progress has been accomplished on various aspects of vitamin B6 biology. Consequently, this review goes beyond the classical role of vitamin B6 as a cofactor to highlight new structural and regulatory information that further defines how the vitamin is synthesized and controlled in the cell. We also discuss broader applications of the vitamin related to human health, pathogen resistance, and abiotic stress tolerance. Overall, the information assembled shall provide helpful insight on top of what is currently known about the vitamin, along with addressing currently open questions in the field to highlight possible approaches vitamin B6 research may take in the future.
Collapse
Affiliation(s)
- Marcelina Parra
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Seth Stahl
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Hanjo Hellmann
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| |
Collapse
|
28
|
Leisico F, V Vieira D, Figueiredo TA, Silva M, Cabrita EJ, Sobral RG, Ludovice AM, Trincão J, Romão MJ, de Lencastre H, Santos-Silva T. First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD. Sci Rep 2018; 8:5313. [PMID: 29593310 PMCID: PMC5871853 DOI: 10.1038/s41598-018-22986-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/27/2018] [Indexed: 12/05/2022] Open
Abstract
Gram-positive bacteria homeostasis and antibiotic resistance mechanisms are dependent on the intricate architecture of the cell wall, where amidated peptidoglycan plays an important role. The amidation reaction is carried out by the bi-enzymatic complex MurT-GatD, for which biochemical and structural information is very scarce. In this work, we report the first crystal structure of the glutamine amidotransferase member of this complex, GatD from Staphylococcus aureus, at 1.85 Å resolution. A glutamine molecule is found close to the active site funnel, hydrogen-bonded to the conserved R128. In vitro functional studies using 1H-NMR spectroscopy showed that S. aureus MurT-GatD complex has glutaminase activity even in the absence of lipid II, the MurT substrate. In addition, we produced R128A, C94A and H189A mutants, which were totally inactive for glutamine deamidation, revealing their essential role in substrate sequestration and catalytic reaction. GatD from S. aureus and other pathogenic bacteria share high identity to enzymes involved in cobalamin biosynthesis, which can be grouped in a new sub-family of glutamine amidotransferases. Given the ubiquitous presence of GatD, these results provide significant insights into the molecular basis of the so far undisclosed amidation mechanism, contributing to the development of alternative therapeutics to fight infections.
Collapse
Affiliation(s)
- Francisco Leisico
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diana V Vieira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Oxford Protein Production Facility, Research Complex at Harwell, Didcot, United Kingdom
| | - Teresa A Figueiredo
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Laboratory of Molecular Genetics, Microbiology of Human Pathogens Unit, Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa, Oeiras, Portugal
| | - Micael Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rita G Sobral
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana Madalena Ludovice
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Maria João Romão
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Microbiology of Human Pathogens Unit, Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa, Oeiras, Portugal.
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA.
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
29
|
Sousa JR, Silveira CM, Fontes P, Roma-Rodrigues C, Fernandes AR, Van Driessche G, Devreese B, Moura I, Moura JJ, Almeida MG. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1455-1469. [DOI: 10.1016/j.bbapap.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/27/2022]
|
30
|
Aryal UK, McBride Z, Chen D, Xie J, Szymanski DB. Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling. J Proteomics 2017. [DOI: 10.1016/j.jprot.2017.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Yang YZ, Ding S, Wang Y, Li CL, Shen Y, Meeley R, McCarty DR, Tan BC. Small kernel2 Encodes a Glutaminase in Vitamin B 6 Biosynthesis Essential for Maize Seed Development. PLANT PHYSIOLOGY 2017; 174:1127-1138. [PMID: 28408540 PMCID: PMC5462003 DOI: 10.1104/pp.16.01295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 04/11/2017] [Indexed: 05/06/2023]
Abstract
Vitamin B6, an essential cofactor for a range of biochemical reactions and a potent antioxidant, plays important roles in plant growth, development, and stress tolerance. Vitamin B6 deficiency causes embryo lethality in Arabidopsis (Arabidopsis thaliana), but the specific role of vitamin B6 biosynthesis in endosperm development has not been fully addressed, especially in monocot crops, where endosperm constitutes the major portion of the grain. Through molecular characterization of a small kernel2 (smk2) mutant in maize, we reveal that vitamin B6 has differential effects on embryogenesis and endosperm development in maize. The B6 vitamer pyridoxal 5'-phosphate (PLP) is drastically reduced in both the smk2 embryo and the endosperm. However, whereas embryogenesis of the smk2 mutant is arrested at the transition stage, endosperm formation is nearly normal. Cloning reveals that Smk2 encodes the glutaminase subunit of the PLP synthase complex involved in vitamin B6 biosynthesis de novo. Smk2 partially complements the Arabidopsis vitamin B6-deficient mutant pdx2.1 and Saccharomyces cerevisiae pyridoxine auxotrophic mutant MML21. Smk2 is constitutively expressed in the maize plant, including developing embryos. Analysis of B6 vitamers indicates that the endosperm accumulates a large amount of pyridoxamine 5'-phosphate (PMP). These results indicate that vitamin B6 is essential to embryogenesis but has a reduced role in endosperm development in maize. The vitamin B6 required for seed development is synthesized in the seed, and the endosperm accumulates PMP probably as a storage form of vitamin B6.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Shuo Ding
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Yong Wang
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Cui-Ling Li
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Yun Shen
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Robert Meeley
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Donald R McCarty
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.)
