1
|
Otun O, Aljamous C, Del Nero E, Arimont-Segura M, Bosma R, Zarzycka B, Girbau T, Leyrat C, de Graaf C, Leurs R, Durroux T, Granier S, Cong X, Bechara C. Conformational dynamics underlying atypical chemokine receptor 3 activation. Proc Natl Acad Sci U S A 2024; 121:e2404000121. [PMID: 39008676 PMCID: PMC11287255 DOI: 10.1073/pnas.2404000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon β-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of β-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.
Collapse
Affiliation(s)
- Omolade Otun
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Christelle Aljamous
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Elise Del Nero
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Reggie Bosma
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Barbara Zarzycka
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Tristan Girbau
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
- Institut Universitaire de France, Paris75005, France
| |
Collapse
|
2
|
Samus M, Rot A. Atypical chemokine receptors in cancer. Cytokine 2024; 176:156504. [PMID: 38266462 DOI: 10.1016/j.cyto.2024.156504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Atypical chemokine receptors (ACKRs) are a group of seven-transmembrane spanning serpentine receptors that are structurally homologous to classical G-protein-coupled receptors and bind cognate chemokines with high affinities but do not signal via G-proteins or mediate cell migration. However, ACKRs efficiently modify the availability and function of chemokines in defined microanatomical environments, can signal via intracellular effectors other than G-proteins, and play complex roles in physiology and disease, including in cancer. In this review, we summarize the findings on the diverse contributions of individual ACKRs to cancer development, progression, and tumor-host interactions. We discuss how changes in ACKR expression within tumor affect cancer growth, tumor vascularization, leukocyte infiltration, and metastasis formation, ultimately resulting in differential disease outcomes. Across many studies, ACKR3 expression was shown to support tumor growth and dissemination, whereas ACKR1, ACKR2, and ACKR4 in tumors were more likely to contribute to tumor suppression. With few notable exceptions, the insights on molecular and cellular mechanisms of ACKRs activities in cancer remain sparse, and the intricacies of their involvement are not fully appreciated. This is particularly true for ACKR1, ACKR2 and ACKR4. A better understanding of how ACKR expression and functions impact cancer should pave the way for their future targeting by new and effective therapies.
Collapse
Affiliation(s)
- Maryna Samus
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich 80336, Germany.
| |
Collapse
|
3
|
Yi H, Qin L, Ye X, Song J, Ji J, Ye T, Li J, Li L. Progression of radio-labeled molecular imaging probes targeting chemokine receptors. Crit Rev Oncol Hematol 2024; 195:104266. [PMID: 38232861 DOI: 10.1016/j.critrevonc.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Chemokine receptors are significantly expressed in the surface of most inflammatory cells and tumor cells. Guided by chemokines, inflammatory cells which express the relevant chemokine receptors migrate to inflammatory lesions and participate in the evolution of inflammation diseases. Similarly, driven by chemokines, immune cells infiltrate into tumor lesions not only induces alterations in the tumor microenvironment, disrupting the efficacy of tumor therapies, but also has the potential to selectively target tumoral cells and diminish tumor progression. Chemokine receptors, which are significantly expressed on the surface of tumor cell membranes, are regulated by chemokines and initiate tumor-associated signaling pathways within tumor cells, playing a complex role in tumor progression. Based on the antagonists targeting chemokine receptors, radionuclide-labeled molecular imaging probes have been developed for the emerging application of molecular imaging in diseases such as tumors and inflammation. The value and limitations of molecular probes in disease imaging are worth reviewing.
Collapse
Affiliation(s)
- Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Lilin Qin
- Second Clinical Medical College of Zhejiang Chinese Medical University, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Xuemei Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jinling Song
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Ting Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Dongfang Street 150, Hangzhou, Zhejiang 310022, China.
| | - Linfa Li
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
4
|
Anastasiadou DP, Quesnel A, Duran CL, Filippou PS, Karagiannis GS. An emerging paradigm of CXCL12 involvement in the metastatic cascade. Cytokine Growth Factor Rev 2024; 75:12-30. [PMID: 37949685 DOI: 10.1016/j.cytogfr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the "metastatic cascade" among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dimitra P Anastasiadou
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Camille L Duran
- Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Wu X, Hua X, Xu K, Song Y, Lv T. Zebrafish in Lung Cancer Research. Cancers (Basel) 2023; 15:4721. [PMID: 37835415 PMCID: PMC10571557 DOI: 10.3390/cancers15194721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zebrafish is increasingly used as a model organism for cancer research because of its genetic and physiological similarities to humans. Modeling lung cancer (LC) in zebrafish has received significant attention. This review focuses on the insights gained from using zebrafish in LC research. These insights range from investigating the genetic and molecular mechanisms that contribute to the development and progression of LC to identifying potential drug targets, testing the efficacy and toxicity of new therapies, and applying zebrafish for personalized medicine studies. This review provides a comprehensive overview of the current state of LC research performed using zebrafish, highlights the advantages and limitations of this model organism, and discusses future directions in the field.
Collapse
Affiliation(s)
- Xiaodi Wu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Xin Hua
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
| | - Ke Xu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Yong Song
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
7
|
Zhang X, Song Q, Zeng L. Circulating hsa_circ_0072309, acting via the miR-100/ACKR3 pathway, maybe a potential biomarker for the diagnosis, prognosis, and treatment of brain metastasis from non-small-cell lung cancer. Cancer Med 2023; 12:18005-18019. [PMID: 37496297 PMCID: PMC10523940 DOI: 10.1002/cam4.6371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND One of the main causes of lung cancer-related death is brain metastasis (BM). Finding early indicators of BM derived from lung cancer is crucial. Therefore, this study was designed to determine if serum hsa_circ_0072309 may be employed as a potential biomarker for BM induced by non-small-cell lung cancer (NSCLC) and to understand its possible underlying mechanism. METHODS Primary lung cancer and healthy neighboring tissues were obtained from all patients, while BM tissues were taken from BM+ patients. Serum specimens were collected from all patients and healthy volunteers. Hsa_circ_001653, miR-100, and ACKR3 RNA expressions were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and atypical chemokine receptor 3 (ACKR3) protein expression by western blotting (WB), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). In order to examine the effect of serum hsa_circ_0072309 and its relevant mechanism on BM development, an NSCLC-associated BM model in mice was established. RESULTS According to the results, miR-100 expression was down-regulated in primary lung cancer tissues compared to healthy lung tissues in all NSCLC patients, and circ_0072309 and ACKR3 expression were up-regulated. In BM tissues compared with primary lung tumors of BM+ patients, in serum samples from all patients compared to healthy volunteers, and in lung tumors of BM+ patients compared to those from BM- patients. Patients' serum exhibits the same level of hsa_circ_0072309/miR-100/ACKR3 expression as in BM samples. Advanced tumor-node-metastasis (TNM) stage, higher BM, shorter post-operative overall survival (OS), and progression-free survival (PFS) are all substantially associated with increased serum circ_0072309 levels in BM+ patients. In animal models, serum owning hsa_circ_0072309 from BM+ patients facilitates BM formation by regulating the miR-100/ACKR3 pathway. CONCLUSIONS The current preliminary research reveals serum hsa_circ_0072309 as a possible biomarker and target for early diagnosis, prognosis, and therapy of NSCLC-derived BM and suggests a substantial role for the hsa_circ_0072309/miR-100/ACKR3 axis in the formation of BM from NSCLC.
