1
|
McKeithen-Mead S, Anderson ME, García-Heredia A, Grossman AD. Activation and modulation of the host response to DNA damage by an integrative and conjugative element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617469. [PMID: 39416164 PMCID: PMC11482772 DOI: 10.1101/2024.10.09.617469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts. We found that ICEBs1, an integrative and conjugative element of Bacillus subtilis, inhibits the host response to DNA damage (the SOS response). Activation of ICEBs1 before DNA damage reduced host cell lysis that was caused by SOS-mediated activation of two resident prophages. Further, activation of ICEBs1 itself activated the SOS response in a subpopulation of cells, and this activation was attenuated by the functions of the ICEBs1 genes ydcT and yddA (now ramT and ramA, for RecA modulator). Double mutant analyses indicated that RamA functions to inhibit and RamT functions to both inhibit and activate the SOS response. Both RamT and RamA caused a reduction in RecA filaments, one of the early steps in activation of the SOS response. We suspect that there are several different mechanisms by which mobile genetic elements that generate ssDNA during their lifecycle inhibit the host SOS response and RecA function, as RamT and RamA differ from the known SOS inhibitors encoded by conjugative elements.
Collapse
Affiliation(s)
- Saria McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mary E. Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Alam García-Heredia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
2
|
Reed TT, Kendal AH, Wozniak KJ, Simmons LA. DNA replication initiation timing is important for maintaining genome integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599555. [PMID: 38948856 PMCID: PMC11212987 DOI: 10.1101/2024.06.18.599555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
DNA replication is regulated by factors that promote or inhibit initiation. In Bacillus subtilis, YabA is a negative regulator of DNA replication initiation while the newly identified kinase CcrZ is a positive regulator. The consequences of under-initiation or over-initiation of DNA replication to genome stability remain unclear. In this work, we measure origin to terminus ratios as a proxy for replication initiation activity. We show that ΔccrZ and several ccrZ alleles under-initiate DNA replication while ablation of yabA or overproduction of CcrZ leads to over-initiation. We find that cells under-initiating DNA replication have few incidents of replication fork stress as determined by low formation of RecA-GFP foci compared with wild type. In contrast, cells over-initiating DNA replication show levels of RecA-GFP foci formation analogous to cells directly challenged with DNA damaging agents. We show that cells under-initiating and over-initiating DNA replication were both sensitive to mitomycin C and that changes in replication initiation frequency cause increased sensitivity to genotoxic stress. With these results, we propose that cells under-initiating DNA replication are sensitive to DNA damage due to a shortage of DNA for repair through homologous recombination. For cells over-initiating DNA replication, we propose that an increase in the number of replication forks leads to replication fork stress which is further exacerbated by chromosomal DNA damage. Together, our study shows that DNA replication initiation frequency must be tightly controlled as changes in initiation influence replication fork fate and the capacity of cells to efficiently repair damage to their genetic material.
Collapse
Affiliation(s)
- Tristan T. Reed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Abigail H. Kendal
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Present address: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
4
|
Holland A, Pitoulias M, Soultanas P, Janniere L. The Replicative DnaE Polymerase of Bacillus subtilis Recruits the Glycolytic Pyruvate Kinase (PykA) When Bound to Primed DNA Templates. Life (Basel) 2023; 13:life13040965. [PMID: 37109494 PMCID: PMC10143966 DOI: 10.3390/life13040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The glycolytic enzyme PykA has been reported to drive the metabolic control of replication through a mechanism involving PykA moonlighting functions on the essential DnaE polymerase, the DnaC helicase and regulatory determinants of PykA catalytic activity in Bacillus subtilis. The mutants of this control suffer from critical replication and cell cycle defects, showing that the metabolic control of replication plays important functions in the overall rate of replication. Using biochemical approaches, we demonstrate here that PykA interacts with DnaE for modulating its activity when the replication enzyme is bound to a primed DNA template. This interaction is mediated by the CAT domain of PykA and possibly allosterically regulated by its PEPut domain, which also operates as a potent regulator of PykA catalytic activity. Furthermore, using fluorescence microscopy we show that the CAT and PEPut domains are important for the spatial localization of origins and replication forks, independently of their function in PykA catalytic activity. Collectively, our data suggest that the metabolic control of replication depends on the recruitment of PykA by DnaE at sites of DNA synthesis. This recruitment is likely highly dynamic, as DnaE is frequently recruited to and released from replication machineries to extend the several thousand RNA primers generated from replication initiation to termination. This implies that PykA and DnaE continuously associate and dissociate at replication machineries for ensuring a highly dynamic coordination of the replication rate with metabolism.
Collapse
Affiliation(s)
- Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, CEDEX, France
| |
Collapse
|
5
|
Torres R, Carrasco B, Alonso JC. Bacillus subtilis RadA/Sms-Mediated Nascent Lagging-Strand Unwinding at Stalled or Reversed Forks Is a Two-Step Process: RadA/Sms Assists RecA Nucleation, and RecA Loads RadA/Sms. Int J Mol Sci 2023; 24:ijms24054536. [PMID: 36901969 PMCID: PMC10003422 DOI: 10.3390/ijms24054536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Replication fork rescue requires Bacillus subtilis RecA, its negative (SsbA) and positive (RecO) mediators, and fork-processing (RadA/Sms). To understand how they work to promote fork remodeling, reconstituted branched replication intermediates were used. We show that RadA/Sms (or its variant, RadA/Sms C13A) binds to the 5'-tail of a reversed fork with longer nascent lagging-strand and unwinds it in the 5'→3' direction, but RecA and its mediators limit unwinding. RadA/Sms cannot unwind a reversed fork with a longer nascent leading-strand, or a gapped stalled fork, but RecA interacts with and activates unwinding. Here, the molecular mechanism by which RadA/Sms, in concert with RecA, in a two-step reaction, unwinds the nascent lagging-strand of reversed or stalled forks is unveiled. First, RadA/Sms, as a mediator, contributes to SsbA displacement from the forks and nucleates RecA onto single-stranded DNA. Then, RecA, as a loader, interacts with and recruits RadA/Sms onto the nascent lagging strand of these DNA substrates to unwind them. Within this process, RecA limits RadA/Sms self-assembly to control fork processing, and RadA/Sms prevents RecA from provoking unnecessary recombination.
