1
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Roger M, Leone P, Blackburn NJ, Horrell S, Chicano TM, Biaso F, Giudici-Orticoni MT, Abriata LA, Hura GL, Hough MA, Sciara G, Ilbert M. Beyond the coupled distortion model: structural analysis of the single domain cupredoxin AcoP, a green mononuclear copper centre with original features. Dalton Trans 2024; 53:1794-1808. [PMID: 38170898 PMCID: PMC10804444 DOI: 10.1039/d3dt03372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Cupredoxins are widely occurring copper-binding proteins with a typical Greek-key beta barrel fold. They are generally described as electron carriers that rely on a T1 copper centre coordinated by four ligands provided by the folded polypeptide. The discovery of novel cupredoxins demonstrates the high diversity of this family, with variations in terms of copper-binding ligands, copper centre geometry, redox potential, as well as biological function. AcoP is a periplasmic cupredoxin belonging to the iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans. AcoP presents original features, including high resistance to acidic pH and a constrained green-type copper centre of high redox potential. To understand the unique properties of AcoP, we undertook structural and biophysical characterization of wild-type AcoP and of two Cu-ligand mutants (H166A and M171A). The crystallographic structures, including native reduced AcoP at 1.65 Å resolution, unveil a typical cupredoxin fold. The presence of extended loops, never observed in previously characterized cupredoxins, might account for the interaction of AcoP with physiological partners. The Cu-ligand distances, determined by both X-ray diffraction and EXAFS, show that the AcoP metal centre seems to present both T1 and T1.5 features, in turn suggesting that AcoP might not fit well to the coupled distortion model. The crystal structures of two AcoP mutants confirm that the active centre of AcoP is highly constrained. Comparative analysis with other cupredoxins of known structures, suggests that in AcoP the second coordination sphere might be an important determinant of active centre rigidity due to the presence of an extensive hydrogen bond network. Finally, we show that other cupredoxins do not perfectly follow the coupled distortion model as well, raising the suspicion that further alternative models to describe copper centre geometries need to be developed, while the importance of rack-induced contributions should not be underestimated.
Collapse
Affiliation(s)
- Magali Roger
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Philippe Leone
- CNRS, Aix-Marseille University, Laboratoire d'Ingénierie des Systèmes Macromoléculaires, LISM UMR7255, 13009 Marseille, France
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Sam Horrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Tadeo Moreno Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Frédéric Biaso
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Marie-Thérèse Giudici-Orticoni
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling and Protein Purification and Structure Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Giuliano Sciara
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
- Aix Marseille Univ, INRAE, BBF UMR1163, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Marianne Ilbert
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| |
Collapse
|
3
|
Zhang X, Lan T, Jiang H, Ye K, Dai Z. Bacterial community driven nitrogen cycling in coastal sediments of intertidal transition zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168299. [PMID: 37926266 DOI: 10.1016/j.scitotenv.2023.168299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Microorganisms inhabiting in coastal sediments significantly affect the nitrogen cycling in coastal waters and ecosystems. However, the bacterial community that related to the key active nitrogen transformation processes in intertidal transition zone are still not understood. Across a long flat intertidal zone at depths from 0 to 3 m in Daya Bay, China, the bacterial communities in sediments and their driven nitrogen cycling potential were evaluated with environmental factors and 16S rRNA sequencing. The results showed that the intertidal zone is a divide for environmental factors as pH, salinity and C/N ratio, instead of an average shift from freshwater to salt water. At the same time, the environmental factors influenced the abundance of bacterial community related to nitrogen cycling. Across the intertidal zone, the dominant nitrogen transformation processes were different. At the high tide and middle tide sites, the primary nitrogen cycling process was nitrification that worked with Nitrosomonadaceae, Nitrospiraceae, 0319-6A21, and wb1-A12. At the low tide sites, nitrogen fixation was the dominant function conducted by Bradyrhizobiaceae. The reduction of nitrate was carried out with the help of Xanthomonadales but relatively weak in all sampling sites especially for low tide sites. This was mostly because the richness and evenness of bacterial community were the lowest at the low tide sites. Meanwhile, the pH, Cl-, salinity, NH4+, NO3- and C/N ratio were the important factors that shaped the composition of local bacterial community. Further, the nonmetric multidimensional scaling results indicated that there were significant statistical differences in the composition of bacterial community among samples at different layers. The dominant nitrogen cycling processes in coastal sediments at different tide levels were revealed in this study, which offered an extended concept of nitrogen transformation along the groundwater discharge path in the intertidal transition zone. The distributions and compositions of bacterial communities and predicted functions provided a new insight for coastal environment and ecosystem management.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China; College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Tianshan Lan
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kexin Ye
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China
| | - Zhenxue Dai
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China; College of Construction Engineering, Jilin University, Changchun 130026, China.
| |
Collapse
|
4
|
Pold G, Bonilla-Rosso G, Saghaï A, Strous M, Jones CM, Hallin S. Phylogenetics and environmental distribution of nitric oxide-forming nitrite reductases reveal their distinct functional and ecological roles. ISME COMMUNICATIONS 2024; 4:ycae020. [PMID: 38584645 PMCID: PMC10999283 DOI: 10.1093/ismeco/ycae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.
Collapse
Affiliation(s)
- Grace Pold
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Germán Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
5
|
Chang J, Peng P, Farhan Ul-Haque M, Hira A, DiSpirito AA, Semrau JD. Inhibition of nitrous oxide reduction in forest soil microcosms by different forms of methanobactin. Environ Microbiol 2023; 25:2338-2350. [PMID: 37395163 DOI: 10.1111/1462-2920.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Copper plays a critical role in controlling greenhouse gas emissions as it is a key component of the particulate methane monooxygenase and nitrous oxide reductase. Some methanotrophs excrete methanobactin (MB) that has an extremely high copper affinity. As a result, MB may limit the ability of other microbes to gather copper, thereby decreasing their activity as well as impacting microbial community composition. Here, we show using forest soil microcosms that multiple forms of MB; MB from Methylosinus trichosporium OB3b (MB-OB3b) and MB from Methylocystis sp. strain SB2 (MB-SB2) increased nitrous oxide (N2 O) production as well caused significant shifts in microbial community composition. Such effects, however, were mediated by the amount of copper in the soils, with low-copper soil microcosms showing the strongest response to MB. Furthermore, MB-SB2 had a stronger effect, likely due to its higher affinity for copper. The presence of either form of MB also inhibited nitrite reduction and generally increased the presence of genes encoding for the iron-containing nitrite reductase (nirS) over the copper-dependent nitrite reductase (nirK). These data indicate the methanotrophic-mediated production of MB can significantly impact multiple steps of denitrification, as well as have broad effects on microbial community composition of forest soils.