Collapse
Affiliation(s)
- Xiao‐Qiang Zhang
- Department of thoracic surgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qian Song
- Department of thoracic surgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Lin‐Xiang Zeng
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
8
|
Chen Q, Schafer CT, Mukherjee S, Gustavsson M, Agrawal P, Yao XQ, Kossiakoff AA, Handel TM, Tesmer JJG. ACKR3-arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549504. [PMID: 37502840 PMCID: PMC10370059 DOI: 10.1101/2023.07.18.549504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| | - Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| |
Collapse
|
9
|
Yang Y, Li J, Lei W, Wang H, Ni Y, Liu Y, Yan H, Tian Y, Wang Z, Yang Z, Yang S, Yang Y, Wang Q. CXCL12-CXCR4/CXCR7 Axis in Cancer: from Mechanisms to Clinical Applications. Int J Biol Sci 2023; 19:3341-3359. [PMID: 37497001 PMCID: PMC10367567 DOI: 10.7150/ijbs.82317] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 07/28/2023] Open
Abstract
Cancer is a multi-step disease caused by the accumulation of genetic mutations and/or epigenetic changes, and is the biggest challenge around the world. Cytokines, including chemokines, exhibit expression changes and disorders in all human cancers. These cytokine abnormalities can disrupt homeostasis and immune function, and make outstanding contributions to various stages of cancer development such as invasion, metastasis, and angiogenesis. Chemokines are a superfamily of small molecule chemoattractive cytokines that mediate a variety of cellular functions. Importantly, the interactions of chemokine members CXCL12 and its receptors CXCR4 and CXCR7 have a broad impact on tumor cell proliferation, survival, angiogenesis, metastasis, and tumor microenvironment, and thus participate in the onset and development of many cancers including leukemia, breast cancer, lung cancer, prostate cancer and multiple myeloma. Therefore, this review aims to summarize the latest research progress and future challenges regarding the role of CXCL12-CXCR4/CXCR7 signaling axis in cancer, and highlights the potential of CXCL12-CXCR4/CXCR7 as a biomarker or therapeutic target for cancer, providing essential strategies for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Yaru Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayan Li
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Haiying Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Yanqing Liu
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huanle Yan
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yifan Tian
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Shulin Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Qiang Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Tavana H, Luker GD. Cancer-associated fibroblasts: challenges and opportunities. Oncotarget 2023; 14:211-214. [PMID: 36944189 PMCID: PMC10030151 DOI: 10.18632/oncotarget.28385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Hossein Tavana
- Correspondence to:Hossein Tavana, Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA email
| | | |
Collapse
|
11
|
Tang H, Gao Y, Han J. Application Progress of the Single Domain Antibody in Medicine. Int J Mol Sci 2023; 24:ijms24044176. [PMID: 36835588 PMCID: PMC9967291 DOI: 10.3390/ijms24044176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The camelid-derived single chain antibody (sdAb), also termed VHH or nanobody, is a unique, functional heavy (H)-chain antibody (HCAb). In contrast to conventional antibodies, sdAb is a unique antibody fragment consisting of a heavy-chain variable domain. It lacks light chains and a first constant domain (CH1). With a small molecular weight of only 12~15 kDa, sdAb has a similar antigen-binding affinity to conventional Abs but a higher solubility, which exerts unique advantages for the recognition and binding of functional, versatile, target-specific antigen fragments. In recent decades, with their unique structural and functional features, nanobodies have been considered promising agents and alternatives to traditional monoclonal antibodies. As a new generation of nano-biological tools, natural and synthetic nanobodies have been used in many fields of biomedicine, including biomolecular materials, biological research, medical diagnosis and immune therapies. This article briefly overviews the biomolecular structure, biochemical properties, immune acquisition and phage library construction of nanobodies and comprehensively reviews their applications in medical research. It is expected that this review will provide a reference for the further exploration and unveiling of nanobody properties and function, as well as a bright future for the development of drugs and therapeutic methods based on nanobodies.
Collapse
Affiliation(s)
- Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence:
| | - Jiangyuan Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Roberto M, Arrivi G, Di Civita MA, Barchiesi G, Pilozzi E, Marchetti P, Santini D, Mazzuca F, Tomao S. The role of CXCL12 axis in pancreatic cancer: New biomarkers and potential targets. Front Oncol 2023; 13:1154581. [PMID: 37035150 PMCID: PMC10076769 DOI: 10.3389/fonc.2023.1154581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Chemokines are small, secreted peptides involved in the mediation of the immune cell recruitment. Chemokines have been implicated in several diseases including autoimmune diseases, viral infections and also played a critical role in the genesis and development of several malignant tumors. CXCL12 is a homeostatic CXC chemokine involved in the process of proliferation, and tumor spread. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, that is still lacking effective therapies and with a dramatically poor prognosis. Method We conducted a scientific literature search on Pubmed and Google Scholar including retrospective, prospective studies and reviews focused on the current research elucidating the emerging role of CXCL12 and its receptors CXCR4 - CXCR7 in the pathogenesis of pancreatic cancer. Results Considering the mechanism of immunomodulation of the CXCL12-CXCR4-CXCR7 axis, as well as the potential interaction with the microenvironment in the PDAC, several combined therapeutic approaches have been studied and developed, to overcome the "cold" immunological setting of PDAC, like combining CXCL12 axis inhibitors with anti PD-1/PDL1 drugs. Conclusion Understanding the role of this chemokine's axis in disease initiation and progression may provide the basis for developing new potential biomarkers as well as therapeutic targets for related pancreatic cancers.
Collapse
Affiliation(s)
- Michela Roberto
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giulia Arrivi
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Mattia Alberto Di Civita
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mattia Alberto Di Civita,
| | - Giacomo Barchiesi
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Anatomia Patologica Unit, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Scientific Direction, Istituto Dermopatico dell’Immacolata (IDI-IRCCS), Rome, Italy
| | - Daniele Santini
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Micek M, Aebisher D, Surówka J, Bartusik-Aebisher D, Madera M. Applications of T 1 and T 2 relaxation time calculation in tissue differentiation and cancer diagnostics-a systematic literature review. Front Oncol 2022; 12:1010643. [PMID: 36531030 PMCID: PMC9749890 DOI: 10.3389/fonc.2022.1010643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 01/07/2024] Open
Abstract
INTRODUCTION The purpose of this review was to summarize current applications of non-contrast-enhanced quantitative magnetic resonance imaging (qMRI) in tissue differentiation, considering healthy tissues as well as comparisons of malignant and benign samples. The analysis concentrates mainly on the epithelium and epithelial breast tissue, especially breast cancer. METHODS A systematic review has been performed based on current recommendations by publishers and foundations. An exhaustive overview of currently used techniques and their potential in medical sciences was obtained by creating a search strategy and explicit inclusion and exclusion criteria. RESULTS AND DISCUSSION PubMed and Elsevier (Scopus & Science Direct) search was narrowed down to studies reporting T1 or T2 values of human tissues, resulting in 404 initial candidates, out of which roughly 20% were found relevant and fitting the review criteria. The nervous system, especially the brain, and connective tissue such as cartilage were the most frequently analyzed, while the breast remained one of the most uncommon subjects of studies. There was little agreement between published T1 or T2 values, and methodologies and experimental setups differed strongly. Few contemporary (after 2000) resources have been identified that were dedicated to studying the relaxation times of tissues and their diagnostic applications. Most publications concentrate on recommended diagnostic standards, for example, breast acquisition of T1- or T2-weighted images using gadolinium-based contrast agents. Not enough data is available yet to decide how repeatable or reliable analysis of relaxation times is in diagnostics, so it remains mainly a research topic. So far, qMRI might be recommended as a diagnostic help providing general insight into the nature of lesions (benign vs. malignant). However, additional means are generally necessary to differentiate between specific lesion types.