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| | - Bao-Cai Tan
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.);
- DuPont Pioneer AgBiotech Research, Johnston, Iowa 50131-1004 (R.M.); and
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 (D.R.M.)
| |
Collapse
|
32
|
Xie F, Li G, Wang Y, Zhang Y, Zhou L, Wang C, Liu S, Liu S, Wang C. Pyridoxal phosphate synthases PdxS/PdxT are required for Actinobacillus pleuropneumoniae viability, stress tolerance and virulence. PLoS One 2017; 12:e0176374. [PMID: 28448619 PMCID: PMC5407770 DOI: 10.1371/journal.pone.0176374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/10/2017] [Indexed: 11/29/2022] Open
Abstract
Pyridoxal 5’-phosphate (PLP) is an essential cofactor for numerous enzymes involved in a diversity of cellular processes in living organisms. Previous analysis of the Actinobacillus pleuropneumoniae S-8 genome sequence revealed the presence of pdxS and pdxT genes, which are implicated in deoxyxylulose 5-phosphate (DXP)-independent pathway of PLP biosynthesis; however, little is known about their roles in A. pleuropneumoniae pathogenicity. Our data demonstrated that A. pleuropneumoniae could synthesize PLP by PdxS and PdxT enzymes. Disruption of the pdxS and pdxT genes rendered the pathogen auxotrophic for PLP, and the defective growth as a result of these mutants was chemically compensated by the addition of PLP, suggesting the importance of PLP production for A. pleuropneumoniae growth and viability. Additionally, the pdxS and pdxT deletion mutants displayed morphological defects as indicated by irregular and aberrant shapes in the absence of PLP. The reduced growth of the pdxS and pdxT deletion mutants under osmotic and oxidative stress conditions suggests that the PLP synthases PdxS/PdxT are associated with the stress tolerance of A. pleuropneumoniae. Furthermore, disruption of the PLP biosynthesis pathway led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. The data presented in this study reveal the critical role of PLP synthases PdxS/PdxT in viability, stress tolerance, and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yalei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chengcheng Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Shuanghong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- * E-mail:
| |
Collapse
|
33
|
Rodrigues MJ, Windeisen V, Zhang Y, Guédez G, Weber S, Strohmeier M, Hanes JW, Royant A, Evans G, Sinning I, Ealick SE, Begley TP, Tews I. Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis. Nat Chem Biol 2017; 13:290-294. [PMID: 28092359 PMCID: PMC6078385 DOI: 10.1038/nchembio.2273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/11/2016] [Indexed: 11/08/2022]
Abstract
Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand β6 of the Pdx1 (βα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.