Collapse
|
6
|
ATPase Activity of Bacillus subtilis RecA Affects the Dynamic Formation of RecA Filaments at DNA Double Strand Breaks. mSphere 2022; 7:e0041222. [PMID: 36321831 PMCID: PMC9769622 DOI: 10.1128/msphere.00412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RecA plays a central role in DNA repair and is a main actor involved in homologous recombination (HR). In vivo, RecA forms filamentous structures termed "threads," which are essential for HR, but whose nature is still ill defined. We show that RecA from Bacillus subtilis having lower ATP binding activity can still form nucleoprotein filaments in vitro, features lower dsDNA binding activity, but still retains most of wild type RecA activity in vivo. Contrarily, loss of ATPase activity strongly reduced formation of nucleoprotein filaments in vitro, and effectivity to repair double strand breaks (DSBs) in vivo. In the presence of wild type RecA protein, additionally expressed RecA with lowered ATPbinding activity only moderately affected RecA dynamics, while loss of ATPase activity leads to a large reduction of the formation of threads, as well as of their dynamic changes observed in a seconds-scale. Single molecule tracking of RecA revealed incorporation of freely diffusing and nonspecifically DNA-bound molecules into threads upon induction of a single DSB. This change of dynamics was highly perturbed in the absence of ATPase activity, revealing that filamentous forms of RecA as well as their dynamics depend on ATPase activity. Based on the idea that ATPase activity of RecA is most important for DNA strand exchange activity, our data suggest that extension and retraction of threads due is to many local strand invasion events during the search for sequences homologous to the induced DNA break site. IMPORTANCE Single-strand (ss) DNA binding ATPase RecA is the central recombinase in homologous recombination, and therefore essential for DNA repair pathways involving DNA strand exchange reactions. In several bacterial, RecA forms filamentous structures along the long axis of cells after induction of double strand breaks (DSBs) in the chromosome. These striking assemblies likely reflect RecA/ssDNA nucleoprotein filaments, which can extend and remodel within a time frame of few minutes. We show that ATPase activity of RecA is pivotal for these dynamic rearrangements, which include recruitment of freely diffusing molecules into low-mobile molecules within filaments. Our data suggest that ssDNA binding- and unbinding reactions are at the heart of RecA dynamics that power the dynamics of subcellular filamentous assemblies, leading to strand exchange reactions over a distance of several micrometers.
Collapse
|
7
|
Torres R, Alonso JC. Bacillus subtilis RecA, DisA, and RadA/Sms Interplay Prevents Replication Stress by Regulating Fork Remodeling. Front Microbiol 2021; 12:766897. [PMID: 34880841 PMCID: PMC8645862 DOI: 10.3389/fmicb.2021.766897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] Open
Abstract
Reviving Bacillus subtilis spores require the recombinase RecA, the DNA damage checkpoint sensor DisA, and the DNA helicase RadA/Sms to prevent a DNA replication stress. When a replication fork stalls at a template lesion, RecA filaments onto the lesion-containing gap and the fork is remodeled (fork reversal). RecA bound to single-strand DNA (ssDNA) interacts with and recruits DisA and RadA/Sms on the branched DNA intermediates (stalled or reversed forks), but DisA and RadA/Sms limit RecA activities and DisA suppresses its c-di-AMP synthesis. We show that RecA, acting as an accessory protein, activates RadA/Sms to unwind the nascent lagging-strand of the branched intermediates rather than to branch migrate them. DisA limits the ssDNA-dependent ATPase activity of RadA/Sms C13A, and inhibits the helicase activity of RadA/Sms by a protein-protein interaction. Finally, RadA/Sms inhibits DisA-mediated c-di-AMP synthesis and indirectly inhibits cell proliferation, but RecA counters this negative effect. We propose that the interactions among DisA, RecA and RadA/Sms, which are mutually exclusive, contribute to generate the substrate for replication restart, regulate the c-di-AMP pool and limit fork restoration in order to maintain cell survival.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
8
|
RecA is required for the assembly of RecN into DNA repair complexes on the nucleoid. J Bacteriol 2021; 203:e0024021. [PMID: 34339298 DOI: 10.1128/jb.00240-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination requires the coordinated effort of several proteins to complete break resection, homologous pairing and resolution of DNA crossover structures. RecN is a conserved bacterial protein important of double strand break repair and a member of the Structural Maintenance of Chromosomes (SMC) protein family. Current models in Bacillus subtilis propose that RecN responds to double stranded breaks prior to RecA and end processing suggesting that RecN is among the very first proteins responsible for break detection. Here, we investigate the contribution of RecA and end processing by AddAB to RecN recruitment into repair foci in vivo. Using this approach, we found that recA is required for RecN-GFP focus formation on the nucleoid during normal growth and in response to DNA damage. In the absence of recA function, RecN foci form in a low percentage of cells, RecN localizes away from the nucleoid, and RecN fails to assemble in response to DNA damage. In contrast, we show that the response of RecA-GFP foci to DNA damage is unchanged in the presence or absence of recN. In further support of RecA activity preceding RecN we show that ablation of the double-strand break end processing enzyme addAB results in a failure of RecN to form foci in response to DNA damage. With these results, we conclude that RecA and end processing function prior to RecN establishing a critical step for the recruitment and participation of RecN during DNA break repair in Bacillus subtilis. IMPORTANCE Homologous recombination is important for the repair of DNA double-strand breaks. RecN is a highly conserved protein that has been shown to be important for sister chromatid cohesion and for survival to break-inducing clastogens. Here, we show that the assembly of RecN into repair foci on the bacterial nucleoid requires the end processing enzyme AddAB and the recombinase RecA. In the absence of either recA or end processing RecN-GFP foci are no longer DNA damage inducible and foci form in a subset of cells as large complexes in regions away from the nucleoid. Our results establish the stepwise order of action, where double-strand break end processing and RecA association precede the participation of RecN during break repair in Bacillus subtilis.
Collapse
|
9
|
Masser EA, Burby PE, Hawkins WD, Gustafson BR, Lenhart JS, Simmons LA. DNA damage checkpoint activation affects peptidoglycan synthesis and late divisome components in Bacillus subtilis. Mol Microbiol 2021; 116:707-722. [PMID: 34097787 DOI: 10.1111/mmi.14765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
During normal DNA replication, all cells encounter damage to their genetic material. As a result, organisms have developed response pathways that provide time for the cell to complete DNA repair before cell division occurs. In Bacillus subtilis, it is well established that the SOS-induced cell division inhibitor YneA blocks cell division after genotoxic stress; however, it remains unclear how YneA enforces the checkpoint. Here, we identify mutations that disrupt YneA activity and mutations that are refractory to the YneA-induced checkpoint. We find that YneA C-terminal truncation mutants and point mutants in or near the LysM peptidoglycan binding domain render YneA incapable of checkpoint enforcement. In addition, we develop a genetic method which isolated mutations in the ftsW gene that completely bypassed checkpoint enforcement while also finding that YneA interacts with late divisome components FtsL, Pbp2b, and Pbp1. Characterization of an FtsW variant resulted in considerably shorter cells during the DNA damage response indicative of hyperactive initiation of cell division and bypass of the YneA-enforced DNA damage checkpoint. With our results, we present a model where YneA inhibits septal cell wall synthesis by binding peptidoglycan and interfering with interaction between late arriving divisome components causing DNA damage checkpoint activation.