Collapse
Affiliation(s)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszow, Rzeszow, Poland
| | | | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszow, Rzeszow, Poland
| | | |
Collapse
|
14
|
Inhibition of Angiogenesis by MiR-524-5p through Suppression of AKT and ERK Activation by Targeting CXCR7 in Colon Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:7224840. [DOI: 10.1155/2022/7224840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Increasing evidence shows that alterations in microRNA (miRNA) expression are involved in the occurrence and development of various malignant tumors, including colon cancer. MiRNA-524-5p has been reported to have anticancer activity in colon cancer. This study explored the influence of the miRNA-524-5p/CXCR7 axis on angiogenesis using colon cancer cells and further studied the mechanisms involved. We found that changing the expression of miRNA-524-5p can affect colonic proliferation, migration, and angiogenesis. Furthermore, angiogenesis induced by miRNA-524-5p overexpression was reversed by overexpression of CXCR7 in HT-29 cells, while the opposite was observed in Caco-2 cells. Furthermore, miRNA-524-5p inhibited the activation of AKT and ERK signaling by targeting CXCR7. Overall, our results indicated that the miRNA-524-5p/CXCR7 axis regulated angiogenesis in colon cancer cells through the AKT and ERK pathways.
Collapse
|
15
|
Li D, Zhang X, Jiang L. Molecular mechanism and potential therapeutic targets of liver metastasis from gastric cancer. Front Oncol 2022; 12:1000807. [PMID: 36439439 PMCID: PMC9682021 DOI: 10.3389/fonc.2022.1000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 03/22/2024] Open
Abstract
Gastric cancer (GC) is characterized by high invasion and poor prognosis. The occurrence of liver metastasis seriously affects advanced GC prognosis. In recent years, great progress has been made in the field of GC liver metastasis. The abnormal expression of related genes leads to the occurrence of GC liver metastasis through metastasis cascades. The changes in the liver microenvironment provide a pre-metastasis condition for GC cells to colonize and grow. The development of several potential therapeutic targets might provide new therapeutic strategies for its treatment. Therefore, we reviewed the regulatory mechanism of abnormal genes mediating liver metastasis, the effect of liver resident cells on liver metastasis, and potential therapeutic targets, hoping to provide a novel therapeutic option to improve the quality of life and prognosis of GC patients with liver metastasis.
Collapse
Affiliation(s)
- Difeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lili Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Roslan A, Sulaiman N, Mohd Ghani KA, Nurdin A. Cancer-Associated Membrane Protein as Targeted Therapy for Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14102218. [PMID: 36297654 PMCID: PMC9607037 DOI: 10.3390/pharmaceutics14102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) recurrence is one of the primary clinical problems encountered by patients following chemotherapy. However, the mechanisms underlying their resistance to chemotherapy remain unclear. Alteration in the pattern of membrane proteins (MPs) is thought to be associated with this recurrence outcome, often leading to cell dysfunction. Since MPs are found throughout the cell membrane, they have become the focus of attention for cancer diagnosis and treatment. Identifying specific and sensitive biomarkers for BC, therefore, requires a major collaborative effort. This review describes studies on membrane proteins as potential biomarkers to facilitate personalised medicine. It aims to introduce and discuss the types and significant functions of membrane proteins as potential biomarkers for future medicine. Other types of biomarkers such as DNA-, RNA- or metabolite-based biomarkers are not included in this review, but the focus is mainly on cell membrane surface protein-based biomarkers.
Collapse
Affiliation(s)
- Adlina Roslan
- Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurshahira Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khairul Asri Mohd Ghani
- Department of Urology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Armania Nurdin
- Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8609-2971
| |
Collapse
|
17
|
Si M, Song Y, Wang X, Wang D, Liu X, Qu X, Song Z, Yu X. CXCL12/CXCR7/β-arrestin1 biased signal promotes epithelial-to-mesenchymal transition of colorectal cancer by repressing miRNAs through YAP1 nuclear translocation. Cell Biosci 2022; 12:171. [PMID: 36210463 PMCID: PMC9549625 DOI: 10.1186/s13578-022-00908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chemokine CXC motif receptor 7 (CXCR7) is an atypical G protein-coupled receptor (GPCR) that signals in a biased fashion. CXCL12/CXCR7 biased signal has been reported to play crucial roles in multiple stages of colorectal cancer (CRC). However, the mechanism of CXCL12/CXCR7 biased signal in promoting CRC progression and metastasis remains obscure. RESULTS We demonstrate that CXCR7 activation promotes EMT and upregulates the expression of Vimentin and doublecortin-like kinase 1 (DCLK1) in CRC cells with concurrent repression of miR-124-3p and miR-188-5p through YAP1 nuclear translocation. Cell transfection and luciferase assay prove that these miRNAs regulate EMT by targeting Vimentin and DCLK1. More importantly, CXCL12/CXCR7/β-arrestin1-mediated biased signal induces YAP1 nuclear translocation, which functions as a transcriptional repressor by interacting with Yin Yang 1 (YY1) and recruiting YY1 to the promoters of miR-124-3p and miR-188-5p. Pharmacological inhibitor of YAP1 suppresses EMT and tumor metastasis upon CXCR7 activation in vivo in tumor xenografts of nude mice and inflammatory colonic adenocarcinoma models. Clinically, the expression of CXCR7 is positively correlated with nuclear YAP1 levels and EMT markers. CONCLUSIONS Our studies reveal a novel mechanism and clinical significance of CXCL12/CXCR7 biased signal in promoting EMT and invasion in CRC progression. These findings highlight the potential of targeting YAP1 nuclear translocation in hampering CXCL12/CXCR7 biased signal-induced metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Mahan Si
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yujia Song
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- grid.24696.3f0000 0004 0369 153XDepartment of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xianjun Qu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiyu Song
- grid.414011.10000 0004 1808 090XDepartment of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xinfeng Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Bhuniya A, Pattarayan D, Yang D. Lentiviral vector transduction provides nonspecific immunogenicity for syngeneic tumor models. Mol Carcinog 2022; 61:1073-1081. [PMID: 36161729 DOI: 10.1002/mc.23467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022]
Abstract
Lentivirus-based transduction systems are widely used in biological science and cancer biology, including cancer immunotherapy. However, in in vivo transplanted tumor model, the immunogenicity of these transduced cells was not appropriately addressed. Here, we used empty vector-transduced mouse melanoma (B16) and carcinoma (lewis lung carcinoma) cells transplanted tumor model to study the immune response due to the transduction processes. We showed that the overall in vivo tumor growth rate gets reduced in transduced cells only in immune-competent mice but not in nude mice. This data indicate the involvement of the immune system in the in vivo tumor growth restriction in the transduced group. Further studies showed that specific activation of CD8+ T cells might be responsible for restricted tumor growth. Mechanistically, transduced tumor cells show the higher activity of type I interferon, which might play an essential role in this activation. Overall, our data indicate the modulation of the immune system by lentiviral vector transduced tumor cells, which required further studies to explore the mechanisms and better understand the biological significance. Our data also indicate the importance of considering the immunogenicity of transduced cells when analyzing in vivo results, especially in studies related to immunotherapy.
