1
|
Gao Y, Zhu Y, Awakawa T, Abe I. Unusual cysteine modifications in natural product biosynthesis. RSC Chem Biol 2024; 5:293-311. [PMID: 38576726 PMCID: PMC10989515 DOI: 10.1039/d4cb00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
l-Cysteine is a highly reactive amino acid that is modified into a variety of chemical structures, including cysteine sulfinic acid in human metabolic pathways, and sulfur-containing scaffolds of amino acids, alkaloids, and peptides in natural product biosynthesis. Among the modification enzymes responsible for these cysteine-derived compounds, metalloenzymes constitute an important family of enzymes that catalyze a wide variety of reactions. Therefore, understanding their reaction mechanisms is important for the biosynthetic production of cysteine-derived natural products. This review mainly summarizes recent mechanistic investigations of metalloenzymes, with a particular focus on recently discovered mononuclear non-heme iron (NHI) enzymes, dinuclear NHI enzymes, and radical-SAM enzymes involved in unusual cysteine modifications in natural product biosynthesis.
Collapse
Affiliation(s)
- Yaojie Gao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yuhao Zhu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- RIKEN Center for Sustainable Resource Science Wako Saitama 351-0198 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
2
|
Chioti VT, Clark KA, Ganley JG, Han EJ, Seyedsayamdost MR. N-Cα Bond Cleavage Catalyzed by a Multinuclear Iron Oxygenase from a Divergent Methanobactin-like RiPP Gene Cluster. J Am Chem Soc 2024; 146:7313-7323. [PMID: 38452252 PMCID: PMC11062405 DOI: 10.1021/jacs.3c11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.
Collapse
Affiliation(s)
- Vasiliki T Chioti
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jack G Ganley
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Esther J Han
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
4
|
Ayikpoe R, Zhu L, Chen JY, Ting CP, van der Donk WA. Macrocyclization and Backbone Rearrangement During RiPP Biosynthesis by a SAM-Dependent Domain-of-Unknown-Function 692. ACS CENTRAL SCIENCE 2023; 9:1008-1018. [PMID: 37252350 PMCID: PMC10214503 DOI: 10.1021/acscentsci.3c00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 05/31/2023]
Abstract
The domain of unknown function 692 (DUF692) is an emerging family of post-translational modification enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Members of this family are multinuclear iron-containing enzymes, and only two members have been functionally characterized to date: MbnB and TglH. Here, we used bioinformatics to select another member of the DUF692 family, ChrH, that is encoded in the genomes of the Chryseobacterium genus along with a partner protein ChrI. We structurally characterized the ChrH reaction product and show that the enzyme complex catalyzes an unprecedented chemical transformation that results in the formation of a macrocycle, an imidazolidinedione heterocycle, two thioaminals, and a thiomethyl group. Based on isotopic labeling studies, we propose a mechanism for the four-electron oxidation and methylation of the substrate peptide. This work identifies the first SAM-dependent reaction catalyzed by a DUF692 enzyme complex, further expanding the repertoire of remarkable reactions catalyzed by these enzymes. Based on the three currently characterized DUF692 family members, we suggest the family be called multinuclear non-heme iron dependent oxidative enzymes (MNIOs).
Collapse
Affiliation(s)
- Richard
S. Ayikpoe
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, 61801, Illinois, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, 61801, Illinois, United States
| | - Lingyang Zhu
- School
of Chemical Sciences NMR Laboratory, University
of Illinois at Urbana−Champaign, Urbana, 61801, Illinois, United States
| | - Jeff Y. Chen
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, 61801, Illinois, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, 61801, Illinois, United States
| | - Chi P. Ting
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, 61801, Illinois, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, 61801, Illinois, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, 61801, Illinois, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, 61801, Illinois, United States
- Howard
Hughes Medical Institute at the University of Illinois at Urbana−Champaign, Urbana, 61801, Illinois, United States
| |
Collapse
|
5
|
Contreras A, Jones MK, Eldon ED, Klig LS. Inositol in Disease and Development: Roles of Catabolism via myo-Inositol Oxygenase in Drosophila melanogaster. Int J Mol Sci 2023; 24:4185. [PMID: 36835596 PMCID: PMC9967586 DOI: 10.3390/ijms24044185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol depletion has been associated with diabetes and related complications. Increased inositol catabolism, via myo-inositol oxygenase (MIOX), has been implicated in decreased renal function. This study demonstrates that the fruit fly Drosophila melanogaster catabolizes myo-inositol via MIOX. The levels of mRNA encoding MIOX and MIOX specific activity are increased when fruit flies are grown on a diet with inositol as the sole sugar. Inositol as the sole dietary sugar can support D. melanogaster survival, indicating that there is sufficient catabolism for basic energy requirements, allowing for adaptation to various environments. The elimination of MIOX activity, via a piggyBac WH-element inserted into the MIOX gene, results in developmental defects including pupal lethality and pharate flies without proboscises. In contrast, RNAi strains with reduced levels of mRNA encoding MIOX and reduced MIOX specific activity develop to become phenotypically wild-type-appearing adult flies. myo-Inositol levels in larval tissues are highest in the strain with this most extreme loss of myo-inositol catabolism. Larval tissues from the RNAi strains have inositol levels higher than wild-type larval tissues but lower levels than the piggyBac WH-element insertion strain. myo-Inositol supplementation of the diet further increases the myo-inositol levels in the larval tissues of all the strains, without any noticeable effects on development. Obesity and blood (hemolymph) glucose, two hallmarks of diabetes, were reduced in the RNAi strains and further reduced in the piggyBac WH-element insertion strain. Collectively, these data suggest that moderately increased myo-inositol levels do not cause developmental defects and directly correspond to reduced larval obesity and blood (hemolymph) glucose.
Collapse
Affiliation(s)
- Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melissa K. Jones
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Genentech, South San Francisco, CA 94080, USA
| | - Elizabeth D. Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S. Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
6
|
Ayikpoe RS, Zhu L, Chen JY, Ting CP, van der Donk WA. A remarkable transformation catalyzed by a domain-of-unknown-function 692 during the biosynthesis of a new RiPP natural product. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527370. [PMID: 36798408 PMCID: PMC9934569 DOI: 10.1101/2023.02.06.527370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The domain of unknown function 692 (DUF692) is an emerging family of posttranslational modification enzymes involved in the biosynthesis of ribosomally-synthesized and posttranslationally modified peptide (RiPP) natural products. Members of this family are multinuclear iron-containing enzymes and only two members have been functionally characterized to date: MbnB and TglH. Here, we used bioinformatics to select another member of the DUF692 family, ChrH, that is ubiquitously encoded in the genomes of the Chryseobacterium genus along with a partner protein ChrI. We structurally characterized the ChrH reaction product and show that the enzyme catalyzes an unprecedented chemical transformation that results in the formation of a macrocycle, an imidazolidinedione heterocycle, two thioaminals, and a thiomethylation. Based on isotopic labeling studies, we propose a mechanism for the four-electron oxidation and methylation of the substrate peptide. This work identifies the first SAM-dependent DUF692 enzyme, further expanding the repertoire of remarkable reactions catalyzed by these enzymes.