Collapse
Affiliation(s)
- Emily A Masser
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wayne D Hawkins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brooke R Gustafson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Justin S Lenhart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Romero H, Serrano E, Hernández-Tamayo R, Carrasco B, Cárdenas PP, Ayora S, Graumann PL, Alonso JC. Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein. Front Microbiol 2020; 11:92. [PMID: 32117122 PMCID: PMC7031210 DOI: 10.3389/fmicb.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
Ubiquitous RarA AAA+ ATPases play crucial roles in the cellular response to blocked replication forks in pro- and eukaryotes. Here, we provide evidence that absence of RarA reduced the viability of ΔrecA, ΔrecO, and recF15 cells during unperturbed growth. The rarA gene was epistatic to recO and recF genes in response to H2O2- or MMS-induced DNA damage. Conversely, the inactivation of rarA partially suppressed the HR defect of mutants lacking end-resection (ΔaddAB, ΔrecJ, ΔrecQ, ΔrecS) or branch migration (ΔruvAB, ΔrecG, ΔradA) activity. RarA contributes to RecA thread formation, that are thought to be the active forms of RecA during homology search. The absence of RarA reduced RecA accumulation, and the formation of visible RecA threads in vivo upon DNA damage. When ΔrarA was combined with mutations in genuine RecA accessory genes, RecA accumulation was further reduced in ΔrarA ΔrecU and ΔrarA ΔrecX double mutant cells, and was blocked in ΔrarA recF15 cells. These results suggest that RarA contributes to the assembly of RecA nucleoprotein filaments onto single-stranded DNA, and possibly antagonizes RecA filament disassembly.
Collapse
Affiliation(s)
- Hector Romero
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Paula P. Cárdenas
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Peter L. Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Juan C. Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
11
|
Regulation of Cell Division in Bacteria by Monitoring Genome Integrity and DNA Replication Status. J Bacteriol 2020; 202:JB.00408-19. [PMID: 31548275 DOI: 10.1128/jb.00408-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.
Collapse
|
12
|
Manina G, Griego A, Singh LK, McKinney JD, Dhar N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J 2019; 38:e101876. [PMID: 31583725 PMCID: PMC6856624 DOI: 10.15252/embj.2019101876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Clonal microbial populations are inherently heterogeneous, and this diversification is often considered as an adaptation strategy. In clinical infections, phenotypic diversity is found to be associated with drug tolerance, which in turn could evolve into genetic resistance. Mycobacterium tuberculosis, which ranks among the top ten causes of mortality with high incidence of drug-resistant infections, exhibits considerable phenotypic diversity. In this study, we quantitatively analyze the cellular dynamics of DNA damage responses in mycobacteria using microfluidics and live-cell fluorescence imaging. We show that individual cells growing under optimal conditions experience sporadic DNA-damaging events manifested by RecA expression pulses. Single-cell responses to these events occur as transient pulses of fluorescence expression, which are dependent on the gene-network structure but are triggered by extrinsic signals. We demonstrate that preexisting subpopulations, with discrete levels of DNA damage response, are associated with differential susceptibility to fluoroquinolones. Our findings reveal that the extent of DNA integrity prior to drug exposure impacts the drug activity against mycobacteria, with conceivable therapeutic implications.
Collapse
Affiliation(s)
- Giulia Manina
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Anna Griego
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Lalit Kumar Singh
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
| | - John D McKinney
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Neeraj Dhar
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
13
|
Burby PE, Simmons LA. A bacterial DNA repair pathway specific to a natural antibiotic. Mol Microbiol 2018; 111:338-353. [PMID: 30379365 DOI: 10.1111/mmi.14158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/17/2022]
Abstract
All organisms possess DNA repair pathways that are used to maintain the integrity of their genetic material. Although many DNA repair pathways are well understood, new pathways continue to be discovered. Here, we report an antibiotic specific DNA repair pathway in Bacillus subtilis that is composed of a previously uncharacterized helicase (mrfA) and exonuclease (mrfB). Deletion of mrfA and mrfB results in sensitivity to the DNA damaging agent mitomycin C, but not to any other type of DNA damage tested. We show that MrfAB function independent of canonical nucleotide excision repair, forming a novel excision repair pathway. We demonstrate that MrfB is a metal-dependent exonuclease and that the N-terminus of MrfB is required for interaction with MrfA. We determined that MrfAB failed to unhook interstrand cross-links in vivo, suggesting that MrfAB are specific to the monoadduct or the intrastrand cross-link. A phylogenetic analysis uncovered MrfAB homologs in diverse bacterial phyla, and cross-complementation indicates that MrfAB function is conserved in closely related species. B. subtilis is a soil dwelling organism and mitomycin C is a natural antibiotic produced by the soil bacterium Streptomyces lavendulae. The specificity of MrfAB suggests that these proteins are an adaptation to environments with mitomycin producing bacteria.
Collapse
Affiliation(s)
- Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Samadpour AN, Merrikh H. DNA gyrase activity regulates DnaA-dependent replication initiation in Bacillus subtilis. Mol Microbiol 2018; 108:115-127. [PMID: 29396913 DOI: 10.1111/mmi.13920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
In bacteria, initiation of DNA replication requires the DnaA protein. Regulation of DnaA association and activity at the origin of replication, oriC, is the predominant mechanism of replication initiation control. One key feature known to be generally important for replication is DNA topology. Although there have been some suggestions that topology may impact replication initiation, whether this mechanism regulates DnaA-mediated replication initiation is unclear. We found that the essential topoisomerase, DNA gyrase, is required for both proper binding of DnaA to oriC as well as control of initiation frequency in Bacillus subtilis. Furthermore, we found that the regulatory activity of gyrase in initiation is specific to DnaA and oriC. Cells initiating replication from a DnaA-independent origin, oriN, are largely resistant to gyrase inhibition by novobiocin, even at concentrations that compromise survival by up to four orders of magnitude in oriC cells. Furthermore, inhibition of gyrase does not impact initiation frequency in oriN cells. Additionally, deletion or overexpression of the DnaA regulator, YabA, significantly modulates sensitivity to gyrase inhibition, but only in oriC and not oriN cells. We propose that gyrase is a negative regulator of DnaA-dependent replication initiation from oriC, and that this regulatory mechanism is required for cell survival.
Collapse
Affiliation(s)
- A N Samadpour
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - H Merrikh
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Gangan MS, Athale CA. Threshold effect of growth rate on population variability of Escherichia coli cell lengths. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160417. [PMID: 28386413 PMCID: PMC5367290 DOI: 10.1098/rsos.160417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/23/2017] [Indexed: 05/24/2023]
Abstract
A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and 'mother machine'-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division.
Collapse
|
16
|
Gangan MS, Athale CA. Threshold effect of growth rate on population variability of Escherichia coli cell lengths. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28386413 DOI: 10.5061/dryad.2bs69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and 'mother machine'-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division.
