1
|
Li ZY, Wu SN, Lin ZH, Jiang MC, Chen C, Liang RX, Lin WJ, Xue ES. Ultrasound-based radiomics-clinical nomogram for noninvasive prediction of residual cancer burden grading in breast cancer. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:566-574. [PMID: 38538081 DOI: 10.1002/jcu.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To assess the predictive value of an ultrasound-based radiomics-clinical nomogram for grading residual cancer burden (RCB) in breast cancer patients. METHODS This retrospective study of breast cancer patients who underwent neoadjuvant therapy (NAC) and ultrasound scanning between November 2020 and July 2023. First, a radiomics model was established based on ultrasound images. Subsequently, multivariate LR (logistic regression) analysis incorporating both radiomic scores and clinical factors was performed to construct a nomogram. Finally, Receiver operating characteristics (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate and validate the diagnostic accuracy and effectiveness of the nomogram. RESULTS A total of 1122 patients were included in this study. Among them, 427 patients exhibited a favorable response to NAC chemotherapy, while 695 patients demonstrated a poor response to NAC therapy. The radiomics model achieved an AUC value of 0.84 in the training cohort and 0.83 in the validation cohort. The ultrasound-based radiomics-clinical nomogram achieved an AUC value of 0.90 in the training cohort and 0.91 in the validation cohort. CONCLUSIONS Ultrasound-based radiomics-clinical nomogram can accurately predict the effectiveness of NAC therapy by predicting RCB grading in breast cancer patients.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng-Nan Wu
- Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen-Hu Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mei-Chen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cong Chen
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong-Xi Liang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen-Jin Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - En-Sheng Xue
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
2
|
Deng B, Muldoon A, Cormier J, Mercaldo ND, Niehoff E, Moffett N, Saksena MA, Isakoff SJ, Carp SA. Functional hemodynamic imaging markers for the prediction of pathological outcomes in breast cancer patients treated with neoadjuvant chemotherapy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066001. [PMID: 38737790 PMCID: PMC11088438 DOI: 10.1117/1.jbo.29.6.066001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Significance Achieving pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) is a significant predictor of increased likelihood of survival in breast cancer patients. Early prediction of pCR is of high clinical value as it could allow personalized adjustment of treatment regimens in non-responding patients for improved outcomes. Aim We aim to assess the association between hemoglobin-based functional imaging biomarkers derived from diffuse optical tomography (DOT) and the pathological outcome represented by pCR at different timepoints along the course of NACT. Approach Twenty-two breast cancer patients undergoing NACT were enrolled in a multimodal DOT and X-ray digital breast tomosynthesis (DBT) imaging study in which their breasts were imaged at different compression levels. Logistic regressions were used to study the associations between DOT-derived imaging markers evaluated after the first and second cycles of chemotherapy, respectively, with pCR status determined after the conclusion of NACT at the time of surgery. Receiver operating characteristic curve analysis was also used to explore the predictive performance of selected DOT-derived markers. Results Normalized tumor HbT under half compression was significantly lower in the pCR group compared to the non-pCR group after two chemotherapy cycles (p = 0.042 ). In addition, the change in normalized tumor StO 2 upon reducing compression from full to half mammographic force was identified as another potential indicator of pCR at an earlier time point, i.e., after the first chemo cycle (p = 0.038 ). Exploratory predictive assessments showed that AUCs using DOT-derived functional imaging markers as predictors reach as high as 0.75 and 0.71, respectively, after the first and second chemo cycle, compared to AUCs of 0.50 and 0.53 using changes in tumor size measured on DBT and MRI. Conclusions These findings suggest that breast DOT could be used to assist response assessment in women undergoing NACT, a critical but unmet clinical need, and potentially enable personalized adjustments of treatment regimens.
Collapse
Affiliation(s)
- Bin Deng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Ailis Muldoon
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jayne Cormier
- Massachusetts General Hospital, Breast Imaging Division, Department of Radiology, Boston, Massachusetts, United States
| | - Nathaniel D. Mercaldo
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Institute for Technology Assessment, Boston, Massachusetts, United States
| | - Elizabeth Niehoff
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Natalie Moffett
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Mansi A. Saksena
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Breast Imaging Division, Department of Radiology, Boston, Massachusetts, United States
| | - Steven J. Isakoff
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Moslemi A, Osapoetra LO, Dasgupta A, Alberico D, Trudeau M, Gandhi S, Eisen A, Wright F, Look-Hong N, Curpen B, Kolios MC, Czarnota GJ. Apriori prediction of chemotherapy response in locally advanced breast cancer patients using CT imaging and deep learning: transformer versus transfer learning. Front Oncol 2024; 14:1359148. [PMID: 38756659 PMCID: PMC11096486 DOI: 10.3389/fonc.2024.1359148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response to NAC for patients with Locally Advanced Breast Cancer (LABC) before treatment initiation could be beneficial to optimize therapy, ensuring the administration of effective treatments. The objective of the work here was to develop a predictive model to predict tumor response to NAC for LABC using deep learning networks and computed tomography (CT). Materials and methods Several deep learning approaches were investigated including ViT transformer and VGG16, VGG19, ResNet-50, Res-Net-101, Res-Net-152, InceptionV3 and Xception transfer learning networks. These deep learning networks were applied on CT images to assess the response to NAC. Performance was evaluated based on balanced_accuracy, accuracy, sensitivity and specificity classification metrics. A ViT transformer was applied to utilize the attention mechanism in order to increase the weight of important part image which leads to better discrimination between classes. Results Amongst the 117 LABC patients studied, 82 (70%) had clinical-pathological response and 35 (30%) had no response to NAC. The ViT transformer obtained the best performance range (accuracy = 71 ± 3% to accuracy = 77 ± 4%, specificity = 86 ± 6% to specificity = 76 ± 3%, sensitivity = 56 ± 4% to sensitivity = 52 ± 4%, and balanced_accuracy=69 ± 3% to balanced_accuracy=69 ± 3%) depending on the split ratio of train-data and test-data. Xception network obtained the second best results (accuracy = 72 ± 4% to accuracy = 65 ± 4, specificity = 81 ± 6% to specificity = 73 ± 3%, sensitivity = 55 ± 4% to sensitivity = 52 ± 5%, and balanced_accuracy = 66 ± 5% to balanced_accuracy = 60 ± 4%). The worst results were obtained using VGG-16 transfer learning network. Conclusion Deep learning networks in conjunction with CT imaging are able to predict the tumor response to NAC for patients with LABC prior to start. A ViT transformer could obtain the best performance, which demonstrated the importance of attention mechanism.
Collapse
Affiliation(s)
- Amir Moslemi
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Archya Dasgupta
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David Alberico
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maureen Trudeau
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sonal Gandhi
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Eisen
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frances Wright
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nicole Look-Hong
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Zarghami A, Mirmalek SA. Differentiating Primary and Recurrent Lesions in Patients with a History of Breast Cancer: A Comprehensive Review. Galen Med J 2024; 13:1-18. [PMID: 39224544 PMCID: PMC11368482 DOI: 10.31661/gmj.v13i.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/25/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) recurrence remains a concerning issue, requiring accurate identification and differentiation from primary lesions for optimal patient management. This comprehensive review aims to summarize and evaluate the current evidence on methods to distinguish primary breast tumors from recurrent lesions in patients with a history of BC. Also, we provide a comprehensive understanding of the different imaging techniques, including mammography, ultrasound, magnetic resonance imaging, and positron emission tomography, highlighting their diagnostic accuracy, limitations, and potential integration. In addition, the role of various biopsy modalities and molecular markers was explored. Furthermore, the potential role of liquid biopsy, circulating tumor cells, and circulating tumor DNA in differentiating between primary and recurrent BC was emphasized. Finally, it addresses emerging diagnostic modalities, such as radiomic analysis and artificial intelligence, which show promising potential in enhancing diagnostic accuracy. Through comprehensive analysis and review of the available literature, the current study provides an up-to-date understanding of the current state of knowledge, challenges, and future directions in accurately distinguishing between primary and recurrent breast lesions in patients with a history of BC.
Collapse
Affiliation(s)
- Anita Zarghami
- Department of Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Mirmalek
- Department of Surgery, Tehran Medical Sciences, Islamic Azad University, Tehran,
Iran
| |
Collapse
|
5
|
Chen YY, Lai GH, Chen CT, Cheng HC, Tseng SH. Noninvasive hemoglobin quantification across different cohorts using a wearable diffuse reflectance spectroscopy system. BIOMEDICAL OPTICS EXPRESS 2024; 15:1739-1749. [PMID: 38495710 PMCID: PMC10942696 DOI: 10.1364/boe.517645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Quantifying hemoglobin is vital yet invasive through blood draws. We developed a wearable diffuse reflectance spectroscopy device comprising control and sensor boards with photodiodes and light-emitting diodes to noninvasively determine hemoglobin. Neural networks enabled recovery of optical parameters for chromophore fitting to calculate hemoglobin. Testing healthy and elderly subjects revealed strong correlation (r=0.9) between our system and invasive methods after data conversion. Bland-Altman analysis demonstrated tight 95% limits of agreement from -1.98 to 1.98 g/dL between the DRS and invasive hemoglobin concentrations. By spectroscopically isolating hemoglobin absorption, interference from melanin was overcome. Our device has the potential for future integration into wearable technology, enabling hemoglobin level tracking.
Collapse
Affiliation(s)
- Ying-Yu Chen
- Department of Photonics, National Cheng-Kung University, Tainan, Taiwan 701, Taiwan
| | - Guan-Hua Lai
- Department of Photonics, National Cheng-Kung University, Tainan, Taiwan 701, Taiwan
| | - Chia-Te Chen
- Department of Nursing, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Chi Cheng
- Department of Nursing, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Sheng-Hao Tseng
- Department of Photonics, National Cheng-Kung University, Tainan, Taiwan 701, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 807, Taiwan
| |
Collapse
|
6
|
Locke A, Haugen E, Thomas G, Correa H, Dellon ES, Mahadevan-Jansen A, Hiremath G. In Vivo Raman Spectroscopy Reveals Biochemical Composition of the Esophageal Tissue in Pediatric Eosinophilic Esophagitis. Clin Transl Gastroenterol 2024; 15:e00665. [PMID: 38112293 PMCID: PMC10887437 DOI: 10.14309/ctg.0000000000000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION Biochemical alterations in the esophagus of patients with eosinophilic esophagitis (EoE) are poorly understood. We used Raman spectroscopy through a pediatric endoscope to identify key Raman features reflective of the esophageal biochemical composition to differentiate between children with EoE from non-EoE controls and between children with active (aEoE) and inactive EoE (iEoE). METHODS Spectral measurements were obtained using a customized pediatric endoscope-compatible fiber-optic Raman probe in real time during an esophagogastroduodenoscopy. Chemometric analysis was performed to identify key Raman features associated with EoE. Pearson correlation analysis was used to assess relationship between the key Raman features and EoE activity indices. Their diagnostic utility was ascertained using the receiver operator characteristic curve analysis. RESULTS Forty-three children were included in the study (EoE = 32 [74%] and non-EoE control = 11 [26%]; aEoE = 20 [63%] and iEoE = 12 [37%]). Raman intensities assigned to lipids, proteins, and glycogen:protein ratio accurately distinguished children with EoE from those without EoE and aEoE from iEoE. They significantly correlated with EoE activity indices. The Raman peak ratio for lipids had 90.6% sensitivity, 100% specificity, and an area under the curve of 0.95 to differentiate children with EoE from non-EoE controls. The glycogen:protein ratio had 70% sensitivity, 91.7% specificity, and an area under the curve of 0.75 to distinguish children with aEoE from iEoE. DISCUSSION Real-time intraendoscopy Raman spectroscopy is an effective method for identifying spectral markers reflective of the esophageal biochemical composition in children with EoE. This technique may aid in the diagnosis and monitoring of EoE and help to elucidate EoE pathogenesis.
