1
|
Roberts CS, Shannon AB, Korotkov KV, Sandkvist M. Differential processing of VesB by two rhomboid proteases in Vibrio cholerae. mBio 2024; 15:e0127024. [PMID: 39136457 PMCID: PMC11389362 DOI: 10.1128/mbio.01270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Rhomboid proteases are universally conserved and facilitate the proteolysis of peptide bonds within or adjacent to cell membranes. While eukaryotic rhomboid proteases have been demonstrated to harbor unique cellular roles, prokaryotic members have been far less characterized. For the first time, we demonstrate that Vibrio cholerae expresses two active rhomboid proteases that cleave a shared substrate at distinct sites, resulting in differential localization of the processed protein. The rhomboid protease rhombosortase (RssP) was previously found to process a novel C-terminal domain called GlyGly-CTERM, as demonstrated by its effect on the extracellular serine protease VesB during its transport through the V. cholerae cell envelope. Here, we characterize the substrate specificity of RssP and GlpG, the universally conserved bacterial rhomboid proteases. We show that RssP has distinct cleavage specificity from GlpG, and specific residues within the GlyGly-CTERM of VesB target it to RssP over GlpG, allowing for efficient proteolysis. RssP cleaves VesB within its transmembrane domain, whereas GlpG cleaves outside the membrane in a disordered loop that precedes the GlyGly-CTERM. Cleavage of VesB by RssP initially targets VesB to the bacterial cell surface and, subsequently, to outer membrane vesicles, while GlpG cleavage results in secreted, fully soluble VesB. Collectively, this work builds on the molecular understanding of rhomboid proteolysis and provides the basis for additional rhomboid substrate recognition while also demonstrating a unique role of RssP in the maturation of proteins containing a GlyGly-CTERM. IMPORTANCE Despite a great deal of insight into the eukaryotic homologs, bacterial rhomboid proteases have been relatively understudied. Our research aims to understand the function of two rhomboid proteases in Vibrio cholerae. This work is significant because it will help us better understand the catalytic mechanism of rhomboid proteases as a whole and assign a specific role to a unique subfamily whose function is to process a subset of effector molecules secreted by V. cholerae and other pathogenic bacteria.
Collapse
Affiliation(s)
- Cameron S Roberts
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Austin B Shannon
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Bach K, Dohnálek J, Škerlová J, Kuzmík J, Poláchová E, Stanchev S, Majer P, Fanfrlík J, Pecina A, Řezáč J, Lepšík M, Borshchevskiy V, Polovinkin V, Strisovsky K. Extensive targeting of chemical space at the prime side of ketoamide inhibitors of rhomboid proteases by branched substituents empowers their selectivity and potency. Eur J Med Chem 2024; 275:116606. [PMID: 38901105 DOI: 10.1016/j.ejmech.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Rhomboid intramembrane serine proteases have been implicated in several pathologies, and emerge as attractive pharmacological target candidates. The most potent and selective rhomboid inhibitors available to date are peptidyl α-ketoamides, but their selectivity for diverse rhomboid proteases and strategies to modulate it in relevant contexts are poorly understood. This gap, together with the lack of suitable in vitro models, hinders ketoamide development for relevant eukaryotic rhomboid enzymes. Here we explore the structure-activity relationship principles of rhomboid inhibiting ketoamides by medicinal chemistry and enzymatic in vitro and in-cell assays with recombinant rhomboid proteases GlpG, human mitochondrial rhomboid PARL and human RHBDL2. We use X-ray crystallography in lipidic cubic phase to understand the binding mode of one of the best ketoamide inhibitors synthesized here containing a branched terminal substituent bound to GlpG. In addition, to extend the interpretation of the co-crystal structure, we use quantum mechanical calculations and quantify the relative importance of interactions along the inhibitor molecule. These combined experimental analyses implicates that more extensive exploration of chemical space at the prime side is unexpectedly powerful for the selectivity of rhomboid inhibiting ketoamides. Together with variations in the peptide sequence at the non-prime side, or its non-peptidic alternatives, this strategy enables targeted tailoring of potent and selective ketoamides towards diverse rhomboid proteases including disease-relevant ones such as PARL and RHBDL2.
Collapse
Affiliation(s)
- Kathrin Bach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; Department of Molecular Genetics, Faculty of Science, Charles University, Viničná 5, Prague, 128 44, Czech Republic
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; University of Chemistry and Technology, Technická 5, Prague, 166 28, Czech Republic
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Ján Kuzmík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Edita Poláchová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry) Forschungszentrum Jülich 52428 Jülich, Germany
| | - Vitaly Polovinkin
- ELI Beamlines Centre, ELI ERIC, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic.
| |
Collapse
|
3
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Elston R, Mulligan C, Thomas GH. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37948297 DOI: 10.1099/mic.0.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.
Collapse
Affiliation(s)
- Rory Elston
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
5
|
Bohg C, Öster C, Türkaydin B, Lisurek M, Sanchez-Carranza P, Lange S, Utesch T, Sun H, Lange A. The opening dynamics of the lateral gate regulates the activity of rhomboid proteases. SCIENCE ADVANCES 2023; 9:eadh3858. [PMID: 37467320 PMCID: PMC10355837 DOI: 10.1126/sciadv.adh3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Rhomboid proteases hydrolyze substrate helices within the lipid bilayer to release soluble domains from the membrane. Here, we investigate the mechanism of activity regulation for this unique but wide-spread protein family. In the model rhomboid GlpG, a lateral gate formed by transmembrane helices TM2 and TM5 was previously proposed to allow access of the hydrophobic substrate to the shielded hydrophilic active site. In our study, we modified the gate region and either immobilized the gate by introducing a maleimide-maleimide (M2M) crosslink or weakened the TM2/TM5 interaction network through mutations. We used solid-state nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and molecular docking to investigate the resulting effects on structure and dynamics on the atomic level. We find that variants with increased dynamics at TM5 also exhibit enhanced activity, whereas introduction of a crosslink close to the active site strongly reduces activity. Our study therefore establishes a strong link between the opening dynamics of the lateral gate in rhomboid proteases and their enzymatic activity.
Collapse
Affiliation(s)
- Claudia Bohg
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Carl Öster
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Berke Türkaydin
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michael Lisurek
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Pascal Sanchez-Carranza
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Sascha Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Tillmann Utesch
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Han Sun
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
6
|
Stockwald ER, Steger LME, Vollmer S, Gottselig C, Grage SL, Bürck J, Afonin S, Fröbel J, Blümmel AS, Setzler J, Wenzel W, Walther TH, Ulrich AS. Length matters: Functional flip of the short TatA transmembrane helix. Biophys J 2023; 122:2125-2146. [PMID: 36523158 PMCID: PMC10257086 DOI: 10.1016/j.bpj.2022.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.