Collapse
Affiliation(s)
- Manasi S Gangan
- Division of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr Homi Bhabha Road, Pashan, Pune 411008 , India
| | - Chaitanya A Athale
- Division of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr Homi Bhabha Road, Pashan, Pune 411008 , India
| |
Collapse
|
17
|
Korolev S. Advances in structural studies of recombination mediator proteins. Biophys Chem 2016; 225:27-37. [PMID: 27974172 DOI: 10.1016/j.bpc.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Recombination mediator proteins (RMPs) are critical for genome integrity in all organisms. They include phage UvsY, prokaryotic RecF, -O, -R (RecFOR) and eukaryotic Rad52, Breast Cancer susceptibility 2 (BRCA2) and Partner and localizer of BRCA2 (PALB2) proteins. BRCA2 and PALB2 are tumor suppressors implicated in cancer. RMPs regulate binding of RecA-like recombinases to sites of DNA damage to initiate the most efficient non-mutagenic repair of broken chromosome and other deleterious DNA lesions. Mechanistically, RMPs stimulate a single-stranded DNA (ssDNA) hand-off from ssDNA binding proteins (ssbs) such as gp32, SSB and RPA, to recombinases, activating DNA repair only at the time and site of the damage event. This review summarizes structural studies of RMPs and their implications for understanding mechanism and function. Comparative analysis of RMPs is complicated due to their convergent evolution. In contrast to the evolutionary conserved ssbs and recombinases, RMPs are extremely diverse in sequence and structure. Structural studies are particularly important in such cases to reveal common features of the entire family and specific features of regulatory mechanisms for each member. All RMPs are characterized by specific DNA-binding domains and include variable protein interaction motifs. The complexity of such RMPs corresponds to the ever-growing number of DNA metabolism events they participate in under normal and pathological conditions and requires additional comprehensive structure-functional studies.
Collapse
Affiliation(s)
- S Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
18
|
Badrinarayanan A, Le TBK, Laub MT. Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. J Cell Biol 2016; 210:385-400. [PMID: 26240183 PMCID: PMC4523614 DOI: 10.1083/jcb.201505019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Double-strand break repair in Caulobacter is a dynamic process that can take place independent of DNA replication; resegregation of origin-proximal chromosomal regions after repair requires the ParABS system, whereas resegregation of origin-distal regions occurs independently of ParA and likely without dedicated segregation machinery. Double-strand breaks (DSBs) can lead to the loss of genetic information and cell death. Although DSB repair via homologous recombination has been well characterized, the spatial organization of this process inside cells remains poorly understood, and the mechanisms used for chromosome resegregation after repair are unclear. In this paper, we introduced site-specific DSBs in Caulobacter crescentus and then used time-lapse microscopy to visualize the ensuing chromosome dynamics. Damaged loci rapidly mobilized after a DSB, pairing with their homologous partner to enable repair, before being resegregated to their original cellular locations, independent of DNA replication. Origin-proximal regions were resegregated by the ParABS system with the ParA structure needed for resegregation assembling dynamically in response to the DSB-induced movement of an origin-associated ParB away from one cell pole. Origin-distal regions were resegregated in a ParABS-independent manner and instead likely rely on a physical, spring-like force to segregate repaired loci. Collectively, our results provide a mechanistic basis for the resegregation of chromosomes after a DSB.
Collapse
Affiliation(s)
| | - Tung B K Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
19
|
Ramírez-Guadiana FH, Barajas-Ornelas RDC, Corona-Bautista SU, Setlow P, Pedraza-Reyes M. The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation. PLoS One 2016; 11:e0150348. [PMID: 26930481 PMCID: PMC4773242 DOI: 10.1371/journal.pone.0150348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/29/2016] [Indexed: 12/24/2022] Open
Abstract
The expression of and role played by RecA in protecting sporulating cells of Bacillus subtilis from DNA damage has been determined. Results showed that the DNA-alkylating agent Mitomycin-C (M-C) activated expression of a PrecA-gfpmut3a fusion in both sporulating cells’ mother cell and forespore compartments. The expression levels of a recA-lacZ fusion were significantly lower in sporulating than in growing cells. However, M-C induced levels of ß-galactosidase from a recA-lacZ fusion ~6- and 3-fold in the mother cell and forespore compartments of B. subtilis sporangia, respectively. Disruption of recA slowed sporulation and sensitized sporulating cells to M-C and UV-C radiation, and the M-C and UV-C sensitivity of sporangia lacking the transcriptional repair-coupling factor Mfd was significantly increased by loss of RecA. We postulate that when DNA damage is encountered during sporulation, RecA activates the SOS response thus providing sporangia with the repair machinery to process DNA lesions that may compromise the spatio-temporal expression of genes that are essential for efficient spore formation.
Collapse
Affiliation(s)
- Fernando H. Ramírez-Guadiana
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Gto. 36050, México
| | | | - Saúl U. Corona-Bautista
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Gto. 36050, México
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, 06030–3305, Farmington, Connecticut, United States of America
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Gto. 36050, México
- * E-mail:
| |
Collapse
|
20
|
Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage. J Bacteriol 2015; 197:2792-809. [PMID: 26100038 DOI: 10.1128/jb.00101-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. IMPORTANCE DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence that Pol IV aids in maintaining genomic stability not only by bypassing DNA lesions but also by participating in the restoration of stalled replication forks.
Collapse
|
21
|
Replication Restart after Replication-Transcription Conflicts Requires RecA in Bacillus subtilis. J Bacteriol 2015; 197:2374-82. [PMID: 25939832 DOI: 10.1128/jb.00237-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/27/2015] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Efficient duplication of genomes depends on reactivation of replication forks outside the origin. Replication restart can be facilitated by recombination proteins, especially if single- or double-strand breaks form in the DNA. Each type of DNA break is processed by a distinct pathway, though both depend on the RecA protein. One common obstacle that can stall forks, potentially leading to breaks in the DNA, is transcription. Though replication stalling by transcription is prevalent, the nature of DNA breaks and the prerequisites for replication restart in response to these encounters remain unknown. Here, we used an engineered site-specific replication-transcription conflict to identify and dissect the pathways required for the resolution and restart of replication forks stalled by transcription in Bacillus subtilis. We found that RecA, its loader proteins RecO and AddAB, and the Holliday junction resolvase RecU are required for efficient survival and replication restart after conflicts with transcription. Genetic analyses showed that RecO and AddAB act in parallel to facilitate RecA loading at the site of the conflict but that they can each partially compensate for the other's absence. Finally, we found that RecA and either RecO or AddAB are required for the replication restart and helicase loader protein, DnaD, to associate with the engineered conflict region. These results suggest that conflicts can lead to both single-strand gaps and double-strand breaks in the DNA and that RecA loading and Holliday junction resolution are required for replication restart at regions of replication-transcription conflicts. IMPORTANCE Head-on conflicts between replication and transcription occur when a gene is expressed from the lagging strand. These encounters stall the replisome and potentially break the DNA. We investigated the necessary mechanisms for Bacillus subtilis cells to overcome a site-specific engineered conflict with transcription of a protein-coding gene. We found that the recombination proteins RecO and AddAB both load RecA onto the DNA in response to the head-on conflict. Additionally, RecA loading by one of the two pathways was required for both replication restart and efficient survival of the collision. Our findings suggest that both single-strand gaps and double-strand DNA breaks occur at head-on conflict regions and demonstrate a requirement for recombination to restart replication after collisions with transcription.