Collapse
Affiliation(s)
- Andrea Locke
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ezekiel Haugen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
| | - Giju Thomas
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
| | - Hernan Correa
- Division of Pediatric Pathology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville Tennessee, USA
| | - Evan S. Dellon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
| | - Girish Hiremath
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Wayne MA, Sie EJ, Ulku AC, Mos P, Ardelean A, Marsili F, Bruschini C, Charbon E. Massively parallel, real-time multispeckle diffuse correlation spectroscopy using a 500 × 500 SPAD camera. BIOMEDICAL OPTICS EXPRESS 2023; 14:703-713. [PMID: 36874503 PMCID: PMC9979680 DOI: 10.1364/boe.473992] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/01/2022] [Accepted: 12/24/2022] [Indexed: 06/02/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a promising noninvasive technique for monitoring cerebral blood flow and measuring cortex functional activation tasks. Taking multiple parallel measurements has been shown to increase sensitivity, but is not easily scalable with discrete optical detectors. Here we show that with a large 500 × 500 SPAD array and an advanced FPGA design, we achieve an SNR gain of almost 500 over single-pixel mDCS performance. The system can also be reconfigured to sacrifice SNR to decrease correlation bin width, with 400 ns resolution being demonstrated over 8000 pixels.
Collapse
Affiliation(s)
- Michael A. Wayne
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Rue de la Maladière 71B, Neuchatel, NE 2000, Switzerland
| | - Edbert J. Sie
- Reality Labs Research, Meta Platforms Inc., Menlo Park, CA 94025, USA
| | - Arin C. Ulku
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Rue de la Maladière 71B, Neuchatel, NE 2000, Switzerland
| | - Paul Mos
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Rue de la Maladière 71B, Neuchatel, NE 2000, Switzerland
| | - Andrei Ardelean
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Rue de la Maladière 71B, Neuchatel, NE 2000, Switzerland
| | - Francesco Marsili
- Reality Labs Research, Meta Platforms Inc., Menlo Park, CA 94025, USA
| | - Claudio Bruschini
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Rue de la Maladière 71B, Neuchatel, NE 2000, Switzerland
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Rue de la Maladière 71B, Neuchatel, NE 2000, Switzerland
| |
Collapse
|
8
|
Philipopoulos GP, Sharareh B, Ganesan G, Tromberg BJ, O’Sullivan TD, Schwarzkopf R. Characterizing tourniquet induced hemodynamics during total knee arthroplasty using diffuse optical spectroscopy. J Orthop Res 2023; 41:104-114. [PMID: 35289956 PMCID: PMC9475493 DOI: 10.1002/jor.25327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Tourniquet use creates a reduced blood surgical field during total knee arthroplasty (TKA), however, prolonged ischemia may cause postoperative tourniquet complications. To understand the effects of tourniquet-induced ischemia, we performed a prospective observational study using quantitative broadband diffuse optical spectroscopy (DOS) to measure tissue hemodynamics and water and lipid concentrations before, during, and after tourniquet placement in subjects undergoing TKA. Data was collected for 6 months and, of the total subjects analyzed (n = 24), 22 were primary TKAs and 2 were revision TKA cases. We specifically investigated tourniquet-induced hemodynamics based upon subject-specific tissue composition and observed a significant relationship between the linear rate of deoxygenation after tourniquet inflation and water/lipid ratio (W/L, p < 0.0001) and baseline somatic tissue oxygen saturation, StO2 (p = 0.05). Subjects with a low W/L ratio exhibited a lower tissue metabolic rate of oxygen consumption, (tMRO2 ) (p = 0.008). Changes in deoxyhemoglobin [HbR] (p = 0.009) and lipid fraction (p = 0.001) were significantly different between high and low W/L subject groups during deoxygenation. No significant differences were observed for hemodynamics during reperfusion and total tourniquet time was neither significantly related to the hemodynamic hyperemic response (p = 0.73) nor the time to max StO2 after tourniquet release (p = 0.57). In conclusion, we demonstrate that DOS is capable of real-time monitoring of tissue hemodynamics distal to the tourniquet during TKA, and that tissue composition should be considered. DOS may help surgeons stratify hemodynamics based upon tissue composition and eventually aid the preoperative risk assessment of vascular occlusions from tourniquet use during TKA.
Collapse
Affiliation(s)
- George P. Philipopoulos
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, CA 92617, USA
| | - Behnam Sharareh
- University of Washington, Department of Orthopaedics and Sport Medicine, Seattle, WA, USA
| | - Goutham Ganesan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, CA 92617, USA
- University of California Irvine, Institute for Clinical and Translation Science, 843 Hewitt Hall, Irvine, USA, 92617
| | - Bruce J. Tromberg
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, CA 92617, USA
| | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, 275 Fitzpatrick Hall, Notre Dame, IN 46556 USA
| | - Ran Schwarzkopf
- NYU Langone Orthopaedic Hospital, Hospital for Joint Diseases, 301 East 17 Street, New York, NY 10003 USA
| |
Collapse
|
9
|
Gwark S, Kim HJ, Kim J, Chung IY, Kim HJ, Ko BS, Lee JW, Son BH, Ahn SH, Lee SB. Survival After Breast-Conserving Surgery Compared with that After Mastectomy in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Ann Surg Oncol 2022; 30:2845-2853. [PMID: 36577865 DOI: 10.1245/s10434-022-12993-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Breast-conserving surgery (BCS) plus radiotherapy (BCS + RT) has been shown to improve survival compared with mastectomy in patients with early breast cancer; however, whether this superiority is maintained in breast cancer patients receiving neoadjuvant chemotherapy (NCT) is unclear. We evaluated and compared the survival outcomes after BCS + RT and mastectomy in Korean women with breast cancer treated with NCT. METHODS We evaluated 1641 patients who received NCT before surgery (BCS or mastectomy). We performed propensity score matching to minimize potential bias due to factors other than the surgical method and compared the 5-year, disease-free survival (DFS), distant metastasis-free survival (DMFS), and overall survival (OS) rates before and after exact matching. RESULTS Among the 1641 patients, 839 (51.1%) underwent BCS + RT and 802 (48.9%) underwent mastectomy. Patients who underwent mastectomy had larger tumors and more frequently had positive nodes. For BCS+RT and mastectomy, the unadjusted 5-year DFS, 5-year DMFS, and 5-year OS rates were 87.0% and 73.1%, 89.5% and 77.0%, and 91.8% and 81.0%, respectively (all p < 0.05 = 0.000). After PSM, 5-year DFS, 5-year DMFS, and 5-year OS rates for BCS + RT and mastectomy were 87.6% and 69.1%, 89.7% and 76.0%, and 89.1% and 75.7%, respectively (all p < 0.05). In both unadjusted and adjusted analyses accounting for various confounding factors, BCS + RT was significantly associated with improved DFS (p < 0.05), DMFS (p < 0.05), and OS (p < 0.05) rates compared with mastectomy. CONCLUSIONS BCS + RT does not impair DFS and OS in patients treated with NCT. Tumor biology and treatment response are significant prognostic indicators. Our results suggest that BCS + RT may be preferred in most breast cancer patients when both BCS and mastectomy are suitable.
Collapse
Affiliation(s)
- Sungchan Gwark
- Department of Surgery, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Hwa Jung Kim
- Department of Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jisun Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Il Yong Chung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jeong Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Seok Ko
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung Ho Son
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sei Hyun Ahn
- Department of Surgery, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Sae Byul Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
In Vivo Validation of Diffuse Optical Imaging with a Dual-Direction Measuring Module of Parallel-Plate Architecture for Breast Tumor Detection. Biomedicines 2022; 10:biomedicines10051040. [PMID: 35625777 PMCID: PMC9138400 DOI: 10.3390/biomedicines10051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
We demonstrate a working prototype of an optical breast imaging system involving parallel-plate architecture and a dual-direction scanning scheme designed in combination with a mammography machine; this system was validated in a pilot study to demonstrate its application in imaging healthy and malignant breasts in a clinical environment. The components and modules of the self-developed imaging system are demonstrated and explained, including its measuring architecture, scanning mechanism, and system calibration, and the reconstruction algorithm is presented. Additionally, the evaluation of feature indices that succinctly demonstrate the corresponding transmission measurements may provide insight into the existence of malignant tissue. Moreover, five cases are presented including one subject without disease (a control measure), one benign case, one suspected case, one invasive ductal carcinoma, and one positive case without follow-up treatment. A region-of-interest analysis demonstrated significant differences in absorption between healthy and malignant breasts, revealing the average contrast between the abnormalities and background tissue to exceed 1.4. Except for ringing artifacts, the average scattering property of the structure densities was 0.65–0.85 mm−1.