Collapse
Affiliation(s)
- Richard S. Ayikpoe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Jeff Y. Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chi P. Ting
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Howard Hughes Medical Institute at the University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| |
Collapse
|
7
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
8
|
Langton M, Appell M, Koob J, Pandelia ME. Domain Fusion of Two Oxygenases Affords Organophosphonate Degradation in Pathogenic Fungi. Biochemistry 2022; 61:956-962. [PMID: 35506879 PMCID: PMC9177745 DOI: 10.1021/acs.biochem.2c00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins of the HD-domain superfamily employ a conserved histidine-aspartate (HD) dyad to coordinate diverse metallocofactors. While most known HD-domain proteins are phosphohydrolases, new additions to this superfamily have emerged such as oxygenases and lyases, expanding their functional repertoire. To date, three HD-domain oxygenases have been identified, all of which employ a mixed-valent FeIIFeIII cofactor to activate their substrates and utilize molecular oxygen to afford cleavage of C-C or C-P bonds via a diferric superoxo intermediate. Phylogenetic analysis reveals an uncharacterized multidomain protein in the pathogenic soil fungus Fonsecaea multimorphosa, herein designated PhoF. PhoF consists of an N-terminal FeII/α-ketoglutarate-dependent domain resembling that of PhnY and a C-terminal HD-domain like that of PhnZ. PhnY and PhnZ are part of an organophosphonate degradation pathway in which PhnY hydroxylates 2-aminoethylphosphonic acid, and PhnZ cleaves the C-P bond of the hydroxylated product yielding phosphate and glycine. Employing electron paramagnetic resonance and Mössbauer spectroscopies in tandem with activity assays, we determined that PhoF carries out the O2-dependent degradation of two aminophosphonates, demonstrating an expanded catalytic efficiency with respect to the individual, but mechanistically coupled PhnY and PhnZ. Our results recognize PhoF as a new example of an HD-domain oxygenase and show that domain fusion of an organophosphonate degradation pathway may be a strategy for disease-causing fungi to acquire increased functional versatility, potentially important for their survival.
Collapse
Affiliation(s)
- Michelle Langton
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew Appell
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jeremy Koob
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
9
|
Wang B, Wu P, Shaik S. Critical Roles of Exchange and Superexchange Interactions in Dictating Electron Transfer and Reactivity in Metalloenzymes. J Phys Chem Lett 2022; 13:2871-2877. [PMID: 35325545 DOI: 10.1021/acs.jpclett.2c00513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron transfer (ET) is a fundamental process in transition-metal-dependent metalloenzymes. In these enzymes, the spin-spin interactions within the same metal center and/or between different metal sites can play a pivotal role in the catalytic cycle and reactivity. This Perspective highlights that the exchange and/or superexchange interactions can intrinsically modulate the inner-sphere and long-range electron transfer, thus controlling the mechanism and activity of metalloenzymes. For mixed-valence diiron oxygenases, the spin-regulated inner-sphere ET can be dictated by exchange interactions, leading to efficient O-O bond activations. Likewise, the spin-regulated inner-sphere ET can be enhanced by both exchange and superexchange interactions in [Fe4S4]-dependent SAM enzymes, which enable the efficient cleavage of the S─C(γ) or S─C5' bond of SAM. In addition to inner-sphere ET, superexchange interactions may modulate the long-range ET between metalloenzymes. We anticipate that the exchange and superexchange enhanced reactivity could be applicable in other important metalloenzymes, such as Photosystem II and nitrogenases.
Collapse
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Potential of engineering the myo-inositol oxidation pathway to increase stress resilience in plants. Mol Biol Rep 2022; 49:8025-8035. [PMID: 35294703 DOI: 10.1007/s11033-022-07333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Myo-inositol is one of the most abundant form of inositol. The myo-inositol (MI) serves as substrate to diverse biosynthesis pathways and hence it is conserved across life forms. The biosynthesis of MI is well studied in animals. Beyond biosynthesis pathway, implications of MI pathway and enzymes hold potential implications in plant physiology and crop improvement. Myo-inositol oxygenase (MIOX) enzyme catabolize MI into D-glucuronic acid (D-GlcUA). The MIOX enzyme family is well studied across few plants. More recently, the MI associated pathway's crosstalk with other important biosynthesis and stress responsive pathways in plants has drawn attention. The overall outcome from different plant species studied so far are very suggestive that MI derivatives and associated pathways could open new directions to explore stress responsive novel metabolic networks. There are evidences for upregulation of MI metabolic pathway genes, specially MIOX under different stress condition. We also found MIOX genes getting differentially expressed according to developmental and stress signals in Arabidopsis and wheat. In this review we try to highlight the missing links and put forward a tailored view over myo-inositol oxidation pathway and MIOX proteins.
Collapse
|
11
|
Song X, Liu J, Wang B. Emergence of Function from Nonheme Diiron Oxygenases: A Quantum Mechanical/Molecular Mechanical Study of Oxygen Activation and Organophosphonate Catabolism Mechanisms by PhnZ. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xitong Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
12
|
Cheah LC, Stark T, Adamson LSR, Abidin RS, Lau YH, Sainsbury F, Vickers CE. Artificial Self-assembling Nanocompartment for Organizing Metabolic Pathways in Yeast. ACS Synth Biol 2021; 10:3251-3263. [PMID: 34591448 PMCID: PMC8689640 DOI: 10.1021/acssynbio.1c00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/29/2022]
Abstract
Metabolic pathways are commonly organized by sequestration into discrete cellular compartments. Compartments prevent unfavorable interactions with other pathways and provide local environments conducive to the activity of encapsulated enzymes. Such compartments are also useful synthetic biology tools for examining enzyme/pathway behavior and for metabolic engineering. Here, we expand the intracellular compartmentalization toolbox for budding yeast (Saccharomyces cerevisiae) with Murine polyomavirus virus-like particles (MPyV VLPs). The MPyV system has two components: VP1 which self-assembles into the compartment shell and a short anchor, VP2C, which mediates cargo protein encapsulation via binding to the inner surface of the VP1 shell. Destabilized green fluorescent protein (GFP) fused to VP2C was specifically sorted into VLPs and thereby protected from host-mediated degradation. An engineered VP1 variant displayed improved cargo capture properties and differential subcellular localization compared to wild-type VP1. To demonstrate their ability to function as a metabolic compartment, MPyV VLPs were used to encapsulate myo-inositol oxygenase (MIOX), an unstable and rate-limiting enzyme in d-glucaric acid biosynthesis. Strains with encapsulated MIOX produced ∼20% more d-glucaric acid compared to controls expressing "free" MIOX─despite accumulating dramatically less expressed protein─and also grew to higher cell densities. This is the first demonstration in yeast of an artificial biocatalytic compartment that can participate in a metabolic pathway and establishes the MPyV platform as a promising synthetic biology tool for yeast engineering.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Terra Stark
- Metabolomics
Australia (Queensland Node), The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Lachlan S. R. Adamson
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Rufika S. Abidin
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yu Heng Lau
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Frank Sainsbury
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
- Centre
for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Claudia E. Vickers
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
- Centre
for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- ARC Centre
of Excellence in Synthetic Biology, Queensland
University of Technology, Brisbane
City, Queensland 4000, Australia
| |
Collapse
|
13
|
Dubourdeaux P, Blondin G, Latour JM. Mixed Valence (μ-Phenoxido) Fe II Fe III et Fe III Fe IV Compounds: Electron and Proton Transfers. Chemphyschem 2021; 23:e202100399. [PMID: 34633731 DOI: 10.1002/cphc.202100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/03/2021] [Indexed: 11/08/2022]
Abstract
Mixed-valence non-heme diiron centers are present at the active sites of a few enzymes and confer them interesting reactivities with the two ions acting in concert. Related (μ-phenoxido)diiron complexes have been developed as enzyme mimics. They exhibit very rich spectroscopic properties enabling independent monitoring of each individual ion, which proved useful for mechanistic studies of catalytic hydrolysis and oxidation reactions. In our studies of such complexes, we observed that these compounds give rise to a wide variety of electron transfers (intervalence charge transfer), proton transfers (tautomerism), coupled electron and proton transfers (H. abstraction and PCET). In this minireview, we present and analyze the main results illustrating the latter aspects.