Collapse
Affiliation(s)
- Jin Chang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Peng Peng
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Abid Hira
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Liu S, Liu Y, Cai Y. Incubation study on remediation of nitrate-contaminated soil by Chroococcus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117637-117653. [PMID: 37870669 DOI: 10.1007/s11356-023-30383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The possibility of using the non-nitrogen-fixing cyanobacterium (Chroococcus sp.) for the reduction of soil nitrate contamination was tested through Petri dish experiments. The application of 0.03, 0.05 and 0.08 mg/cm2 Chroococcus sp. efficiently removed NO3--N from the soil through assimilation of nitrate nutrient and promotion of soil denitrification. At the optimal application dose of 0.05 mg/cm2, 44.06%, 36.89% and 36.17% of NO3--N were removed at initial NO3--N concentrations of 60, 90 and 120 mg/kg, respectively. The polysaccharides released by Chroococcus sp. acted as carbon sources for bacterial denitrification and facilitated the reduction of soil salinity, which significantly (p < 0.05) stimulated the growth of denitrifying bacteria (Hyphomicrobium denitrificans and Hyphomicrobium sp.) as well as significantly (p < 0.05) elevated the activities of nitrate reductase and nitrite reductase by 1.07-1.23 and 1.15-1.22 times, respectively. The application of Chroococcus sp. promoted the dominance of Nocardioides maradonensis in soil microbial community, which resulted in elevated phosphatase activity and increased available phosphorus content. The application of Chroococcus sp. positively regulated the growth of soil bacteria belonging to the genera Chitinophaga, Prevotella and Tumebacillus, which may contribute to increased soil fertility through the production of beneficial enzymes such as invertase, urease and catalase. To date, this is the first study verifying the remediation effect of non-nitrogen-fixing cyanobacteria on nitrate-contaminated soil.
Collapse
Affiliation(s)
- Shuaitong Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
7
|
Hedison T, Iorgu AI, Calabrese D, Heyes DJ, Shanmugam M, Scrutton NS. Solution-State Inter-Copper Distribution of Redox Partner-Linked Copper Nitrite Reductases: A Pulsed Electron-Electron Double Resonance Spectroscopy Study. J Phys Chem Lett 2022; 13:6927-6934. [PMID: 35867774 PMCID: PMC9358711 DOI: 10.1021/acs.jpclett.2c01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Copper nitrite reductases (CuNiRs) catalyze the reduction of nitrite to form nitric oxide. In recent years, new classes of redox partner linked CuNiRs have been isolated and characterized by crystallographic techniques. Solution-state biophysical studies have shed light on the complex catalytic mechanisms of these enzymes and implied that protein dynamics may play a role in CuNiR catalysis. To investigate the structural, dynamical, and functional relationship of these CuNiRs, we have used protein reverse engineering and pulsed electron-electron double resonance (PELDOR) spectroscopy to determine their solution-state inter-copper distributions. Data show the multidimensional conformational landscape of this family of enzymes and the role of tethering in catalysis. The importance of combining high-resolution crystallographic techniques and low-resolution solution-state approaches in determining the structures and mechanisms of metalloenzymes is emphasized by our approach.
Collapse
Affiliation(s)
- Tobias
M. Hedison
- Manchester
Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- EPSRC/BBSRC
funded Future Biomanufacturing Research Hub, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Andreea I. Iorgu
- Manchester
Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Donato Calabrese
- Manchester
Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Muralidharan Shanmugam
- Manchester
Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- EPSRC/BBSRC
funded Future Biomanufacturing Research Hub, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
8
|
Eady RR, Samar Hasnain S. New horizons in structure-function studies of copper nitrite reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
González PJ, Rivas MG, Ferroni FM, Rizzi AC, Brondino CD. Electron transfer pathways and spin–spin interactions in Mo- and Cu-containing oxidoreductases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Biomolecules 2021; 11:biom11071043. [PMID: 34356667 PMCID: PMC8301774 DOI: 10.3390/biom11071043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.
Collapse
Affiliation(s)
- Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Elena Valdés
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965903400 (ext. 2064)
| |
Collapse
|
11
|
Cristaldi JC, Ferroni FM, Duré AB, Ramírez CS, Dalosto SD, Rizzi AC, González PJ, Rivas MG, Brondino CD. Heterologous production and functional characterization of Bradyrhizobium japonicum copper-containing nitrite reductase and its physiological redox partner cytochrome c550. Metallomics 2020; 12:2084-2097. [PMID: 33226040 DOI: 10.1039/d0mt00177e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two domain copper-nitrite reductases (NirK) contain two types of copper centers, one electron transfer (ET) center of type 1 (T1) and a catalytic site of type 2 (T2). NirK activity is pH-dependent, which has been suggested to be produced by structural modifications at high pH of some catalytically relevant residues. To characterize the pH-dependent kinetics of NirK and the relevance of T1 covalency in intraprotein ET, we studied the biochemical, electrochemical, and spectroscopic properties complemented with QM/MM calculations of Bradyrhizobium japonicum NirK (BjNirK) and of its electron donor cytochrome c550 (BjCycA). BjNirK presents absorption spectra determined mainly by a S(Cys)3pπ → Cu2+ ligand-to-metal charge-transfer (LMCT) transition. The enzyme shows low activity likely due to the higher flexibility of a protein loop associated with BjNirK/BjCycA interaction. Nitrite is reduced at high pH in a T1-decoupled way without T1 → T2 ET in which proton delivery for nitrite reduction at T2 is maintained. Our results are analyzed in comparison with previous results found by us in Sinorhizobium meliloti NirK, whose main UV-vis absorption features are determined by S(Cys)3pσ/π → Cu2+ LMCT transitions.