Collapse
Affiliation(s)
- Matthew J Rodrigues
- Biological Sciences, University of Southampton, Southampton, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Volker Windeisen
- Biological Sciences, University of Southampton, Southampton, UK
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Gabriela Guédez
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Stefan Weber
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Marco Strohmeier
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Jeremiah W Hanes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
- Pacific Biosciences, Menlo Park, California, USA
| | - Antoine Royant
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, UK
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
34
|
Tramonti A, Milano T, Nardella C, di Salvo ML, Pascarella S, Contestabile R. Salmonella typhimurium PtsJ is a novel MocR-like transcriptional repressor involved in regulating the vitamin B 6 salvage pathway. FEBS J 2017; 284:466-484. [PMID: 27987384 DOI: 10.1111/febs.13994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
The vitamin B6 salvage pathway, involving pyridoxine 5'-phosphate oxidase (PNPOx) and pyridoxal kinase (PLK), recycles B6 vitamers from nutrients and protein turnover to produce pyridoxal 5'-phosphate (PLP), the catalytically active form of the vitamin. Regulation of this pathway, widespread in living organisms including humans and many bacteria, is very important to vitamin B6 homeostasis but poorly understood. Although some information is available on the enzymatic regulation of PNPOx and PLK, little is known on their regulation at the transcriptional level. In the present work, we identified a new MocR-like regulator, PtsJ from Salmonella typhimurium, which controls the expression of the pdxK gene encoding one of the two PLKs expressed in this organism (PLK1). Analysis of pdxK expression in a ptsJ knockout strain demonstrated that PtsJ acts as a transcriptional repressor. This is the first case of a MocR-like regulator acting as repressor of its target gene. Expression and purification of PtsJ allowed a detailed characterisation of its effector and DNA-binding properties. PLP is the only B6 vitamer acting as effector molecule for PtsJ. A DNA-binding region composed of four repeated nucleotide sequences is responsible for binding of PtsJ to its target promoter. Analysis of binding stoichiometry revealed that protein subunits/DNA molar ratio varies from 4 : 1 to 2 : 1, depending on the presence or absence of PLP. Structural characteristics of DNA transcriptional factor-binding sites suggest that PtsJ binds DNA according to a different model with respect to other characterised members of the MocR subgroup.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
35
|
Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol Adv 2016; 35:31-40. [PMID: 27890703 DOI: 10.1016/j.biotechadv.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Vitamin B6 is a designation for the six vitamers pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate, and pyridoxamine. PLP, being the most important B6 vitamer, serves as a cofactor for many proteins and enzymes. In contrast to other organisms, animals and humans have to ingest vitamin B6 with their food. Several disorders are associated with vitamin B6 deficiency. Moreover, pharmaceuticals interfere with metabolism of the cofactor, which also results in vitamin B6 deficiency. Therefore, vitamin B6 is a valuable compound for the pharmaceutical and the food industry. Although vitamin B6 is currently chemically synthesized, there is considerable interest on the industrial side to shift from chemical processes to sustainable fermentation technologies. Here, we review recent findings regarding biosynthesis and homeostasis of vitamin B6 and describe the approaches that have been made in the past to develop microbial production processes. Moreover, we will describe novel routes for vitamin B6 biosynthesis and discuss their potential for engineering bacteria that overproduce the commercially valuable substance. We also highlight bottlenecks of the vitamin B6 biosynthetic pathways and propose strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University of Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
36
|
Structural definition of the lysine swing in Arabidopsis thaliana PDX1: Intermediate channeling facilitating vitamin B6 biosynthesis. Proc Natl Acad Sci U S A 2016; 113:E5821-E5829. [PMID: 27647886 DOI: 10.1073/pnas.1608125113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vitamin B6 is indispensible for all organisms, notably as the coenzyme form pyridoxal 5'-phosphate. Plants make the compound de novo using a relatively simple pathway comprising pyridoxine synthase (PDX1) and pyridoxine glutaminase (PDX2). PDX1 is remarkable given its multifaceted synthetic ability to carry out isomerization, imine formation, ammonia addition, aldol-type condensation, cyclization, and aromatization, all in the absence of coenzymes or recruitment of specialized domains. Two active sites (P1 and P2) facilitate the plethora of reactions, but it is not known how the two are coordinated and, moreover, if intermediates are tunneled between active sites. Here we present X-ray structures of PDX1.3 from Arabidopsis thaliana, the overall architecture of which is a dodecamer of (β/α)8 barrels, similar to the majority of its homologs. An apoenzyme structure revealed that features around the P1 active site in PDX1.3 have adopted inward conformations consistent with a catalytically primed state and delineated a substrate accessible cavity above this active site, not noted in other reported structures. Comparison with the structure of PDX1.3 with an intermediate along the catalytic trajectory demonstrated that a lysine residue swings from the distinct P2 site to the P1 site at this stage of catalysis and is held in place by a molecular catch and pin, positioning it for transfer of serviced substrate back to P2. The study shows that a simple lysine swinging arm coordinates use of chemically disparate sites, dispensing with the need for additional factors, and provides an elegant example of solving complex chemistry to generate an essential metabolite.