Collapse
Affiliation(s)
- Eva R Stockwald
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Lena M E Steger
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Stefanie Vollmer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Christina Gottselig
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Julia Fröbel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Anne-Sophie Blümmel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Julia Setzler
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Torsten H Walther
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| |
Collapse
|
7
|
Wang M, Tian D, Xu L, Lu M, Yan R, Li X, Song X. Protective efficacy induced by Eimeria maxima rhomboid-like protein 1 against homologous infection. Front Vet Sci 2023; 9:1049551. [PMID: 36686197 PMCID: PMC9845710 DOI: 10.3389/fvets.2022.1049551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Avian coccidiosis, caused by apicomplexan protozoa belonging to the Eimeria genus, is considered one of the most important diseases in the intensive poultry industry worldwide. Due to the shortcomings of live anticoccidial vaccines and drugs, the development of novel anticoccidial vaccines is increasingly urgent. Methods Eimeria maxima rhomboid-like protein 1 (EmROM1), an invasion-related molecule, was selected as a candidate antigen to evaluate its protective efficacy against E. maxima in chickens. Firstly, the prokaryotic recombinant plasmid pET-32a-EmROM1 was constructed to prepare EmROM1 recombinant protein (rEmROM1), which was used as a subunit vaccine. The eukaryotic recombinant plasmid pVAX1.0-EmROM1 (pEmROM1) was constructed as a DNA vaccine. Subsequently, 2-week-old chicks were separately vaccinated with the rEmROM1 and pEmROM1 twice every 7 days. One week post the booster vaccination, induced cellular immune responses were determined by evaluating the mRNA level of cytokines including IL-2, IFN-γ, IL-4, IL-10, TGF-β, IL-17, and TNFSF15, as well as the percentages of CD4+ and CD8+ T cells from spleens of vaccinated chickens. Specific serum antibody level in the vaccinated chickens was determined to assess induced humoral immune responses. Finally, the protective efficacy of EmROM1 was evaluated by a vaccination-challenge trial. Results EmROM1 vaccination significantly upregulated the cytokine transcription levels and CD4+/CD8+ T cell percentages in vaccinated chickens compared with control groups, and also significantly increased the levels of serum-specific antibodies in vaccinated chickens. The animal trial showed that EmROM1 vaccination significantly reduced oocyst shedding, enteric lesions, and weight loss of infected birds compared with the controls. The anticoccidial index (ACI) from the rEmROM-vaccination group and pEmROM1-vaccination group were 174.11 and 163.37, respectively, showing moderate protection against E. maxima infection. Discussion EmROM1 is an effective candidate antigen for developing DNA or subunit vaccines against avian coccidiosis.
Collapse
|
8
|
Siebert V, Silber M, Heuten E, Muhle-Goll C, Lemberg MK. Cleavage of mitochondrial homeostasis regulator PGAM5 by the intramembrane protease PARL is governed by transmembrane helix dynamics and oligomeric state. J Biol Chem 2022; 298:102321. [PMID: 35921890 PMCID: PMC9436811 DOI: 10.1016/j.jbc.2022.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022] Open
Abstract
The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential–dependent oligomeric switch.
Collapse
|
9
|
De Castro RE, Giménez MI, Cerletti M, Paggi RA, Costa MI. Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in Haloferax volcanii. Front Microbiol 2022; 13:940865. [PMID: 35814708 PMCID: PMC9263693 DOI: 10.3389/fmicb.2022.940865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Proteolysis plays a fundamental role in many processes that occur within the cellular membrane including protein quality control, protein export, cell signaling, biogenesis of the cell envelope among others. Archaea are a distinct and physiologically diverse group of prokaryotes found in all kinds of habitats, from the human and plant microbiomes to those with extreme salt concentration, pH and/or temperatures. Thus, these organisms provide an excellent opportunity to extend our current understanding on the biological functions that proteases exert in cell physiology including the adaptation to hostile environments. This revision describes the advances that were made on archaeal membrane proteases with regard to their biological function and potential natural targets focusing on the model haloarchaeon Haloferax volcanii.
Collapse
|
10
|
Luenenschloss A, Ter Veld F, Albaum SP, Neddermann TM, Wendisch VF, Poetsch A. Functional Genomics Uncovers Pleiotropic Role of Rhomboids in Corynebacterium glutamicum. Front Microbiol 2022; 13:771968. [PMID: 35265054 PMCID: PMC8899591 DOI: 10.3389/fmicb.2022.771968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
The physiological role of ubiquitous rhomboid proteases, membrane-integral proteins that cleave their substrates inside the lipid bilayer, is still ill-defined in many prokaryotes. The two rhomboid genes cg0049 and cg2767 of Corynebacterium glutamicum were mutated and it was the aim of this study to investigate consequences in respect to growth phenotype, stress resistance, transcriptome, proteome, and lipidome composition. Albeit increased amount of Cg2767 upon heat stress, its absence did not change the growth behavior of C. glutamicum during exponential and stationary phase. Quantitative shotgun mass spectrometry was used to compare the rhomboid mutant with wild type strain and revealed that proteins covering diverse cellular functions were differentially abundant with more proteins affected in the stationary than in the exponential growth phase. An observation common to both growth phases was a decrease in ribosomal subunits and RNA polymerase, differences in iron uptake proteins, and abundance changes in lipid and mycolic acid biosynthesis enzymes that suggested a functional link of rhomboids to cell envelope lipid biosynthesis. The latter was substantiated by shotgun lipidomics in the stationary growth phase, where in a strain-dependent manner phosphatidylglycerol, phosphatidic acid, diacylglycerol and phosphatidylinositol increased irrespective of cultivation temperature.
Collapse
Affiliation(s)
| | - Frank Ter Veld
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stefan P Albaum
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias M Neddermann
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany.,Department of Marine Biology, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Asadi M, Oanca G, Warshel A. Effect of Environmental Factors on the Catalytic Activity of Intramembrane Serine Protease. J Am Chem Soc 2022; 144:1251-1257. [PMID: 35023734 PMCID: PMC10349665 DOI: 10.1021/jacs.1c10494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cleavage of protein inside cell membranes regulates pathological pathways and is a subject of major interest. Thus, the nature of the coupling between the physical environment and the function of such proteins has recently attracted significant experimental and theoretical efforts. However, it is difficult to determine the nature of this coupling uniquely by experimental and theoretical studies unless one can separate the chemical and the environmental factors. This work describes calculations of the activation barriers of the intramembrane rhomboid protease in neutral and charged lipid bilayers and in detergent micelle, trying to explore the environmental effect. The calculations of the chemical barrier are done using the empirical valence bond (EVB) method. Additionally, the renormalization method captures the energetics and dynamical effects of the conformational change. The simulations indicate that the physical environment around the rhomboid protease is not a major factor in changing the chemical catalysis and that the conformational and substrate dynamics do not exhibit long-time coupling. General issues about the action of membrane-embedded enzymes are also considered.
Collapse
Affiliation(s)
- Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Gabriel Oanca
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
12
|
Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion. Microorganisms 2022; 10:microorganisms10010114. [PMID: 35056563 PMCID: PMC8778405 DOI: 10.3390/microorganisms10010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.