Collapse
Affiliation(s)
- Julio C Cristaldi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang R, Zeng J, Zhao D, Yong B, Yu Z. Co-association of Two nir Denitrifiers Under the Influence of Emergent Macrophytes. MICROBIAL ECOLOGY 2020; 80:809-821. [PMID: 32577778 DOI: 10.1007/s00248-020-01545-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Diverse microorganisms perform similar metabolic process in biogeochemical cycles, whereas they are found of highly genomic differentiation. Biotic interactions should be considered in any community survey of these functional groups, as they contribute to community assembly and ultimately alter ecosystem properties. Current knowledge has mainly been achieved based on functional community characterized by a single gene using co-occurrence network analysis. Biotic interactions between functionally equivalent microorganisms, however, have received much less attention. Herein, we propose the nirK- and nirS-type denitrifier communities represented by these two nitrite reductase (nir)-encoding genes, as model communities to investigate the potential interactions of two nir denitrifiers. We evaluated co-occurrence patterns and co-association network structures of nir denitrifier community from an emergent macrophyte-dominated riparian zone of highly active denitrification in Lake Taihu, China. We found a more segregated pattern in combined nir communities than in individual communities. Network analyses revealed a modularized structure of associating nir denitrifiers. An increased proportion of negative associations among combined communities relative to those of individual communities indicated potential interspecific competition between nirK and nirS denitrifiers. pH and NH4+-N were the most important factors driving co-occurrence and mutual exclusion between nirK and nirS denitrifiers. We also showed the topological importance of nirK denitrifiers acting as module hubs for constructing entire association networks. We revealed previously unexplored co-association relationships between nirK and nirS denitrifiers, which were previously neglected in network analyses of individual communities. Using nir denitrifier community as a model, these findings would be helpful for us to understand the biotic interactions and mechanisms underlying how functional groups co-exist in performing biogeochemical cycles.
Collapse
Affiliation(s)
- Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Bin Yong
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Zhongbo Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
13
|
Hedison TM, Shanmugam M, Heyes DJ, Edge R, Scrutton NS. Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrapping-Electron Paramagnetic Resonance Approach. Angew Chem Int Ed Engl 2020; 59:13936-13940. [PMID: 32352195 PMCID: PMC7497095 DOI: 10.1002/anie.202005052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 11/25/2022]
Abstract
Redox active metalloenzymes catalyse a range of biochemical processes essential for life. However, due to their complex reaction mechanisms, and often, their poor optical signals, detailed mechanistic understandings of them are limited. Here, we develop a cryoreduction approach coupled to electron paramagnetic resonance measurements to study electron transfer between the copper centers in the copper nitrite reductase (CuNiR) family of enzymes. Unlike alternative methods used to study electron transfer reactions, the cryoreduction approach presented here allows observation of the redox state of both metal centers, a direct read-out of electron transfer, determines the presence of the substrate/product in the active site and shows the importance of protein motion in inter-copper electron transfer catalyzed by CuNiRs. Cryoreduction-EPR is broadly applicable for the study of electron transfer in other redox enzymes and paves the way to explore transient states in multiple redox-center containing proteins (homo and hetero metal ions).
Collapse
Affiliation(s)
- Tobias M. Hedison
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
- BBSRC and EPSRC funded Future Biomanfacturing Research HubManchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Derren J. Heyes
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Ruth Edge
- Dalton Cumbrian FacilityThe University of ManchesterCumbriaUK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
- BBSRC and EPSRC funded Future Biomanfacturing Research HubManchester Institute of Biotechnology and School of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| |
Collapse
|
14
|
Hedison TM, Shanmugam M, Heyes DJ, Edge R, Scrutton NS. Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrapping‐Electron Paramagnetic Resonance Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tobias M. Hedison
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
- BBSRC and EPSRC funded Future Biomanfacturing Research Hub Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| | - Derren J. Heyes
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| | - Ruth Edge
- Dalton Cumbrian Facility The University of Manchester Cumbria UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
- BBSRC and EPSRC funded Future Biomanfacturing Research Hub Manchester Institute of Biotechnology and School of Chemistry University of Manchester Princess Street Manchester M1 7DN UK
| |
Collapse
|
15
|
Hira D, Matsumura M, Kitamura R, Furukawa K, Fujii T. Unique hexameric structure of copper-containing nitrite reductase of an anammox bacterium KSU-1. Biochem Biophys Res Commun 2020; 526:654-660. [DOI: 10.1016/j.bbrc.2020.03.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
16
|
Sasaki D, Watanabe TF, Eady RR, Garratt RC, Antonyuk SV, Hasnain SS. Structures of substrate- and product-bound forms of a multi-domain copper nitrite reductase shed light on the role of domain tethering in protein complexes. IUCRJ 2020; 7:557-565. [PMID: 32431838 PMCID: PMC7201279 DOI: 10.1107/s2052252520005230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Copper-containing nitrite reductases (CuNiRs) are found in all three kingdoms of life and play a major role in the denitrification branch of the global nitro-gen cycle where nitrate is used in place of di-oxy-gen as an electron acceptor in respiratory energy metabolism. Several C- and N-terminal redox domain tethered CuNiRs have been identified and structurally characterized during the last decade. Our understanding of the role of tethered domains in these new classes of three-domain CuNiRs, where an extra cytochrome or cupredoxin domain is tethered to the catalytic two-domain CuNiRs, has remained limited. This is further compounded by a complete lack of substrate-bound structures for these tethered CuNiRs. There is still no substrate-bound structure for any of the as-isolated wild-type tethered enzymes. Here, structures of nitrite and product-bound states from a nitrite-soaked crystal of the N-terminal cupredoxin-tethered enzyme from the Hyphomicrobium denitrificans strain 1NES1 (Hd 1NES1NiR) are provided. These, together with the as-isolated structure of the same species, provide clear evidence for the role of the N-terminal peptide bearing the conserved His27 in water-mediated anchoring of the substrate at the catalytic T2Cu site. Our data indicate a more complex role of tethering than the intuitive advantage for a partner-protein electron-transfer complex by narrowing the conformational search in such a combined system.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Tatiana F. Watanabe
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- The São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Robert R. Eady
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Richard C. Garratt
- The São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
17
|
Sasaki D, Watanabe TF, Eady RR, Garratt RC, Antonyuk SV, Hasnain SS. Reverse protein engineering of a novel 4-domain copper nitrite reductase reveals functional regulation by protein-protein interaction. FEBS J 2020; 288:262-280. [PMID: 32255260 DOI: 10.1111/febs.15324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 01/03/2023]
Abstract