Collapse
Affiliation(s)
| | - Geneviève Blondin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM/pmb, F-38000, Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM/pmb, F-38000, Grenoble, France
| |
Collapse
|
14
|
Liu J, Wu P, Yan S, Li Y, Cao Z, Wang B. Spin-Regulated Inner-Sphere Electron Transfer Enables Efficient O—O Bond Activation in Nonheme Diiron Monooxygenase MIOX. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Liu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Peng Wu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shengheng Yan
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zexing Cao
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
15
|
Przybyla-Toscano J, Boussardon C, Law SR, Rouhier N, Keech O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:258-274. [PMID: 33423341 DOI: 10.1111/tpj.15154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.
Collapse
Affiliation(s)
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
16
|
Yu CH, Chen Y, Desjardins CA, Tenor JL, Toffaletti DL, Giamberardino C, Litvintseva A, Perfect JR, Cuomo CA. Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microb Genom 2020; 6. [PMID: 31860441 PMCID: PMC7067042 DOI: 10.1099/mgen.0.000319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that at its peak epidemic levels caused an estimated million cases of cryptococcal meningitis per year worldwide. This species can grow in diverse environmental (trees, soil and bird excreta) and host niches (intracellular microenvironments of phagocytes and free-living in host tissues). The genetic basic for adaptation to these different conditions is not well characterized, as most experimental work has relied on a single reference strain of C. neoformans. To identify genes important for yeast infection and disease progression, we profiled the gene expression of seven C. neoformans isolates grown in five representative in vitro environmental and in vivo conditions. We characterized gene expression differences using RNA-Seq (RNA sequencing), comparing clinical and environmental isolates from two of the major lineages of this species, VNI and VNBI. These comparisons highlighted genes showing lineage-specific expression that are enriched in subtelomeric regions and in lineage-specific gene clusters. By contrast, we find few expression differences between clinical and environmental isolates from the same lineage. Gene expression specific to in vivo stages reflects available nutrients and stresses, with an increase in fungal metabolism within macrophages, and an induction of ribosomal and heat-shock gene expression within the subarachnoid space. This study provides the widest view to date of the transcriptome variation of C. neoformans across natural isolates, and provides insights into genes important for in vitro and in vivo growth stages.
Collapse
Affiliation(s)
- Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasia Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Langton M, Sun S, Ueda C, Markey M, Chen J, Paddy I, Jiang P, Chin N, Milne A, Pandelia ME. The HD-Domain Metalloprotein Superfamily: An Apparent Common Protein Scaffold with Diverse Chemistries. Catalysts 2020; 10:1191. [PMID: 34094591 PMCID: PMC8177086 DOI: 10.3390/catal10101191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The histidine-aspartate (HD)-domain protein superfamily contains metalloproteins that share common structural features but catalyze vastly different reactions ranging from oxygenation to hydrolysis. This chemical diversion is afforded by (i) their ability to coordinate most biologically relevant transition metals in mono-, di-, and trinuclear configurations, (ii) sequence insertions or the addition of supernumerary ligands to their active sites, (iii) auxiliary substrate specificity residues vicinal to the catalytic site, (iv) additional protein domains that allosterically regulate their activities or have catalytic and sensory roles, and (v) their ability to work with protein partners. More than 500 structures of HD-domain proteins are available to date that lay out unique structural features which may be indicative of function. In this respect, we describe the three known classes of HD-domain proteins (hydrolases, oxygenases, and lyases) and identify their apparent traits with the aim to portray differences in the molecular details responsible for their functional divergence and reconcile existing notions that will help assign functions to yet-to-be characterized proteins. The present review collects data that exemplify how nature tinkers with the HD-domain scaffold to afford different chemistries and provides insight into the factors that can selectively modulate catalysis.
Collapse
Affiliation(s)
- Michelle Langton
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Sining Sun
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Chie Ueda
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Max Markey
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jiahua Chen
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Isaac Paddy
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Paul Jiang
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Natalie Chin
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Amy Milne
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
18
|
Marques WL, Anderson LA, Sandoval L, Hicks MA, Prather KLJ. Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae. Enzyme Microb Technol 2020; 140:109623. [PMID: 32912683 DOI: 10.1016/j.enzmictec.2020.109623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
myo-Inositol oxygenase (Miox) is a rate-limiting enzyme for glucaric acid production via microbial fermentation. The enzyme converts myo-inositol to glucuronate, which is further converted to glucaric acid, a natural compound with industrial uses that range from detergents to pharmaceutical synthesis to polymeric materials. More than 2,000 Miox sequences are available in the Uniprot database but only thirteen are classified as reviewed in Swiss-Prot (August 2019). In this study, sequence similarity networks were used to identify new homologues to be expressed in Saccharomyces cerevisiae for glucaric acid production. The expression of four homologues did not lead to product formation. Some of these enzymes may have a defective "dynamic lid" - a structural feature important to close the reaction site - which might explain the lack of activity. Thirty-one selected Miox sequences did allow for product formation, of which twenty-five were characterized for the first time. Expression of Talaromyces marneffei Miox led to the accumulation of 1.76 ± 0.33 g glucaric acid/L from 20 g glucose/L and 10 g/L myo-inositol. Specific glucaric acid titer with TmMiox increased 44 % compared to the often-used Arabidopsis thaliana variant AtMiox4 (0.258 vs. 0.179 g glucaric acid/g biomass). AtMiox4 activity decreased from 12.47 to 0.40 nmol/min/mg protein when cells exited exponential phase during growth on glucose, highlighting the importance of future research on Miox stability in order to further improve microbial production of glucaric acid.