Collapse
|
22
|
Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, Weiss E, Hayden HS, Miller SI, Liachko I, Merrikh H. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc Natl Acad Sci U S A 2015; 112:E1096-105. [PMID: 25713353 PMCID: PMC4364195 DOI: 10.1073/pnas.1416651112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ivan Liachko
- Genome Sciences, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
23
|
RecO and RecR are necessary for RecA loading in response to DNA damage and replication fork stress. J Bacteriol 2014; 196:2851-60. [PMID: 24891441 DOI: 10.1128/jb.01494-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RecA is central to maintaining genome integrity in bacterial cells. Despite the near-ubiquitous conservation of RecA in eubacteria, the pathways that facilitate RecA loading and repair center assembly have remained poorly understood in Bacillus subtilis. Here, we show that RecA rapidly colocalizes with the DNA polymerase complex (replisome) immediately following DNA damage or damage-independent replication fork arrest. In Escherichia coli, the RecFOR and RecBCD pathways serve to load RecA and the choice between these two pathways depends on the type of damage under repair. We found in B. subtilis that the rapid localization of RecA to repair centers is strictly dependent on RecO and RecR in response to all types of damage examined, including a site-specific double-stranded break and damage-independent replication fork arrest. Furthermore, we provide evidence that, although RecF is not required for RecA repair center formation in vivo, RecF does increase the efficiency of repair center assembly, suggesting that RecF may influence the initial stages of RecA nucleation or filament extension. We further identify single-stranded DNA binding protein (SSB) as an additional component important for RecA repair center assembly. Truncation of the SSB C terminus impairs the ability of B. subtilis to form repair centers in response to damage and damage-independent fork arrest. With these results, we conclude that the SSB-dependent recruitment of RecOR to the replisome is necessary for loading and organizing RecA into repair centers in response to DNA damage and replication fork arrest.
Collapse
|
24
|
Abstract
DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5'-3' helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.
Collapse
|
25
|
de la Tour CB, Passot FM, Toueille M, Mirabella B, Guérin P, Blanchard L, Servant P, de Groot A, Sommer S, Armengaud J. Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage. Proteomics 2013; 13:3457-69. [PMID: 24307635 DOI: 10.1002/pmic.201300249] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 11/09/2022]
Abstract
The nucleoids of radiation-resistant Deinococcus species show a high degree of compaction maintained after ionizing irradiation. We identified proteins recruited after irradiation in nucleoids of Deinococcus radiodurans and Deinococcus deserti by means of comparative proteomics. Proteins in nucleoid-enriched fractions from unirradiated and irradiated Deinococcus were identified and semiquantified by shotgun proteomics. The ssDNA-binding protein SSB, DNA gyrase subunits GyrA and GyrB, DNA topoisomerase I, RecA recombinase, UvrA excinuclease, RecQ helicase, DdrA, DdrB, and DdrD proteins were found in significantly higher amounts in irradiated nucleoids of both Deinococcus species. We observed, by immunofluorescence microscopy, the subcellular localization of these proteins in D. radiodurans, showing for the first time the recruitment of the DdrD protein into the D. radiodurans nucleoid. We specifically followed the kinetics of recruitment of RecA, DdrA, and DdrD to the nucleoid after irradiation. Remarkably, RecA proteins formed irregular filament-like structures 1 h after irradiation, before being redistributed throughout the cells by 3 h post-irradiation. Comparable dynamics of DdrD localization were observed, suggesting a possible functional interaction between RecA and DdrD. Several proteins involved in nucleotide synthesis were also seen in higher quantities in the nucleoids of irradiated cells, indicative of the existence of a mechanism for orchestrating the presence of proteins involved in DNA metabolism in nucleoids in response to massive DNA damage. All MS data have been deposited in the ProteomeXchange with identifier PXD00196 (http://proteomecentral.proteomexchange.org/dataset/PXD000196).
Collapse
|
26
|
Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 2013; 5:a012674. [PMID: 24097899 DOI: 10.1101/cshperspect.a012674] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
27
|
Fonseca LS, da Silva JB, Milanez JS, Monteiro-Vitorello CB, Momo L, de Morais ZM, Vasconcellos SA, Marques MV, Ho PL, da Costa RMA. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response. PLoS One 2013; 8:e76419. [PMID: 24098496 PMCID: PMC3789691 DOI: 10.1371/journal.pone.0076419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Abstract
Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.
Collapse
Affiliation(s)
- Luciane S Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil ; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bidnenko V, Shi L, Kobir A, Ventroux M, Pigeonneau N, Henry C, Trubuil A, Noirot-Gros MF, Mijakovic I. Bacillus subtilis serine/threonine protein kinase YabT is involved in spore development via phosphorylation of a bacterial recombinase. Mol Microbiol 2013; 88:921-35. [PMID: 23634894 PMCID: PMC3708118 DOI: 10.1111/mmi.12233] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 01/20/2023]
Abstract
We characterized YabT, a serine/threonine kinase of the Hanks family, from Bacillus subtilis. YabT is a putative transmembrane kinase that lacks the canonical extracellular signal receptor domain. We demonstrate that YabT possesses a DNA-binding motif essential for its activation. In vivo YabT is expressed during sporulation and localizes to the asymmetric septum. Cells devoid of YabT sporulate more slowly and exhibit reduced resistance to DNA damage during sporulation. We established that YabT phosphorylates DNA-recombinase RecA at the residue serine 2. A non-phosphorylatable mutant of RecA exhibits the same phenotype as the ΔyabT mutant, and a phosphomimetic mutant of RecA complements ΔyabT, suggesting that YabT acts via RecA phosphorylation in vivo. During spore development, phosphorylation facilitates the formation of transient and mobile RecA foci that exhibit a scanning-like movement associated to the nucleoid in the mother cell. In some cells these foci persist at the end of spore development. We show that persistent RecA foci, which presumably coincide with irreparable lesions, are mutually exclusive with the completion of spore morphogenesis. Our results highlight similarities between the bacterial serine/threonine kinase YabT and eukaryal kinases C-Abl and Mec1, which are also activated by DNA, and phosphorylate proteins involved in DNA damage repair.
Collapse
|
29
|
Marceau AH, Bernstein DA, Walsh BW, Shapiro W, Simmons LA, Keck JL. Protein interactions in genome maintenance as novel antibacterial targets. PLoS One 2013; 8:e58765. [PMID: 23536821 PMCID: PMC3594151 DOI: 10.1371/journal.pone.0058765] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs) form conserved protein interaction “hubs” that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds.
Collapse
Affiliation(s)
- Aimee H. Marceau
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Douglas A. Bernstein
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Brian W. Walsh
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Walker Shapiro
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
30
|
Early steps of double-strand break repair in Bacillus subtilis. DNA Repair (Amst) 2013; 12:162-76. [PMID: 23380520 DOI: 10.1016/j.dnarep.2012.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 11/22/2022]
Abstract
All organisms rely on integrated networks to repair DNA double-strand breaks (DSBs) in order to preserve the integrity of the genetic information, to re-establish replication, and to ensure proper chromosomal segregation. Genetic, cytological, biochemical and structural approaches have been used to analyze how Bacillus subtilis senses DNA damage and responds to DSBs. RecN, which is among the first responders to DNA DSBs, promotes the ordered recruitment of repair proteins to the site of a lesion. Cells have evolved different mechanisms for efficient end processing to create a 3'-tailed duplex DNA, the substrate for RecA binding, in the repair of one- and two-ended DSBs. Strand continuity is re-established via homologous recombination (HR), utilizing an intact homologous DNA molecule as a template. In the absence of transient diploidy or of HR, however, two-ended DSBs can be directly re-ligated via error-prone non-homologous end-joining. Here we review recent findings that shed light on the early stages of DSB repair in Firmicutes.