Cu-containing nitrite reductases that convert NO2 - to NO are critical enzymes in nitrogen-based energy metabolism. Among organisms in the order Rhizobiales, we have identified two copies of nirK, one encoding a new class of 4-domain CuNiR that has both cytochrome and cupredoxin domains fused at the N terminus and the other, a classical 2-domain CuNiR (Br2D NiR). We report the first enzymatic studies of a novel 4-domain CuNiR from Bradyrhizobium sp. ORS 375 (BrNiR), its genetically engineered 3- and 2-domain variants, and Br2D NiR revealing up to ~ 500-fold difference in catalytic efficiency in comparison with classical 2-domain CuNiRs. Contrary to the expectation that tethering would enhance electron delivery by restricting the conformational search by having a self-contained donor-acceptor system, we demonstrate that 4-domain BrNiR utilizes N-terminal tethering for downregulating enzymatic activity instead. Both Br2D NiR and an engineered 2-domain variant of BrNiR (Δ(Cytc-Cup) BrNiR) have 3 to 5% NiR activity compared to the well-characterized 2-domain CuNiRs from Alcaligenes xylosoxidans (AxNiR) and Achromobacter cycloclastes (AcNiR). Structural comparison of Δ(Cytc-Cup) BrNiR and Br2D NiR with classical 2-domain AxNiR and AcNiR reveals structural differences of the proton transfer pathway that could be responsible for the lowering of activity. Our study provides insights into unique structural and functional characteristics of naturally occurring 4-domain CuNiR and its engineered 3- and 2-domain variants. The reverse protein engineering approach utilized here has shed light onto the broader question of the evolution of transient encounter complexes and tethered electron transfer complexes. ENZYME: Copper-containing nitrite reductase (CuNiR) (EC 1.7.2.1). DATABASE: The atomic coordinate and structure factor of Δ(Cytc-Cup) BrNiR and Br2D NiR have been deposited in the Protein Data Bank (http://www.rcsb.org/) under the accession code 6THE and 6THF, respectively.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Tatiana F Watanabe
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK.,The São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Robert R Eady
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Richard C Garratt
- The São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - S Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| |
Collapse
|
18
|
Zhu Z, Yang Y, Fang A, Lou Y, Xie G, Ren N, Xing D. Quorum sensing systems regulate heterotrophic nitrification-aerobic denitrification by changing the activity of nitrogen-cycling enzymes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100026. [PMID: 36160926 PMCID: PMC9488085 DOI: 10.1016/j.ese.2020.100026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 05/16/2023]
Abstract
Heterotrophic nitrification-aerobic denitrification (HNAD) is essential in diverse nitrogen-transforming processes. How HNAD is modulated by quorum sensing (QS) systems is still ambiguous. The QS system in Pseudomonas aeruginosa manipulates colony behavior. Here, we described the influence of the Pseudomonas quinolone signal (PQS) and N-acyl-l-homoserine lactone (AHL) on HNAD. The HNAD of P. aeruginosa was inhibited by the oversecretion of PQS. AHL- or PQS-deficient P. aeruginosa mutants had a higher ability for nitrogen removal. QS inhibited heterotrophic nitrification mainly via controlling the activity of nitrite oxidoreductase (NXR) and the depressed aerobic denitrification by regulating the catalytic abilities of nitric oxide reductase (NOR), nitrite reductase (NIR), and nitrate reductase (NAR). The addition of citrate as the sole carbon source increased the nitrogen removal efficiency compared with other carbon sources. Nitrite, as the sole nitrogen source, could be used entirely with only the moderate concentration of PQS contained. AHL and PQS controlled both nitrification and denitrification, suggesting that QS plays an important role in nitrogen cycle under aerobic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Defeng Xing
- Corresponding author. School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
19
|
Hedison T, Shenoy RT, Iorgu AI, Heyes DJ, Fisher K, Wright GSA, Hay S, Eady RR, Antonyuk SV, Hasnain SS, Scrutton NS. Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis. ACS Catal 2019; 9:6087-6099. [PMID: 32051772 PMCID: PMC7007197 DOI: 10.1021/acscatal.9b01266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/19/2019] [Indexed: 01/26/2023]
Abstract
It is generally assumed that tethering enhances rates of electron harvesting and delivery to active sites in multidomain enzymes by proximity and sampling mechanisms. Here, we explore this idea in a tethered 3-domain, trimeric copper-containing nitrite reductase. By reverse engineering, we find that tethering does not enhance the rate of electron delivery from its pendant cytochrome c to the catalytic copper-containing core. Using a linker that harbors a gatekeeper tyrosine in a nitrite access channel, the tethered haem domain enables catalysis by other mechanisms. Tethering communicates the redox state of the haem to the distant T2Cu center that helps initiate substrate binding for catalysis. It also tunes copper reduction potentials, suppresses reductive enzyme inactivation, enhances enzyme affinity for substrate, and promotes intercopper electron transfer. Tethering has multiple unanticipated beneficial roles, the combination of which fine-tunes function beyond simplistic mechanisms expected from proximity and restrictive sampling models.
Collapse
Affiliation(s)
- Tobias
M. Hedison
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rajesh T. Shenoy
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andreea I. Iorgu
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Karl Fisher
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Gareth S. A. Wright
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Robert R. Eady
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Svetlana V. Antonyuk
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - S. Samar Hasnain
- Molecular
Biophysics Group, Institute of Integrative Biology, Faculty of Health
and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
20
|
Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019; 222:1-13. [DOI: 10.1016/j.micres.2019.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
21
|
Opperman DJ, Murgida DH, Dalosto SD, Brondino CD, Ferroni FM. A three-domain copper-nitrite reductase with a unique sensing loop. IUCRJ 2019; 6:248-258. [PMID: 30867922 PMCID: PMC6400189 DOI: 10.1107/s2052252519000241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Dissimilatory nitrite reductases are key enzymes in the denitrification pathway, reducing nitrite and leading to the production of gaseous products (NO, N2O and N2). The reaction is catalysed either by a Cu-containing nitrite reductase (NirK) or by a cytochrome cd 1 nitrite reductase (NirS), as the simultaneous presence of the two enzymes has never been detected in the same microorganism. The thermophilic bacterium Thermus scotoductus SA-01 is an exception to this rule, harbouring both genes within a denitrification cluster, which encodes for an atypical NirK. The crystal structure of TsNirK has been determined at 1.63 Å resolution. TsNirK is a homotrimer with subunits of 451 residues that contain three copper atoms each. The N-terminal region possesses a type 2 Cu (T2Cu) and a type 1 Cu (T1CuN) while the C-terminus contains an extra type 1 Cu (T1CuC) bound within a cupredoxin motif. T1CuN shows an unusual Cu atom coordination (His2-Cys-Gln) compared with T1Cu observed in NirKs reported so far (His2-Cys-Met). T1CuC is buried at ∼5 Å from the molecular surface and located ∼14.1 Å away from T1CuN; T1CuN and T2Cu are ∼12.6 Å apart. All these distances are compatible with an electron-transfer process T1CuC → T1CuN → T2Cu. T1CuN and T2Cu are connected by a typical Cys-His bridge and an unexpected sensing loop which harbours a SerCAT residue close to T2Cu, suggesting an alternative nitrite-reduction mechanism in these enzymes. Biophysicochemical and functional features of TsNirK are discussed on the basis of X-ray crystallography, electron paramagnetic resonance, resonance Raman and kinetic experiments.