Collapse
Affiliation(s)
- Wesley Leoricy Marques
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa A Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis Sandoval
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael A Hicks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Dong LB, Liu YC, Cepeda AJ, Kalkreuter E, Deng MR, Rudolf JD, Chang C, Joachimiak A, Phillips GN, Shen B. Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:12406-12412. [PMID: 31291107 DOI: 10.1021/jacs.9b06183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme diiron monooxygenases make up a rapidly growing family of oxygenases that are rarely identified in secondary metabolism. Herein, we report the in vivo, in vitro, and structural characterizations of a nonheme diiron monooxygenase, PtmU3, that installs a C-5 β-hydroxyl group in the unified biosynthesis of platensimycin and platencin, two highly functionalized diterpenoids that act as potent and selective inhibitors of bacterial and mammalian fatty acid synthases. This hydroxylation sets the stage for the subsequent A-ring cleavage step key to the unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 adopts an unprecedented triosephosphate isomerase (TIM) barrel structural fold for this class of enzymes and possesses a noncanonical diiron active site architecture with a saturated six-coordinate iron center lacking a μ-oxo bridge. This study reveals the first member of a previously unidentified superfamily of TIM-barrel-fold enzymes for metal-dependent dioxygen activation, with the majority predicted to act on CoA-linked substrates, thus expanding our knowledge of nature's repertoire of nonheme diiron monooxygenases and TIM-barrel-fold enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changsoo Chang
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- Department of Biosciences , Rice University , Houston , Texas 77030 , United States
| | | |
Collapse
|
20
|
Ting CP, Funk MA, Halaby SL, Zhang Z, Gonen T, van der Donk WA. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science 2019; 365:280-284. [PMID: 31320540 PMCID: PMC6686864 DOI: 10.1126/science.aau6232] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/08/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Genome sequencing of environmental bacteria allows identification of biosynthetic gene clusters encoding unusual combinations of enzymes that produce unknown natural products. We identified a pathway in which a ribosomally synthesized small peptide serves as a scaffold for nonribosomal peptide extension and chemical modification. Amino acids are transferred to the carboxyl terminus of the peptide through adenosine triphosphate and amino acyl-tRNA-dependent chemistry that is independent of the ribosome. Oxidative rearrangement, carboxymethylation, and proteolysis of a terminal cysteine yields an amino acid-derived small molecule. Microcrystal electron diffraction demonstrates that the resulting product is isosteric to glutamate. We show that a similar peptide extension is used during the biosynthesis of the ammosamides, which are cytotoxic pyrroloquinoline alkaloids. These results suggest an alternative paradigm for biosynthesis of amino acid-derived natural products.
Collapse
Affiliation(s)
- Chi P. Ting
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Michael A. Funk
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Steve L. Halaby
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles CA 90095, USA
- Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Zhengan Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles CA 90095, USA
- Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Wilfred A. van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Fernandes HS, Teixeira CSS, Sousa SF, Cerqueira NMFSA. Formation of Unstable and very Reactive Chemical Species Catalyzed by Metalloenzymes: A Mechanistic Overview. Molecules 2019; 24:E2462. [PMID: 31277490 PMCID: PMC6651669 DOI: 10.3390/molecules24132462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
Nature has tailored a wide range of metalloenzymes that play a vast array of functions in all living organisms and from which their survival and evolution depends on. These enzymes catalyze some of the most important biological processes in nature, such as photosynthesis, respiration, water oxidation, molecular oxygen reduction, and nitrogen fixation. They are also among the most proficient catalysts in terms of their activity, selectivity, and ability to operate at mild conditions of temperature, pH, and pressure. In the absence of these enzymes, these reactions would proceed very slowly, if at all, suggesting that these enzymes made the way for the emergence of life as we know today. In this review, the structure and catalytic mechanism of a selection of diverse metalloenzymes that are involved in the production of highly reactive and unstable species, such as hydroxide anions, hydrides, radical species, and superoxide molecules are analyzed. The formation of such reaction intermediates is very difficult to occur under biological conditions and only a rationalized selection of a particular metal ion, coordinated to a very specific group of ligands, and immersed in specific proteins allows these reactions to proceed. Interestingly, different metal coordination spheres can be used to produce the same reactive and unstable species, although through a different chemistry. A selection of hand-picked examples of different metalloenzymes illustrating this diversity is provided and the participation of different metal ions in similar reactions (but involving different mechanism) is discussed.
Collapse
Affiliation(s)
- Henrique S Fernandes
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carla S Silva Teixeira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
22
|
Gama SR, Lo BSY, Séguin J, Pallitsch K, Hammerschmidt F, Zechel DL. C-H Bond Cleavage Is Rate-Limiting for Oxidative C-P Bond Cleavage by the Mixed Valence Diiron-Dependent Oxygenase PhnZ. Biochemistry 2019; 58:5271-5280. [PMID: 31046250 DOI: 10.1021/acs.biochem.9b00145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PhnZ utilizes a mixed valence diiron(II/III) cofactor and O2 to oxidatively cleave the carbon-phosphorus bond of (R)-2-amino-1-hydroxyethylphosphonic acid to form glycine and orthophosphate. The active site residues Y24 and E27 are proposed to mediate induced-fit recognition of the substrate and access of O2 to one of the active site Fe ions. H62 is proposed to deprotonate the C1-hydroxyl of the substrate during catalysis. Kinetic isotope effects (KIEs), pH-rate dependence, and site-directed mutagenesis were used to probe the rate-determining transition state and the roles of these three active site residues. Primary deuterium KIE values of 5.5 ± 0.3 for D(V) and 2.2 ± 0.4 for D(V/K) were measured with (R)-2-amino[1-2H1]-1-hydroxyethylphosphonic acid, indicating that cleavage of the C1-H bond of the substrate is rate-limiting. This step is also rate-limiting for PhnZ Y24F, as shown by a significant deuterium KIE value of 2.3 ± 0.1 for D(V). In contrast, a different reaction step appears to be rate-limiting for the PhnZ E27A and H62A variants, which exhibited D(V) values near unity. A solvent KIE of 2.2 ± 0.3 for D2O(V) is observed for PhnZ. Significant solvent KIE values are also observed for the PhnZ Y24F and E27A variants. In contrast, the PhnZ H62A variant does not show a significant solvent KIE, suggesting that H62 is mediating proton transfer in the transition state. A proton inventory study with PhnZ indicates that 1.5 ± 0.6 protons are in flight in the rate-determining step. Overall, the rate-determining transition state for oxidative C-P bond cleavage by PhnZ is proposed to involve C-H bond cleavage that is coupled to deprotonation of the substrate C1-hydroxyl by H62.