Collapse
Affiliation(s)
- Avishek Bhuniya
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhamotharan Pattarayan
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Da Yang
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin Cancer Biol 2022; 86:233-246. [PMID: 35787939 DOI: 10.1016/j.semcancer.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Collapse
|
20
|
The CXCL12/CXCR4/ACKR3 Signaling Axis Regulates PKM2 and Glycolysis. Cells 2022; 11:cells11111775. [PMID: 35681470 PMCID: PMC9179862 DOI: 10.3390/cells11111775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
In response to CXCL12, CXCR4 and ACKR3 both recruit β-arrestin 2, regulating the assembly of interacting proteins that drive signaling and contribute to the functions of both receptors in cancer and multiple other diseases. A prior proteomics study revealed that β-arrestin 2 scaffolds pyruvate kinase M2 (PKM2), an enzyme implicated in shifting cells to glycolytic metabolism and poor prognosis in cancer. We hypothesized that CXCL12 signaling regulates PKM2 protein interactions, oligomerization, and glucose metabolism. We used luciferase complementation in cell-based assays and a tumor xenograft model of breast cancer in NSG mice to quantify how CXCR4 and ACKR3 change protein interactions in the β-arrestin-ERK-PKM2 pathway. We also used mass spectrometry to analyze the effects of CXCL12 on glucose metabolism. CXCL12 signaling through CXCR4 and ACKR3 stimulated protein interactions among β-arrestin 2, PKM2, ERK2, and each receptor, leading to the dissociation of PKM2 from β-arrestin 2. The activation of both receptors reduced the oligomerization of PKM2, reflecting a shift from tetramers to dimers or monomers with low enzymatic activity. Mass spectrometry with isotopically labeled glucose showed that CXCL12 signaling increased intermediate metabolites in glycolysis and the pentose phosphate pathway, with ACKR3 mediating greater effects. These data establish how CXCL12 signaling regulates PKM2 and reprograms cellular metabolism.
Collapse
|
21
|
ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nat Commun 2022; 13:1823. [PMID: 35383158 PMCID: PMC8983782 DOI: 10.1038/s41467-022-29341-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion. ACKR3 is a critical regulator of platelet-mediated thrombosis and organ injury following ischemia/reperfusion. Platelet ACKR3 surface expression is independently associated with all-cause mortality in patients with cardiovascular diseases.
Collapse
|
22
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
23
|
Dobroch J, Bojczuk K, Kołakowski A, Baczewska M, Knapp P. The Exploration of Chemokines Importance in the Pathogenesis and Development of Endometrial Cancer. Molecules 2022; 27:2041. [PMID: 35408440 PMCID: PMC9000631 DOI: 10.3390/molecules27072041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Endometrial cancer (EC) is one of the most frequent female malignancies. Because of a characteristic symptom, vaginal bleeding, EC is often diagnosed in an early stage. Despite that, some EC cases present an atypical course with rapid progression and poor prognosis. There have been multiple studies conducted on molecular profiling of EC in order to improve diagnostics and introduce personalized treatment. Chemokines-a protein family that contributes to inflammatory processes that may promote carcinogenesis-constitute an area of interest. Some chemokines and their receptors present alterations in expression in tumor microenvironment. CXCL12, which binds the receptors CXCR4 and CXCR7, is known for its impact on neoplastic cell proliferation, neovascularization and promotion of epidermal-mesenchymal transition. The CCL2-CCR2 axis additionally plays a pivotal role in EC with mutations in the LKB1 gene and activates tumor-associated macrophages. CCL20 and CCR6 are influenced by the RANK/RANKL pathway and alter the function of lymphocytes and dendritic cells. Another axis, CXCL10-CXCR3, affects the function of NK-cells and, interestingly, presents different roles in various types of tumors. This review article consists of analysis of studies that included the roles of the aforementioned chemokines in EC pathogenesis. Alterations in chemokine expression are described, and possible applications of drugs targeting chemokines are reviewed.
Collapse
Affiliation(s)
- Jakub Dobroch
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Marta Baczewska
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
24
|
Murad HAS, Alqurashi TMA, Hussien MA. Interactions of selected cardiovascular active natural compounds with CXCR4 and CXCR7 receptors: a molecular docking, molecular dynamics, and pharmacokinetic/toxicity prediction study. BMC Complement Med Ther 2022; 22:35. [PMID: 35120520 PMCID: PMC8817505 DOI: 10.1186/s12906-021-03488-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.
Collapse
Affiliation(s)
- Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | | | - Mostafa Aly Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port-Said University, Port-Said, 42521, Egypt
| |
Collapse
|
25
|
Mehrpouri M. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: A possible therapeutic target in hematologic malignancies. Eur J Pharmacol 2022; 920:174831. [DOI: 10.1016/j.ejphar.2022.174831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
26
|
Parol-Kulczyk M, Gzil A, Ligmanowska J, Grzanka D. Prognostic significance of SDF-1 chemokine and its receptors CXCR4 and CXCR7 involved in EMT of prostate cancer. Cytokine 2021; 150:155778. [PMID: 34920230 DOI: 10.1016/j.cyto.2021.155778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Tendency to conversion from state of chronic inflammation to malignancy is a tumor characteristic trait, which encourages progression to its metastatic stage.. The inflammatory cells maintaining in the tumor inaugurate a communication with cancer cells and become tumor-fostering cells. Epithelial-mesenchymal transition (EMT) is a program supporting malignant cells during switch phenotype into metastatic form, providing looseness of cell-cell adherence and strengthens migratory or invasive features. EMT-undergone tumor cells become more aggressive and resistant to apoptosis. Additionally, malignant cells can be stimulated to manufacture proinflammatory factors throughout EMT program. Chronic inflammation is responsible for EMT induction in malignancies. Developed tumors induce inflammatory response through excretion of cytokines, chemokines and growth factors, which recruit populations of infiltrating immune cells straight to the tumor microenvironment. The inflammatory reaction potentially exerts tumor control, but instead it can be intercepted by the tumor to stimulate its own development in direction to metastatic form. Our study confirmed that SDF-1 chemokine and its receptors, CXCR4 and CXCR7 may participate in initiation of metastases formation and EMT process.
Collapse
Affiliation(s)
- Martyna Parol-Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Joanna Ligmanowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| |
Collapse
|
27
|
Wen ZQ, Liu D, Zhang Y, Cai ZJ, Xiao WF, Li YS. G Protein-Coupled Receptors in Osteoarthritis: A Novel Perspective on Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:758220. [PMID: 34746150 PMCID: PMC8564363 DOI: 10.3389/fcell.2021.758220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that trigger numerous intracellular signaling pathways in response to the extracellular stimuli. The GPCRs superfamily contains enormous structural and functional diversity and mediates extensive biological processes. Until now, critical roles have been established in many diseases, including osteoarthritis (OA). Existing studies have shown that GPCRs play an important role in some OA-related pathogenesis, such as cartilage matrix degradation, synovitis, subchondral bone remodeling, and osteophyte formation. However, current pharmacological treatments are mostly symptomatic and there is a paucity of disease-modifying OA drugs so far. Targeting GPCRs is capable of inhibiting cartilage matrix degradation and synovitis and up-regulating cartilage matrix synthesis, providing a new therapeutic strategy for OA. In this review, we have comprehensively summarized the structures, biofunctions, and the novel roles of GPCRs in the pathogenesis and treatment of OA, which is expected to lay the foundation for the development of novel therapeutics against OA. Even though targeting GPCRs may ameliorate OA progression, many GPCRs-related therapeutic strategies are still in the pre-clinical stage and require further investigation.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Jun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis. Br J Cancer 2021; 125:390-401. [PMID: 34088989 PMCID: PMC8328993 DOI: 10.1038/s41416-021-01340-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated. METHODS Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro. RESULTS Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer-endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR via a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network. CONCLUSIONS The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.