Collapse
|
13
|
Lavell A, Smith M, Xu Y, Froehlich JE, De La Mora C, Benning C. Proteins associated with the Arabidopsis thaliana plastid rhomboid-like protein RBL10. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1332-1345. [PMID: 34582071 PMCID: PMC9219029 DOI: 10.1111/tpj.15514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
Rhomboid-like proteins are intramembrane proteases with a variety of regulatory roles in cells. Though many rhomboid-like proteins are predicted in plants, their detailed molecular mechanisms or cellular functions are not yet known. Of the 13 predicted rhomboids in Arabidopsis thaliana, one, RBL10, affects lipid metabolism in the chloroplast, because in the respective rbl10 mutant the transfer of phosphatidic acid through the inner envelope membrane is disrupted. Here we show that RBL10 is part of a high-molecular-weight complex of 250 kDa or greater in size. Nine likely components of this complex are identified by two independent methods and include Acyl Carrier Protein 4 (ACP4) and Carboxyltransferase Interactor1 (CTI1), which have known roles in chloroplast lipid metabolism. The acp4 mutant has decreased C16:3 fatty acid content of monogalactosyldiacylglycerol, similar to the rbl10 mutant, prompting us to offer a mechanistic model of how an interaction between ACP4 and RBL10 might affect chloroplast lipid assembly. We also demonstrate the presence of a seventh transmembrane domain in RBL10, refining the currently accepted topology of this protein. Taken together, the identity of possible RBL10 complex components as well as insights into RBL10 topology and distribution in the membrane provide a stepping-stone towards a deeper understanding of RBL10 function in Arabidopsis lipid metabolism.
Collapse
Affiliation(s)
- Anastasiya Lavell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Montgomery Smith
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824
| | - Yang Xu
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - John E. Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Cameron De La Mora
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Dept. of Molecular & Cellular Biology, Illinois State University, Normal, IL 61761
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
14
|
Bohg C, Öster C, Utesch T, Bischoff S, Lange S, Shi C, Sun H, Lange A. A combination of solid-state NMR and MD simulations reveals the binding mode of a rhomboid protease inhibitor. Chem Sci 2021; 12:12754-12762. [PMID: 34703562 PMCID: PMC8494044 DOI: 10.1039/d1sc02146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Intramembrane proteolysis plays a fundamental role in many biological and pathological processes. Intramembrane proteases thus represent promising pharmacological targets, but few selective inhibitors have been identified. This is in contrast to their soluble counterparts, which are inhibited by many common drugs, and is in part explained by the inherent difficulty to characterize the binding of drug-like molecules to membrane proteins at atomic resolution. Here, we investigated the binding of two different inhibitors to the bacterial rhomboid protease GlpG, an intramembrane protease characterized by a Ser–His catalytic dyad, using solid-state NMR spectroscopy. H/D exchange of deuterated GlpG can reveal the binding position while chemical shift perturbations additionally indicate the allosteric effects of ligand binding. Finally, we determined the exact binding mode of a rhomboid protease-inhibitor using a combination of solid-state NMR and molecular dynamics simulations. We believe this approach can be widely adopted to study the structure and binding of other poorly characterized membrane protein–ligand complexes in a native-like environment and under physiological conditions. Proton-detected solid-state NMR in combination with molecular docking and molecular dynamics (MD) simulations allow the study of rhomboid protease inhibition under native-like conditions.![]()
Collapse
Affiliation(s)
- Claudia Bohg
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Tillmann Utesch
- Structural Chemistry and Computational Biophysics Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Susanne Bischoff
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany .,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China Huangshan Road 443 Hefei 230027 People's Republic of China
| | - Han Sun
- Structural Chemistry and Computational Biophysics Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany .,Institut für Biologie, Humboldt-Universität zu Berlin Invalidenstraße 42 10115 Berlin Germany
| |
Collapse
|
15
|
Van Kersavond T, Konopatzki R, van der Plassche MAT, Yang J, Verhelst SHL. Rapid synthesis of internal peptidyl α-ketoamides by on resin oxidation for the construction of rhomboid protease inhibitors. RSC Adv 2021; 11:4196-4199. [PMID: 35424368 PMCID: PMC8694341 DOI: 10.1039/d0ra10614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Rhomboid proteases are intramembrane serine proteases, which are involved in a wide variety of biological processes and have been implied in various human diseases. Recently, peptidyl α-ketoamides have been reported as rhomboid inhibitors with high potency and selectivity – owing to their interaction with both the primed and non-primed site of the target protease. However, their synthesis has been performed by solution phase chemistry. Here, we report a solid phase strategy towards ketoamides as rhomboid protease inhibitors, allowing rapid synthesis and optimization. We found that the primed site binding part of inhibitors is crucial for potency. Rhomboid intramembrane serine proteases are involved in various biological processes. A solid phase synthesis of internal α-ketoamides reported here shows that primed site elements are crucial for rhomboid protease inhibition.![]()
Collapse
Affiliation(s)
| | | | | | - Jian Yang
- KU Leuven
- Department of Cellular and Molecular Medicine
- Laboratory of Chemical Biology
- 3000 Leuven
- Belgium
| | - Steven H. L. Verhelst
- Leibniz Institute for Analytical Sciences ISAS
- 44227 Dortmund
- Germany
- KU Leuven
- Department of Cellular and Molecular Medicine
| |
Collapse
|
16
|
Mihaljević L, Urban S. Decoding the Functional Evolution of an Intramembrane Protease Superfamily by Statistical Coupling Analysis. Structure 2020; 28:1329-1336.e4. [PMID: 32795403 DOI: 10.1016/j.str.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022]
Abstract
How evolution endowed membrane enzymes with specific abilities, and then tuned them to the needs of different cells, is poorly understood. We examined whether statistical coupling analysis (SCA) can be applied to rhomboid proteases, the most widely distributed membrane proteins, to identify amino acid "sectors" that evolved independently to acquire a specific function. SCA revealed three coevolving residue networks that form two sectors. Sector 1 determines substrate specificity, but is paradoxically scattered across the protein, consistent with dynamics driving rhomboid-substrate interactions. Sector 2 is hierarchically composed of a subgroup that maintains the catalytic site, and another that maintains the overall fold, forecasting evolution of rhomboid pseudoproteases. Changing only sector 1 residues of a "recipient" rhomboid converted its substrate specificity and catalytic efficiency to that of the "donor." While used only twice over a decade ago, SCA should be generally applicable to membrane proteins, and our sector grafting approach provides an efficient strategy for designing enzymes.