Collapse
Affiliation(s)
- Simanga R Gama
- Department of Chemistry , Queen's University , Kingston , Ontario , Canada K7L 3N6
| | - Becky Suet Yan Lo
- Department of Chemistry , Queen's University , Kingston , Ontario , Canada K7L 3N6
| | - Jacqueline Séguin
- Department of Chemistry , Queen's University , Kingston , Ontario , Canada K7L 3N6
| | - Katharina Pallitsch
- Institute of Organic Chemistry , University of Vienna , 1090 Vienna , Austria
| | | | - David L Zechel
- Department of Chemistry , Queen's University , Kingston , Ontario , Canada K7L 3N6
| |
Collapse
|
23
|
Rajakovich LJ, Pandelia ME, Mitchell AJ, Chang WC, Zhang B, Boal AK, Krebs C, Bollinger JM. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Biochemistry 2019; 58:1627-1647. [PMID: 30789718 PMCID: PMC6503667 DOI: 10.1021/acs.biochem.9b00044] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The assignment of biochemical functions to hypothetical proteins is challenged by functional diversification within many protein structural superfamilies. This diversification, which is particularly common for metalloenzymes, renders functional annotations that are founded solely on sequence and domain similarities unreliable and often erroneous. Definitive biochemical characterization to delineate functional subgroups within these superfamilies will aid in improving bioinformatic approaches for functional annotation. We describe here the structural and functional characterization of two non-heme-iron oxygenases, TmpA and TmpB, which are encoded by a genomically clustered pair of genes found in more than 350 species of bacteria. TmpA and TmpB are functional homologues of a pair of enzymes (PhnY and PhnZ) that degrade 2-aminoethylphosphonate but instead act on its naturally occurring, quaternary ammonium analogue, 2-(trimethylammonio)ethylphosphonate (TMAEP). TmpA, an iron(II)- and 2-(oxo)glutarate-dependent oxygenase misannotated as a γ-butyrobetaine (γbb) hydroxylase, shows no activity toward γbb but efficiently hydroxylates TMAEP. The product, ( R)-1-hydroxy-2-(trimethylammonio)ethylphosphonate [( R)-OH-TMAEP], then serves as the substrate for the second enzyme, TmpB. By contrast to its purported phosphohydrolytic activity, TmpB is an HD-domain oxygenase that uses a mixed-valent diiron cofactor to enact oxidative cleavage of the C-P bond of its substrate, yielding glycine betaine and phosphate. The high specificities of TmpA and TmpB for their N-trimethylated substrates suggest that they have evolved specifically to degrade TMAEP, which was not previously known to be subject to microbial catabolism. This study thus adds to the growing list of known pathways through which microbes break down organophosphonates to harvest phosphorus, carbon, and nitrogen in nutrient-limited niches.
Collapse
Affiliation(s)
- Lauren J. Rajakovich
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Maria-Eirini Pandelia
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Andrew J. Mitchell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Wei-chen Chang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: REG Life Sciences, LLC, South San Francisco, California 94080
| | - Amie K. Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Noh H, Cho J. Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Zheng S, Hou J, Zhou Y, Fang H, Wang TT, Liu F, Wang FS, Sheng JZ. One-pot two-strain system based on glucaric acid biosensor for rapid screening of myo-inositol oxygenase mutations and glucaric acid production in recombinant cells. Metab Eng 2018; 49:212-219. [DOI: 10.1016/j.ymben.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022]
|
26
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Sharma I, Tupe RS, Wallner AK, Kanwar YS. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy. Am J Physiol Renal Physiol 2017; 314:F107-F121. [PMID: 28931523 DOI: 10.1152/ajprenal.00434.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN. We investigated the effect of AGEs on MIOX expression and delineated mechanisms that lead to tubulointerstitial injury. The status of MIOX, RAGE, and relevant cellular signaling pathways activated following AGE:RAGE interaction was examined in tubular cells and kidneys of AGE-BSA-treated mice. A solid-phase assay revealed an enhanced binding of RAGE with AGE-BSA, AGE-laminin, and AGE-collagen IV. The cells treated with AGE-BSA had increased MIOX activity/expression and promoter activity. This was associated with activation of various signaling kinases of phosphatidylinositol 3-kinase (PI3K)-AKT pathway and increased expression of NF-κB, transforming growth factor (TGF)-β, and fibronectin, which was negated with the treatment of MIOX/RAGE- small interfering (si) RNA. Concomitant with MIOX upregulation, there was an increased generation of reactive oxygen species (ROS), which could be abrogated with MIOX/RAGE- siRNA treatment. The kidneys of mice treated with AGE-BSA had significantly high urinary A/C ratio, upregulation of MIOX, RAGE and NF-κB, along with influx of monocytes into the tubulointerstitium, increased the expression of MCP-1, IL-6, and fibronectin and increased the generation of ROS. Such perturbations were abrogated with the concomitant treatment of inhibitors MIOX or RAGE (d-glucarate and FPS-ZM1). These studies support a role of AGE:RAGE interaction in the activation of PI3K-AKT pathway and upregulation of MIOX, with excessive generation of ROS, increased expression of NF-κB, inflammatory cytokines, TGF-β, and fibronectin. Collectively, these observations highlight the relevance of the biology of MIOX in the contribution toward tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University , Pune , India
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
28
|
Zhao C, Chen H. Mechanism of Organophosphonate Catabolism by Diiron Oxygenase PhnZ: A Third Iron-Mediated O–O Activation Scenario in Nature. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chongyang Zhao
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
29
|
Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. J Bacteriol 2017; 199:JB.00790-16. [PMID: 28031279 DOI: 10.1128/jb.00790-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic di-GMP was the first cyclic dinucleotide second messenger described, presaging the discovery of additional cyclic dinucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, and they include both enzymatically active and inactive members, with a subset involved in synthesis and degradation of other cyclic dinucleotides. Here, we summarize current knowledge of sequence and structural variations that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL, and HD-GYP domain proteins.
Collapse
|
30
|
An HD domain phosphohydrolase active site tailored for oxetanocin-A biosynthesis. Proc Natl Acad Sci U S A 2016; 113:13750-13755. [PMID: 27849620 DOI: 10.1073/pnas.1613610113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HD domain phosphohydrolase enzymes are characterized by a conserved set of histidine and aspartate residues that coordinate an active site metallocenter. Despite the important roles these enzymes play in nucleotide metabolism and signal transduction, few have been both biochemically and structurally characterized. Here, we present X-ray crystal structures and biochemical characterization of the Bacillus megaterium HD domain phosphohydrolase OxsA, involved in the biosynthesis of the antitumor, antiviral, and antibacterial compound oxetanocin-A. These studies reveal a previously uncharacterized reaction for this family; OxsA catalyzes the conversion of a triphosphorylated compound into a nucleoside, releasing one molecule of inorganic phosphate at a time. Remarkably, this functionality is a result of the OxsA active site, which based on structural and kinetic analyses has been tailored to bind the small, four-membered ring of oxetanocin-A over larger substrates. Furthermore, our OxsA structures show an active site that switches from a dinuclear to a mononuclear metal center as phosphates are eliminated from substrate.