Collapse
|
29
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
30
|
Mandal S, Chakrabarty D, Bhattacharya A, Paul J, Haldar S, Pal K. miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
32
|
Ciummo SL, D’Antonio L, Sorrentino C, Fieni C, Lanuti P, Stassi G, Todaro M, Di Carlo E. The C-X-C Motif Chemokine Ligand 1 Sustains Breast Cancer Stem Cell Self-Renewal and Promotes Tumor Progression and Immune Escape Programs. Front Cell Dev Biol 2021; 9:689286. [PMID: 34195201 PMCID: PMC8237942 DOI: 10.3389/fcell.2021.689286] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) mortality is mainly due to metastatic disease, which is primarily driven by cancer stem cells (CSC). The chemokine C-X-C motif ligand-1 (CXCL1) is involved in BC metastasis, but the question of whether it regulates breast cancer stem cell (BCSC) behavior is yet to be explored. Here, we demonstrate that BCSCs express CXCR2 and produce CXCL1, which stimulates their proliferation and self-renewal, and that CXCL1 blockade inhibits both BCSC proliferation and mammosphere formation efficiency. CXCL1 amplifies its own production and remarkably induces both tumor-promoting and immunosuppressive factors, including SPP1/OPN, ACKR3/CXCR7, TLR4, TNFSF10/TRAIL and CCL18 and, to a lesser extent, immunostimulatory cytokines, including IL15, while it downregulates CCL2, CCL28, and CXCR4. CXCL1 downregulates TWIST2 and SNAI2, while it boosts TWIST1 expression in association with the loss of E-Cadherin, ultimately promoting BCSC epithelial-mesenchymal transition. Bioinformatic analyses of transcriptional data obtained from BC samples of 1,084 patients, reveals that CXCL1 expressing BCs mostly belong to the Triple-Negative (TN) subtype, and that BC expression of CXCL1 strongly correlates with that of pro-angiogenic and cancer promoting genes, such as CXCL2-3-5-6, FGFBP1, BCL11A, PI3, B3GNT5, BBOX1, and PTX3, suggesting that the CXCL1 signaling cascade is part of a broader tumor-promoting signaling network. Our findings reveal that CXCL1 functions as an autocrine growth factor for BCSCs and elicits primarily tumor progression and immune escape programs. Targeting the CXCL1/CXCR2 axis could restrain the BCSC compartment and improve the treatment of aggressive BC.
Collapse
Affiliation(s)
- Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Luigi D’Antonio
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| |
Collapse
|
33
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
34
|
Ahmed M, Daoud GH, Mohamed A, Harati R. New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer. Genes (Basel) 2021; 12:genes12050723. [PMID: 34066014 PMCID: PMC8150278 DOI: 10.3390/genes12050723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most prevalent forms of cancer globally and is among the leading causes of death in women. Its heterogenic nature is a result of the involvement of numerous aberrant genes that contribute to the multi-step pathway of tumorigenesis. Despite the fact that several disease-causing mutations have been identified, therapy is often aimed at alleviating symptoms rather than rectifying the mutation in the DNA sequence. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 is a groundbreaking tool that is being utilized for the identification and validation of genomic targets bearing tumorigenic potential. CRISPR/Cas9 supersedes its gene-editing predecessors through its unparalleled simplicity, efficiency and affordability. In this review, we provide an overview of the CRISPR/Cas9 mechanism and discuss genes that were edited using this system for the treatment of breast cancer. In addition, we shed light on the delivery methods—both viral and non-viral—that may be used to deliver the system and the barriers associated with each. Overall, the present review provides new insights into the potential therapeutic applications of CRISPR/Cas9 for the advancement of breast cancer treatment.
Collapse
|
35
|
Sigmund EC, Baur L, Schineis P, Arasa J, Collado-Diaz V, Vranova M, Stahl RAK, Thelen M, Halin C. Lymphatic endothelial-cell expressed ACKR3 is dispensable for postnatal lymphangiogenesis and lymphatic drainage function in mice. PLoS One 2021; 16:e0249068. [PMID: 33857173 PMCID: PMC8049313 DOI: 10.1371/journal.pone.0249068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Atypical chemokine receptor ACKR3 (formerly CXCR7) is a scavenging receptor that has recently been implicated in murine lymphatic development. Specifically, ACKR3-deficiency was shown to result in lymphatic hyperplasia and lymphedema, in addition to cardiac hyperplasia and cardiac valve defects leading to embryonic lethality. The lymphatic phenotype was attributed to a lymphatic endothelial cell (LEC)-intrinsic scavenging function of ACKR3 for the vascular peptide hormone adrenomedullin (AM), which is also important during postnatal lymphangiogenesis. In this study, we investigated the expression of ACKR3 in the lymphatic vasculature of adult mice and its function in postnatal lymphatic development and function. We show that ACKR3 is widely expressed in mature lymphatics and that it exerts chemokine-scavenging activity in cultured murine skin-derived LECs. To investigate the role of LEC-expressed ACKR3 in postnatal lymphangiogenesis and function during adulthood, we generated and validated a lymphatic-specific, inducible ACKR3 knockout mouse. Surprisingly, in contrast to the reported involvement of ACKR3 in lymphatic development, our analyses revealed no contribution of LEC-expressed ACKR3 to postnatal lymphangiogenesis, lymphatic morphology and drainage function.
Collapse
Affiliation(s)
- Elena C. Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Lilian Baur
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Marcus Thelen
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Yanagiya M, Dawood RIH, Maishi N, Hida Y, Torii C, Annan DA, Kikuchi H, Yanagawa Matsuda A, Kitamura T, Ohiro Y, Shindoh M, Tanaka S, Kitagawa Y, Hida K. Correlation between endothelial CXCR7 expression and clinicopathological factors in oral squamous cell carcinoma. Pathol Int 2021; 71:383-391. [PMID: 33783897 DOI: 10.1111/pin.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022]
Abstract
Oral squamous cell carcinoma (OSCC) impairs functionality and sensuousness resulting in poor quality of life. Biomarkers can predict disease trajectory and lead to effective treatments. Transcriptomics have identified genes that are upregulated in tumor endothelial cells (TECs) compared with normal endothelial cells (NECs). Among them, chemokine receptor 7 (CXCR7) is highly expressed in TECs of several cancers and involved in angiogenesis of TECs. However, levels of CXCR7 in OSCC blood vessels have not been fully investigated. In this study, we analyzed the correlation between CXCR7 expression in TECs and clinicopathological factors in OSCC. Immunohistochemistry for CXCR7 and CD34 was performed on 59 OSCC tissue specimens resected between 1996 and 2008 at Hokkaido University Hospital. CXCR7 expression in blood vessels was evaluated by the ratio of CXCR7+/CD34+ blood vessels. CXCR7 expression was 42% and 19% in tumor and non-tumor parts, respectively, suggesting that CXCR7 expression is higher in TECs than in NECs. CXCR7 expression in TECs correlated with advanced T-stage and cancer stage. Overall survival and disease-free survival rates were higher in low-expressing CXCR7 patients than in high-expressing. These results suggest that CXCR7 expression in blood vessels may be a useful diagnostic and prognostic marker for OSCC patients.