Collapse
Affiliation(s)
- Ljubica Mihaljević
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Siniša Urban
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Lysyk L, Brassard R, Touret N, Lemieux MJ. PARL Protease: A Glimpse at Intramembrane Proteolysis in the Inner Mitochondrial Membrane. J Mol Biol 2020; 432:5052-5062. [DOI: 10.1016/j.jmb.2020.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
|
18
|
Transposon Insertion Site Sequencing of Providencia stuartii: Essential Genes, Fitness Factors for Catheter-Associated Urinary Tract Infection, and the Impact of Polymicrobial Infection on Fitness Requirements. mSphere 2020; 5:5/3/e00412-20. [PMID: 32461277 PMCID: PMC7253602 DOI: 10.1128/msphere.00412-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infection (CAUTI), and yet literature describing the molecular mechanisms of its pathogenesis is limited. To identify factors important for colonization during single-species infection and during polymicrobial infection with a common cocolonizer, Proteus mirabilis, we created a saturating library of ∼50,000 transposon mutants and conducted transposon insertion site sequencing (Tn-Seq) in a murine model of CAUTI. P. stuartii strain BE2467 carries 4,398 genes, 521 of which were identified as essential for growth in laboratory medium and therefore could not be assessed for contribution to infection. Using an input/output fold change cutoff value of 20 and P values of <0.05, 340 genes were identified as important for establishing single-species infection only and 63 genes as uniquely important for polymicrobial infection with P. mirabilis, and 168 genes contributed to both single-species and coinfection. Seven mutants were constructed for experimental validation of the primary screen that corresponded to flagella (fliC mutant), twin arginine translocation (tatC), an ATP-dependent protease (clpP), d-alanine-d-alanine ligase (ddlA), type 3 secretion (yscI and sopB), and type VI secretion (impJ). Infection-specific phenotypes validated 6/7 (86%) mutants during direct cochallenge with wild-type P. stuartii and 3/5 (60%) mutants during coinfection with P. mirabilis, for a combined validation rate of 9/12 (75%). Tn-Seq therefore successfully identified genes that contribute to fitness of P. stuartii within the urinary tract, determined the impact of coinfection on fitness requirements, and added to the identification of a collection of genes that may contribute to fitness of multiple urinary tract pathogens.IMPORTANCE Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infections (CAUTIs), particularly during long-term catheterization. However, little is known regarding the pathogenesis of this organism. Using transposon insertion site sequencing (Tn-Seq), we performed a global assessment of P. stuartii fitness factors for CAUTI while simultaneously determining how coinfection with another pathogen alters fitness requirements. This approach provides four important contributions to the field: (i) the first global estimation of P. stuartii genes essential for growth in laboratory medium, (ii) identification of novel fitness factors for P. stuartii colonization of the catheterized urinary tract, (iii) identification of core fitness factors for both single-species and polymicrobial CAUTI, and (iv) assessment of conservation of fitness factors between common uropathogens. Genomewide assessment of the fitness requirements for common uropathogens during single-species and polymicrobial CAUTI thus elucidates complex interactions that contribute to disease severity and will uncover conserved targets for therapeutic intervention.
Collapse
|
19
|
Liu G, Beaton SE, Grieve AG, Evans R, Rogers M, Strisovsky K, Armstrong FA, Freeman M, Exley RM, Tang CM. Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. EMBO J 2020; 39:e102922. [PMID: 32337752 PMCID: PMC7232013 DOI: 10.15252/embj.2019102922] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023] Open
Abstract
Although multiprotein membrane complexes play crucial roles in bacterial physiology and virulence, the mechanisms governing their quality control remain incompletely understood. In particular, it is not known how unincorporated, orphan components of protein complexes are recognised and eliminated from membranes. Rhomboids, the most widespread and largest superfamily of intramembrane proteases, are known to play key roles in eukaryotes. In contrast, the function of prokaryotic rhomboids has remained enigmatic. Here, we show that the Shigella sonnei rhomboid proteases GlpG and the newly identified Rhom7 are involved in membrane protein quality control by specifically targeting components of respiratory complexes, with the metastable transmembrane domains (TMDs) of rhomboid substrates protected when they are incorporated into a functional complex. Initial cleavage by GlpG or Rhom7 allows subsequent degradation of the orphan substrate. Given the occurrence of this strategy in an evolutionary ancient organism and the presence of rhomboids in all domains of life, it is likely that this form of quality control also mediates critical events in eukaryotes and protects cells from the damaging effects of orphan proteins.
Collapse
Affiliation(s)
- Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Stephen E Beaton
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Adam G Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rhiannon Evans
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Miranda Rogers
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Praha 6, Czech Republic
| | | | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Began J, Cordier B, Březinová J, Delisle J, Hexnerová R, Srb P, Rampírová P, Kožíšek M, Baudet M, Couté Y, Galinier A, Veverka V, Doan T, Strisovsky K. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J 2020; 39:e102935. [PMID: 31930742 PMCID: PMC7231995 DOI: 10.15252/embj.2019102935] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane‐bound ATP‐dependent processive metalloprotease FtsH and cleaves MgtE, the major high‐affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+/Zn2+ toxicity. The N‐terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER‐associated degradation (ERAD). Conceptually, the YqgP‐FtsH system we describe here is analogous to a primordial form of “ERAD” in bacteria and exemplifies an ancestral function of rhomboid‐superfamily proteins.
Collapse
Affiliation(s)
- Jakub Began
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Baptiste Cordier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Jana Březinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jordan Delisle
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Mathieu Baudet
- CEA, Inserm, IRIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- CEA, Inserm, IRIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Thierry Doan
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France.,Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7255, Aix Marseille Univ, Marseille Cedex 20, France
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
21
|
Cho S, Baker RP, Ji M, Urban S. Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release. Nat Struct Mol Biol 2019; 26:910-918. [PMID: 31570873 PMCID: PMC6858540 DOI: 10.1038/s41594-019-0296-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/09/2019] [Indexed: 12/04/2022]
Abstract
Protein cleavage inside the cell membrane triggers various patho-physiological signaling pathways, but the mechanism of catalysis is poorly understood. We solved ten structures of the Escherichia coli rhomboid protease in a bicelle membrane undergoing time-resolved steps that encompass the entire proteolytic reaction on a transmembrane substrate and an aldehyde inhibitor. Extensive gate opening accompanied substrate, but not inhibitor, binding, revealing that substrates and inhibitors take different paths to the active site. Catalysis unexpectedly commenced with, and was guided through subsequent catalytic steps by, motions of an extracellular loop, with local contributions from active site residues. We even captured the elusive tetrahedral intermediate that is uncleaved but covalently attached to the catalytic serine, around which the substrate was forced to bend dramatically. This unexpectedly stable intermediate indicates rhomboid catalysis uses an unprecedented reaction coordinate that may involve mechanically stressing the peptide bond, and could be selectively targeted by inhibitors.