Collapse
|
11
|
Portable, handheld, and affordable blood perfusion imager for screening of subsurface cancer in resource-limited settings. Proc Natl Acad Sci U S A 2022; 119:2026201119. [PMID: 34983869 PMCID: PMC8764675 DOI: 10.1073/pnas.2026201119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Existing procedures of screening subsurface cancers are either prohibitively resource-intensive and expensive or are unable to provide direct quantitative estimates of the relevant physiological parameters for accurate classification accommodating interpatient variabilities and overlapping clinical manifestations. Here, we introduce a handheld and inexpensive blood perfusion imager that provides a noninvasive in situ screening approach for distinguishing precancer, cancer, and normal scenarios by precise quantitative estimation of the localized blood circulation in the tissue over an unrestricted region of interest without any unwarranted noise in the data, augmented by machine learning–based classification. Clinical trials in minimally resourced settings have established the efficacy of the method in differentiating cancerous and precancerous stages of suspected oral abnormalities, as verified by gold-standard biopsy reports. Precise information on localized variations in blood circulation holds the key for noninvasive diagnostics and therapeutic assessment of various forms of cancer. While thermal imaging by itself may provide significant insights on the combined implications of the relevant physiological parameters, viz. local blood perfusion and metabolic balance due to active tumors as well as the ambient conditions, knowledge of the tissue surface temperature alone may be somewhat inadequate in distinguishing between some ambiguous manifestations of precancer and cancerous lesions, resulting in compromise of the selectivity in detection. This, along with the lack of availability of a user-friendly and inexpensive portable device for thermal-image acquisition, blood perfusion mapping, and data integration acts as a deterrent against the emergence of an inexpensive, contact-free, and accurate in situ screening and diagnostic approach for cancer detection and management. Circumventing these constraints, here we report a portable noninvasive blood perfusion imager augmented with machine learning–based quantitative analytics for screening precancerous and cancerous traits in oral lesions, by probing the localized alterations in microcirculation. With a proven overall sensitivity >96.66% and specificity of 100% as compared to gold-standard biopsy-based tests, the method successfully classified oral cancer and precancer in a resource-limited clinical setting in a double-blinded patient trial and exhibited favorable predictive capabilities considering other complementary modes of medical image analysis as well. The method holds further potential to achieve contrast-free, accurate, and low-cost diagnosis of abnormal microvascular physiology and other clinically vulnerable conditions, when interpreted along with complementary clinically evidenced decision-making perspectives.
Collapse
|
12
|
Gwark S, Ahn HS, Yeom J, Yu J, Oh Y, Jeong JH, Ahn JH, Jung KH, Kim SB, Lee HJ, Gong G, Lee SB, Chung IY, Kim HJ, Ko BS, Lee JW, Son BH, Ahn SH, Kim K, Kim J. Plasma Proteome Signature to Predict the Outcome of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Cancers (Basel) 2021; 13:6267. [PMID: 34944885 PMCID: PMC8699627 DOI: 10.3390/cancers13246267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022] Open
Abstract
The plasma proteome of 51 non-metastatic breast cancer patients receiving neoadjuvant chemotherapy (NCT) was prospectively analyzed by high-resolution mass spectrometry coupled with nano-flow liquid chromatography using blood drawn at the time of diagnosis. Plasma proteins were identified as potential biomarkers, and their correlation with clinicopathological variables and survival outcomes was analyzed. Of 51 patients, 20 (39.2%) were HR+/HER2-, five (9.8%) were HR+/HER2+, five (9.8%) were HER2+, and 21 (41.2%) were triple-negative subtype. During a median follow-up of 52.0 months, there were 15 relapses (29.4%) and eight deaths (15.7%). Four potential biomarkers were identified among differentially expressed proteins: APOC3 had higher plasma concentrations in the pathological complete response (pCR) group, whereas MBL2, ENG, and P4HB were higher in the non-pCR group. Proteins statistically significantly associated with survival and capable of differentiating low- and high-risk groups were MBL2 and P4HB for disease-free survival, P4HB for overall survival, and MBL2 for distant metastasis-free survival (DMFS). In the multivariate analysis, only MBL2 was a consistent risk factor for DMFS (HR: 9.65, 95% CI 2.10-44.31). The results demonstrate that the proteomes from non-invasive sampling correlate with pCR and survival in breast cancer patients receiving NCT. Further investigation may clarify the role of these proteins in predicting prognosis and thus their therapeutic potential for the prevention of recurrence.
Collapse
Affiliation(s)
- Sungchan Gwark
- Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Korea;
| | - Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
| | - Yumi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.J.L.); (G.G.)
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.J.L.); (G.G.)
| | - Sae Byul Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Il Yong Chung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Hee Jeong Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Beom Seok Ko
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Byung Ho Son
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Sei Hyun Ahn
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
| | - Jisun Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| |
Collapse
|
13
|
Lam JH, Tu KJ, Kim S. Accurately calibrated frequency domain diffuse optical spectroscopy compared against chemical analysis of porcine adipose tissue. JOURNAL OF BIOPHOTONICS 2021; 14:e202100169. [PMID: 34498790 DOI: 10.1002/jbio.202100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Frequency domain diffuse optical spectroscopy (fdDOS) is a noninvasive technique to estimate tissue composition and hemodynamics. While fdDOS has been established as a valuable modality for clinical research, comparison of fdDOS with direct chemical analysis (CA) methods has yet to be reported. To compare the two approaches, we propose a procedure to confirm accurate calibration by use of liquid emulsion and solid silicone phantoms. Tissue fat (FAT) and water (H2 O) content of two ex vivo porcine tissue samples were optically measured by fdDOS and compared to CA values. We show an average H2 O error (fdDOS minus CA) and SD of 1.9 ± 0.2% and -0.9 ± 0.2% for the two samples. For FAT, we report a mean error of -9.3 ± 1.3% and 0.8 ± 1.3%. We also measured various body sites of a healthy human subject using fdDOS with results suggesting that accurate calibration may improve device sensitivity.
Collapse
Affiliation(s)
- Jesse H Lam
- Beckman Laser Institute Korea, Dankook University, Cheonan-si, South Korea
- Beckman Laser Institute, University of California, Irvine, California, USA
| | - Kelsey J Tu
- Department of Biomedical Engineering, Dankook University, Cheonan-si, South Korea
| | - Sehwan Kim
- Beckman Laser Institute Korea, Dankook University, Cheonan-si, South Korea
- MEDiThings, Dankook University, Cheonan-si, South Korea
| |
Collapse
|
14
|
Pleskow DK, Zhang L, Turzhitsky V, Coughlan MF, Khan U, Zhang X, Sheil CJ, Glyavina M, Chen L, Shinagare S, Zakharov YN, Vitkin E, Itzkan I, Perelman LT, Qiu L. Coherent confocal light scattering spectroscopic microscopy evaluates cancer progression and aggressiveness in live cells and tissue. ACS PHOTONICS 2021; 8:2050-2059. [PMID: 34485615 PMCID: PMC8411902 DOI: 10.1021/acsphotonics.1c00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The observation of biological structures in live cells beyond the diffraction limit with super-resolution fluorescence microscopy is limited by the ability of fluorescence probes to permeate live cells and the effect of these probes, which are often toxic, on cellular behavior. Here we present a coherent confocal light scattering and absorption spectroscopic microscopy that for the first time enables the use of large numerical aperture optics to characterize structures in live cells down to 10 nm spatial scales, well beyond the diffraction limit. Not only does this new capability allow high resolution microscopy with light scattering contrast, but it can also be used with almost any light scattering spectroscopic application which employs lenses. We demonstrate that the coherent light scattering contrast based technique allows continuous temporal tracking of the transition from non-cancerous to an early cancerous state in live cells, without exogenous markers. We also use the technique to sense differences in the aggressiveness of cancer in live cells and for label free identification of different grades of cancer in resected tumor tissues.
Collapse
Affiliation(s)
- Douglas K. Pleskow
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
- Center for Advanced Endoscopy, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Lei Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Vladimir Turzhitsky
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Mark F. Coughlan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Conor J. Sheil
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Maria Glyavina
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Liming Chen
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Shweta Shinagare
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard University
| | - Yuri N. Zakharov
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Edward Vitkin
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Irving Itzkan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Lev T. Perelman
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
- Biological and Biomedical Sciences Program, Harvard University
| | - Le Qiu
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| |
Collapse
|
15
|
Moghadas-Dastjerdi H, Rahman SETH, Sannachi L, Wright FC, Gandhi S, Trudeau ME, Sadeghi-Naini A, Czarnota GJ. Prediction of chemotherapy response in breast cancer patients at pre-treatment using second derivative texture of CT images and machine learning. Transl Oncol 2021; 14:101183. [PMID: 34293685 PMCID: PMC8319580 DOI: 10.1016/j.tranon.2021.101183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Textural and second derivative textural features of CT images can be used in conjunction with machine learning models to predict breast cancer response to chemotherapy prior to the start of treatment. The proposed predictive model separates the patients at pre-treatment into two cohorts (responders/non-responders) with significantly different survival. The proposed methodology is a step forward towards the precision oncology paradigm for breast cancer patients.
Although neoadjuvant chemotherapy (NAC) is a crucial component of treatment for locally advanced breast cancer (LABC), only about 70% of patients respond to it. Effective adjustment of NAC for individual patients can significantly improve survival rates of those resistant to standard regimens. Thus, the early prediction of NAC outcome is of great importance in facilitating a personalized paradigm for breast cancer therapeutics. In this study, quantitative computed tomography (qCT) parametric imaging in conjunction with machine learning techniques were investigated to predict LABC tumor response to NAC. Textural and second derivative textural (SDT) features of CT images of 72 patients diagnosed with LABC were analysed before the initiation of NAC to quantify intra-tumor heterogeneity. These quantitative features were processed through a correlation-based feature reduction followed by a sequential feature selection with a bootstrap 0.632+ area under the receiver operating characteristic (ROC) curve (AUC0.632+) criterion. The best feature subset consisted of a combination of one textural and three SDT features. Using these features, an AdaBoost decision tree could predict the patient response with a cross-validated AUC0.632+ accuracy, sensitivity and specificity of 0.88, 85%, 88% and 75%, respectively. This study demonstrates, for the first time, that a combination of textural and SDT features of CT images can be used to predict breast cancer response NAC prior to the start of treatment which can potentially facilitate early therapy adjustments.