Collapse
|
37
|
Taschner M, Weber K, Mourão A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 2016; 35:773-90. [PMID: 26912722 PMCID: PMC4818760 DOI: 10.15252/embj.201593164] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Mayanka Awasthi
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Marc Stiegler
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
38
|
Oberhardt MA, Zarecki R, Reshef L, Xia F, Duran-Frigola M, Schreiber R, Henry CS, Ben-Tal N, Dwyer DJ, Gophna U, Ruppin E. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5'-Phosphate Production in E. coli. PLoS Comput Biol 2016; 12:e1004705. [PMID: 26821166 PMCID: PMC4731195 DOI: 10.1371/journal.pcbi.1004705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous 'replacer' gene rescues lethality caused by inactivation of a 'target' gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5'-phosphate (the active form of Vitamin B6), which we validate experimentally via multicopy suppression. We perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.
Collapse
Affiliation(s)
- Matthew A. Oberhardt
- School of Computer Sciences and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Bioinformatics and Computational Biology, Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MAO); (ER)
| | - Raphy Zarecki
- School of Computer Sciences and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Reshef
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Fangfang Xia
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Rachel Schreiber
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Christopher S. Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel J. Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, Department of Bioengineering, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- School of Computer Sciences and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Center for Bioinformatics and Computational Biology, Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MAO); (ER)
| |
Collapse
|
39
|
Ma W, Cao W, Zhang B, Chen K, Liu Q, Li Y, Ouyang P. Engineering a pyridoxal 5'-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Sci Rep 2015; 5:15630. [PMID: 26490441 PMCID: PMC4614675 DOI: 10.1038/srep15630] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/29/2015] [Indexed: 01/24/2023] Open
Abstract
Although the routes of de novo pyridoxal 5′-phosphate (PLP) biosynthesis have been well described, studies of the engineering of an intracellular PLP supply are limited, and the effects of cellular PLP levels on PLP-dependent enzyme-based whole-cell biocatalyst activity have not been described. To investigate the effects of PLP cofactor availability on whole-cell biocatalysis, the ribose 5-phosphate (R5P)-dependent pathway genes pdxS and pdxT of Bacillus subtilis were introduced into the lysine decarboxylase (CadA)-overexpressing Escherichia coli strain BL-CadA. This strain was then used as a whole-cell biocatalyst for cadaverine production from L-lysine. Co-expression strategies were evaluated, and the culture medium was optimised to improve the biocatalyst performance. As a result, the intracellular PLP concentration reached 1144 nmol/gDCW, and a specific cadaverine productivity of 25 g/gDCW/h was achieved; these values were 2.4-fold and 2.9-fold higher than those of unmodified BL-CadA, respectively. Additionally, the resulting strain AST3 showed a cadaverine titre (p = 0.143, α = 0.05) similar to that of the BL-CadA strain with the addition of 0.1 mM PLP. These approaches for improving intracellular PLP levels to enhance whole-cell lysine bioconversion activity show great promise for the engineering of a PLP cofactor to optimise whole-cell biocatalysis.
Collapse
Affiliation(s)
- Weichao Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, P.R. China
| | - Weijia Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Bowen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Quanzhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
40
|
Tramonti A, Fiascarelli A, Milano T, di Salvo ML, Nogués I, Pascarella S, Contestabile R. Molecular mechanism of PdxR – a transcriptional activator involved in the regulation of vitamin B6 biosynthesis in the probiotic bacterium Bacillus clausii. FEBS J 2015; 282:2966-84. [PMID: 26059598 DOI: 10.1111/febs.13338] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 01/11/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), the well-known active form of vitamin B6 , is an essential enzyme cofactor involved in a large number of metabolic processes. PLP levels need to be finely tuned in response to cell requirements; however, little is known about the regulation of PLP biosynthesis and recycling pathways. The transcriptional regulator PdxR activates transcription of the pdxST genes encoding PLP synthase. It is characterized by an N-terminal helix-turn-helix motif that binds DNA and an effector-binding C-terminal domain homologous to PLP-dependent enzymes. Although it is known that PLP acts as an anti-activator, the mechanism of action of PdxR is unknown. In the present study, we analyzed the biochemical and DNA-binding properties of PdxR from the probiotic Bacillus clausii. Spectroscopic measurements showed that PLP is the only B6 vitamer that acts as an effector molecule of PdxR. Binding of PLP to PdxR determines a protein conformational change, as detected by gel filtration chromatography and limited proteolysis experiments. We showed that two direct repeats and one inverted repeat are present in the DNA promoter region and PdxR is able to bind DNA fragments containing any combination of two of them. However, when PLP binds to PdxR, it modifies the DNA-binding properties of the protein, making it selective for inverted repeats. A molecular mechanism is proposed in which the two different DNA binding modalities of PdxR determined by the presence or absence of PLP are responsible for the control of pdxST transcription.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Alessio Fiascarelli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Isabel Nogués