Collapse
|
31
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
32
|
Costes A, Lambert SAE. Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 2012; 3:39-71. [PMID: 24970156 PMCID: PMC4030885 DOI: 10.3390/biom3010039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.
Collapse
Affiliation(s)
- Audrey Costes
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| | - Sarah A E Lambert
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| |
Collapse
|
33
|
Lenhart JS, Sharma A, Hingorani MM, Simmons LA. DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication. Mol Microbiol 2012; 87:553-68. [PMID: 23228104 DOI: 10.1111/mmi.12115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/30/2022]
Abstract
Mismatch repair (MMR) increases the fidelity of DNA replication by identifying and correcting replication errors. Processivity clamps are vital components of DNA replication and MMR, yet the mechanism and extent to which they participate in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity clamp DnaN, and found that it serves as a platform for mismatch detection and coupling of repair to DNA replication. By visualizing functional MutS fluorescent fusions in vivo, we find that MutS forms foci independent of mismatch detection at sites of replication (i.e. the replisome). These MutS foci are directed to the replisome by DnaN clamp zones that aid mismatch detection by targeting the search to nascent DNA. Following mismatch detection, MutS disengages from the replisome, facilitating repair. We tested the functional importance of DnaN-mediated mismatch detection for MMR, and found that it accounts for 90% of repair. This high dependence on DnaN can be bypassed by increasing MutS concentration within the cell, indicating a secondary mode of detection in vivo whereby MutS directly finds mismatches without associating with the replisome. Overall, our results provide new insight into the mechanism by which DnaN couples mismatch recognition to DNA replication in living cells.
Collapse
Affiliation(s)
- Justin S Lenhart
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
34
|
Klocko AD, Schroeder JW, Walsh BW, Lenhart JS, Evans ML, Simmons LA. Mismatch repair causes the dynamic release of an essential DNA polymerase from the replication fork. Mol Microbiol 2011; 82:648-63. [PMID: 21958350 DOI: 10.1111/j.1365-2958.2011.07841.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundred fold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the replication processivity clamp is important for MMR in Bacillus subtilis. To further understand how MMR is coupled to DNA replication, we examined the subcellular localization of MMR and DNA replication proteins fused to green fluorescent protein (GFP) in live cells, following an increase in DNA replication errors. We demonstrate that foci of the essential DNA polymerase DnaE-GFP decrease following mismatch incorporation and that loss of DnaE-GFP foci requires MutS. Furthermore, we show that MutS and MutL bind DnaE in vitro, suggesting that DnaE is coupled to repair. We also found that DnaE-GFP foci decrease in vivo following a DNA damage-independent arrest of DNA synthesis showing that loss of DnaE-GFP foci is caused by perturbations to DNA replication. We propose that MutS directly contacts the DNA replication machinery, causing a dynamic change in the organization of DnaE at the replication fork during MMR. Our results establish a striking and intimate connection between MMR and the replicating DNA polymerase complex in vivo.
Collapse
Affiliation(s)
- Andrew D Klocko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ayora S, Carrasco B, Cárdenas PP, César CE, Cañas C, Yadav T, Marchisone C, Alonso JC. Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol Rev 2011; 35:1055-81. [PMID: 21517913 DOI: 10.1111/j.1574-6976.2011.00272.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In all living organisms, the response to double-strand breaks (DSBs) is critical for the maintenance of chromosome integrity. Homologous recombination (HR), which utilizes a homologous template to prime DNA synthesis and to restore genetic information lost at the DNA break site, is a complex multistep response. In Bacillus subtilis, this response can be subdivided into five general acts: (1) recognition of the break site(s) and formation of a repair center (RC), which enables cells to commit to HR; (2) end-processing of the broken end(s) by different avenues to generate a 3'-tailed duplex and RecN-mediated DSB 'coordination'; (3) loading of RecA onto single-strand DNA at the RecN-induced RC and concomitant DNA strand exchange; (4) branch migration and resolution, or dissolution, of the recombination intermediates, and replication restart, followed by (5) disassembly of the recombination apparatus formed at the dynamic RC and segregation of sister chromosomes. When HR is impaired or an intact homologous template is not available, error-prone nonhomologous end-joining directly rejoins the two broken ends by ligation. In this review, we examine the functions that are known to contribute to DNA DSB repair in B. subtilis, and compare their properties with those of other bacterial phyla.
Collapse
Affiliation(s)
- Silvia Ayora
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamauchi Y, Riel JM, Ward MA. Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication. ACTA ACUST UNITED AC 2011; 33:229-38. [PMID: 21546611 DOI: 10.2164/jandrol.111.013532] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In spite of its highly condensed state, sperm DNA is vulnerable to damage that can originate from oxidative stress, the activity of sperm-specific nucleases, or both. After fertilization, in the oocyte, paternal chromatin undergoes dramatic changes, and during this extensive remodeling, it can be both repaired and degraded, and these processes can be linked to DNA synthesis. Here, we analyzed sperm response to damage-inducing treatments both before and after fertilization and before or after zygotic DNA replication. Epididymal mouse spermatozoa were either frozen without cryoprotection (FT) or treated with detergent Triton X-100 coupled with dithiothreitol (TX+DTT) to induce DNA damage. Fresh, untreated sperm served as control. Immediately after preparation, spermatozoa from 3 groups were taken for comet assay, or for intracytoplasmic sperm injection into prometaphase I oocytes to visualize prematurely condensed single-chromatid chromosomes, or into mature metaphase II oocytes to visualize chromosomes after DNA replication. Comet assay revealed increased DNA fragmentation in treated sperm when compared with control, with FT sperm more severely affected. Chromosome analysis demonstrated paternal DNA damage in oocytes injected with treated, but not with fresh, sperm, with FT and TX+DTT groups now yielding similar damage. There were no differences in the incidence of abnormal paternal karyoplates before and after DNA synthesis in all examined groups. This study provides evidence that subjecting sperm to DNA damage-inducing treatments results in degradation of highly condensed sperm chromatin when it is still packed within the sperm head, and that this DNA damage persists after fertilization. The difference in DNA damage in sperm subjected to 2 treatments was ameliorated in the fertilized oocytes, suggesting that some chromatin repair might have occurred. This process, however, was independent of DNA synthesis and took place during oocyte maturation.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
37
|
Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet 2010; 6:e1001238. [PMID: 21170359 PMCID: PMC3000357 DOI: 10.1371/journal.pgen.1001238] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022] Open
Abstract
We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter)) as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter) interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter) deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter) acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome.