Collapse
|
31
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
32
|
Wang CC, Chang HC, Lai YC, Fang H, Li CC, Hsu HK, Li ZY, Lin TS, Kuo TS, Neese F, Ye S, Chiang YW, Tsai ML, Liaw WF, Lee WZ. A Structurally Characterized Nonheme Cobalt–Hydroperoxo Complex Derived from Its Superoxo Intermediate via Hydrogen Atom Abstraction. J Am Chem Soc 2016; 138:14186-14189. [DOI: 10.1021/jacs.6b08642] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Chieh Wang
- Department
of Chemistry and Instrumentation Center, National Taiwan Normal University, Taipei 11677, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Ching Chang
- Department
of Chemistry and Instrumentation Center, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yei-Chen Lai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Huayi Fang
- Max-Planck Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Chieh-Chin Li
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hung-Kai Hsu
- Department
of Chemistry and Instrumentation Center, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Zong-Yan Li
- Department
of Chemistry and Instrumentation Center, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Tien-Sung Lin
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Ting-Shen Kuo
- Department
of Chemistry and Instrumentation Center, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion, Mülheim an der Ruhr D-45470, Germany
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wen-Feng Liaw
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Way-Zen Lee
- Department
of Chemistry and Instrumentation Center, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
33
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Production of glucaric acid from myo-inositol in engineered Pichia pastoris. Enzyme Microb Technol 2016; 91:8-16. [DOI: 10.1016/j.enzmictec.2016.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/11/2016] [Accepted: 05/22/2016] [Indexed: 02/02/2023]
|
35
|
Solomon EI, Park K. Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem 2016; 21:575-88. [PMID: 27369780 PMCID: PMC5010389 DOI: 10.1007/s00775-016-1372-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
36
|
Tamanaha EY, Zhang B, Guo Y, Chang WC, Barr EW, Xing G, St Clair J, Ye S, Neese F, Bollinger JM, Krebs C. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase. J Am Chem Soc 2016; 138:8862-74. [PMID: 27193226 PMCID: PMC4956533 DOI: 10.1021/jacs.6b04065] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme isopenicillin N synthase (IPNS) installs the β-lactam and thiazolidine rings of the penicillin core into the linear tripeptide l-δ-aminoadipoyl-l-Cys-d-Val (ACV) on the pathways to a number of important antibacterial drugs. A classic set of enzymological and crystallographic studies by Baldwin and co-workers established that this overall four-electron oxidation occurs by a sequence of two oxidative cyclizations, with the β-lactam ring being installed first and the thiazolidine ring second. Each phase requires cleavage of an aliphatic C-H bond of the substrate: the pro-S-CCys,β-H bond for closure of the β-lactam ring, and the CVal,β-H bond for installation of the thiazolidine ring. IPNS uses a mononuclear non-heme-iron(II) cofactor and dioxygen as cosubstrate to cleave these C-H bonds and direct the ring closures. Despite the intense scrutiny to which the enzyme has been subjected, the identities of the oxidized iron intermediates that cleave the C-H bonds have been addressed only computationally; no experimental insight into their geometric or electronic structures has been reported. In this work, we have employed a combination of transient-state-kinetic and spectroscopic methods, together with the specifically deuterium-labeled substrates, A[d2-C]V and AC[d8-V], to identify both C-H-cleaving intermediates. The results show that they are high-spin Fe(III)-superoxo and high-spin Fe(IV)-oxo complexes, respectively, in agreement with published mechanistic proposals derived computationally from Baldwin's founding work.
Collapse
Affiliation(s)
- Esta Y. Tamanaha
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yisong Guo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Wei-chen Chang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Eric W. Barr
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gang Xing
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jennifer St Clair
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Shengfa Ye
- Max-Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - Frank Neese
- Max-Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
37
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
38
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
39
|
Alok A, Kaur H, Bhati KK, Kumar J, Pandey P, Upadhyay SK, Pandey A, Sharma NC, Pandey AK, Tiwari S. Biochemical characterization and spatio-temporal expression of myo-inositol oxygenase (MIOX) from wheat (Triticum aestivum L.). PLANT GENE 2015; 4:10-19. [DOI: 10.1016/j.plgene.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
40
|
Snyder RA, Betzu J, Butch SE, Reig AJ, DeGrado WF, Solomon EI. Systematic Perturbations of Binuclear Non-heme Iron Sites: Structure and Dioxygen Reactivity of de Novo Due Ferri Proteins. Biochemistry 2015; 54:4637-51. [PMID: 26154739 DOI: 10.1021/acs.biochem.5b00324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DFsc (single-chain due ferri) proteins allow for modeling binuclear non-heme iron enzymes with a similar fold. Three 4A → 4G variants of DFsc were studied to investigate the effects of (1) increasing the size of the substrate/solvent access channel (G4DFsc), (2) including an additional His residue in the first coordination sphere along with three additional helix-stabilizing mutations [3His-G4DFsc(Mut3)], and (3) the three helix-stabilizing mutations alone [G4DFsc(Mut3)] on the biferrous structures and their O2 reactivities. Near-infrared circular dichroism and magnetic circular dichroism (MCD) spectroscopy show that the 4A → 4G mutations increase coordination of the diiron site from 4-coordinate/5-coordinate to 5-coordinate/5-coordinate, likely reflecting increased solvent accessibility. While the three helix-stabilizing mutations [G4DFsc(Mut3)] do not affect the coordination number, addition of the third active site His residue [3His-G4DFsc(Mut3)] results in a 5-coordinate/6-coordinate site. Although all 4A→ 4G variants have significantly slower pseudo-first-order rates when reacting with excess O2 than DFsc (∼2 s(-1)), G4DFsc and 3His-G4DFsc(Mut3) have rates (∼0.02 and ∼0.04 s(-1)) faster than that of G4DFsc(Mut3) (∼0.002 s(-1)). These trends in the rate of O2 reactivity correlate with exchange coupling between the Fe(II) sites and suggest that the two-electron reduction of O2 occurs through end-on binding at one Fe(II) rather than through a peroxy-bridged intermediate. UV-vis absorption and MCD spectroscopies indicate that an Fe(III)Fe(III)-OH species first forms in all three variants but converts into an Fe(III)-μ-OH-Fe(III) species only in the 2-His forms, a process inhibited by the additional active site His ligand that coordinatively saturates one of the iron centers in 3His-G4DFsc(Mut3).