Collapse
Affiliation(s)
- Hadi Moghadas-Dastjerdi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Shan-E-Tallat Hira Rahman
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Lakshmanan Sannachi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Frances C Wright
- Surgical Oncology, Odette Cancer Center, Sunnybrook Health Sciences Center, and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Odette Cancer Center, Sunnybrook Health Sciences Center, and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Maureen E Trudeau
- Division of Medical Oncology, Odette Cancer Center, Sunnybrook Health Sciences Center, and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ali Sadeghi-Naini
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada.
| | - Gregory J Czarnota
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Spink SS, Teng F, Pera V, Peterson HM, Cormier T, Sauer-Budge A, Chargin D, Brookfield S, Eggebrecht AT, Ko N, Roblyer D. High optode-density wearable diffuse optical probe for monitoring paced breathing hemodynamics in breast tissue. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200339SSR. [PMID: 34080400 PMCID: PMC8170390 DOI: 10.1117/1.jbo.26.6.062708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Diffuse optical imaging (DOI) provides in vivo quantification of tissue chromophores such as oxy- and deoxyhemoglobin (HbO2 and HHb, respectively). These parameters have been shown to be useful for predicting neoadjuvant treatment response in breast cancer patients. However, most DOI devices designed for the breast are nonportable, making frequent longitudinal monitoring during treatment a challenge. Furthermore, hemodynamics related to the respiratory cycle are currently unexplored in the breast and may have prognostic value. AIM To design, fabricate, and validate a high optode-density wearable continuous wave diffuse optical probe for the monitoring of breathing hemodynamics in breast tissue. APPROACH The probe has a rigid-flex design with 16 dual-wavelength sources and 16 detectors. Performance was characterized on tissue-simulating phantoms, and validation was performed through flow phantom and cuff occlusion measurements. The breasts of N = 4 healthy volunteers were measured while performing a breathing protocol. RESULTS The probe has 512 unique source-detector (S-D) pairs that span S-D separations of 10 to 54 mm. It exhibited good performance characteristics: μa drift of 0.34%/h, μa precision of 0.063%, and mean SNR ≥ 24 dB up to 41 mm S-D separation. Absorption contrast was detected in flow phantoms at depths exceeding 28 mm. A cuff occlusion measurement confirmed the ability of the probe to track expected hemodynamics in vivo. Breast measurements on healthy volunteers during paced breathing revealed median signal-to-motion artifact ratios ranging from 8.1 to 8.7 dB. Median ΔHbO2 and ΔHHb amplitudes ranged from 0.39 to 0.67 μM and 0.08 to 0.12 μM, respectively. Median oxygen saturations at the respiratory rate ranged from 82% to 87%. CONCLUSIONS A wearable diffuse optical probe has been designed and fabricated for the measurement of breast tissue hemodynamics. This device is capable of quantifying breathing-related hemodynamics in healthy breast tissue.
Collapse
Affiliation(s)
- Samuel S. Spink
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Fei Teng
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Vivian Pera
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Hannah M. Peterson
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tim Cormier
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Alexis Sauer-Budge
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - David Chargin
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Sam Brookfield
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Adam T. Eggebrecht
- Washington University, Department of Radiology, St. Louis, Missouri, United States
| | - Naomi Ko
- Boston Medical Center, Section of Hematology and Oncology, Women’s Health Unit, Boston, Massachusetts, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Applegate MB, Amelard R, Gomez CA, Roblyer D. Real-Time Handheld Probe Tracking and Image Formation Using Digital Frequency-Domain Diffuse Optical Spectroscopy. IEEE Trans Biomed Eng 2021; 68:3399-3409. [PMID: 33835913 DOI: 10.1109/tbme.2021.3072036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Frequency-domain diffuse optical spectroscopic imaging (FD-DOS) is a non-invasive method for measuring absolute concentrations of tissue chromophores such as oxy- and deoxy-hemoglobin in vivo. The utility of FD-DOS for clinical applications such as monitoring chemotherapy response in breast cancer has previously been demonstrated, but challenges for further clinical translation, such as slow acquisition speed and lack of user feedback, remain. Here, we propose a new high speed FD-DOS instrument that allows users to freely acquire measurements over the tissue surface, and is capable of rapidly imaging large volumes of tissue. METHODS We utilize 3D monocular probe tracking combined with custom digital FD-DOS hardware and a high-speed data processing pipeline for the instrument. Results are displayed during scanning over the surface of the sample using a probabilistic Monte Carlo light propagation model. RESULTS We show this instrument can measure absorption and scattering coefficients with an error of 7% and 1% respectively, with 0.7 mm positional accuracy. We demonstrate the equivalence of our visualization methodology with a standard interpolation approach, and demonstrate two proof-of-concept in vivo results showing superficial vasculature in the human forearm and surface contrast in a healthy human breast. CONCLUSION Our new FD-DOS system is able to compute chromophore concentrations in real-time (1.5 Hz) in vivo. SIGNIFICANCE This method has the potential to improve the quality of FD-DOS image scans while reducing measurement times for a variety of clinical applications.
Collapse
|
18
|
Altoe ML, Kalinsky K, Marone A, Kim HK, Guo H, Hibshoosh H, Tejada M, Crew KD, Accordino MK, Trivedi MS, Hershman DL, Hielscher AH. Changes in Diffuse Optical Tomography Images During Early Stages of Neoadjuvant Chemotherapy Correlate with Tumor Response in Different Breast Cancer Subtypes. Clin Cancer Res 2021; 27:1949-1957. [PMID: 33451976 PMCID: PMC8128376 DOI: 10.1158/1078-0432.ccr-20-1108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE This study's primary objective was to evaluate the changes in optically derived parameters acquired with a diffuse optical tomography breast imaging system (DOTBIS) in the tumor volume of patients with breast carcinoma receiving neoadjuvant chemotherapy (NAC). EXPERIMENTAL DESIGN In this analysis of 105 patients with stage II-III breast cancer, normalized mean values of total hemoglobin ([Formula: see text]), oxyhemoglobin ([Formula: see text]), deoxy-hemoglobin concentration ([Formula: see text]), water, and oxygen saturation ([Formula: see text]) percentages were collected at different timepoints during NAC and compared with baseline measurements. This report compared changes in these optical biomarkers measured in patients who did not achieve a pathologic complete response (non-pCR) and those with a pCR. Differences regarding molecular subtypes were included for hormone receptor-positive and HER2-negative, HER2-positive, and triple-negative breast cancer. RESULTS At baseline, [Formula: see text] was higher for pCR tumors (3.97 ± 2.29) compared with non-pCR tumors (3.00 ± 1.72; P = 0.031). At the earliest imaging point after starting therapy, the mean change of [Formula: see text] compared with baseline ([Formula: see text]) was statistically significantly higher in non-pCR (1.23 ± 0.67) than in those with a pCR (0.87 ± 0.61; P < 0.0005), and significantly correlated to residual cancer burden classification (r = 0.448; P < 0.0005). [Formula: see text] combined with HER2 status was proposed as a two-predictor logistic model, with AUC = 0.891; P < 0.0005; and 95% confidence interval, 0.812-0.969. CONCLUSIONS This study demonstrates that DOTBIS measured features change over time according to tumor pCR status and may predict early in the NAC treatment course whether a patient is responding to NAC.
Collapse
Affiliation(s)
- Mirella L Altoe
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York.
| | - Kevin Kalinsky
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Alessandro Marone
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York
| | - Hyun K Kim
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York
| | - Hua Guo
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Mariella Tejada
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Katherine D Crew
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Melissa K Accordino
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Meghna S Trivedi
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Dawn L Hershman
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Andreas H Hielscher
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York.
| |
Collapse
|
19
|
Tabassum S, Tank A, Wang F, Karrobi K, Vergato C, Bigio IJ, Waxman DJ, Roblyer D. Optical scattering as an early marker of apoptosis during chemotherapy and antiangiogenic therapy in murine models of prostate and breast cancer. Neoplasia 2021; 23:294-303. [PMID: 33578267 PMCID: PMC7881266 DOI: 10.1016/j.neo.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Monitoring of the in vivo tumor state to track therapeutic response in real time may help to evaluate new drug candidates, maximize treatment efficacy, and reduce the burden of overtreatment. Current preclinical tumor imaging methods have largely focused on anatomic imaging (e.g., MRI, ultrasound), functional imaging (e.g., FDG-PET), and molecular imaging with exogenous contrast agents (e.g., fluorescence optical tomography). Here we utalize spatial frequency domain imaging (SFDI), a noninvasive, label-free optical technique, for the wide-field quantification of changes in tissue optical scattering in preclinical tumor models during treatment with chemotherapy and antiangiogenic agents. Optical scattering is particularly sensitive to tissue micro-architectural changes, including those that occur during apoptosis, an early indicator of response to cytotoxicity induced by chemotherapy, thermotherapy, cryotherapy, or radiation therapy. We utilized SFDI to monitor responses of PC3/2G7 prostate tumors and E0771 mammary tumors to treatment with cyclophosphamide or the antiangiogenic agent DC101 for up to 49 days. The SFDI-derived scattering amplitude was highly correlated with cleaved caspase-3, a marker of apoptosis (ρp = 0.75), while the exponent of the scattering wavelength-dependence correlated with the cell proliferation marker PCNA (ρp = 0.69). These optical parameters outperformed tumor volume and several functional parameters (e.g., oxygen saturation and hemoglobin concentration) as an early predictive biomarker of treatment response. Quantitative diffuse optical scattering is thus a promising new early marker of treatment response, which does not require radiation or exogenous contrast agents.
Collapse
Affiliation(s)
- Syeda Tabassum
- Electrical & Computer Engineering, Boston University, Boston, MA, USA
| | - Anup Tank
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Fay Wang
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kavon Karrobi
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cameron Vergato
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Irving J Bigio
- Electrical & Computer Engineering, Boston University, Boston, MA, USA; Biomedical Engineering, Boston University, Boston, MA, USA
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Electrical & Computer Engineering, Boston University, Boston, MA, USA; Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
20
|
Effects of neoadjuvant chemotherapy on the contralateral non-tumor-bearing breast assessed by diffuse optical tomography. Breast Cancer Res 2021; 23:16. [PMID: 33517909 PMCID: PMC7849076 DOI: 10.1186/s13058-021-01396-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study is to evaluate whether the changes in optically derived parameters acquired with a diffuse optical tomography breast imager system (DOTBIS) in the contralateral non-tumor-bearing breast in patients administered neoadjuvant chemotherapy (NAC) for breast cancer are associated with pathologic complete response (pCR). METHODS In this retrospective evaluation of 105 patients with stage II-III breast cancer, oxy-hemoglobin (ctO2Hb) from the contralateral non-tumor-bearing breast was collected and analyzed at different time points during NAC. The earliest monitoring imaging time point was after 2-3 weeks receiving taxane. Longitudinal data were analyzed using linear mixed-effects modeling to evaluate the contralateral breast ctO2Hb changes across chemotherapy when corrected for pCR status, age, and BMI. RESULTS Patients who achieved pCR to NAC had an overall decrease of 3.88 μM for ctO2Hb (95% CI, 1.39 to 6.37 μM), p = .004, after 2-3 weeks. On the other hand, non-pCR subjects had a non-significant mean reduction of 0.14 μM (95% CI, - 1.30 to 1.58 μM), p > .05. Mixed-effect model results indicated a statistically significant negative relationship of ctO2Hb levels with BMI and age. CONCLUSIONS This study demonstrates that the contralateral normal breast tissue assessed by DOTBIS is modifiable after NAC, with changes associated with pCR after only 2-3 weeks of chemotherapy.