- Istituto di Biologia Ambientale e Forestale, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
41
|
Commichau FM, Alzinger A, Sande R, Bretzel W, Reuß DR, Dormeyer M, Chevreux B, Schuldes J, Daniel R, Akeroyd M, Wyss M, Hohmann HP, Prágai Z. Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-l-threonine to pyridoxine. Metab Eng 2015; 29:196-207. [DOI: 10.1016/j.ymben.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022]
|
42
|
Defelipe LA, Lanzarotti E, Gauto D, Marti MA, Turjanski AG. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families. PLoS Comput Biol 2015; 11:e1004051. [PMID: 25741692 PMCID: PMC4351059 DOI: 10.1371/journal.pcbi.1004051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023] Open
Abstract
Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. Cysteine oxidation is emerging as a relevant regulatory mechanism of enzymatic function in the cell. Many proteins are protected from over oxidation by reactive oxygen species by the formation of a cyclic sulfenyl amide. Understanding how cyclic sulfenyl amide is formed and its dependence on protein structure is not only a basic question but necessary to predict which proteins may auto protect from over oxidation We describe a structural motif, which includes cysteine residues with a constrained conformation in a “forbidden” region of the Ramachandran plot plus a Beta-Cys-loop-helix motif, which has a reactive low pKa Cysteine and also enables to form the cyclic sulfenyl amide with a low activation barrier. Our QM/MM computations show that the cyclization reaction only occurs if the “forbidden” conformation is acquired by the Cysteine residue. This structural motif was identified at least in 7 PFAM families and 145 proteins with solved structure, showing that a large number of proteins could have the ability to go through such cyclic product preventing irreversible oxidation.
Collapse
Affiliation(s)
- Lucas A. Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Gauto
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Marcelo A. Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
- * E-mail: (MAM); (AGT)
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
- * E-mail: (MAM); (AGT)
| |
Collapse
|
43
|
Smith AM, Brown WC, Harms E, Smith JL. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase. J Biol Chem 2015; 290:5226-39. [PMID: 25568319 DOI: 10.1074/jbc.m114.626382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.
Collapse
Affiliation(s)
- Amber Marie Smith
- From the Department of Biological Chemistry, Life Sciences Institute
| | - William Clay Brown
- Life Sciences Institute, Center for Structural Biology, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Etti Harms
- the Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Janet L Smith
- From the Department of Biological Chemistry, Life Sciences Institute, Center for Structural Biology, University of Michigan, Ann Arbor, Michigan 48109 and
| |
Collapse
|
44
|
Boycheva S, Dominguez A, Rolcik J, Boller T, Fitzpatrick TB. Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:102-17. [PMID: 25475669 PMCID: PMC4281000 DOI: 10.1104/pp.114.247767] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/01/2014] [Indexed: 05/20/2023]
Abstract
Vitamin B(6) (pyridoxal 5'-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies.
Collapse
Affiliation(s)
- Svetlana Boycheva
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.)
| | - Ana Dominguez
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.)
| | - Jakub Rolcik
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.)
| | - Thomas Boller
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.)
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (S.B., T.B.F.);Institute of Botany, University of Basel, 4056 Basel, Switzerland (A.D., T.B.); andLaboratory of Growth Regulators, Palacky University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (J.R.)
| |
Collapse
|
45
|
Leuendorf JE, Mooney SL, Chen L, Hellmann HA. Arabidopsis thaliana PDX1.2 is critical for embryo development and heat shock tolerance. PLANTA 2014; 240:137-46. [PMID: 24748553 DOI: 10.1007/s00425-014-2069-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/20/2014] [Indexed: 05/15/2023]
Abstract
PDX1.2 is expressed in the basal part of the globular-stage embryo, and plays critical roles in development, hypocotyl elongation, and stress response. The Arabidopsis thaliana PDX1.2 protein belongs to a small family of three members. While PDX1.1 and PDX1.3 have been extensively described and are well established to function in vitamin B6 biosynthesis, the biological role of PDX1.2 still remains elusive. Here, we show that PDX1.2 is expressed early in embryo development, and that heat shock treatment causes a strong up-regulation of the gene. Using a combined genetic approach of T-DNA insertion lines and expression of artificial micro RNAs, we can show that PDX1.2 is critically required for embryo development, and for normal hypocotyl elongation. Plants with reduced PDX1.2 expression also display reduced primary root growth after heat shock treatments. The work overall provides a set of important new findings that give greater insights into the developmental role of PDX1.2 in plants.