Collapse
Affiliation(s)
- Sangwoo Cho
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosanna P Baker
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming Ji
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siniša Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Lavell A, Froehlich J, Baylis O, Rotondo A, Benning C. A predicted plastid rhomboid protease affects phosphatidic acid metabolism in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:978-987. [PMID: 31062431 PMCID: PMC6711814 DOI: 10.1111/tpj.14377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 05/23/2023]
Abstract
The thylakoid membranes of the chloroplast harbor the photosynthetic machinery that converts light into chemical energy. Chloroplast membranes are unique in their lipid makeup, which is dominated by the galactolipids mono- and digalactosyldiacylglycerol (MGDG and DGDG). The most abundant galactolipid, MGDG, is assembled through both plastid and endoplasmic reticulum (ER) pathways in Arabidopsis, resulting in distinguishable molecular lipid species. Phosphatidic acid (PA) is the first glycerolipid formed by the plastid galactolipid biosynthetic pathway. It is converted to substrate diacylglycerol (DAG) for MGDG Synthase (MGD1) which adds to it a galactose from UDP-Gal. The enzymatic reactions yielding these galactolipids have been well established. However, auxiliary or regulatory factors are largely unknown. We identified a predicted rhomboid-like protease 10 (RBL10), located in plastids of Arabidopsis thaliana, that affects galactolipid biosynthesis likely through intramembrane proteolysis. Plants with T-DNA disruptions in RBL10 have greatly decreased 16:3 (acyl carbons:double bonds) and increased 18:3 acyl chain abundance in MGDG of leaves. Additionally, rbl10-1 mutants show reduced [14 C]-acetate incorporation into MGDG during pulse-chase labeling, indicating a reduced flux through the plastid galactolipid biosynthesis pathway. While plastid MGDG biosynthesis is blocked in rbl10-1 mutants, they are capable of synthesizing PA, as well as producing normal amounts of MGDG by compensating with ER-derived lipid precursors. These findings link this predicted protease to the utilization of PA for plastid galactolipid biosynthesis potentially revealing a regulatory mechanism in chloroplasts.
Collapse
Affiliation(s)
- A. Lavell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - J.E. Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - O. Baylis
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - A. Rotondo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - C. Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
23
|
Ikeda KN, Freeman M. Spatial proteomics reveal that the protein phosphatase PTP1B interacts with and may modify tyrosine phosphorylation of the rhomboid protease RHBDL4. J Biol Chem 2019; 294:11486-11497. [PMID: 31177093 PMCID: PMC6663880 DOI: 10.1074/jbc.ra118.007074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Rhomboid-like proteins are evolutionarily conserved, ubiquitous polytopic membrane proteins, including the canonical rhomboid intramembrane serine proteases and also others that have lost protease activity during evolution. We still have much to learn about their cellular roles, and evidence suggests that some may have more than one function. For example, RHBDL4 (rhomboid-like protein 4) is an endoplasmic reticulum (ER)-resident protease that forms a ternary complex with ubiquitinated substrates and p97/VCP (valosin-containing protein), a major driver of ER-associated degradation (ERAD). RHBDL4 is required for ERAD of some substrates, such as the pre-T-cell receptor α chain (pTα) and has also been shown to cleave amyloid precursor protein to trigger its secretion. In another case, RHBDL4 enables the release of full-length transforming growth factor α in exosomes. Using the proximity proteomic method BioID, here we screened for proteins that interact with or are in close proximity to RHBDL4. Bioinformatics analyses revealed that BioID hits of RHBDL4 overlap with factors related to protein stress at the ER, including proteins that interact with p97/VCP. PTP1B (protein-tyrosine phosphatase nonreceptor type 1, also called PTPN1) was also identified as a potential proximity factor and interactor of RHBDL4. Analysis of RHBDL4 peptides highlighted the presence of tyrosine phosphorylation at the cytoplasmic RHBDL4 C terminus. Site-directed mutagenesis targeting these tyrosine residues revealed that their phosphorylation modifies binding of RHBDL4 to p97/VCP and Lys63-linked ubiquitinated proteins. Our work lays a critical foundation for future mechanistic studies of the roles of RHBDL4 in ERAD and other important cellular pathways.
Collapse
Affiliation(s)
- Kyojiro N Ikeda
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
24
|
Arutyunova E, Jiang Z, Yang J, Kulepa AN, Young HS, Verhelst S, O’Donoghue AJ, Lemieux MJ. An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases. Biol Chem 2018; 399:1389-1397. [DOI: 10.1515/hsz-2018-0255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
Abstract
AbstractRhomboids are ubiquitous intramembrane serine proteases that cleave transmembrane substrates. Their functions include growth factor signaling, mitochondrial homeostasis, and parasite invasion. A recent study revealed that theEscherichia colirhomboid protease EcGlpG is essential for its extraintestinal pathogenic colonization within the gut. Crystal structures of EcGlpG and theHaemophilus influenzaerhomboid protease HiGlpG have deciphered an active site that is buried within the lipid bilayer but exposed to the aqueous environment via a cavity at the periplasmic face. A lack of physiological transmembrane substrates has hampered progression for understanding their catalytic mechanism and screening inhibitor libraries. To identify a soluble substrate for use in the study of rhomboid proteases, an array of internally quenched peptides were assayed with HiGlpG, EcGlpG and PsAarA fromProvidencia stuartti. One substrate was identified that was cleaved by all three rhomboid proteases, with HiGlpG having the highest cleavage efficiency. Mass spectrometry analysis determined that all enzymes hydrolyze this substrate between norvaline and tryptophan. Kinetic analysis in both detergent and bicellular systems demonstrated that this substrate can be cleaved in solution and in the lipid environment. The substrate was subsequently used to screen a panel of benzoxazin-4-one inhibitors to validate its use in inhibitor discovery.
Collapse
|
25
|
Gaffney KA, Hong H. The rhomboid protease GlpG has weak interaction energies in its active site hydrogen bond network. J Gen Physiol 2018; 151:282-291. [PMID: 30420443 PMCID: PMC6400518 DOI: 10.1085/jgp.201812047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023] Open
Abstract
Rhomboid proteases are membrane-integrated enzymes that hydrolyze peptide bonds in the transmembrane domains of protein substrates. Gaffney and Hong experimentally determine interaction energies between active site residues to reveal weak coupling, which may explain the slow proteolysis mediated by GlpG. Intramembrane rhomboid proteases are of particular interest because of their function to hydrolyze a peptide bond of a substrate buried in the membrane. Crystal structures of the bacterial rhomboid protease GlpG have revealed a catalytic dyad (Ser201-His254) and oxyanion hole (His150/Asn154/the backbone amide of Ser201) surrounded by the protein matrix and contacting a narrow water channel. Although multiple crystal structures have been solved, the catalytic mechanism of GlpG is not completely understood. Because it is a serine protease, hydrogen bonding interactions between the active site residues are thought to play a critical role in the catalytic cycle. Here, we dissect the interaction energies among the active site residues His254, Ser201, and Asn154 of Escherichia coli GlpG, which form a hydrogen bonding network. We combine double mutant cycle analysis with stability measurements using steric trapping. In mild detergent, the active site residues are weakly coupled with interaction energies (ΔΔGInter) of ‒1.4 kcal/mol between His254 and Ser201 and ‒0.2 kcal/mol between Ser201 and Asn154. Further, by analyzing the propagation of single mutations of the active site residues, we find that these residues are important not only for function but also for the folding cooperativity of GlpG. The weak interaction between Ser and His in the catalytic dyad may partly explain the unusually slow proteolysis by GlpG compared with other canonical serine proteases. Our result suggests that the weak hydrogen bonds in the active site are sufficient to carry out the proteolytic function of rhomboid proteases.