Collapse
Affiliation(s)
- Diederik Johannes Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, Free State 9300, South Africa
| | - Daniel Horacio Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2 piso 1, Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Sergio Daniel Dalosto
- Instituto de Física del Litoral, CONICET-UNL, Güemes 3450, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Carlos Dante Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Felix Martín Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| |
Collapse
|
22
|
Sen K, Hough MA, Strange RW, Yong CW, Keal TW. A QM/MM Study of Nitrite Binding Modes in a Three-Domain Heme-Cu Nitrite Reductase. Molecules 2018; 23:molecules23112997. [PMID: 30453538 PMCID: PMC6278305 DOI: 10.3390/molecules23112997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
Abstract
Copper-containing nitrite reductases (CuNiRs) play a key role in the global nitrogen cycle by reducing nitrite (NO2−) to nitric oxide, a reaction that involves one electron and two protons. In typical two-domain CuNiRs, the electron is acquired from an external electron-donating partner. The recently characterised Rastonia picketti (RpNiR) system is a three-domain CuNiR, where the cupredoxin domain is tethered to a heme c domain that can function as the electron donor. The nitrite reduction starts with the binding of NO2− to the T2Cu centre, but very little is known about how NO2− binds to native RpNiR. A recent crystallographic study of an RpNiR mutant suggests that NO2− may bind via nitrogen rather than through the bidentate oxygen mode typically observed in two-domain CuNiRs. In this work we have used combined quantum mechanical/molecular mechanical (QM/MM) methods to model the binding mode of NO2− with native RpNiR in order to determine whether the N-bound or O-bound orientation is preferred. Our results indicate that binding via nitrogen or oxygen is possible for the oxidised Cu(II) state of the T2Cu centre, but in the reduced Cu(I) state the N-binding mode is energetically preferred.
Collapse
Affiliation(s)
- Kakali Sen
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK.
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Richard W Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Chin W Yong
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK.
| | - Thomas W Keal
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK.
| |
Collapse
|
23
|
Haga T, Hirakawa H, Nagamune T. Artificial Self‐Sufficient Cytochrome P450 Containing Multiple Auxiliary Proteins Demonstrates Improved Monooxygenase Activity. Biotechnol J 2018; 13:e1800088. [DOI: 10.1002/biot.201800088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoaki Haga
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of TokyoTokyo 113‐8656Japan
| | - Hidehiko Hirakawa
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of TokyoTokyo 113‐8656Japan
| | - Teruyuki Nagamune
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of TokyoTokyo 113‐8656Japan
| |
Collapse
|
24
|
Wittorf L, Jones CM, Bonilla-Rosso G, Hallin S. Expression of nirK and nirS genes in two strains of Pseudomonas stutzeri harbouring both types of NO-forming nitrite reductases. Res Microbiol 2018; 169:343-347. [PMID: 29752987 DOI: 10.1016/j.resmic.2018.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/01/2022]
Abstract
Reduction of nitrite to nitric oxide in denitrification is catalysed by two different nitrite reductases, encoded by nirS or nirK. Long considered mutually exclusive and functionally redundant in denitrifying bacteria, we show expression of both genes co-occurring in Pseudomonas stutzeri. The differential expression patterns between strain AN10 and JM300 in relation to oxygen and nitrate and their different denitrification phenotypes, with AN10 reducing nitrate more rapidly and accumulating nitrite, suggest that nirS and nirK can have different roles. Dissimilar gene arrangements and transcription factors in the nir gene neighbourhoods could explain the observed differences in gene expression and denitrification activity.
Collapse
Affiliation(s)
- Lea Wittorf
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.
| | - Germán Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.
| |
Collapse
|
25
|
Qin X, Deng L, Hu C, Li L, Chen X. Copper-Containing Nitrite Reductase Employing Proton-Coupled Spin-Exchanged Electron-Transfer and Multiproton Synchronized Transfer to Reduce Nitrite. Chemistry 2017; 23:14900-14910. [DOI: 10.1002/chem.201703221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Qin
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Deng
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Caihong Hu
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Li
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| |
Collapse
|
26
|
Horrell S, Kekilli D, Strange RW, Hough MA. Recent structural insights into the function of copper nitrite reductases. Metallomics 2017; 9:1470-1482. [DOI: 10.1039/c7mt00146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nitrite reductases (CuNiRs) catalyse the reduction of nitrite to nitric oxide as part of the denitrification pathway. In this review, we describe insights into CuNiR function from structural studies.
Collapse
Affiliation(s)
- Sam Horrell
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | - Demet Kekilli
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | | | | |
Collapse
|
27
|
Kartal B, Keltjens JT. Anammox Biochemistry: a Tale of Heme c Proteins. Trends Biochem Sci 2016; 41:998-1011. [DOI: 10.1016/j.tibs.2016.08.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
|
28
|
Abstract
Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) and tryptophan (Trp) residues have been found in many O2-reactive enzymes, raising the possibility that they play an antioxidant protective role. In blue copper proteins with plastocyanin-like domains, Tyr/Trp clusters are uncommon in the low-potential single-domain electron-transfer proteins and in the two-domain copper nitrite reductases. The two-domain muticopper oxidases, however, exhibit clusters of Tyr and Trp residues near the trinuclear copper active site where O2 is reduced. These clusters may play a protective role to ensure that reactive oxygen species are not liberated during O2 reduction.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Eady RR, Antonyuk SV, Hasnain SS. Fresh insight to functioning of selected enzymes of the nitrogen cycle. Curr Opin Chem Biol 2016; 31:103-12. [DOI: 10.1016/j.cbpa.2016.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
|
30
|
Highly diverse nirK genes comprise two major clades that harbour ammonium-producing denitrifiers. BMC Genomics 2016; 17:155. [PMID: 26923558 PMCID: PMC4770552 DOI: 10.1186/s12864-016-2465-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/12/2016] [Indexed: 01/09/2023] Open
Abstract
Background Copper dependent nitrite reductase, NirK, catalyses the key step in denitrification, i.e. nitrite reduction to nitric oxide. Distinct structural NirK classes and phylogenetic clades of NirK-type denitrifiers have previously been observed based on a limited set of NirK sequences, however, their environmental distribution or ecological strategies are currently unknown. In addition, environmental nirK-type denitrifiers are currently underestimated in PCR-dependent surveys due to primer coverage limitations that can be attributed to their broad taxonomic diversity and enormous nirK sequence divergence. Therefore, we revisited reported analyses on partial NirK sequences using a taxonomically diverse, full-length NirK sequence dataset. Results Division of NirK sequences into two phylogenetically distinct clades was confirmed, with Clade I mainly comprising Alphaproteobacteria (plus some Gamma- and Betaproteobacteria) and Clade II harbouring more diverse taxonomic groups like Archaea, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae, Firmicutes, Actinobacteria, Planctomycetes and Proteobacteria (mainly Beta and Gamma). Failure of currently available primer sets to target diverse NirK-type denitrifiers in environmental surveys could be attributed to mismatches over the whole length of the primer