Collapse
|
46
|
Commichau FM, Alzinger A, Sande R, Bretzel W, Meyer FM, Chevreux B, Wyss M, Hohmann HP, Prágai Z. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. Metab Eng 2014; 25:38-49. [PMID: 24972371 DOI: 10.1016/j.ymben.2014.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022]
Abstract
Vitamin B6 is a designation for the vitamers pyridoxine, pyridoxal, pyridoxamine, and their respective 5'-phosphates. Pyridoxal 5'-phosphate, the biologically most-important vitamer, serves as a cofactor for many enzymes, mainly active in amino acid metabolism. While microorganisms and plants are capable of synthesizing vitamin B6, other organisms have to ingest it. The vitamer pyridoxine, which is used as a dietary supplement for animals and humans is commercially produced by chemical processes. The development of potentially more cost-effective and more sustainable fermentation processes for pyridoxine production is of interest for the biotech industry. We describe the generation and characterization of a Bacillus subtilis pyridoxine production strain overexpressing five genes of a non-native deoxyxylulose 5'-phosphate-dependent vitamin B6 pathway. The genes, derived from Escherichia coli and Sinorhizobium meliloti, were assembled to two expression cassettes and introduced into the B. subtilis chromosome. in vivo complementation assays revealed that the enzymes of this pathway were functionally expressed and active. The resulting strain produced 14mg/l pyridoxine in a small-scale production assay. By optimizing the growth conditions and co-feeding of 4-hydroxy-threonine and deoxyxylulose the productivity was increased to 54mg/l. Although relative protein quantification revealed bottlenecks in the heterologous pathway that remain to be eliminated, the final strain provides a promising basis to further enhance the production of pyridoxine using B. subtilis.
Collapse
Affiliation(s)
- Fabian M Commichau
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland; Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Ariane Alzinger
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Rafael Sande
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Werner Bretzel
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Frederik M Meyer
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Bastien Chevreux
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Markus Wyss
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Hans-Peter Hohmann
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Zoltán Prágai
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland.
| |
Collapse
|
47
|
Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guérin ΔureC::hly Δpdx1 in mice. mBio 2014; 5:e01262-14. [PMID: 24895310 PMCID: PMC4049106 DOI: 10.1128/mbio.01262-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The only tuberculosis (TB) vaccine in use today, bacillus Calmette-Guérin (BCG), provides insufficient protection and can cause adverse events in immunocompromised individuals, such as BCGosis in HIV(+) newborns. We previously reported improved preclinical efficacy and safety of the recombinant vaccine candidate BCG ΔureC::hly, which secretes the pore-forming listeriolysin O of Listeria monocytogenes. Here, we evaluate a second-generation construct, BCG ΔureC::hly Δpdx1, which is deficient in pyridoxine synthase, an enzyme that is required for biosynthesis of the essential cofactor vitamin B6. This candidate was auxotrophic for vitamin B6 in a concentration-dependent manner, as was its survival in vivo. BCG ΔureC::hly Δpdx1 showed markedly restricted dissemination in subcutaneously vaccinated mice, which was ameliorated by dietary supplementation with vitamin B6. The construct was safer in severe combined immunodeficiency mice than the parental BCG ΔureC::hly. A prompt innate immune response to vaccination, measured by secretion of interleukin-6, granulocyte colony-stimulating factor, keratinocyte cytokine, and macrophage inflammatory protein-1α, remained independent of vitamin B6 administration, while acquired immunity, notably stimulation of antigen-specific CD4 T cells, B cells, and memory T cells, was contingent on vitamin B6 administration. The early protection provided by BCG ΔureC::hly Δpdx1 in a murine Mycobacterium tuberculosis aerosol challenge model consistently depended on vitamin B6 supplementation. Prime-boost vaccination increased protection against the canonical M. tuberculosis H37Rv laboratory strain and a clinical isolate of the Beijing/W lineage. We demonstrate that the efficacy of a profoundly attenuated recombinant BCG vaccine construct can be modulated by external administration of a small molecule. This principle fosters the development of safer vaccines required for immunocompromised individuals, notably HIV(+) infants. IMPORTANCE Mycobacterium tuberculosis can synthesize the essential cofactor vitamin B6, while humans depend on dietary supplementation. Unlike the lipophilic vitamins A, D, and E, water-soluble vitamin B6 is well tolerated at high doses. We generated a vitamin B6 auxotroph of the phase II clinical tuberculosis vaccine candidate bacillus Calmette-Guérin ΔureC::hly. The next-generation candidate was profoundly attenuated compared to the parental strain. Adaptive immunity and protection in mice consistently depended on increased dietary vitamin B6 above the daily required dose. Control of vaccine efficacy via food supplements such as vitamin B6 could provide a fast track toward improved safety. Safer vaccines are urgently needed for HIV-infected individuals at high risk of adverse events in response to live vaccines.