Collapse
Affiliation(s)
- Kristen A Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Heedeok Hong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI .,Department of Chemistry, Michigan State University, East Lansing, MI
| |
Collapse
|
26
|
Kreutzberger AJB, Urban S. Single-Molecule Analyses Reveal Rhomboid Proteins Are Strict and Functional Monomers in the Membrane. Biophys J 2018; 115:1755-1761. [PMID: 30342748 PMCID: PMC6224778 DOI: 10.1016/j.bpj.2018.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023] Open
Abstract
Intramembrane proteases hydrolyze peptide bonds within the membrane as a regulatory paradigm that is conserved across all forms of cellular life. Many of these enzymes are thought to be oligomeric, and that their resulting quaternary interactions form the basis of their regulation. However, technical limitations have precluded directly determining the oligomeric state of intramembrane proteases in any membrane. Using single-molecule photobleaching, we determined the quaternary structure of 10 different rhomboid proteins (the largest superfamily of intramembrane proteases) and six unrelated control proteins in parallel detergent micelle, planar supported lipid bilayer, and whole-cell systems. Bacterial, parasitic, insect, and human rhomboid proteases and inactive rhomboid pseudoproteases all proved to be monomeric in all membrane conditions but dimeric in detergent micelles. These analyses establish that rhomboid proteins are, as a strict family rule, structurally and functionally monomeric by nature and that rhomboid dimers are unphysiological.
Collapse
Affiliation(s)
- Alex J B Kreutzberger
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Siniša Urban
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
27
|
Barniol-Xicota M, Verhelst SHL. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. J Am Chem Soc 2018; 140:14557-14561. [PMID: 30347979 DOI: 10.1021/jacs.8b08441] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rhomboid proteases form a paradigm for intramembrane proteolysis and have been implicated in several human diseases. However, their study is hampered by difficulties in solubilization and purification. We here report on the use of polymers composed of maleic acid and either diisobutylene or styrene for solubilization of rhomboid proteases in lipid nanodiscs, which proceeds with up to 48% efficiency. We show that the activity of rhomboids in lipid nanodiscs is closer to that in the native membrane than rhomboids in detergent. Moreover, a rhomboid that was proteolytically unstable in detergent turned out to be stable in lipid nanodiscs, underlining the benefit of using these polymer-stabilized nanodiscs. The systems are also compatible with the use of activity-based probes and can be used for small molecule inhibitor screening, allowing several downstream applications.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine , KU Leuven - University of Leuven , Herestraat 49 box 802 , 3000 Leuven , Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine , KU Leuven - University of Leuven , Herestraat 49 box 802 , 3000 Leuven , Belgium.,AG Chemical Proteomics , Leibniz Institute for Analytical Sciences - ISAS , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| |
Collapse
|
28
|
Gadwal S, Johnson TL, Remmer H, Sandkvist M. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog 2018; 14:e1007341. [PMID: 30352106 PMCID: PMC6219818 DOI: 10.1371/journal.ppat.1007341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/06/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae and a subset of other Gram-negative bacteria, including Acinetobacter baumannii, express proteins with a C-terminal tripartite domain called GlyGly-CTERM, which consists of a motif rich in glycines and serines, followed by a hydrophobic region and positively charged residues. Here we show that VesB, a V. cholerae serine protease, requires the GlyGly-CTERM domain, the intramembrane rhomboid-like protease rhombosortase, and the type II secretion system (T2SS) for localization at the cell surface. VesB is cleaved by rhombosortase to expose the second glycine residue of the GlyGly-CTERM motif, which is then conjugated to a glycerophosphoethanolamine-containing moiety prior to engagement with the T2SS and outer membrane translocation. In support of this, VesB accumulates intracellularly in the absence of the T2SS, and surface-associated VesB activity is no longer detected when the rhombosortase gene is inactivated. In turn, when VesB is expressed without an intact GlyGly-CTERM domain, VesB is released to the extracellular milieu by the T2SS and does not accumulate on the cell surface. Collectively, our findings suggest that the posttranslational modification of the GlyGly-CTERM domain is essential for cell surface localization of VesB and other proteins expressed with this tripartite extension.
Collapse
Affiliation(s)
- Shilpa Gadwal
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Tanya L. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Henriette Remmer
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
29
|
The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends Biochem Sci 2018; 43:726-739. [DOI: 10.1016/j.tibs.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/30/2018] [Indexed: 12/27/2022]
|
30
|
Yang J, Barniol-Xicota M, Nguyen MT, Ticha A, Strisovsky K, Verhelst SH. Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases. Bioorg Med Chem Lett 2018; 28:1423-1427. [DOI: 10.1016/j.bmcl.2017.12.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
|
31
|
Costa MI, Cerletti M, Paggi RA, Trötschel C, De Castro RE, Poetsch A, Giménez MI. Haloferax volcanii Proteome Response to Deletion of a Rhomboid Protease Gene. J Proteome Res 2018; 17:961-977. [PMID: 29301397 DOI: 10.1021/acs.jproteome.7b00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are conserved intramembrane serine proteases involved in cell signaling processes. Their role in prokaryotes is scarcely known and remains to be investigated in Archaea. We previously constructed a rhomboid homologue deletion mutant (ΔrhoII) in Haloferax volcanii, which showed reduced motility, increased novobiocin sensitivity, and an N- glycosylation defect. To address the impact of rhoII deletion on H. volcanii physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. A total of 1847 proteins were identified (45.8% of H. volcanii predicted proteome), from which 103 differed in amount. Additionally, the mutant strain evidenced 99 proteins with altered electrophoretic migration, which suggested differential post-translational processing/modification. Integral membrane proteins that evidenced variations in concentration, electrophoretic migration, or semitryptic cleavage in the mutant were considered as potential RhoII targets. These included a PrsW protease homologue (which was less stable in the mutant strain), a predicted halocyanin, and six integral membrane proteins potentially related to the mutant glycosylation (S-layer glycoprotein, Agl15) and cell adhesion/motility (flagellin1, HVO_1153, PilA1, and PibD) defects. This study investigated for the first time the impact of a rhomboid protease on the whole proteome of an organism.