binding regions including the 3′ site, with Clade II sequences containing higher sequence divergence than Clade I sequences. Simultaneous presence of both the denitrification and DNRA pathway could be observed in 67 % of all NirK-type denitrifiers. Conclusion The previously reported division of NirK into two distinct phylogenetic clades was confirmed using a taxonomically diverse set of full-length NirK sequences. Enormous sequence divergence of nirK gene sequences, probably due to variable nirK evolutionary trajectories, will remain an issue for covering diverse NirK-type denitrifiers in amplicon-based environmental surveys. The potential of a single organism to partition nitrate to either denitrification or dissimilatory nitrate reduction to ammonium appeared to be more widespread than originally anticipated as more than half of all NirK-type denitrifiers were shown to contain both pathways in their genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2465-0) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl Environ Microbiol 2015; 81:5003-14. [PMID: 25979892 DOI: 10.1128/aem.00848-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Hyphomicrobium spp. are commonly identified as major players in denitrification systems supplied with methanol as a carbon source. However, denitrifying Hyphomicrobium species are poorly characterized, and very few studies have provided information on the genetic and physiological aspects of denitrification in pure cultures of these bacteria. This is a comparative study of three denitrifying Hyphomicrobium species, H. denitrificans ATCC 51888, H. zavarzinii ZV622, and a newly described species, H. nitrativorans NL23, which was isolated from a denitrification system treating seawater. Whole-genome sequence analyses revealed that although they share numerous orthologous genes, these three species differ greatly in their nitrate reductases, with gene clusters encoding a periplasmic nitrate reductase (Nap) in H. nitrativorans, a membrane-bound nitrate reductase (Nar) in H. denitrificans, and one Nap and two Nar enzymes in H. zavarzinii. Concurrently with these differences observed at the genetic level, important differences in the denitrification capacities of these Hyphomicrobium species were determined. H. nitrativorans grew and denitrified at higher nitrate and NaCl concentrations than did the two other species, without significant nitrite accumulation. Significant increases in the relative gene expression levels of the nitrate (napA) and nitrite (nirK) reductase genes were also noted for H. nitrativorans at higher nitrate and NaCl concentrations. Oxygen was also found to be a strong regulator of denitrification gene expression in both H. nitrativorans and H. zavarzinii, although individual genes responded differently in these two species. Taken together, the results presented in this study highlight the potential of H. nitrativorans as an efficient and adaptable bacterium that is able to perform complete denitrification under various conditions.
Collapse
|
32
|
Komori H, Higuchi Y. Structure and molecular evolution of multicopper blue proteins. Biomol Concepts 2015; 1:31-40. [PMID: 25961983 DOI: 10.1515/bmc.2010.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The multicopper blue protein family, which contains cupredoxin-like domains as a structural unit, is one of the most diverse groups of proteins. This protein family is divided into two functionally different types of enzymes: multicopper oxidase and nitrite reductase. Multicopper oxidase catalyzes the oxidation of the substrate and then reduces dioxygen. The structures of many multicopper oxidases are already known, and until recently they were classified into two main groups: the three- and six-domain types. Both function as monomers and have three spectroscopically different copper sites: Types I (blue), II, and III (tri-nuclear). Nitrite reductase is a closely related protein that contains Types I and II (mono-nuclear) coppers but reduces nitrite instead of dioxygen. Nitrite reductase, which consists of two domains, forms a homotrimer. Multicopper oxidase and nitrite reductase share similar structural architectures and also contain Type I copper. Therefore, it is proposed that they have a common ancestor protein. Recently, some two-domain type multicopper oxidases have been found and their crystal structures have been determined. They have a trimeric quaternary structure and contain an active site at the molecular interface such as nitrite reductase. These results support previous hypotheses and provide an insight into the molecular evolution of multicopper blue proteins.
Collapse
|
33
|
Moshkov KA, Zaitsev VN, Grishina TV, Stefanov VE. Multinuclear blue copper-proteins: the evolutionary design. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014030016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
35
|
Fukuda Y, Koteishi H, Yoneda R, Tamada T, Takami H, Inoue T, Nojiri M. Structural and functional characterization of the Geobacillus copper nitrite reductase: involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:396-405. [PMID: 24440558 DOI: 10.1016/j.bbabio.2014.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3Å and 1.8Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.
Collapse
Affiliation(s)
- Yohta Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Hiroyasu Koteishi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Yoneda
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Taro Tamada
- Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Hideto Takami
- Microbial Genome Research Group, Japan Agency of Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Tsuyoshi Inoue
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Nojiri
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| |
Collapse
|
36
|
Antonyuk SV, Cong H, Eady RR, Hasnain SS. Structures of protein-protein complexes involved in electron transfer. Nature 2013; 496:123-6. [PMID: 23535590 PMCID: PMC3672994 DOI: 10.1038/nature11996] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/08/2013] [Indexed: 01/07/2023]
Abstract
Electron transfer reactions are essential for life because they underpin oxidative phosphorylation and photosynthesis, processes leading to the generation of ATP, and are involved in many reactions of intermediary metabolism. Key to these roles is the formation of transient inter-protein electron transfer complexes. The structural basis for the control of specificity between partner proteins is lacking because these weak transient complexes have remained largely intractable for crystallographic studies. Inter-protein electron transfer processes are central to all of the key steps of denitrification, an alternative form of respiration in which bacteria reduce nitrate or nitrite to N2 through the gaseous intermediates nitric oxide (NO) and nitrous oxide (N2O) when oxygen concentrations are limiting. The one-electron reduction of nitrite to NO, a precursor to N2O, is performed by either a haem- or copper-containing nitrite reductase (CuNiR) where they receive an electron from redox partner proteins a cupredoxin or a c-type cytochrome. Here we report the structures of the newly characterized three-domain haem-c-Cu nitrite reductase from Ralstonia pickettii (RpNiR) at 1.01 Å resolution and its M92A and P93A mutants. Very high resolution provides the first view of the atomic detail of the interface between the core trimeric cupredoxin structure of CuNiR and the tethered cytochrome c domain that allows the enzyme to function as an effective self-electron transfer system where the donor and acceptor proteins are fused together by genomic acquisition for functional advantage. Comparison of RpNiR with the binary complex of a CuNiR with a donor protein, AxNiR-cytc551 (ref. 6), and mutagenesis studies provide direct evidence for the importance of a hydrogen-bonded water at the interface in electron transfer. The structure also provides an explanation for the preferential binding of nitrite to the reduced copper ion at the active site in RpNiR, in contrast to other CuNiRs where reductive inactivation occurs, preventing substrate binding.