Collapse
|
21
|
Imaging Hypoxia. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Zhao Y, Pilvar A, Tank A, Peterson H, Jiang J, Aster JC, Dumas JP, Pierce MC, Roblyer D. Shortwave-infrared meso-patterned imaging enables label-free mapping of tissue water and lipid content. Nat Commun 2020; 11:5355. [PMID: 33097705 PMCID: PMC7585425 DOI: 10.1038/s41467-020-19128-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Water and lipids are key participants in many biological processes, but there are few non-invasive methods that provide quantification of these components in vivo, and none that can isolate and quantify lipids in the blood. Here we develop a new imaging modality termed shortwave infrared meso-patterned imaging (SWIR-MPI) to provide label-free, non-contact, spatial mapping of water and lipid concentrations in tissue. The method utilizes patterned hyperspectral illumination to target chromophore absorption bands in the 900-1,300 nm wavelength range. We use SWIR-MPI to monitor clinically important physiological processes including edema, inflammation, and tumor lipid heterogeneity in preclinical models. We also show that SWIR-MPI can spatially map blood-lipids in humans, representing an example of non-invasive and contact-free measurements of in vivo blood lipids. Together, these results highlight the potential of SWIR-MPI to enable new capabilities in fundamental studies and clinical monitoring of major conditions including obesity, cancer, and cardiovascular disease.
Collapse
Affiliation(s)
- Yanyu Zhao
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Anahita Pilvar
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Anup Tank
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Hannah Peterson
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - John Paul Dumas
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Analysis of the serial circulating tumor cell count during neoadjuvant chemotherapy in breast cancer patients. Sci Rep 2020; 10:17466. [PMID: 33060768 PMCID: PMC7562710 DOI: 10.1038/s41598-020-74577-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
We evaluated the prognostic implications of the circulating tumor cell (CTC) count in non-metastatic, HER2-negative breast cancer patients who failed to achieve pathologic complete response (pCR) after neoadjuvant chemotherapy (NCT). A total of 173, non-metastatic breast cancer patients treated with NCT were prospectively enrolled. CTCs were obtained from blood drawn pre-NCT and post-NCT using a SMART BIOPSY SYSTEM isolation kit (Cytogen Inc., Seoul, Korea) with immunofluorescence staining. Excluding 26 HER2-positive patients, Relapse-free survival (RFS) and overall survival (OS) related to the CTC count and the association of the CTC count with the treatment response to given therapy were analyzed in 147 HER2-negative patients. Among 147 HER2-negative patients, 28 relapses (19.0%) and 13 deaths (8.8%, all breast cancer-specific) were observed during a median follow-up of 37.3 months. One hundred and seven patients (72.8%) were hormone receptor-positive, and 40 patients (27.2%) had triple-negative breast cancer (TNBC). One or more CTCs were identified in 88 of the 147 patients (59.9%) before NCT and 77 of the 134 patients (52.4%) after NCT. In the entire HER2-negative patient cohort, the initial nodal status was the most significant factor influencing RFS and OS. In TNBC, 11 patients (27.5%) achieved pCR and patients that failed to achieve pCR with ≥ 5 CTCs after NCT, showed worse RFS (HR, 10.66; 95% CI, 1.80–63.07; p = 0.009) and OS (HR, 14.00; 95% CI, 1.26–155.53; p = 0.032). The patients with residual tumor and a high number of the CTCs after NCT displayed the worse outcome. These findings could provide justification to launch a future, well designed trial with longer follow-up data to obtain regulatory approval for clinical use of the assay, especially for the ER-positive, HER2-negative breast cancer subset.
Collapse
|
24
|
Ghita A, Hubbard T, Matousek P, Stone N. Noninvasive Detection of Differential Water Content Inside Biological Samples Using Deep Raman Spectroscopy. Anal Chem 2020; 92:9449-9453. [PMID: 32603089 DOI: 10.1021/acs.analchem.0c01842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we conceptually demonstrate the capability of deep Raman spectroscopy to noninvasively monitor changes in the water content within biological tissues. Water was added by injection into an isolated tissue volume (a 20 mm diameter disk of 5 mm thickness) representing a 20% increase in the overall mass, which was equivalent to a 5% increase in the water/tissue content. The elevated water content was detected through a larger volume of tissue with a total thickness of approximately 12 mm and a spiked tissue segment located in its center using transmission Raman spectroscopy (TRS) by monitoring the change of the OH (∼3390 cm-1) Raman band area (3350-3550 cm-1 spectral region) after being normalized to the neighboring CH stretching band. The tissue sample was raster scanned with TRS to yield a spatial map of the water concentration within the sample encompassing the spiked tissue zone. The mapping revealed the presence and location of the spiked region. The results provide the first conceptual demonstration using a deep Raman-based architecture, which can be used noninvasively for the detection of an elevated water content deep within biological tissues. It is envisaged that this concept could play a role in rapid in vivo detection and localization of cancerous lesions (generally exhibiting a higher water content) beneath the tissue surface.
Collapse
Affiliation(s)
- Adrian Ghita
- Biomedical Spectroscopy Lab, School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stoker Road, Exeter EX4 4QL, U.K
| | - Thomas Hubbard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX1 2LU, U.K.,Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, U.K
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, U.K
| | - Nicholas Stone
- Biomedical Spectroscopy Lab, School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stoker Road, Exeter EX4 4QL, U.K.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX1 2LU, U.K.,Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, U.K
| |
Collapse
|
25
|
Moghadas-Dastjerdi H, Sha-E-Tallat HR, Sannachi L, Sadeghi-Naini A, Czarnota GJ. A priori prediction of tumour response to neoadjuvant chemotherapy in breast cancer patients using quantitative CT and machine learning. Sci Rep 2020; 10:10936. [PMID: 32616912 PMCID: PMC7331583 DOI: 10.1038/s41598-020-67823-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Response to Neoadjuvant chemotherapy (NAC) has demonstrated a high correlation to survival in locally advanced breast cancer (LABC) patients. An early prediction of responsiveness to NAC could facilitate treatment adjustments on an individual patient basis that would be expected to improve treatment outcomes and patient survival. This study investigated, for the first time, the efficacy of quantitative computed tomography (qCT) parametric imaging to characterize intra-tumour heterogeneity and its application in predicting tumour response to NAC in LABC patients. Textural analyses were performed on CT images acquired from 72 patients before the start of chemotherapy to determine quantitative features of intra-tumour heterogeneity. The best feature subset for response prediction was selected through a sequential feature selection with bootstrap 0.632 + area under the receiver operating characteristic (ROC) curve (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{A}\mathrm{U}\mathrm{C}}_{0.632+}$$\end{document}AUC0.632+) as a performance criterion. Several classifiers were evaluated for response prediction using the selected feature subset. Amongst the applied classifiers an Adaboost decision tree provided the best results with cross-validated \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{A}\mathrm{U}\mathrm{C}}_{0.632+}$$\end{document}AUC0.632+, accuracy, sensitivity and specificity of 0.89, 84%, 80% and 88%, respectively. The promising results obtained in this study demonstrate the potential of the proposed biomarkers to be used as predictors of LABC tumour response to NAC prior to the start of treatment.
Collapse
Affiliation(s)
- Hadi Moghadas-Dastjerdi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Hira Rahman Sha-E-Tallat
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Lakshmanan Sannachi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Ali Sadeghi-Naini
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada
| | - Gregory J Czarnota
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Moghadas-Dastjerdi H, Sha-E-Tallat HR, Sannachi L, Osapoeta LO, Sadeghi-Naini A, Czarnota GJ. Machine Learning-Based A Priori Chemotherapy Response Prediction in Breast Cancer Patients using Textural CT Biomarkers . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1250-1253. [PMID: 33018214 DOI: 10.1109/embc44109.2020.9176099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Early prediction of cancer response to neoadjuvant chemotherapy (NAC) could permit personalized treatment adjustments for patients, which would improve treatment outcomes and patient survival. For the first time, the efficiency of quantitative computed tomography (qCT) textural and second derivative of textural (SDT) features were investigated and compared in this study. It was demonstrated that intra-tumour heterogeneity can be probed through these biomarkers and used as chemotherapy tumour response predictors in breast cancer patients prior to the start of treatment. These features were used to develop a machine learning approach which provided promising results with cross-validated AUC0.632+, accuracy, sensitivity and specificity of 0.86, 81%, 74% and 88%, respectively.Clinical Relevance- The results obtained in this study demonstrate the potential of textural CT biomarkers as response predictors of standard NAC before treatment initiation.
Collapse
|
27
|
Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A hybrid reflectance-based diffuse optical imaging (DOI) technique combining discrete wavelength frequency-domain (FD) near-infrared spectroscopy (NIRS) with broadband continuous wave NIRS measurements was developed to quantify the broadband optical properties of deep tumor-like inclusions. This method was developed to more accurately measure the broadband optical properties of human tumors using a compact handheld imaging probe and without requiring a priori spectral constraints. We simulated the reconstruction of absorption and scattering spectra (650–1000 nm) of human breast tumors in a homogeneous background at depths of 0 to 10 mm. The hybrid DOI technique demonstrated enhanced performance in reconstruction of optical absorption with a mean accuracy over all 71 wavelengths of 8.39% versus 32.26% for a 10 mm deep tumor with the topographic DOI method. The new hybrid technique was also tested and validated on two heterogeneous tissue-simulating phantoms with inclusion depths of 2, 7, and 9 mm. The mean optical absorption accuracy over all wavelengths was similarly improved up to 5x for the hybrid DOI method versus topographic DOI for the deepest inclusions.
Collapse
|
28
|
Oleneva E, Panchenko A, Khaydukova M, Gubareva E, Bibikova O, Artyushenko V, Legin A, Kirsanov D. In vivo and in vitro application of near-infrared fiber optic probe for Ehrlich carcinoma distinction: Towards the development of real-time tumor margins assessment tool. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:12-18. [PMID: 30677734 DOI: 10.1016/j.saa.2019.01.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
This report describes a full-scale experiment on intradermal Ehrlich carcinoma (EC) differentiation in mouse model using NIR spectroscopy in diffuse reflectance mode and chemometric data processing. EC is widely used as an experimental tumor model due to its resemblance with human undifferentiated epithelial tumors and can be applied as a preclinical testing in order to verify the capability of NIR spectroscopy to distinguish cancer from healthy tissues before a clinical research with an aim of creating a new analytical tool for on-line intraoperative tumor margins assessment. The study consists of five steps of NIR spectra measurements: in vivo on the early stage of carcinoma growth; in vivo on the advanced stage of carcinoma growth; in vivo during the surgery; in vitro study of the post-operative materials stored in formalin; in vitro study of the post-operative materials stored in paraffin. It was shown that reliable tumor differentiation with a compact optic fiber probe was possible in all these cases. The classification models were built on two data sets, obtained during in vivo and in vitro measurements; both of them demonstrated 100% specificity and sensitivity.