Collapse
Affiliation(s)
- Mariana I Costa
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Christian Trötschel
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Ansgar Poetsch
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University , Plymouth PL4 8AA, United Kingdom
| | - María I Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| |
Collapse
|
32
|
Powles J, Ko K. Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential. F1000Res 2018; 7:139. [PMID: 32201561 PMCID: PMC7065720 DOI: 10.12688/f1000research.13383.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Rhomboid serine proteases are present across many species and are often encoded in each species by more than one predicted gene. Based on protein sequence comparisons, rhomboids can be differentiated into groups - secretases, presenilin-like associated rhomboid-like (PARL) proteases, iRhoms, and "inactive" rhomboid proteins. Although these rhomboid groups are distinct, the different types can operate simultaneously. Studies in Arabidopsis showed that the number of rhomboid proteins working simultaneously can be further diversified by alternative splicing. This phenomenon was confirmed for the Arabidopsis plastid rhomboid proteins At1g25290 and At1g74130. Although alternative splicing was determined to be a significant mechanism for diversifying these two Arabidopsis plastid rhomboids, there has yet to be an assessment as to whether this mechanism extends to other rhomboids and to other species. Methods: We thus conducted a comparative analysis of select databases to determine if the alternative splicing mechanism observed for the two Arabidopsis plastid rhomboids was utilized in other species to expand the repertoire of rhomboid proteins. To help verify the in silico observations, select splice variants from different groups were tested for activity using transgenic- and additive-based assays. These assays aimed to uncover evidence that the selected splice variants display capacities to influence processes like antimicrobial sensitivity. Results: A comparison of database entries of six widely used eukaryotic experimental models (human, mouse, Arabidopsis, Drosophila, nematode, and yeast) revealed robust usage of alternative splicing to diversify rhomboid protein structure across the various motifs or regions, especially in human, mouse and Arabidopsis. Subsequent validation studies uncover evidence that the splice variants selected for testing displayed functionality in the different activity assays. Conclusions: The combined results support the hypothesis that alternative splicing is likely used to diversify and expand rhomboid protein functionality, and this potentially occurred across the various motifs or regions of the protein.
Collapse
Affiliation(s)
- Joshua Powles
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kenton Ko
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
33
|
Tichá A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Škerle J, Švehlová K, Nguyen MTN, Verhelst SHL, Johnson DC, Bachovchin DA, Lepšík M, Majer P, Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem Biol 2017; 24:1523-1536.e4. [PMID: 29107700 PMCID: PMC5746060 DOI: 10.1016/j.chembiol.2017.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/19/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the ketoamide nitrogen by hydrophobic groups are potent rhomboid inhibitors active in the nanomolar range, surpassing the currently used rhomboid inhibitors by up to three orders of magnitude. Such peptidyl ketoamides show selectivity for rhomboids, leaving most human serine hydrolases unaffected. Crystal structures show that these compounds bind the active site of rhomboid covalently and in a substrate-like manner, and kinetic analysis reveals their reversible, slow-binding, non-competitive mechanism. Since ketoamides are clinically used pharmacophores, our findings uncover a straightforward modular way for the design of specific inhibitors of rhomboid proteases, which can be widely applicable in cell biology and drug discovery. N-substituted peptidyl α-ketoamides are nanomolar inhibitors of rhomboid proteases Peptidyl ketoamides inhibit rhomboids covalently, reversibly, and non-competitively The peptide and ketoamide substituent independently modulate potency and selectivity Peptidyl ketoamides are selective for rhomboids, sparing most human serine proteases
Collapse
Affiliation(s)
- Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kutti R Vinothkumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Jan Škerle
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43, Czech Republic
| | - Kateřina Švehlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Minh T N Nguyen
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven H L Verhelst
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany; KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
34
|
Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2200-2209. [PMID: 28460881 DOI: 10.1016/j.bbamcr.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Rhomboids are intramembrane serine proteases that cleave the transmembrane helices of substrate proteins, typically releasing luminal/extracellular domains from the membrane. They are conserved in all branches of life and there is a growing recognition of their association with a wide range of human diseases. Human rhomboids, for example, have been implicated in cancer, metabolic disease and neurodegeneration, while rhomboids in apicomplexan parasites appear to contribute to their invasion of host cells. Recent advances in our knowledge of the structure and the enzyme function of rhomboids, and increasing efforts to identify specific inhibitors, are beginning to provide important insight into the prospect of rhomboids becoming future therapeutic targets. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ulrike Künzel
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
35
|
A New Method to Determine the Transmembrane Conformation of Substrates in Intramembrane Proteolysis by Deep-UV Resonance Raman Spectroscopy. Methods Enzymol 2016; 584:207-228. [PMID: 28065264 DOI: 10.1016/bs.mie.2016.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present a new method based on deep-UV resonance Raman spectroscopy to determine the backbone conformation of intramembrane protease substrates. The classical amide vibrational modes reporting on the conformation of just the transmembrane region of the substrate can be resolved from solvent exchangeable regions outside the detergent micelle by partial deuteration of the solvent. In the presence of isotopically triple-labeled intramembrane protease, these amide modes can be accurately measured to monitor the transmembrane conformation of the substrate during intramembrane proteolysis.
Collapse
|
36
|
Abstract
Rhomboids are ubiquitous intramembrane serine proteases that are involved in various signaling pathways. This fascinating class of proteases harbors an active site buried within the lipid milieu. High-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed the catalytic mechanism for rhomboid-mediated proteolysis; however, a quantitative characterization was lacking. Assessing an enzyme's catalytic parameters is important for understanding the details of its proteolytic reaction and regulatory mechanisms. To assay rhomboid protease activity, many challenges exist such as the lipid environment and lack of known substrates. Here, we summarize various enzymatic assays developed over the last decade to study rhomboid protease activity. We present detailed protocols for gel-shift and FRET-based assays, and calculation of KM and Vmax to measure catalytic parameters, using detergent solubilized rhomboids with TatA, the only known substrate for bacterial rhomboids, and the model substrate fluorescently labeled casein.
Collapse
|
37
|
Abstract
Intramembrane serine proteases of the rhomboid family are widespread, and their gradually uncovered functions in different organisms already suggest medical relevance for infectious diseases and cancer. However, selective inhibitors that could serve as research tools for rhomboids, for validation of their disease relevance, or as templates for drug development are lacking. Here I summarize the current knowledge about rhomboid protease mechanism and specificity, overview the currently used inhibitors, and conclude by proposing avenues for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- K Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
38
|
Arutyunova E, Smithers CC, Corradi V, Espiritu AC, Young HS, Tieleman DP, Lemieux MJ. Probing catalytic rate enhancement during intramembrane proteolysis. Biol Chem 2016; 397:907-19. [DOI: 10.1515/hsz-2016-0124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/06/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6–3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis.
Collapse
|
39
|
Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016; 60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023]
Abstract
Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
40
|
Dogga SK, Soldati-Favre D. Biology of rhomboid proteases in infectious diseases. Semin Cell Dev Biol 2016; 60:38-45. [PMID: 27567708 DOI: 10.1016/j.semcdb.2016.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Rhomboids are a well-conserved class of intramembrane serine proteases found in all kingdoms of life, sharing a conserved core structure of at least six transmembrane (TM) domains that contain the catalytic serine-histidine dyad. The rhomboid proteases, which cleave membrane embedded substrates within their TM domains, are emerging as an important group of enzymes controlling a myriad of biological processes. These enzymes are found in a wide variety of pathogens manifesting important roles in their pathological processes. Accordingly, they have received considerable attention as potential targets for pharmacological intervention over the past few years. This review provides a general update on rhomboid proteases and their roles in pathogenesis of human infectious agents.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
41
|
Avci D, Lemberg MK. Clipping or Extracting: Two Ways to Membrane Protein Degradation. Trends Cell Biol 2016; 25:611-622. [PMID: 26410407 DOI: 10.1016/j.tcb.2015.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/18/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022]
Abstract
Protein degradation is a fundamentally important process that allows cells to recognize and remove damaged protein species and to regulate protein abundance according to functional need. A fundamental challenge is to understand how membrane proteins are recognized and removed from cellular organelles. While most of our understanding of this mechanism comes from studies on p97/Cdc48-mediated protein dislocation along the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, recent studies have revealed intramembrane proteolysis to be an additional mechanism that can extract transmembrane segments. Here, we review these two principles in membrane protein degradation and discuss how intramembrane proteolysis, which introduces an irreversible step in protein dislocation, is used to drive regulated protein turnover.