Collapse
|
37
|
Tsuda A, Ishikawa R, Koteishi H, Tange K, Fukuda Y, Kobayashi K, Inoue T, Nojiri M. Structural and mechanistic insights into the electron flow through protein for cytochrome c-tethering copper nitrite reductase. J Biochem 2013; 154:51-60. [PMID: 23543476 DOI: 10.1093/jb/mvt023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Copper-containing nitrite reductases (CuNiRs), which catalyse the reversible one-electron reduction of nitrite to nitric oxide, are members of a large family of multi-copper enzymes that require an interprotein electron transfer (ET) reaction with redox partner proteins. Here, we show that the naturally fused type of CuNiR tethering a cytochrome c (Cyt c) at the C-terminus folds as a unique trimeric domain-swapped structure and has a self-sufficient electron flow system. The C-terminal Cyt c domain is located at the surface of the type 1 copper (T1Cu) site in the N-terminal CuNiR domain from the adjacent subunit, the heme-to-Cu distance (10.6 Å) of which is comparable to the transient ET complex of normal CuNiR with Cyt c. The structural aspects for the domain-domain interface and the ET kinetics indicate that the Cyt c-CuNiR domain interaction should be highly transient. The further electrochemical analysis of the interprotein ET reaction with a cognate redox partner protein suggested that an electron is directly transferred from the partner to the T1Cu. Structural and mechanistic comparisons of Cyt c-CuNiR with another cupredoxin-tethering CuNiR highlight the behaviours of extra domains on the fusion types of CuNiRs required for ET through proteins.
Collapse
Affiliation(s)
- Aiko Tsuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cun S, Lai YT, Chang YY, Sun H. Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins. Metallomics 2013; 5:904-12. [DOI: 10.1039/c3mt00026e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
|
40
|
Characterization of a novel copper-haem c dissimilatory nitrite reductase from Ralstonia pickettii. Biochem J 2012; 444:219-26. [DOI: 10.1042/bj20111623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NiRs (nitrite reductases) convert nitrite into NO in the denitrification process. RpNiR (Ralstonia pickettii NiR), a new type of dissimilatory Cu-containing NiR with a C-terminal haem c domain from R. pickettii, has been cloned, overexpressed in Escherichia coli and purified to homogeneity. The enzyme has a subunit molecular mass of 50515 Da, consistent with sequence data showing homology to the well-studied two-domain Cu NiRs, but with an attached C-terminal haem c domain. Gel filtration and combined SEC (size-exclusion chromatography)-SAXS (small angle X-ray scattering) analysis shows the protein to be trimeric. The metal content of RpNiR is consistent with each monomer having a single haem c group and the two Cu sites being metallated by Cu2+ ions. The absorption spectrum of the oxidized as-isolated recombinant enzyme is dominated by the haem c. X-band EPR spectra have clear features arising from both type 1 Cu and type 2 Cu centres in addition to those of low-spin ferric haem. The requirements for activity and low apparent Km for nitrite are similar to other CuNiRs (Cu-centre NiRs). However, EPR and direct binding measurements of nitrite show that oxidized RpNiR binds nitrite very weakly, suggesting that substrate binds to the reduced type 2 Cu site during turnover. Analysis of SEC-SAXS data suggests that the haem c domains in RpNiR form extensions into the solvent, conferring a high degree of conformational flexibility in solution. SAXS data yield Rg (gyration radius) and Dmax (maximum particle diameter) values of 43.4 Å (1 Å=0.1 nm) and 154 Å compared with 28 Å and 80 Å found for the two-domain CuNiR of Alcaligenes xylosoxidans.
Collapse
|
41
|
Glass JB, Orphan VJ. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 2012; 3:61. [PMID: 22363333 PMCID: PMC3282944 DOI: 10.3389/fmicb.2012.00061] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/05/2012] [Indexed: 01/15/2023] Open
Abstract
Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO(2) cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH(4)), and nitrous oxide (N(2)O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH(4) and N(2)O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH(4) oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N(2)O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N(2)O reductase, the only known enzyme capable of microbial N(2)O conversion to N(2), have only been found in classical denitrifiers. Accumulation of N(2)O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N(2)O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging.
Collapse
Affiliation(s)
- Jennifer B. Glass
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
42
|
Merkle AC, Lehnert N. Binding and activation of nitrite and nitric oxide by copper nitrite reductase and corresponding model complexes. Dalton Trans 2012; 41:3355-68. [DOI: 10.1039/c1dt11049g] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol 2011; 155:104-17. [DOI: 10.1016/j.jbiotec.2010.12.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/07/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
|
44
|
The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors. Methods Enzymol 2011; 486:483-506. [PMID: 21185450 DOI: 10.1016/b978-0-12-381294-0.00022-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nitrogen (N) cycle is the only global biogeochemical cycle that is driven by biological functions involving the interaction of many microorganisms. The N cycle has evolved over geological time and its interaction with the oxygen cycle has had profound effects on the evolution and timing of Earth's atmosphere oxygenation (Falkowski and Godfrey, 2008). Almost every enzyme that microorganisms use to manipulate N contains redox-sensitive metals. Bioavailability of these metals has changed through time as a function of varying redox conditions, and likely influenced the biological underpinnings of the N cycle. It is possible to construct a record through geological time using N isotopes and metal concentrations in sediments to determine when the different stages of the N cycle evolved and the role metal availability played in the development of key enzymes. The same techniques are applicable to understanding the operation and changes in the N cycle through geological time. However, N and many of the redox-sensitive metals in some of their oxidation states are mobile and the isotopic composition or distribution can be altered by subsequent processes leading to erroneous conclusions. This chapter reviews the enzymology and metal cofactors of the N cycle and describes proper utilization of methods used to reconstruct evolution of the N cycle through time.