Collapse
Affiliation(s)
- Misa Yanagiya
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Randa I H Dawood
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular Thoracic Surgery, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Chisaho Torii
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Aya Yanagawa Matsuda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan.,Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Tetsuya Kitamura
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan.,Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Yoichi Ohiro
- Department of Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| |
Collapse
|
37
|
Huang Y, Zhong L, Nie K, Li L, Song S, Liu F, Li P, Cao D, Liu Y. Identification of LINC00665-miR-let-7b-CCNA2 competing endogenous RNA network associated with prognosis of lung adenocarcinoma. Sci Rep 2021; 11:4434. [PMID: 33627711 PMCID: PMC7904782 DOI: 10.1038/s41598-020-80662-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Prognosis of patients with lung cancer remains extremely poor; thus, we sought to unearth novel competing endogenous RNA (ceRNA) networks associated with the prognosis of lung adenocarcinoma (LUAD). Aberrant mRNAs were identified from the intersection of three Gene Expression Omnibus (GEO) datasets. A protein-protein interaction (PPI) network was constructed, and miRNAs and long noncoding RNAs (lncRNAs) upstream of mRNAs were predicted. In the present study, 402 upregulated and 638 downregulated genes in lung cancer tissues were identified. Functional analysis showed significant enrichment of cancer pathways. In these top hub genes, 10 upregulated and 7 downregulated genes had substantial prognostic values in LUAD. Thirty-seven miRNAs were predicted to target 17 key genes, and only five miRNAs exhibited prognostic correlation. Through stepwise reverse prediction and validation from miRNA to lncRNA, four key lncRNAs were identified using expression and survival analysis. Ultimately, the co-expression analysis identified LINC00665-miR-let-7b-CCNA2 as the key ceRNA network associated with the prognosis of LUAD. We successfully constructed a novel ceRNA network wherein each component was significantly associated with the prognosis of LUAD. Hence, we propose that this network may provide key biomarkers or potential therapeutic targets for LUAD prognosis.
Collapse
Affiliation(s)
- Yusheng Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, 510407, China
| | - Limei Zhong
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Kechao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, 510407, China
| | - Lijuan Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Shaohua Song
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, 510407, China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, 510407, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Yufeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, 510407, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| |
Collapse
|
38
|
Zangouei AS, Hamidi AA, Rahimi HR, Saburi E, Mojarrad M, Moghbeli M. Chemokines as the critical factors during bladder cancer progression: an overview. Int Rev Immunol 2021; 40:344-358. [PMID: 33591855 DOI: 10.1080/08830185.2021.1877287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bladder cancer (BCa) is one of the most frequent urogenital malignancies which is mainly observed among men. There are various genetic and environmental risk factors associated with BCa progression. Transurethral endoscopic resection and open ablative surgery are the main treatment options for muscle invasive BCa. BCG therapy is also employed following the endoscopic resection to prevent tumor relapse. The tumor microenvironment is the main interaction site of tumor cells and immune system in which the immune cells are recruited via chemokines and chemokine receptors. In present review we summarized the main chemokines and chemokine receptors which have been associated with histopathological features of BCa patients in the world. This review highlights the chemokines and chemokine receptors as critical markers in early detection and therapeutic purposes among BCa patients and clarifies their molecular functions during BCa progression and metastasis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
O'Bryan SM, Mathis JM. CXCL12 Retargeting of an Oncolytic Adenovirus Vector to the Chemokine CXCR4 and CXCR7 Receptors in Breast Cancer. ACTA ACUST UNITED AC 2021; 12:311-336. [PMID: 34178415 DOI: 10.4236/jct.2021.126029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant progress has been made in developing targeted therapies for breast cancer, advanced breast cancer continues to have high mortality, with poor 5-year survival rates. Thus, current therapies are insufficient in treating advanced stages of breast cancer; new treatments are sorely needed to address the complexity of advanced-stage breast cancer. Oncolytic virotherapy has been explored as a therapeutic approach capable of systemic administration, targeting cancer cells, and sparing normal tissue. In particular, oncolytic adenoviruses have been exploited as viral vectors due to their ease of manipulation, production, and demonstrated clinical safety profile. In this study, we engineered an oncolytic adenovirus to target the chemokine receptors CXCR4 and CXCR7. The overexpression of CXCR4 and CXCR7 is implicated in the initiation, survival, progress, and metastasis of breast cancer. Both receptors bind to the ligand, CXCL12 (SDF-1), which has been identified to play a crucial role in the metastasis of breast cancer cells. This study incorporated a T4 fibritin protein fused to CXCL12 into the tail domain of an adenovirus fiber to retarget the vector to the CXCR4 and CXCR7 chemokine receptors. We showed that the modified virus targets and infects CXCR4- and CXCR7-overexpressing breast cancer cells more efficiently than a wild-type control vector. In addition, the substitution of the wild-type fiber and knob with the modified chimeric fiber did not interfere with oncolytic capability. Overall, the results of this study demonstrate the feasibility of retargeting adenovirus vectors to chemokine receptor-positive tumors.
Collapse
Affiliation(s)
- Samia M O'Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA.,University of North Texas Health Science Center, Graduate School of Biomedical Sciences, Fort Worth, Texas, USA
| |
Collapse
|
40
|
DeNies MS, Smrcka AV, Schnell S, Liu AP. β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling. Commun Biol 2020; 3:789. [PMID: 33339901 PMCID: PMC7749148 DOI: 10.1038/s42003-020-01510-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023] Open
Abstract
It has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that β-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events. DeNies et al. identify a new mechanism of intracellular GPCR signalling. Using CXC chemokine receptor 4 (CXCR4) as a model, they show that upon stimulation with receptor agonists that not only plasma membrane-localized receptors, but also intracellular CXCR4 molecules are post-translationally modified and regulate transcription. This study suggests that a small pool of plasma membrane-localized GPCRs can activate internal receptor-dependent signaling, and that β-arrestin-1 mediates this activation.
Collapse
Affiliation(s)
- Maxwell S DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allen P Liu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Shi Y, Riese DJ, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 2020; 11:574667. [PMID: 33363463 PMCID: PMC7753359 DOI: 10.3389/fphar.2020.574667] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
42
|
Nguyen HT, Reyes-Alcaraz A, Yong HJ, Nguyen LP, Park HK, Inoue A, Lee CS, Seong JY, Hwang JI. CXCR7: a β-arrestin-biased receptor that potentiates cell migration and recruits β-arrestin2 exclusively through Gβγ subunits and GRK2. Cell Biosci 2020; 10:134. [PMID: 33292475 PMCID: PMC7686738 DOI: 10.1186/s13578-020-00497-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Some chemokine receptors referred to as atypical chemokine receptors (ACKRs) are thought to non-signaling decoys because of their inability to activate typical G-protein signaling pathways. CXCR7, also known as ACKR3, binds to only two chemokines, SDF-1α and I-TAC, and recruits β-arrestins. SDF-1α also binds to its own conventional receptor, CXCR4, involving in homeostatic modulation such as development and immune surveillance as well as pathological conditions such as inflammation, ischemia, and cancers. Recently, CXCR7 is suggested as a key therapeutic target together with CXCR4 in such conditions. However, the molecular mechanisms underlying cellular responses and functional relation with CXCR7 and CXCR4 have not been elucidated, despite massive studies. Therefore, we aimed to reveal the molecular networks of CXCR7 and CXCR4 and compare their effects on cell migration. METHODS Base on structural complementation assay using NanoBiT technology, we characterized the distinct mechanisms underlying β-arrestin2 recruitment by both CXCR4 and CXCR7. Crosslinking and immunoprecipitation were conducted to analyze complex formation of the receptors. Gene deletion using CRISPR and reconstitution of the receptors were applied to analysis of ligand-dependent ERK phosphorylation and cell migration. All experiments were performed in triplicate and repeated more than three times. Unpaired Student's t-tests or ANOVA using PRISM5 software were employed for statistical analyses. RESULTS Ligand binding to CXCR7 does not result in activation of typical signaling pathways via Gα subunits but activation of GRK2 via βγ subunits and receptor phosphorylation with subsequent β-arrestin2 recruitment. In contrast, CXCR4 induced Gαi activation and recruited β-arrestin2 through C-terminal phosphorylation by both GRK2 and GRK5. SDF-1α-stimulated ERK phosphorylation was facilitated by CXCR4, but not CXCR7. Heterodimerization of CXCR4 and CXCR7 was not confirmed in this study, while homodimerization of them was verified by crosslinking experiment and NanoBiT assay. Regarding chemotaxis, SDF-1α-stimulated cell migration was mediated by both CXCR4 and CXCR7. CONCLUSION This study demonstrates that SDF-1α-stimulated CXCR7 mediates β-arrestin2 recruitment via different molecular networking from that of CXCR4. CXCR7 may be neither a simple scavenger nor auxiliary receptor but plays an essential role in cell migration through cooperation with CXCR4.