Collapse
Affiliation(s)
- Rae Ana Snyder
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Justine Betzu
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Susan E Butch
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Amanda J Reig
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - William F DeGrado
- §Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Edward I Solomon
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States.,∥Stanford Synchrotron Radiation Laboratory, Stanford University, SLAC, Menlo Park, California 94025, United States
| |
Collapse
|
41
|
Snyder RA, Butch SE, Reig AJ, DeGrado WF, Solomon EI. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins. J Am Chem Soc 2015; 137:9302-14. [PMID: 26090726 DOI: 10.1021/jacs.5b03524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A→4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase activity in both G4DFsc and 3His-G4DFsc(Mut3) is determined to be the substrate-bound biferrous site. Using circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies, 4-AP is found to bind directly to the biferrous sites of the DF proteins. In G4DFsc, 4-AP increases the coordination of the biferrous site, while in 3His-G4DFsc(Mut3), the coordination number remains the same and the substrate likely replaces the additional bound histidine. This substrate binding enables a two-electron process where 4-AP is oxidized to benzoquinone imine and O2 is reduced to H2O2. In contrast, only the biferrous 3His variant is found to be active in the oxygenation of p-anisidine to 4-nitroso-methoxybenzene. From CD, MCD, and VTVH MCD, p-anisidine addition is found to minimally perturb the biferrous centers of both G4DFsc and 3His-G4DFsc(Mut3), indicating that this substrate binds near the biferrous site. In 3His-G4DFsc(Mut3), the coordinative saturation of one iron leads to the two-electron reduction of O2 at the second iron to generate an end-on hydroperoxo-Fe(III) active oxygenating species.
Collapse
Affiliation(s)
- Rae Ana Snyder
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Susan E Butch
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Amanda J Reig
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - William F DeGrado
- ⊥Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Edward I Solomon
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States.,§Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
42
|
Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT. SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 2015; 43:6486-99. [PMID: 26101257 PMCID: PMC4513882 DOI: 10.1093/nar/gkv633] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 restriction factor SAMHD1 is a tetrameric enzyme activated by guanine nucleotides with dNTP triphosphate hydrolase activity (dNTPase). In addition to this established activity, there have been a series of conflicting reports as to whether the enzyme also possesses single-stranded DNA and/or RNA 3′-5′ exonuclease activity. SAMHD1 was purified using three chromatography steps, over which the DNase activity was largely separated from the dNTPase activity, but the RNase activity persisted. Surprisingly, we found that catalytic and nucleotide activator site mutants of SAMHD1 with no dNTPase activity retained the exonuclease activities. Thus, the exonuclease activity cannot be associated with any known dNTP binding site. Monomeric SAMHD1 was found to bind preferentially to single-stranded RNA, while the tetrameric form required for dNTPase action bound weakly. ssRNA binding, but not ssDNA, induces higher-order oligomeric states that are distinct from the tetrameric form that binds dNTPs. We conclude that the trace exonuclease activities detected in SAMHD1 preparations arise from persistent contaminants that co-purify with SAMHD1 and not from the HD active site. An in vivo model is suggested where SAMHD1 alternates between the mutually exclusive functions of ssRNA binding and dNTP hydrolysis depending on dNTP pool levels and the presence of viral ssRNA.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
43
|
Li J, Biss M, Fu Y, Xu X, Moore SA, Xiao W. Two duplicated genes DDI2 and DDI3 in budding yeast encode a cyanamide hydratase and are induced by cyanamide. J Biol Chem 2015; 290:12664-75. [PMID: 25847245 DOI: 10.1074/jbc.m115.645408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Two DNA damage-inducible genes in Saccharomyces cerevisiae, DDI2 and DDI3, are identical and encode putative HD domain-containing proteins, whose functions are currently unknown. Because Ddi2/3 also shows limited homology to a fungal cyanamide hydratase that converts cyanamide to urea, we tested the enzymatic activity of recombinant Ddi2. To this end, we developed a novel enzymatic assay and determined that the Km value of the recombinant Ddi2/3 for cyanamide is 17.3 ± 0.05 mm, and its activity requires conserved residues in the HD domain. Unlike most other DNA damage-inducible genes, DDI2/3 is only induced by a specific set of alkylating agents and surprisingly is strongly induced by cyanamide. To characterize the biological function of DDI2/3, we sequentially deleted both DDI genes and found that the double mutant was unable to metabolize cyanamide and became much more sensitive to growth inhibition by cyanamide, suggesting that the DDI2/3 genes protect host cells from cyanamide toxicity. Despite the physiological relevance of the cyanamide induction, DDI2/3 is not involved in its own transcriptional regulation. The significance of cyanamide hydratase activity and its induced expression is discussed.
Collapse
Affiliation(s)
- Jia Li
- From the Departments of Microbiology and Immunology and
| | - Michael Biss
- From the Departments of Microbiology and Immunology and
| | - Yu Fu
- From the Departments of Microbiology and Immunology and
| | - Xin Xu
- the College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stanley A Moore
- Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Wei Xiao
- From the Departments of Microbiology and Immunology and the College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
44
|
Ray K, Pfaff FF, Wang B, Nam W. Status of Reactive Non-Heme Metal–Oxygen Intermediates in Chemical and Enzymatic Reactions. J Am Chem Soc 2014; 136:13942-58. [DOI: 10.1021/ja507807v] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kallol Ray
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Florian Felix Pfaff
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Bin Wang
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
45
|
Zheng S, Wei P, Huang L, Cai J, Xu Z. Efficient expression of myo-inositol oxygenase in Escherichia coli and application for conversion of myo-inositol to glucuronic acid. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0061-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
van Staalduinen LM, McSorley FR, Schiessl K, Séguin J, Wyatt PB, Hammerschmidt F, Zechel DL, Jia Z. Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates. Proc Natl Acad Sci U S A 2014; 111:5171-6. [PMID: 24706911 PMCID: PMC3986159 DOI: 10.1073/pnas.1320039111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzymes PhnY and PhnZ comprise an oxidative catabolic pathway that enables marine bacteria to use 2-aminoethylphosphonic acid as a source of inorganic phosphate. PhnZ is notable for catalyzing the oxidative cleavage of a carbon-phosphorus bond using Fe(II) and dioxygen, despite belonging to a large family of hydrolytic enzymes, the HD-phosphohydrolase superfamily. We have determined high-resolution structures of PhnZ bound to its substrate, (R)-2-amino-1-hydroxyethylphosphonate (2.1 Å), and a buffer additive, l-tartrate (1.7 Å). The structures reveal PhnZ to have an active site containing two Fe ions coordinated by four histidines and two aspartates that is strikingly similar to the carbon-carbon bond cleaving enzyme, myo-inositol-oxygenase. The exception is Y24, which forms a transient ligand interaction at the dioxygen binding site of Fe2. Site-directed mutagenesis and kinetic analysis with substrate analogs revealed the roles of key active site residues. A fifth histidine that is conserved in the PhnZ subclade, H62, specifically interacts with the substrate 1-hydroxyl. The structures also revealed that Y24 and E27 mediate a unique induced-fit mechanism whereby E27 specifically recognizes the 2-amino group of the bound substrate and toggles the release of Y24 from the active site, thereby creating space for molecular oxygen to bind to Fe2. Structural comparisons of PhnZ reveal an evolutionary connection between Fe(II)-dependent hydrolysis of phosphate esters and oxidative carbon-phosphorus or carbon-carbon bond cleavage, thus uniting the diverse chemistries that are found in the HD superfamily.