Collapse
|
45
|
Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C. Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ Microbiol 2010; 12:1075-88. [PMID: 20132279 DOI: 10.1111/j.1462-2920.2010.02153.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ammonia-oxidizing archaea are frequent and ubiquitous inhabitants of terrestrial and marine environments. As they have only recently been detected, most aspects of their metabolism are yet unknown. Here we report on the occurrence of genes encoding potential homologues of copper-dependent nitrite reductases (NirK) in ammonia-oxidizing archaea of soils and other environments using metagenomic approaches and PCR amplification. Two pairs of highly overlapping 40 kb genome fragments, each containing nirK genes of archaea, were isolated from a metagenomic soil library. Between 68% and 85% of the open reading frames on these genome fragments had homologues in the genomes of the marine archaeal ammonia oxidizers Nitrosopumilus maritimus and Cenarchaeum symbiosum. Extensions of NirK homologues with C-terminal fused amicyanin domains were deduced from two of the four fosmids indicating structural variation of these multicopper proteins in archaea. Phylogenetic analyses including all major groups of currently known NirK homologues revealed that the deduced protein sequences of marine and soil archaea were separated into two highly divergent lineages that did not contain bacterial homologues. In contrast, another separated lineage contained potential multicopper oxidases of both domains, archaea and bacteria. More nirK gene variants directly amplified by PCR from several environments indicated further diversity of the gene and a widespread occurrence in archaea. Transcription of the potential archaeal nirK in soil was demonstrated at different water contents, but no significant increase in transcript copy number was observed with increased denitrifying activity.
Collapse
Affiliation(s)
- Rita Bartossek
- Department of Biology, Centre for Geobiology, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
46
|
Kalyuhznaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L. Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:385-392. [PMID: 23765891 DOI: 10.1111/j.1758-2229.2009.00046.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work we assessed the potential for the denitrification linked to methanol consumption in a microbial community inhabiting the top layer of the sediment of a pristine lake, Lake Washington in Seattle. Stable isotope probing with (13) C methanol was implemented in near in situ conditions and also in the presence of added nitrate. This revealed that the bacterial population involved in methanol uptake was dominated by species belonging to the Methylophilaceae, most prominently species belonging to the genus Methylotenera. Based on relative abundance of specific phylotypes in DNA clone libraries generated from (13) C labelled DNA, some of these species appear not to require nitrate to assimilate methanol while others assimilate methanol in a nitrate-dependent fashion. A pure culture of Methylotenera mobilis strain JLW8 previously isolated from the same study site was investigated for denitrification capability. This culture was demonstrated to be able to grow on methanol when nitrate was present, in aerobic conditions, while in media supplemented with ammonium it did not grow on methanol. The denitrifying capability of this strain was further demonstrated in defined laboratory conditions, by measuring accumulation of N2 O. This study provides new insights into the potential involvement of Methylophilaceae in global nitrogen cycling in natural environments and highlights the connection between global carbon and nitrogen cycles.
Collapse
Affiliation(s)
- Marina G Kalyuhznaya
- Departments of Microbiology, Civil and Environmental Engineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ghosh S, Dey A, Sun Y, Scholes CP, Solomon EI. Spectroscopic and computational studies of nitrite reductase: proton induced electron transfer and backbonding contributions to reactivity. J Am Chem Soc 2009; 131:277-88. [PMID: 19053185 DOI: 10.1021/ja806873e] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of spectroscopy and DFT calculations has been used to define the geometric and electronic structure of the nitrite bound type 2 (T2) copper site at high and low pH in nitrite reductase from Rhodobacter sphaeroides. At high pH there is no electron transfer from reduced type 1 (T1) to the nitrite bound T2 copper, while protonation triggers T1 --> T2 electron transfer and generation of NO. The DFT calculated reaction coordinate for the N-O bond cleavage in nitrite reduction by the reduced T2 copper suggests that the process is best described as proton transfer triggering electron transfer. Bidentate nitrite binding to copper is calculated to play a major role in activating the reductive cleavage of the nitrite bond through backbonding combined with stabilization of the (-)OH product by coordination to the Cu(2+).
Collapse
Affiliation(s)
- Somdatta Ghosh
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
48
|
Nojiri M, Shirota F, Hira D, Suzuki S. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the soluble domain of PPA0092, a putative nitrite reductase from Propionibacterium acnes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:123-7. [PMID: 19194001 PMCID: PMC2635855 DOI: 10.1107/s1744309108040207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 11/29/2008] [Indexed: 11/10/2022]
Abstract
The soluble domain (residues 483-913) of PPA0092, a putative copper-containing nitrite reductase from Propionibacterium acnes KPA171202, has been overexpressed in Escherichia coli. The purified recombinant protein was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected and processed to a maximum resolution of 2.4 A. The crystal belonged to space group P2(1)3, with unit-cell parameters a = b = c = 108.63 A. Preliminary diffraction data show that one molecule is present in the asymmetric unit; this corresponds to a V(M) of 2.1 A(3) Da(-1).
Collapse
Affiliation(s)
- Masaki Nojiri
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Felicia Shirota
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Daisuke Hira
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinnichiro Suzuki
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
49
|
Hira D, Nojiri M, Suzuki S. Crystallization and preliminary X-ray diffraction analysis of a complex between the electron-transfer partners hexameric Cu-containing nitrite reductase and pseudoazurin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:116-9. [PMID: 19193999 DOI: 10.1107/s1744309108040219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/29/2008] [Indexed: 11/10/2022]
Abstract
The complex between Cu-containing nitrite reductase (HdNIR) and its electron-donor protein pseudoazurin (HdPAz) from Hyphomicrobium denitrificans has been crystallized. The crystals were obtained from a mixture of the two proteins using the hanging-drop vapour-diffusion method in the presence of polyethylene glycol (PEG) and 2-methyl-2,4-pentanediol (MPD) as precipitants. SDS-PAGE analysis demonstrated that the crystals contained both proteins. The X-ray diffraction experiment was carried out at SPring-8 and diffraction data were collected to 3.3 A resolution. The crystals were tetragonal (space group P4(1)2(1)2), with unit-cell parameters a = b = 130.39, c = 505.55 A. Preliminary analysis indicated that there was one HdNIR and at least two HdPAz molecules in the asymmetric unit of the crystal.
Collapse
Affiliation(s)
- Daisuke Hira
- Bioinorganic Chemistry Laboratory, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
50
|
Jones CM, Stres B, Rosenquist M, Hallin S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 2008; 25:1955-66. [PMID: 18614527 DOI: 10.1093/molbev/msn146] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.
Collapse
Affiliation(s)
- Christopher M Jones
- Department of Microbiology, Swedish Agricultural University, Uppsala, Sweden.
| | | | | | | |
Collapse
|