Collapse
Affiliation(s)
- Ekaterina Oleneva
- Laboratory of Artificial Sensory Systems, ITMO University, 197101, Kronverksky prospect, 49, St. Petersburg, Russia.
| | - Andrey Panchenko
- Laboratory of Carcinogenesis and Aging, FSBI "N.N. Petrov National Medical Research Center of Oncology" of the Ministry of Healthcare of the Russian Federation, 197758, Leningradskaya street, 68, Pesochny, St. Petersburg, Russia
| | - Maria Khaydukova
- Institute of Chemistry, St. Petersburg State University, 199034, Universitetskaya emb., 7-9, St. Petersburg, Russia
| | - Ekaterina Gubareva
- Laboratory of Carcinogenesis and Aging, FSBI "N.N. Petrov National Medical Research Center of Oncology" of the Ministry of Healthcare of the Russian Federation, 197758, Leningradskaya street, 68, Pesochny, St. Petersburg, Russia
| | - Olga Bibikova
- Art photonics GmbH, 12489, Rudower Chaussee, 46, Berlin, Germany
| | | | - Andrey Legin
- Laboratory of Artificial Sensory Systems, ITMO University, 197101, Kronverksky prospect, 49, St. Petersburg, Russia; Institute of Chemistry, St. Petersburg State University, 199034, Universitetskaya emb., 7-9, St. Petersburg, Russia
| | - Dmitry Kirsanov
- Laboratory of Artificial Sensory Systems, ITMO University, 197101, Kronverksky prospect, 49, St. Petersburg, Russia; Institute of Chemistry, St. Petersburg State University, 199034, Universitetskaya emb., 7-9, St. Petersburg, Russia
| |
Collapse
|
29
|
Orlova AG, Maslennikova AV, Golubiatnikov GY, Suryakova AS, Kirillin MY, Kurakina DA, Kalganova TI, Volovetsky AB, Turchin IV. Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation. Biomed Phys Eng Express 2019; 5. [PMID: 34247150 DOI: 10.1088/2057-1976/ab0b19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
Abstract
Modern radiation therapy of malignant tumors requires careful selection of conditions that can improve the effectiveness of the treatment. The study of the dynamics and mechanisms of tumor reoxygenation after radiation therapy makes it possible to select the regimens for optimizing the ongoing treatment. Diffuse optical spectroscopy (DOS) is among the methods used for non-invasive assessment of tissue oxygenation. In this work DOS was used forin vivoregistration of changes in oxygenation level of an experimental rat tumor after single-dose irradiation at a dose of 10 Gy and investigation of their possible mechanisms. It was demonstrated that in 24 h after treatment, tumor oxygenation increases, which is mainly due to an increase in the oxygen supply to the tissues. DOS is demonstrated to be efficient for study of changes in blood flow parameters when monitoring tumor response to therapy.
Collapse
Affiliation(s)
- A G Orlova
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A V Maslennikova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - G Yu Golubiatnikov
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A S Suryakova
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - M Yu Kirillin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - D A Kurakina
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - T I Kalganova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Clinical Laboratory, N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - A B Volovetsky
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - I V Turchin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
30
|
Böhm I, Gehrke S, Kleb B, Hungerbühler M, Müller R, Klose KJ, Alfke H. Monitoring of tumor burden in vivo by optical imaging in a xenograft SCID mouse model: evaluation of two fluorescent proteins of the GFP-superfamily. Acta Radiol 2019; 60:315-326. [PMID: 29890843 DOI: 10.1177/0284185118780896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mouse models of human-malignant-melanoma (MM) are important tools to study tumor dynamics. The enhanced green fluorescent protein (EGFP) is widely used in molecular imaging approaches, together with optical scanners, and fluorescence imaging. PURPOSE Currently, there are no data available as to whether other fluorescent proteins are more suitable. The goal of this preclinical study was to analyze two fluorescent proteins of the GFP superfamily under real-time in vivo conditions using fluorescence reflectance imaging (FRI). MATERIAL AND METHODS The human melanoma cell line MeWo was stable transfected with one plasmid: pEGFP-C1 or pDsRed1-N1. We investigated two severe combined immunodeficiency (SCID)-mice groups: A (solid xenografts) and B (xenografts as metastases). After three weeks, the animals were weekly imaged by FRI. Afterwards the mice were euthanized and metastases were imaged in situ: to quantify the cutis-dependent reduction of emitted light, we compared signal intensities obtained by metastases in vivo with signal intensities obtained by in situ liver parenchyma preparations. RESULTS More than 90% of cells were stable transfected. EGFP-/DsRed-xenograft tumors had identical growth kinetics. In vivo the emitted light by DsRed tumors/metastases was much brighter than by EGFP. DsRed metastases were earlier (3 vs. 5 weeks) and much more sensitive detectable than EGFP metastases. Cutis-dependent reduction of emitted light was greater in EGFP than in DsRed mice (tenfold). Autofluorescence of DsRed was lower than of EGFP. CONCLUSION We established an in vivo xenograft mouse model (DsRed-MeWo) that is reliable, reproducible, and superior to the EGFP model as a preclinical tool to study innovative therapies by FRI under real-time in vivo conditions.
Collapse
Affiliation(s)
- Ingrid Böhm
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
- Radiology Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephan Gehrke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Beate Kleb
- Department of Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Martin Hungerbühler
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
- Radiology Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rolf Müller
- Institute of Molecular Tumor Biology and Cancer Gene Therapy (IMT), Philipps University of Marburg, Marburg, Germany
| | - Klaus J Klose
- Deans Office, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany
| | - Heiko Alfke
- Department of Diagnostic Radiology and Interventional Radiology, Klinikum Lüdenscheid, Lüdenscheid, Germany
| |
Collapse
|
31
|
Tran WT, Childs C, Probst H, Farhat G, Czarnota GJ. Imaging Biomarkers for Precision Medicine in Locally Advanced Breast Cancer. J Med Imaging Radiat Sci 2018; 49:342-351. [DOI: 10.1016/j.jmir.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
|
32
|
Cochran JM, Busch DR, Leproux A, Zhang Z, O’Sullivan TD, Cerussi AE, Carpenter PM, Mehta RS, Roblyer D, Yang W, Paulsen KD, Pogue B, Jiang S, Kaufman PA, Chung SH, Schnall M, Snyder BS, Hylton N, Carp SA, Isakoff SJ, Mankoff D, Tromberg BJ, Yodh AG. Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30338678 PMCID: PMC6194199 DOI: 10.1117/1.jbo.24.2.021202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 05/20/2023]
Abstract
Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: Jeffrey M. Cochran, E-mail:
| | - David R. Busch
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
| | - Anaïs Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Zheng Zhang
- Brown University School of Public Health, Department of Biostatistics and Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Albert E. Cerussi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Philip M. Carpenter
- University of Southern California, Keck School of Medicine, Department of Pathology, Los Angeles, California, United States
| | - Rita S. Mehta
- University of California Irvine, Department of Medicine, Irvine, California, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wei Yang
- University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Brian Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Peter A. Kaufman
- Dartmouth-Hitchcock Medical Center, Department of Hematology and Oncology, Lebanon, New Hampshire, United States
| | - So Hyun Chung
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Mitchell Schnall
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bradley S. Snyder
- Brown University School of Public Health, Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Nola Hylton
- University of California, Department of Radiology, San Francisco, California, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Steven J. Isakoff
- Massachusetts General Hospital, Department of Hematology and Oncology, Boston, Massachusetts, United States
| | - David Mankoff
- University of Pennsylvania, Division of Nuclear Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
33
|
Liu YH, Xue LB, Yang YF, Zhao TJ, Bai Y, Zhang BY, Li J. Diffuse optical spectroscopy for monitoring the responses of patients with breast cancer to neoadjuvant chemotherapy: A meta-analysis. Medicine (Baltimore) 2018; 97:e12683. [PMID: 30313063 PMCID: PMC6203577 DOI: 10.1097/md.0000000000012683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to investigate the potential of diffuse optical spectroscopy (DOT) for monitoring the responses of patients with breast cancer to neoadjuvant chemotherapy (NAC). METHODS We searched PubMed, EMBASE, Cochrane Database of Systematic Reviews, and Web of Science for relevant studies. Data were extracted for pooled analysis, heterogeneity testing, threshold effect testing, sensitivity analysis, publication bias analysis, and subgroup analysis. RESULTS The pooled meta-analysis of the 10 eligible studies that included 422 patients indicated the high performance of DOT for monitoring total patient responses to NAC (OR = 14.78, 95% CI: 8.23-26.54, P < .001), with low significant heterogeneity (I = 7.2%, P = .375). DOT possessed an area under the curve of 0.84 (95% CI: 0.81-0.87) to distinguish total patient responses to NAC. Subgroup analysis showed that the pooled sensitivity of DOT for monitoring pathologic complete response to NAC was 87%, and the pooled specificity was 70%. Meanwhile, the pooled sensitivity of DOT for monitoring pathologic complete and partial responses to NAC was 82%, and the pooled specificity was 82%. Although Begg's funnel plot (P = .049) indicated the presence of publication bias among the included studies, trim-and-fill method verified the stability of the pooled outcomes. CONCLUSION Our meta-analysis of available published data indicated that DOT can be potentially used to predict and monitor patient responses to NAC. A larger study population is needed to fully assess the use of DOT for guiding therapies and predicting responses of individual subjects to NAC.
Collapse
Affiliation(s)
| | | | - Yan Fang Yang
- Anesthesiology Department, Cangzhou Central Hospital, Yunhe Qu, Cangzhou City
| | - Tian Jiao Zhao
- General Surgery, You Fu Hospital, Xinhua Qu, Shijiazhuang City, China
| | | | | | - Jie Li
- Thyroid and Breast Surgery
| |
Collapse
|
34
|
An Y, Wang K, Tian J. Recent methodology advances in fluorescence molecular tomography. Vis Comput Ind Biomed Art 2018; 1:1. [PMID: 32240398 PMCID: PMC7098398 DOI: 10.1186/s42492-018-0001-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/30/2018] [Indexed: 12/26/2022] Open
Abstract
Molecular imaging (MI) is a novel imaging discipline that has been continuously developed in recent years. It combines biochemistry, multimodal imaging, biomathematics, bioinformatics, cell & molecular physiology, biophysics, and pharmacology, and it provides a new technology platform for the early diagnosis and quantitative analysis of diseases, treatment monitoring and evaluation, and the development of comprehensive physiology. Fluorescence Molecular Tomography (FMT) is a type of optical imaging modality in MI that captures the three-dimensional distribution of fluorescence within a biological tissue generated by a specific molecule of fluorescent material within a biological tissue. Compared with other optical molecular imaging methods, FMT has the characteristics of high sensitivity, low cost, and safety and reliability. It has become the research frontier and research hotspot of optical molecular imaging technology. This paper took an overview of the recent methodology advances in FMT, mainly focused on the photon propagation model of FMT based on the radiative transfer equation (RTE), and the reconstruction problem solution consist of forward problem and inverse problem. We introduce the detailed technologies utilized in reconstruction of FMT. Finally, the challenges in FMT were discussed. This survey aims at summarizing current research hotspots in methodology of FMT, from which future research may benefit.