Collapse
Affiliation(s)
- Laura M. van Staalduinen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Fern R. McSorley
- Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Katharina Schiessl
- Institute of Organic Chemistry, University of Vienna, A-1090 Vienna, Austria; and
| | - Jacqueline Séguin
- Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Peter B. Wyatt
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | | | - David L. Zechel
- Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
47
|
Zhu L, Guo J, Zhu J, Zhou C. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:24-35. [PMID: 24361507 DOI: 10.1016/j.plaphy.2013.11.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/29/2013] [Indexed: 05/20/2023]
Abstract
Drought can activate several stress responses in plants, such as stomatal closure, accumulation of cuticular wax and ascorbic acid (AsA), which have been correlated with improvement of drought tolerance. In this study, a novel MYB gene, designed as EsWAX1, was isolated and characterized from Eutrema salsugineum. EsWAX1 contained a full-length open reading frame (ORF) of 1068 bp, which encoding 355 amino acids. Transcript levels of EsWAX1 were quickly inducible by drought stress and ABA treatment, indicating that EsWAX1 may act as a positive regulator in response to drought stress. Ectopic expression of EsWAX1 increased accumulation of cuticular wax via modulating the expression of several wax-related genes, such as CER1, KCS2 and KCR1. Scanning electron microscopy further revealed higher densities of wax crystalline structures on the adaxial surfaces of leaves in transgenic Arabidopsis plants. In addition, the expression of several AsA biosynthetic genes (VTC1, GLDH and MIOX4) was significantly up-regulated in EsWAX1-overexpressing lines and these transgenic plants have approximately 23-27% more total AsA content than WT plants. However, the high-level expression of EsWAX1 severely disrupted plant normal growth and development. To reduce negative effects of EsWAX1 over-expression on plant growth, we generated transgenic Arabidopsis plants expressing EsWAX1 driven by the stress-inducible RD29A promoter. Our data indicated the RD29A::EsWAX1 transgenic plants had greater tolerance to drought stress than wild-type plants. Taken together, the EsWAX1 gene is a potential regulator that may be utilized to improve plant drought tolerance by genetic manipulation.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jiansheng Guo
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Zhu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Cheng Zhou
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai 200092, China; School of Life Science, Anhui Science and Technology University, Bengbu 233100, China.
| |
Collapse
|
48
|
Majumdar A, Apfel UP, Jiang Y, Moënne-Loccoz P, Lippard SJ. Versatile reactivity of a solvent-coordinated diiron(II) compound: synthesis and dioxygen reactivity of a mixed-valent Fe(II)Fe(III) species. Inorg Chem 2014; 53:167-81. [PMID: 24359397 PMCID: PMC3915513 DOI: 10.1021/ic4019585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new, DMF-coordinated, preorganized diiron compound [Fe2(N-Et-HPTB)(DMF)4](BF4)3 (1) was synthesized, avoiding the formation of [Fe(N-Et-HPTB)](BF4)2 (10) and [Fe2(N-Et-HPTB)(μ-MeCONH)](BF4)2 (11), where N-Et-HPTB is the anion of N,N,N',N'-tetrakis[2-(1-ethylbenzimidazolyl)]-2-hydroxy-1,3-diaminopropane. Compound 1 is a versatile reactant from which nine new compounds have been generated. Transformations include solvent exchange to yield [Fe2(N-Et-HPTB)(MeCN)4](BF4)3 (2), substitution to afford [Fe2(N-Et-HPTB)(μ-RCOO)](BF4)2 (3, R = Ph; 4, RCOO = 4-methyl-2,6-diphenyl benzoate]), one-electron oxidation by (Cp2Fe)(BF4) to yield a Robin-Day class II mixed-valent diiron(II,III) compound, [Fe2(N-Et-HPTB)(μ-PhCOO)(DMF)2](BF4)3 (5), two-electron oxidation with tris(4-bromophenyl)aminium hexachloroantimonate to generate [Fe2(N-Et-HPTB)Cl3(DMF)](BF4)2 (6), reaction with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl to form [Fe5(N-Et-HPTB)2(μ-OH)4(μ-O)(DMF)2](BF4)4 (7), and reaction with dioxygen to yield an unstable peroxo compound that decomposes at room temperature to generate [Fe4(N-Et-HPTB)2(μ-O)3(H2O)2](BF4)·8DMF (8) and [Fe4(N-Et-HPTB)2(μ-O)4](BF4)2 (9). Compound 5 loses its bridging benzoate ligand upon further oxidation to form [Fe2(N-Et-HPTB)(OH)2(DMF)2](BF4)3 (12). Reaction of the diiron(II,III) compound 5 with dioxygen was studied in detail by spectroscopic methods. All compounds (1-12) were characterized by single-crystal X-ray structure determinations. Selected compounds and reaction intermediates were further examined by a combination of elemental analysis, electronic absorption spectroscopy, Mössbauer spectroscopy, EPR spectroscopy, resonance Raman spectroscopy, and cyclic voltammetry.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ulf-Peter Apfel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Yunbo Jiang
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Portland, Oregon 97239
| | - Pierre Moënne-Loccoz
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Portland, Oregon 97239
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
49
|
Zhang WB, Liu WB, Wu JW, Dong WL, Wang SQ, Wang RL. The derivatives of oseltamivir design passing through the important cleft of neuraminidase against influenza virus by de novo design. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.854896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Bellini D, Caly DL, McCarthy Y, Bumann M, An SQ, Dow JM, Ryan RP, Walsh MA. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. Mol Microbiol 2013; 91:26-38. [PMID: 24176013 PMCID: PMC4159591 DOI: 10.1111/mmi.12447] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 12/17/2022]
Abstract
Bis‐(3′,5′) cyclic di‐guanylate (c‐di‐GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c‐di‐GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD‐GYP domains. Here, we have determined the structure of an enzymatically active HD‐GYP domain protein from Persephonella marina (PmGH) alone, in complex with substrate (c‐di‐GMP) and final reaction product (GMP). The structures reveal a novel trinuclear iron binding site, which is implicated in catalysis and identify residues involved in recognition of c‐di‐GMP. This structure completes the picture of all domains involved in c‐di‐GMP metabolism and reveals that the HD‐GYP family splits into two distinct subgroups containing bi‐ and trinuclear metal centres.
Collapse
Affiliation(s)
- Dom Bellini
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | | | | | | | | | | | | | | |
Collapse
|