Collapse
|
48
|
Moccand C, Boycheva S, Surriabre P, Tambasco-Studart M, Raschke M, Kaufmann M, Fitzpatrick TB. The pseudoenzyme PDX1.2 boosts vitamin B6 biosynthesis under heat and oxidative stress in Arabidopsis. J Biol Chem 2014; 289:8203-16. [PMID: 24505140 DOI: 10.1074/jbc.m113.540526] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vitamin B6 is an indispensable compound for survival, well known as a cofactor for numerous central metabolic enzymes and more recently for playing a role in several stress responses, particularly in association with oxidative stress. Regulatory aspects for the use of the vitamin in these roles are not known. Here we show that certain plants carry a pseudoenzyme (PDX1.2), which is involved in regulating vitamin B6 biosynthesis de novo under stress conditions. Specifically, we demonstrate that Arabidopsis PDX1.2 enhances the activity of its catalytic paralogs by forming a heterododecameric complex. PDX1.2 is strongly induced by heat as well as singlet oxygen stress, concomitant with an enhancement of vitamin B6 production. Analysis of pdx1.2 knockdown lines demonstrates that boosting vitamin B6 content is dependent on PDX1.2, revealing that this pseudoenzyme acts as a positive regulator of vitamin B6 biosynthesis during such stress conditions in plants.
Collapse
Affiliation(s)
- Cyril Moccand
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and
| | | | | | | | | | | | | |
Collapse
|
49
|
Oliver JC, Gudihal R, Burgner JW, Pedley AM, Zwierko AT, Davisson VJ, Linger RS. Conformational changes involving ammonia tunnel formation and allosteric control in GMP synthetase. Arch Biochem Biophys 2014; 545:22-32. [PMID: 24434004 DOI: 10.1016/j.abb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
GMP synthetase is the glutamine amidotransferase that catalyzes the final step in the guanylate branch of de novo purine biosynthesis. Conformational changes are required to efficiently couple distal active sites in the protein; however, the nature of these changes has remained elusive. Structural information derived from both limited proteolysis and sedimentation velocity experiments support the hypothesis of nucleotide-induced loop- and domain-closure in the protein. These results were combined with information from sequence conservation and precedents from other glutamine amidotransferases to develop the first structural model of GMPS in a closed, active state. In analyzing this Catalytic model, an interdomain salt bridge was identified residing in the same location as seen in other triad glutamine amidotransferases. Using mutagenesis and kinetic analysis, the salt bridge between H186 and E383 was shown to function as a connection between the two active sites. Mutations at these residues uncoupled the two half-reactions of the enzyme. The chemical events of nucleotide binding initiate a series of conformational changes that culminate in the establishment of a tunnel for ammonia as well as an activated glutaminase catalytic site. The results of this study provide a clearer understanding of the allostery of GMPS, where, for the first time, key substrate binding and interdomain contacts are modeled and analyzed.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Ravidra Gudihal
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - John W Burgner
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, United States
| | - Anthony M Pedley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alexander T Zwierko
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Rebecca S Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States.
| |
Collapse
|
50
|
Vitamin B6-dependent enzymes in the human malaria parasite Plasmodium falciparum: a druggable target? BIOMED RESEARCH INTERNATIONAL 2014; 2014:108516. [PMID: 24524072 PMCID: PMC3912857 DOI: 10.1155/2014/108516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/24/2013] [Accepted: 11/28/2013] [Indexed: 11/17/2022]
Abstract
Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism).
Collapse
|