Collapse
Affiliation(s)
- Audrey Costes
- Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
| | - François Lecointe
- INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, Jouy-en-Josas, France
| | - Stephen McGovern
- INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, Jouy-en-Josas, France
| | - Sophie Quevillon-Cheruel
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, Centre National de la Recherche Scientifique, UMR8619, IFR115, Orsay, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- * E-mail:
| |
Collapse
|
38
|
Bernard R, Marquis KA, Rudner DZ. Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis. Mol Microbiol 2010; 78:866-82. [PMID: 20807205 DOI: 10.1111/j.1365-2958.2010.07369.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
How bacteria respond to chromosome replication stress has been traditionally studied using temperature-sensitive mutants and chemical inhibitors. These methods inevitably arrest all replication and lead to induction of transcriptional responses and inhibition of cell division. Here, we used repressor proteins bound to operator arrays to generate a single stalled replication fork. These replication roadblocks impeded replisome progression on one arm, leaving replication of the other arm and re-initiation unaffected. Remarkably, despite robust generation of RecA-GFP filaments and a strong block to cell division during the roadblock, patterns of gene expression were not significantly altered. Consistent with these findings, division inhibition was not mediated by the SOS-induced regulator YneA nor by RecA-independent repression of ftsL. In support of the idea that nucleoid occlusion prevents inappropriate cell division during fork arrest, immature FtsZ-rings formed adjacent to the DNA mass but rarely on top of it. Furthermore, mild alterations in chromosome compaction resulted in cell division that guillotined the DNA. Strikingly, the nucleoid occlusion protein Noc had no discernable role in division inhibition. Our data indicate that Noc-independent nucleoid occlusion prevents inappropriate cell division during replication fork arrest. They further suggest that Bacillus subtilis normally manages replication stress rather than inducing a stress response.
Collapse
Affiliation(s)
- Remi Bernard
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
39
|
Steffens LS, Nicholson S, Paul LV, Nord CE, Patrick S, Abratt VR. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole. Res Microbiol 2010; 161:346-54. [PMID: 20435137 PMCID: PMC3025348 DOI: 10.1016/j.resmic.2010.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 11/18/2022]
Abstract
Bacteroides fragilis is a human gut commensal and an opportunistic pathogen causing anaerobic abscesses and bacteraemias which are treated with metronidazole (Mtz), a DNA damaging agent. This study examined the role of the DNA repair protein, RecA, in maintaining endogenous DNA stability and its contribution to resistance to Mtz and other DNA damaging agents. RT-PCR of B. fragilis genomic DNA showed that the recA gene was co-transcribed as an operon together with two upstream genes, putatively involved in repairing oxygen damage. A B. fragilis recA mutant was generated using targeted gene inactivation. Fluorescence microscopy using DAPI staining revealed increased numbers of mutant cells with reduced intact double-stranded DNA. Alkaline gel electrophoresis of the recA mutant DNA showed increased amounts of strand breaks under normal growth conditions, and the recA mutant also showed less spontaneous mutagenesis relative to the wild type strain. The recA mutant was sensitive to Mtz, ultraviolet light and hydrogen peroxide. A B. fragilis strain overexpressing the RecA protein exhibited increased resistance to Mtz compared to the wild type. This is the first study to show that overexpression of a DNA repair protein in B. fragilis increases Mtz resistance. This represents a novel drug resistance mechanism in this bacterium.
Collapse
Affiliation(s)
- Laura S Steffens
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Private Bag, Cape Town 7701, South Africa
| | | | | | | | | | | |
Collapse
|
40
|
Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair. J Bacteriol 2010; 192:3452-63. [PMID: 20453097 DOI: 10.1128/jb.01435-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The beta clamp is an essential replication sliding clamp required for processive DNA synthesis. The beta clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of beta clamp containing the G73R substitution. Cells with the dnaN5 allele are temperature sensitive for growth due to a defect in DNA replication at 49 degrees C, and they show an increase in mutation frequency caused by a partial defect in MMR at permissive temperatures. We selected for intragenic suppressors of dnaN5 that rescued viability at 49 degrees C to determine if the DNA replication defect could be separated from the MMR defect. We isolated three intragenic suppressors of dnaN5 that restored growth at the nonpermissive temperature while maintaining an increase in mutation frequency. All three dnaN alleles encoded the G73R substitution along with one of three novel missense mutations. The missense mutations isolated were S22P, S181G, and E346K. Of these, S181G and E346K are located near the hydrophobic cleft of the beta clamp, a common site occupied by proteins that bind the beta clamp. Using several methods, we show that the increase in mutation frequency resulting from each dnaN allele is linked to a defect in MMR. Moreover, we found that S181G and E346K allowed growth at elevated temperatures and did not have an appreciable effect on mutation frequency when separated from G73R. Thus, we found that specific residue changes in the B. subtilis beta clamp separate the role of the beta clamp in DNA replication from its role in MMR.
Collapse
|
41
|
Klocko AD, Crafton KM, Walsh BW, Lenhart JS, Simmons LA. Imaging mismatch repair and cellular responses to DNA damage in Bacillus subtilis. J Vis Exp 2010:1736. [PMID: 20142799 PMCID: PMC2818710 DOI: 10.3791/1736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Both prokaryotes and eukaryotes respond to DNA damage through a complex set of physiological changes. Alterations in gene expression, the redistribution of existing proteins, and the assembly of new protein complexes can be stimulated by a variety of DNA lesions and mismatched DNA base pairs. Fluorescence microscopy has been used as a powerful experimental tool for visualizing and quantifying these and other responses to DNA lesions and to monitor DNA replication status within the complex subcellular architecture of a living cell. Translational fusions between fluorescent reporter proteins and components of the DNA replication and repair machinery have been used to determine the cues that target DNA repair proteins to their cognate lesions in vivo and to understand how these proteins are organized within bacterial cells. In addition, transcriptional and translational fusions linked to DNA damage inducible promoters have revealed which cells within a population have activated genotoxic stress responses. In this review, we provide a detailed protocol for using fluorescence microscopy to image the assembly of DNA repair and DNA replication complexes in single bacterial cells. In particular, this work focuses on imaging mismatch repair proteins, homologous recombination, DNA replication and an SOS-inducible protein in Bacillus subtilis. All of the procedures described here are easily amenable for imaging protein complexes in a variety of bacterial species.
Collapse
Affiliation(s)
- Andrew D Klocko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, USA
| | | | | | | | | |
Collapse
|
42
|
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 2010; 6:e1000810. [PMID: 20090829 PMCID: PMC2797598 DOI: 10.1371/journal.pgen.1000810] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/10/2009] [Indexed: 01/18/2023] Open
Abstract
In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization. An important feature of genome organization is that transcription and replication are selectively co-oriented. This feature helps to avoid conflicts between head-on replication and transcription. The precise consequences of the conflict and how it affects genome organization remain to be understood. We previously found that reversing the transcription bias slows replication in the Bacillus subtilis genome. Here we engineered new inversions to avoid changes in other aspects of genome organization. We found that the reversed transcription bias is sufficient to decrease replication speed, and it results in lowered fitness of the inversion strains and a competitive disadvantage relative to wild-type cells in minimal medium. Further, by analyzing genomic copy-number snapshots to obtain replication speed as a function of genome position, we found that inversion of the strongly-transcribed rRNA genes obstructs replication during growth in rich medium. This confers a strong growth disadvantage to cells in rich medium, turns on DNA damage responses, and leads to cell death in a subpopulation of cells, while the surviving cells are more sensitive to genotoxic agents. Our results strongly support the hypothesis that evolution has favored co-orientation of transcription with replication, mainly to avoid these effects.