Collapse
Affiliation(s)
- Yu An
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Piao D, Ritchey JW, Holyoak GR, Wall CR, Sultana N, Murray JK, Bartels KE. In vivo percutaneous reflectance spectroscopy of fatty liver development in rats suggests that the elevation of the scattering power is an early indicator of hepatic steatosis. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2018; 11. [DOI: 10.1142/s1793545818500190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This study assessed whether there was a scattering spectral marker quantifiable by reflectance measurements that could indicate early development of hepatic steatosis in rats for potential applications to pre-procurement organ evaluation. Sixteen rats were fed a methionine-choline-deficient (MCD) diet and eight rats were fed a normal diet. Direct assessment of the liver parenchyma of rats in vivo was performed by percutaneous reflectance spectroscopy using a single fiber probe at the beginning of diet-intake and arbitrary post-diet-intake times up to 11 weeks to render longitudinal comparison. Histological sampling of the liver over the duration of diet administration was performed on two MCD-diet treated rats and one control rat euthanized after reflectance spectroscopy measurement. The images of hematoxylin/eosin-stained liver specimens were analyzed morphometrically to evaluate the lipid size changes associated with the level of steatosis. The MCD-diet-treated group ([Formula: see text]) had mild steatosis in seven rats, moderate in three rats, severe in six rats, and no other significant pathology. No control rats ([Formula: see text]) developed hepatic steatosis. Among the parameters retrieved from per-SfS, only the scattering power (can be either positive or negative) appeared to be statistically different between MCD-treated and control livers. The scattering power for the 16 MCD-diet-treated livers at the time of euthanasia and presenting various levels of steatosis was [Formula: see text], in comparison to [Formula: see text] of the eight control livers [Formula: see text]. When evaluated at days 12 and 13 combined, the scattering power of the 16 MCD-diet-treated livers was [Formula: see text], in comparison to [Formula: see text] of the eight control livers ([Formula: see text]). All of four MCD-treated livers harvested at days 12 and 13 presented mild steatosis with sub-micron size lipid droplets, even though none of the MCD-treated livers were sonographically remarkable for fatty changes. The elevation of the scattering power may be a valuable marker indicating early hepatic steatosis before the steatosis is sonographically detectable.
Collapse
Affiliation(s)
- Daqing Piao
- School of Electrical and Computer Engineering, Oklahoma State University, 202 Engineering South, Stillwater, OK 74078, USA
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - G. Reed Holyoak
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Corey R. Wall
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nigar Sultana
- Graduate Program on Interdisciplinary Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jill K. Murray
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kenneth E. Bartels
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, 002 VTH, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
36
|
Zhu Q, Tannenbaum S, Kurtzman SH, DeFusco P, Ricci A, Vavadi H, Zhou F, Xu C, Merkulov A, Hegde P, Kane M, Wang L, Sabbath K. Identifying an early treatment window for predicting breast cancer response to neoadjuvant chemotherapy using immunohistopathology and hemoglobin parameters. Breast Cancer Res 2018; 20:56. [PMID: 29898762 PMCID: PMC6001175 DOI: 10.1186/s13058-018-0975-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) varies with tumor subtype. The purpose of this study was to identify an early treatment window for predicting pCR based on tumor subtype, pretreatment total hemoglobin (tHb) level, and early changes in tHb following NAC. METHODS Twenty-two patients (mean age 56 years, range 34-74 years) were assessed using a near-infrared imager coupled with an Ultrasound system prior to treatment, 7 days after the first treatment, at the end of each of the first three cycles, and before their definitive surgery. Pathologic responses were dichotomized by the Miller-Payne system. Tumor vascularity was assessed from tHb; vascularity changes during NAC were assessed from a percentage tHb normalized to the pretreatment level (%tHb). After training the logistic prediction models using the previous study data, we assessed the early treatment window for predicting pathological response according to their tumor subtype (human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), triple-negative (TN)) based on tHb, and %tHb measured at different cycles and evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS In the new study cohort, maximum pretreatment tHb and %tHb changes after cycles 1, 2, and 3 were significantly higher in responder Miller-Payne 4-5 tumors (n = 13) than non-or partial responder Miller-Payne 1-3 tumors (n = 9). However, no significance was found at day 7. The AUC of the predictive power of pretreatment tHb in the cohort was 0.75, which was similar to the performance of the HER2 subtype as a single predictor (AUC of 0.78). A greater predictive power of pretreatment tHb was found within each subtype, with AUCs of 0.88, 0.69, and 0.72, in the HER2, ER, and TN subtypes, respectively. Using pretreatment tHb and cycle 1 %tHb, AUC reached 0.96, 0.91, and 0.90 in HER2, ER, and TN subtypes, respectively, and 0.95 regardless of subtype. Additional cycle 2 %tHb measurements moderately improved prediction for the HER2 subtype but did not improve prediction for the ER and TN subtypes. CONCLUSIONS By combining tumor subtypes with tHb, we predicted the pCR of breast cancer to NAC before treatment. Prediction accuracy can be significantly improved by incorporating cycle 1 and 2 %tHb for the HER2 subtype and cycle 1 %tHb for the ER and TN subtypes. TRIAL REGISTRATION ClinicalTrials.gov, NCT02092636 . Registered in March 2014.
Collapse
Affiliation(s)
- Quing Zhu
- Biomedical Engineering and Radiology, Washington University in St Louis, One Brookings Drive, Mail Box 1097, Whitaker Hall 300D, St. Louis, MO 63130 USA
| | - Susan Tannenbaum
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | | | | | | | | | - Feifei Zhou
- University of Connecticut, Storrs, CT 06269 USA
| | - Chen Xu
- New York City College of Technology, City University of New York (CUNY), New York, USA
| | - Alex Merkulov
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Poornima Hegde
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Mark Kane
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Liqun Wang
- Department of Statistics, University of Manitoba, 186 Dysart Road, Winnipeg, Manitoba, R3T 2N2 Canada
| | | |
Collapse
|
37
|
Lee S, Kim JG. Breast tumor hemodynamic response during a breath-hold as a biomarker to predict chemotherapeutic efficacy: preclinical study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-5. [PMID: 29706036 DOI: 10.1117/1.jbo.23.4.048001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Continuous wave diffuse optical tomographic/spectroscopic system does not provide absolute concentrations of chromophores in tissue and monitor only the changes of chromophore concentration. Therefore, it requires a perturbation of physiological signals, such as blood flow and oxygenation. In that sense, a few groups reported that monitoring a relative hemodynamic change during a breast tissue compression or a breath-hold to a patient can provide good contrast between tumor and nontumor. However, no longitudinal study reports the utilization of a breath-hold to predict tumor response during chemotherapy. A continuous wave near-infrared spectroscopy was employed to monitor hemodynamics in rat breast tumor during a hyperoxic to normoxic inhalational gas intervention to mimic a breath-hold during tumor growth and chemotherapy. The reduced oxyhemoglobin concentration during inhalational gas intervention correlated well with tumor growth, and it responded one day earlier than the change of tumor volume after chemotherapy. In conclusion, monitoring tumor hemodynamics during a breath-hold may serve as a biomarker to predict chemotherapeutic efficacy of tumor.
Collapse
Affiliation(s)
- Songhyun Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwang, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwang, Republic of Korea
- Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science,, Republic of Korea
| |
Collapse
|
38
|
Deng B, Lundqvist M, Fang Q, Carp SA. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2018; 9:1130-1150. [PMID: 29541508 PMCID: PMC5846518 DOI: 10.1364/boe.9.001130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 05/18/2023]
Abstract
Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.
Collapse
Affiliation(s)
- Bin Deng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Mats Lundqvist
- Philips Healthcare, Torshamnsgatan 30A, 164 40 Kista, Sweden
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Ghijsen M, Lentsch GR, Gioux S, Brenner M, Durkin AJ, Choi B, Tromberg BJ. Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 29575830 PMCID: PMC5866507 DOI: 10.1117/1.jbo.23.3.036013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/28/2018] [Indexed: 05/06/2023]
Abstract
The tissue metabolic rate of oxygen consumption (tMRO2) is a clinically relevant marker for a number of pathologies including cancer and arterial occlusive disease. We present and validate a noncontact method for quantitatively mapping tMRO2 over a wide, scalable field of view at 16 frames / s. We achieve this by developing a dual-wavelength, near-infrared coherent spatial frequency-domain imaging (cSFDI) system to calculate tissue optical properties (i.e., absorption, μa, and reduced scattering, μs', parameters) as well as the speckle flow index (SFI) at every pixel. Images of tissue oxy- and deoxyhemoglobin concentration ( [ HbO2 ] and [HHb]) are calculated from optical properties and combined with SFI to calculate tMRO2. We validate the system using a series of yeast-hemoglobin tissue-simulating phantoms and conduct in vivo tests in humans using arterial occlusions that demonstrate sensitivity to tissue metabolic oxygen debt and its repayment. Finally, we image the impact of cyanide exposure and toxicity reversal in an in vivo rabbit model showing clear instances of mitochondrial uncoupling and significantly diminished tMRO2. We conclude that dual-wavelength cSFDI provides rapid, quantitative, wide-field mapping of tMRO2 that can reveal unique spatial and temporal dynamics relevant to tissue pathology and viability.