Collapse
Affiliation(s)
- Dönem Avci
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 883:107-17. [PMID: 26621464 DOI: 10.1007/978-3-319-23603-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.
Collapse
|
43
|
Guo R, Gaffney K, Yang Z, Kim M, Sungsuwan S, Huang X, Hubbell WL, Hong H. Steric trapping reveals a cooperativity network in the intramembrane protease GlpG. Nat Chem Biol 2016; 12:353-360. [PMID: 26999782 PMCID: PMC4837050 DOI: 10.1038/nchembio.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
Membrane proteins are assembled through balanced interactions among protein, lipids and water. Studying their folding while maintaining the native lipid environment is necessary but challenging. Here we present methods for analyzing key elements in membrane protein folding including thermodynamic stability, compactness of the unfolded state and folding cooperativity under native conditions. The methods are based on steric trapping which couples unfolding of a doubly-biotinylated protein to binding of monovalent streptavidin (mSA). We further advanced this technology for general application by developing versatile biotin probes possessing spectroscopic reporters that are sensitized by mSA binding or protein unfolding. By applying these methods to an intramembrane protease GlpG of Escherichia coli, we elucidated a widely unraveled unfolded state, subglobal unfolding of the region encompassing the active site, and a network of cooperative and localized interactions to maintain the stability. These findings provide crucial insights into the folding energy landscape of membrane proteins.
Collapse
Affiliation(s)
- Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kristen Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Suttipun Sungsuwan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Abstract
Chemical signaling between cells is an effective way to coordinate behavior within a community. Although cell-to-cell signaling has mostly been studied in single species, it is now appreciated that the sensing of chemical signals across kingdoms can be an important regulator of nutrient acquisition, virulence, and host defense. In this review, we focus on the role of interkingdom signaling in the interactions that occur between bacterial pathogens and their mammalian hosts. We discuss the quorum-sensing (QS) systems and other mechanisms used by these bacteria to sense, respond to, and modulate host signals that include hormones, immune factors, and nutrients. We also describe cross talk between these signaling pathways and strategies used by the host to interfere with bacterial signaling, highlighting the complex bidirectional signaling networks that are established across kingdoms.
Collapse
|
45
|
|
46
|
Strisovsky K. Why cells need intramembrane proteases - a mechanistic perspective. FEBS J 2016; 283:1837-45. [DOI: 10.1111/febs.13638] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
47
|
Chen B, Ge SS, Zhao YC, Chen C, Yang S. Activity-based protein profiling: an efficient approach to study serine hydrolases and their inhibitors in mammals and microbes. RSC Adv 2016. [DOI: 10.1039/c6ra20006k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review focuses on the identification of serine hydrolases and their inhibitors in mammals and microbes with activity-based protein profiling (ABPP).
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Yuan-Chao Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Chong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
| |
Collapse
|
48
|
Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain. Proc Natl Acad Sci U S A 2015; 113:E509-18. [PMID: 26699478 DOI: 10.1073/pnas.1512952113] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that processes many type-I integral membrane proteins within the lipid bilayer, an event preceded by shedding of most of the substrate's ectodomain by α- or β-secretases. The mechanism by which γ-secretase selectively recognizes and recruits ectodomain-shed substrates for catalysis remains unclear. In contrast to previous reports that substrate is actively recruited for catalysis when its remaining short ectodomain interacts with the nicastrin component of γ-secretase, we find that substrate ectodomain is entirely dispensable for cleavage. Instead, γ-secretase-substrate binding is driven by an apparent tight-binding interaction derived from substrate transmembrane domain, a mechanism in stark contrast to rhomboid--another family of intramembrane-cleaving proteases. Disruption of the nicastrin fold allows for more efficient cleavage of substrates retaining longer ectodomains, indicating that nicastrin actively excludes larger substrates through steric hindrance, thus serving as a molecular gatekeeper for substrate binding and catalysis.
Collapse
|
49
|
Riestra AM, Gandhi S, Sweredoski MJ, Moradian A, Hess S, Urban S, Johnson PJ. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells. PLoS Pathog 2015; 11:e1005294. [PMID: 26684303 PMCID: PMC4684317 DOI: 10.1371/journal.ppat.1005294] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 12/28/2022] Open
Abstract
Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. Trichomonas vaginalis, a common pathogen with a worldwide distribution, causes a sexually transmitted infection and exacerbates other diseases. Estimated to infect over a million people annually in the United States alone, the Center for Disease Control and Prevention categorized trichomoniasis as one of five neglected parasitic diseases in the US in 2014. Only one class of drug is available to treat T. vaginalis infection, making discovery of parasite factors contributing to host colonization critical for the development of new therapeutics. Here we report the first characterization of T. vaginalis intramembrane rhomboid proteases. One protease, TvROM1, is shown to increase the parasite’s association with and destruction of host cells. We further identified two TvROM1 substrates, one of which we demonstrate is involved in modulating host: parasite interactions. This study highlights the involvement of rhomboid proteases in T. vaginalis pathogenic processes, and provides further support for targeting parasite surface proteases for therapeutic intervention.
Collapse
Affiliation(s)
- Angelica M. Riestra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shiv Gandhi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Nguyen MTN, Kersavond TV, Verhelst SHL. Chemical Tools for the Study of Intramembrane Proteases. ACS Chem Biol 2015; 10:2423-34. [PMID: 26473325 DOI: 10.1021/acschembio.5b00693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramembrane proteases (IMPs) reside inside lipid bilayers and perform peptide hydrolysis in transmembrane or juxtamembrane regions of their substrates. Many IMPs are involved in crucial regulatory pathways and human diseases, including Alzheimer's disease, Parkinson's disease, and diabetes. In the past, chemical tools have been instrumental in the study of soluble proteases, enabling biochemical and biomedical research in complex environments such as tissue lysates or living cells. However, IMPs place special challenges on probe design and applications, and progress has been much slower than for soluble proteases. In this review, we will give an overview of the available chemical tools for IMPs, including activity-based probes, affinity-based probes, and synthetic substrates. We will discuss how these have been used to increase our structural and functional understanding of this fascinating group of enzymes, and how they might be applied to address future questions and challenges.
Collapse
Affiliation(s)
- Minh T. N. Nguyen
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Tim Van Kersavond
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Steven H. L. Verhelst
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
- KU Leuven − University of Leuven, Department
of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 Box 802, 3000 Leuven, Belgium
| |
Collapse
|