Collapse
Affiliation(s)
- Anjana Srivatsan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley Tehranchi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jue D. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Krishnamurthy M, Tadesse S, Rothmaier K, Graumann PL. A novel SMC-like protein, SbcE (YhaN), is involved in DNA double-strand break repair and competence in Bacillus subtilis. Nucleic Acids Res 2009; 38:455-66. [PMID: 19906728 PMCID: PMC2811018 DOI: 10.1093/nar/gkp909] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bacillus subtilis and most Gram positive bacteria possess four SMC like proteins: SMC, SbcC, RecN and the product of the yhaN gene, termed SbcE. SbcE is most similar to SbcC but contains a unique central domain. We show that SbcE plays a role during transformation in competent cells and in DNA double-strand break (DSB) repair. The phenotypes were strongly exacerbated by the additional deletion of recN or of sbcC, suggesting that all three proteins act upstream of RecA and provide distinct avenues for presynapsis. SbcE accumulated at the cell poles in competent cells, and localized as a discrete focus on the nucleoids in 10% of growing cells. This number moderately increased after treatment with DNA damaging agents and in the absence of RecN or of SbcC. Damage-induced foci of SbcE arose early after induction of DNA damage and rarely colocalized with the replication machinery. Our work shows that SMC-like proteins in B. subtilis play roles at different subcellular sites during DNA repair. SbcC operates at breaks occurring at the replication machinery, whereas RecN and SbcE function mainly, but not exclusively, at DSBs arising elsewhere on the chromosome. In agreement with this idea, we found that RecN-YFP damage-induced assemblies also arise in the absence of ongoing replication.
Collapse
|
44
|
Wagner JK, Marquis KA, Rudner DZ. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. Mol Microbiol 2009; 73:963-74. [PMID: 19682252 DOI: 10.1111/j.1365-2958.2009.06825.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a result, expression of SirA during growth rapidly blocks replication and causes cell death in a DnaA-dependent manner. Finally, cells lacking SirA over-replicate during sporulation. These results support a model in which induction of SirA enforces diploidy by inhibiting replication initiation as B. subtilis cells develop into spores.
Collapse
Affiliation(s)
- Jennifer K Wagner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 2008; 191:1152-61. [PMID: 19060143 DOI: 10.1128/jb.01292-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.
Collapse
|
46
|
Abstract
Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability. Phenotypic heterogeneity can be readily obtained by interlinking multiple gene regulatory pathways, effectively resulting in a genetic logic-AND gate. Although switching between states can occur within the cells' lifetime, cells can also pass their cellular state over to the next generation by a mechanism known as epigenetic inheritance and thus perpetuate the phenotypic state. Importantly, heterogeneous populations can demonstrate increased fitness compared with homogeneous populations. This suggests that microbial cells employ bet-hedging strategies to maximize survival. Here, we discuss the possible roles of interlinked bistable networks, epigenetic inheritance, and bet-hedging in bacteria.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | |
Collapse
|
47
|
Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J Bacteriol 2008; 190:6758-68. [PMID: 18689473 DOI: 10.1128/jb.00590-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among other functions, ATP-dependent proteases degrade misfolded proteins and remove several key regulatory proteins necessary to activate stress responses. In Bacillus subtilis, ClpX, ClpE, and ClpC form homohexameric ATPases that couple to the ClpP peptidase. To understand where these peptidases and ATPases localize in living cells, each protein was fused to a fluorescent moiety. We found that ClpX-GFP (green fluorescent protein) and ClpP-GFP localized as focal assemblies in areas that were not occupied by the nucleoid. We found that the percentage of cells with ClpP-GFP foci increased following heat shock independently of protein synthesis. We determined that ClpE-YFP (yellow fluorescent protein) and ClpC-YFP formed foci coincident with nucleoid edges, usually near cell poles. Furthermore, we found that ClpQ-YFP (HslV) localized as small foci, usually positioned near the cell membrane. We found that ClpQ-YFP foci were dependent on the presence of the cognate hexameric ATPase ClpY (HslU). Moreover, we found that LonA-GFP is coincident with the nucleoid during normal growth and that LonA-GFP also localized to the forespore during development. We also investigated LonB-GFP and found that this protein localized to the forespore membrane early in development, followed by localization throughout the forespore later in development. Our comprehensive study has shown that in B. subtilis several ATP-fueled proteases occupy distinct subcellular locations. With these data, we suggest that substrate specificity could be determined, in part, by the spatial and temporal organization of proteases in vivo.
Collapse
|
48
|
Beta clamp directs localization of mismatch repair in Bacillus subtilis. Mol Cell 2008; 29:291-301. [PMID: 18280235 DOI: 10.1016/j.molcel.2007.10.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/28/2007] [Accepted: 10/31/2007] [Indexed: 11/20/2022]
Abstract
MutS homologs function in several cellular pathways including mismatch repair (MMR), the process by which mismatches introduced during DNA replication are corrected. We demonstrate that the C terminus of Bacillus subtilis MutS is necessary for an interaction with beta clamp. This interaction is required for MutS-GFP focus formation in response to mismatches. Reciprocally, we show that a mutant of the beta clamp causes elevated mutation frequencies and is reduced for MutS-GFP focus formation. MutS mutants defective for interaction with beta clamp failed to support the next step of MMR, MutL-GFP focus formation. We conclude that the interaction between MutS and beta is the major molecular interaction facilitating focus formation and that beta clamp aids in the stabilization of MutS at a mismatch in vivo. The striking ability of the MutS C terminus to direct focus formation at replisomes by itself, suggests that it is mismatch recognition that licenses MutS's interaction with beta clamp.
Collapse
|
49
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
50
|
Kobayashi H, Simmons LA, Yuan DS, Broughton WJ, Walker GC. Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti. Mol Microbiol 2007; 67:350-63. [PMID: 18067541 DOI: 10.1111/j.1365-2958.2007.06036.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The bacterial non-homologous end-joining (NHEJ) apparatus is a two-component system that uses Ku and LigD to repair DNA double-strand breaks. Although the reaction mechanism has been extensively studied, much less is known about the physiological role of bacterial NHEJ. Recent studies suggest that NHEJ acts under conditions where DNA replication is reduced or absent (such as in a spore or stationary phase). Interestingly, genes encoding Ku and LigD have been identified in a wide range of bacteria that can chronically infect eukaryotic hosts. Strikingly, Sinohizobium meliloti, an intracellular symbiont of legume plants, carries four genes encoding Ku homologues (sku1 to sku4). Deletion analysis of the sku genes indicated that all Ku homologues are functional. One of these genes, sku2, is strongly expressed in free-living cells, as well as in bacteroid cells residing inside of the host plant. To visualize the NHEJ apparatus in vivo, SKu2 protein was fused to yellow fluorescent protein (YFP). Ionizing radiation (IR) induced focus formation of SKu2-YFP in free-living cells in a dosage-dependent manner. Moreover, SKu2-YFP foci formed in response to IR in non-dividing bacteroids, indicating that NHEJ system is functional even during the chronic infection phase of symbiosis.
Collapse
Affiliation(s)
- Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|