Collapse
Affiliation(s)
- Huong Thi Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | - Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hee-Kyung Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Cheol Soon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
The Signaling Duo CXCL12 and CXCR4: Chemokine Fuel for Breast Cancer Tumorigenesis. Cancers (Basel) 2020; 12:cancers12103071. [PMID: 33096815 PMCID: PMC7590182 DOI: 10.3390/cancers12103071] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Breast cancer remains the most common malignancy in women. In this review, we explore the role of the CXCL12/CXCR4 pathway in breast cancer. We show that the CXCL12/CXCR4 cascade is involved in nearly every aspect of breast cancer tumorigenesis including proliferation, cell motility and distant metastasis. Moreover, we summarize current knowledge about the CXCL12/CXCR4-targeted therapies. Due to the critical roles of this pathway in breast cancer and other malignancies, we believe that audiences in different fields will find this overview helpful. Abstract The CXCL12/CXCR4 signaling pathway has emerged in the recent years as a key player in breast cancer tumorigenesis. This pathway controls many aspects of breast cancer development including cancer cell proliferation, motility and metastasis to all target organs. Moreover, the CXCL12/CXCR4 cascade affects both immune and stromal cells, creating tumor-supporting microenvironment. In this review, we examine state-of-the-art knowledge about detrimental roles of the CXCL12/CXCR4 signaling, discuss its therapeutic potential and suggest further research directions beneficial both for basic research and personalized medicine in breast cancer.
Collapse
|
44
|
Bordenave J, Thuillet R, Tu L, Phan C, Cumont A, Marsol C, Huertas A, Savale L, Hibert M, Galzi JL, Bonnet D, Humbert M, Frossard N, Guignabert C. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovasc Res 2020; 116:686-697. [PMID: 31173066 DOI: 10.1093/cvr/cvz153] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023] Open
Abstract
AIMS The progressive accumulation of cells in pulmonary vascular walls is a key pathological feature of pulmonary arterial hypertension (PAH) that results in narrowing of the vessel lumen, but treatments targeting this mechanism are lacking. The C-X-C motif chemokine 12 (CXCL12) appears to be crucial in these processes. We investigated the activity of two CXCL12 neutraligands on experimental pulmonary hypertension (PH), using two complementary animal models. METHODS AND RESULTS Male Wistar rats were injected with monocrotaline (MCT) or were subjected to SU5416 followed by 3-week hypoxia to induce severe PH. After PH establishment, assessed by pulsed-wave Doppler echocardiography, MCT-injected or SU5416 plus chronic hypoxia (SuHx) rats were randomized to receive CXCL12 neutraligands chalcone 4 or LIT-927 (100 mg/kg/day), the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100 (5 mg/kg/day), or vehicle, for 2 or 3 weeks, respectively. At the end of these treatment periods, echocardiographic and haemodynamic measurements were performed and tissue samples were collected for protein expression and histological analysis. Daily treatment of MCT-injected or SuHx rats with established PH with chalcone 4 or LIT-927 partially reversed established PH, reducing total pulmonary vascular resistance, and remodelling of pulmonary arterioles. Consistent with these observations, we found that neutralization of CXCL12 attenuates right ventricular hypertrophy, pulmonary vascular remodelling, and decreases pulmonary artery smooth muscle cell (PA-SMC) proliferation in lungs of MCT-injected rats and SuHx rats. Importantly, CXCL12 neutralization with either chalcone 4 or LIT-927 inhibited the migration of PA-SMCs and pericytes in vitro with a better efficacy than AMD3100. Finally, we found that CXCL12 neutralization decreases vascular pericyte coverage and macrophage infiltration in lungs of both MCT-injected and SuHx rats. CONCLUSION We report here a greater beneficial effect of CXCL12 neutralization vs. the conventional CXCR4 blockade with AMD3100 in the MCT and SuHx rat models of severe PH, supporting a role for CXCL12 in the progression of vascular complications in PH and opening to new therapeutic options.
Collapse
MESH Headings
- Animals
- Benzylamines
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chalcones/pharmacology
- Chemokine CXCL2/antagonists & inhibitors
- Chemokine CXCL2/metabolism
- Cyclams
- Disease Models, Animal
- Heterocyclic Compounds/pharmacology
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Pyrimidinones/pharmacology
- Rats, Wistar
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vascular Resistance/drug effects
Collapse
Affiliation(s)
- Jennifer Bordenave
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Carole Phan
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Amélie Cumont
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Claire Marsol
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Jean-Luc Galzi
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
- Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242 CNRS/Université de Strasbourg, 67400 Illkirch, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
45
|
Zhang J, Xiao C, Feng Z, Gong Y, Sun B, Li Z, Lu Y, Fei X, Wu W, Sun X, Teng L. SOX4 promotes the growth and metastasis of breast cancer. Cancer Cell Int 2020; 20:468. [PMID: 33005101 PMCID: PMC7523060 DOI: 10.1186/s12935-020-01568-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Increasing evidence has shown that the transcription factor SOX4 is closely associated with the development and progression of many malignant tumors. However, the effect of SOX4 on breast cancer is unclear. In this study, we purposed to investigate the role of SOX4 in the growth and metastasis in breast cancer and the underlying mechanism. Moreover, the effect of SOX4 on cancer cell resistance to chemotherapeutic agents was also evaluated in vitro and in vivo. Methods We used lentivirus technique to ectopically express SOX4 in MDA-MB-231 and SUM149 cells or knockdown SOX4 in BT474 cells, and examined the effect of these changes on various cellular functions. MTT assay was used to determine the cell viability as well as resistance to chemotherapeutic agents. The regulation of SOX4 on epithelial-mesenchymal transition (EMT)-related genes was analyzed using qRT-PCR. The binding of SOX4 to the CXCR7 gene was demonstrated using chromatin immunoprecipitation assay and dual-luciferase reporter activity assay. The effect of SOX4/CXCR7 axis on metastasis was examined using Transwell migration and Matrigel invasion assays. The expression of SOX4/CXCR7 in primary tumors and metastatic foci in lymph nodes was assessed using immunohistochemistry. Cellular morphology was investigated under phase contrast microscope and transmission electron microscopy. Moreover, the effect of SOX4 on tumor growth, metastasis, and resistance to chemotherapy was also studied in vivo by using bioluminescent imaging. Results SOX4 increased breast cancer cell viability, migration, and invasion in vitro and enhanced tumor growth and metastasis in vivo. It regulated EMT-related genes and bound to CXCR7 promoter to upregulate CXCR7 transcription. Both SOX4 and CXCR7 were highly expressed in human primary tumors and metastatic foci in lymph nodes. Treatment of breast cancer cells with the CXCR7 inhibitor CCX771 reversed the SOX4 effect on cell migration and invasion. Ectopic expression of SOX4 increased the susceptibility of cells to paclitaxel. Conclusions SOX4 plays an important role in the growth and metastasis of breast cancer. SOX4/CXCR7 may serve as potential therapeutic targets for the treatment. Paclitaxel may be a good therapeutic option if the expression level of SOX4 is high.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China.,Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Chunhua Xiao
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA.,First Department of Breast Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, 1 Huan-Hu Xi Road, Ti-Yuan Bei, He Xi, Tianjin, 300060 People's Republic of China
| | - Zhenbo Feng
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA.,Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Yun Gong
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Baohua Sun
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| | - Xiaojie Fei
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| | - Weizhu Wu
- Department of Breast and Thyroid Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315000 People's Republic of China
| | - Xiaoping Sun
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003 People's Republic of China
| |
Collapse
|
46
|
Bathula NV, Bommadevara H, Hayes JM. Nanobodies: The Future of Antibody-Based Immune Therapeutics. Cancer Biother Radiopharm 2020; 36:109-122. [PMID: 32936001 DOI: 10.1089/cbr.2020.3941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeted therapy is a fast evolving treatment strategy to reduce unwanted damage to healthy tissues, while increasing efficacy and specificity. Driven by state-of-the-art technology, this therapeutic approach is especially true of cancer. Antibodies with their remarkable specificity have revolutionized therapeutic strategies for autoimmune conditions and cancer, particularly blood-borne cancers, but have severe limitations in treating solid tumors. This is mainly due to their large molecular size, low stability, tumor-tissue penetration difficulties, and pharmacokinetic properties. The tumor microenvironment, rich in immune-suppressing molecules is also a major barrier in targeting solid tumors by antibody-based drugs. Nanobodies have recently emerged as an alternative therapeutic agent to overcome some of the drawbacks of traditional antibody treatment. Nanobodies are the VHH domains found on the heavy-chain only antibodies of camelids and are the smallest naturally available antibody fragments with excellent antigen-binding specificity and affinity, equivalent to conventional antibodies but with molecular weights as low as 15 kDa. The compact size, high stability, enhanced hydrophilicity, particularly in framework regions, excellent epitope interactions with protruding CDR3 regions, and improved tissue penetration make nanobodies the next-generation therapeutics (Nano-BioDrugs). In this review, the authors discuss the interesting properties of nanobodies and their advantages over their conventional counterparts and provide insight into how nanobodies are being utilized as agonists and antagonists, bispecific constructs, and drug and enzyme-conjugates to combat the tumor microenvironment and treat disease.
Collapse
Affiliation(s)
- Nuthan V Bathula
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Hemashree Bommadevara
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Sherif MF, Ismail IM, Ata SMS. Expression of CXCR7 in colorectal adenoma and adenocarcinoma: Correlation with clinicopathological parameters. Ann Diagn Pathol 2020; 49:151621. [PMID: 32949893 DOI: 10.1016/j.anndiagpath.2020.151621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Colorectal carcinoma (CRC) is one of the most lethal malignancies, it ranks third in cancer-related morbidity and mortality. Although great progress has been made in early diagnosis and combined treatment of CRC, the prognosis of patients remains poor owing to the high rate of recurrence and distant metastasis. CXCR7 belongs to chemokine receptor family and has been identified as a novel receptor for CXCL12. It plays an important role in development and in progression of cancer to metastatic stage. THE AIM OF STUDY To evaluate the immunohistochemical expression of CXCR7 in colorectal adenoma and carcinoma and to analyze its correlation with clinicopathological factors. This is retrospective study including 58 colonic adenocarcinoma specimens and 18 cases of colonic adenoma. RESULTS CXCR7 showed positive cytoplasmic expression in two out 18 cases of colorectal adenoma (11%) and 42 out of 58 cases of CRC (72.4%) with a significant difference between both (p < 0.001). We found a significant correlation between upregulation of CXCR7 and presence of lymphovascular tumor emboli, presence of lymph node metastasis and advanced TNM stage of the CRC. The association of the CXCR7 with patient age, sex, tumor size, depth of invasion and tumor cell differentiation was found to be non-significant. Regarding colonic adenoma, we found no significant association between CXCR7 expression on one hand and patient age, sex, tumor size, histologic type and degree of dysplasia on the other hand. CONCLUSION CXCR7 in CRC may act as a novel predictive indicator for prognosis and even be a potential molecular target for anticancer therapies.
Collapse
|
48
|
Charan M, Verma AK, Hussain S, Misri S, Mishra S, Majumder S, Ramaswamy B, Ahirwar D, Ganju RK. Molecular and Cellular Factors Associated with Racial Disparity in Breast Cancer. Int J Mol Sci 2020; 21:ijms21165936. [PMID: 32824813 PMCID: PMC7460595 DOI: 10.3390/ijms21165936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated that racial differences can influence breast cancer incidence and survival rate. African American (AA) women are at two to three fold higher risk for breast cancer than other ethnic groups. AA women with aggressive breast cancers show worse prognoses and higher mortality rates relative to Caucasian (CA) women. Over the last few years, effective treatment strategies have reduced mortality from breast cancer. Unfortunately, the breast cancer mortality rate among AA women remains higher compared to their CA counterparts. The focus of this review is to underscore the racial differences and differential regulation/expression of genetic signatures in CA and AA women with breast cancer. Moreover, immune cell infiltration significantly affects the clinical outcome of breast cancer. Here, we have reviewed recent findings on immune cell recruitment in the tumor microenvironment (TME) and documented its association with breast cancer racial disparity. In addition, we have extensively discussed the role of cytokines, chemokines, and other cell signaling molecules among AA and CA breast cancer patients. Furthermore, we have also reviewed the distinct genetic and epigenetic changes in AA and CA patients. Overall, this review article encompasses various molecular and cellular factors associated with breast cancer disparity that affects mortality and clinical outcome.
Collapse
Affiliation(s)
- Manish Charan
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Ajeet K. Verma
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Shahid Hussain
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Swati Misri
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Sanjay Mishra
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Sarmila Majumder
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
| | - Dinesh Ahirwar
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
- Correspondence: (D.A.); (R.K.G.)
| | - Ramesh K. Ganju
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
- Correspondence: (D.A.); (R.K.G.)
| |
Collapse
|
49
|
Huynh C, Dingemanse J, Meyer Zu Schwabedissen HE, Sidharta PN. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol Res 2020; 161:105092. [PMID: 32758634 DOI: 10.1016/j.phrs.2020.105092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The impact of the C-X-C receptor (CXCR) 7 and its close co-player CXCR4 in different physiological and pathophysiological processes has been extensively investigated within the last decades. Following activation by their shared ligand C-X-C ligand (CXCL) 12, both chemokine receptors can induce various routes of cell signaling and/or scavenge CXCL12 from the extracellular environment. This contributes to organ development and maintenance of homeostasis. Alterations of the CXCR4/CXCR7-CXCL12 axis have been detected in diseases such as cancer, central nervous system and cardiac disorders, and autoimmune diseases. These alterations include changes of the expression pattern, distribution, or downstream effects. The progression of the diseases can be regulated in preclinical models by the use of various modulators suggesting that this axis serves as a promising therapeutic target. It is therefore of great interest to investigate CXCR4/CXCR7/CXCL12 modulators in clinical development, with several CXCR4 and CXCL12 modulators such as plerixafor, ulocuplumab, balixafortide, and olaptesed pegol having already reached this stage. An overview is presented of the most important diseases whose outcomes can be positively or negatively regulated by the CXCR4/CXCR7-CXCL12 axis and summarizes preclinical and clinical data of modulators of that axis. Contrary to CXCR4 and CXCL12 modulators, CXCR7 modulators have, thus far, not been extensively studied. Therefore, more (pre)clinical investigations are needed.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | | | - Patricia N Sidharta
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland.
| |
Collapse
|
50
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|