Collapse
Affiliation(s)
- Michael Ghijsen
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
| | - Griffin R. Lentsch
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
| | - Sylvain Gioux
- University of Strasbourgh, ICube Laboratory, Illkirch, France
| | - Matthew Brenner
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
- University of California, Irvine Medical Center, Department of Medicine, Division of Pulmonology, Orange, California, United States
| | - Anthony J. Durkin
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
| | - Bruce J. Tromberg
- Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine Medical Center, Department of Surgery, Orange, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
40
|
Carpenter DJ, Sajisevi MB, Chapurin N, Brown CS, Cheng T, Palmer GM, Stevenson DS, Rao CL, Hall RP, Woodard CR. Noninvasive optical spectroscopy for identification of non-melanoma skin cancer: Pilot study. Lasers Surg Med 2018; 50:246-252. [PMID: 29331035 PMCID: PMC6407423 DOI: 10.1002/lsm.22786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Optical spectroscopy offers a noninvasive alternative to biopsy as a first-line screening tool for suspicious skin lesions. This study sought to define several optical parameters across malignant and benign tissue types. STUDY DESIGN Prospective pilot trial utilizing the Zenalux IM1 optical spectroscopy device from April 2016 to February 2017. For each skin lesion, provider pre-biopsy probability of malignancy was compared to histolopathologic diagnosis. Optical data were characterized across basal cell carcinoma (BCC; n = 9), squamous cell carcinoma (SCC; n = 5), actinic keratosis (AK; n = 4), scar tissue (n = 6), nevus (n = 2), and neurofibroma (NF; n = 1). Across all patients, agreement was determined between control measurements collected adjacent to the lesion and from the upper extremity. METHODS Prospective single center pilot study. The optical properties of 27 cutaneous lesions were collected from 18 adult patients presenting to Otolaryngology and Dermatology clinics with suspicious skin lesions warranting biopsy. Spectroscopy measurements were recorded for each lesion: two at the lesion site, two at an adjacent site (internal control), and one at the central medial upper extremity (arm control). Variables of interest included absolute oxygenated hemoglobin (Hb), Hb saturation, total Hb concentration, and Eumelanin concentration. For each lesion, internal control averages were subtracted from lesion averages to provide delta parameter values, and lesion averages were divided by internal control averages to provide ratio parameter values. RESULTS Mean percent difference between pre-biopsy probability of malignancy and histology was 29%, with a difference of 75% or greater seen in 5 of 25 lesions. Mean values for BCC, SCC, AK, and scar tissue varied most between extracted mean reduced scatter estimate (μa'; cm- ) delta values (BCC: -2.2 ± 3.8; SCC: -3.9 ± 2.0; AK: -3.3 ± 4.2, Scar: -1.7 ± 1.2) and total Hb (µM) ratio (BCC: 2.0 ± 3.3; SCC: 3.0 ± 1.3; AK: 1.1 ± 0.6; Scar: 1.4 ± 1.1). Agreement between local and arm controls was poor. CONCLUSION This pilot trial utilizes optical spectroscopy as a noninvasive method for determining cutaneous lesion histology. Effect sizes observed across optical parameters for benign and malignant tissue types will guide larger prospective studies that may ultimately lead to prediction of lesional histology without need for invasive biopsy. Lasers Surg. Med. 50:246-252, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J. Carpenter
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mirabelle B. Sajisevi
- Division of Otolaryngology and Head and Neck Surgery, Mayo Clinic Hospital, Rochester, Minnesota
| | - Nikita Chapurin
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Clifford Scott Brown
- Division of Head and Neck Surgery and Communication Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Tracy Cheng
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Gregory M. Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | | | - Caroline L. Rao
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Russell P. Hall
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Charles R. Woodard
- Division of Head and Neck Surgery and Communication Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
41
|
Gunther JE, Lim EA, Kim HK, Flexman M, Altoé M, Campbell JA, Hibshoosh H, Crew KD, Kalinsky K, Hershman DL, Hielscher AH. Dynamic Diffuse Optical Tomography for Monitoring Neoadjuvant Chemotherapy in Patients with Breast Cancer. Radiology 2018; 287:778-786. [PMID: 29431574 DOI: 10.1148/radiol.2018161041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose To identify dynamic optical imaging features that associate with the degree of pathologic response in patients with breast cancer during neoadjuvant chemotherapy (NAC). Materials and Methods Of 40 patients with breast cancer who participated in a longitudinal study between June 2011 and March 2016, 34 completed the study. There were 13 patients who obtained a pathologic complete response (pCR) and 21 patients who did not obtain a pCR. Imaging data from six subjects were excluded from the study because either the patients dropped out of the study before it was finished or there was an instrumentation malfunction. Two weeks into the treatment regimen, three-dimensional images of both breasts during a breath hold were acquired by using dynamic diffuse optical tomography. Features from the breath-hold traces were used to distinguish between response groups. Receiver operating characteristic (ROC) curves and sensitivity analysis were used to determine the degree of association with 5-month treatment outcome. Results An ROC curve analysis showed that this method could identify patients with a pCR with a positive predictive value of 70.6% (12 of 17), a negative predictive value of 94.1% (16 of 17), a sensitivity of 92.3% (12 of 13), a specificity of 76.2% (16 of 21), and an area under the ROC curve of 0.85. Conclusion Several dynamic optical imaging features obtained within 2 weeks of NAC initiation were identified that showed statistically significant differences between patients with pCR and patients without pCR as determined 5 months after treatment initiation. If confirmed in a larger cohort prospective study, these dynamic imaging features may be used to predict treatment outcome as early as 2 weeks after treatment initiation. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Jacqueline E Gunther
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Emerson A Lim
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Hyun K Kim
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Molly Flexman
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Mirella Altoé
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Jessica A Campbell
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Hanina Hibshoosh
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Katherine D Crew
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Kevin Kalinsky
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Dawn L Hershman
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| | - Andreas H Hielscher
- From the Departments of Biomedical Engineering (J.E.G., M.F., M.A., A.H.H.) and Electrical Engineering (A.H.H.), Columbia University, 500 W 120th St, Mudd Bldg, ET351, MC 8904, New York, NY 10027; Department of Medicine, Division of Hematology/Oncology (E.A.L., J.A.C., K.D.C., K.K., D.L.H.), Department of Radiology (H.K.K., A.H.H.), Department of Pathology and Cell Biology (H.H.), and Department of Epidemiology (K.D.C., D.L.H.), Columbia University Medical Center, New York, NY
| |
Collapse
|
42
|
Vedantham S, Karellas A. Emerging Breast Imaging Technologies on the Horizon. Semin Ultrasound CT MR 2018; 39:114-121. [PMID: 29317033 DOI: 10.1053/j.sult.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early detection of breast cancers by mammography in conjunction with adjuvant therapy has contributed to reduction in breast cancer mortality. Mammography remains the "gold-standard" for breast cancer screening but is limited by tissue superposition. Digital breast tomosynthesis and more recently, dedicated breast computed tomography have been developed to alleviate the tissue superposition problem. However, all of these modalities rely upon x-ray attenuation contrast to provide anatomical images, and there are ongoing efforts to develop and clinically translate alternative modalities. These emerging modalities could provide for new contrast mechanisms and may potentially improve lesion detection and diagnosis. In this article, several of these emerging modalities are discussed with a focus on technologies that have advanced to the stage of in vivo clinical evaluation.
Collapse
Affiliation(s)
- Srinivasan Vedantham
- Department of Medical Imaging, University of Arizona College of Medicine, Banner University Medical Center, Tucson, AZ.
| | - Andrew Karellas
- Department of Medical Imaging, University of Arizona College of Medicine, Banner University Medical Center, Tucson, AZ
| |
Collapse
|
43
|
Sannachi L, Gangeh M, Tadayyon H, Sadeghi-Naini A, Gandhi S, Wright FC, Slodkowska E, Curpen B, Tran W, Czarnota GJ. Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features. PLoS One 2018; 13:e0189634. [PMID: 29298305 PMCID: PMC5751990 DOI: 10.1371/journal.pone.0189634] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Background Pathological response of breast cancer to chemotherapy is a prognostic indicator for long-term disease free and overall survival. Responses of locally advanced breast cancer in the neoadjuvant chemotherapy (NAC) settings are often variable, and the prediction of response is imperfect. The purpose of this study was to detect primary tumor responses early after the start of neoadjuvant chemotherapy using quantitative ultrasound (QUS), textural analysis and molecular features in patients with locally advanced breast cancer. Methods The study included ninety six patients treated with neoadjuvant chemotherapy. Breast tumors were scanned with a clinical ultrasound system prior to chemotherapy treatment, during the first, fourth and eighth week of treatment, and prior to surgery. Quantitative ultrasound parameters and scatterer-based features were calculated from ultrasound radio frequency (RF) data within tumor regions of interest. Additionally, texture features were extracted from QUS parametric maps. Prior to therapy, all patients underwent a core needle biopsy and histological subtypes and biomarker ER, PR, and HER2 status were determined. Patients were classified into three treatment response groups based on combination of clinical and pathological analyses: complete responders (CR), partial responders (PR), and non-responders (NR). Response classifications from QUS parameters, receptors status and pathological were compared. Discriminant analysis was performed on extracted parameters using a support vector machine classifier to categorize subjects into CR, PR, and NR groups at all scan times. Results Of the 96 patients, the number of CR, PR and NR patients were 21, 52, and 23, respectively. The best prediction of treatment response was achieved with the combination mean QUS values, texture and molecular features with accuracies of 78%, 86% and 83% at weeks 1, 4, and 8, after treatment respectively. Mean QUS parameters or clinical receptors status alone predicted the three response groups with accuracies less than 60% at all scan time points. Recurrence free survival (RFS) of response groups determined based on combined features followed similar trend as determined based on clinical and pathology. Conclusions This work demonstrates the potential of using QUS, texture and molecular features for predicting the response of primary breast tumors to chemotherapy early, and guiding the treatment planning of refractory patients.
Collapse
Affiliation(s)
- Lakshmanan Sannachi
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehrdad Gangeh
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hadi Tadayyon
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Ali Sadeghi-Naini
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Frances C. Wright
- Division of General Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Elzbieta Slodkowska
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Belinda Curpen
- Division of Breast Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - William Tran
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
44
|
Lee S, Jeong H, Seong M, Kim JG. Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:121603. [PMID: 28698890 DOI: 10.1117/1.jbo.22.12.121603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 05/22/2023]
Abstract
Breast cancer is one of the most common cancers in females. To monitor chemotherapeutic efficacy for breast cancer, medical imaging systems such as x-ray mammography, computed tomography, magnetic resonance imaging, and ultrasound imaging have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. We used near-infrared spectroscopy (NIRS) to predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show that the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth and responded one day earlier than tumor volume changes after chemotherapy. These results may imply that NIRS with respiratory challenges can be useful in early detection of tumor and in the prediction of tumor response to chemotherapy.
Collapse
Affiliation(s)
- Songhyun Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Hyeryun Jeong
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Myeongsu Seong
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of KoreabGwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, Gwangju, Republic of Korea
| |
Collapse
|
45
|
Warren RV, Cotter J, Ganesan G, Le L, Agustin JP, Duarte B, Cutler K, O’Sullivan T, Tromberg BJ. Noninvasive optical imaging of resistance training adaptations in human muscle. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 29264896 PMCID: PMC5741457 DOI: 10.1117/1.jbo.22.12.121611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/05/2017] [Indexed: 05/12/2023]
Abstract
A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ∼6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ∼2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ∼60% increases in 1 rep-max strength (41.5±6.2 kg, p=1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.
Collapse
Affiliation(s)
- Robert V. Warren
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Joshua Cotter
- California State University–Long Beach, Department of Kinesiology, Long Beach, California, United States
| | - Goutham Ganesan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Lisa Le
- University of California, Institute for Clinical and Translational Science, Irvine, California, United States
| | - Janelle P. Agustin
- University of California, Institute for Clinical and Translational Science, Irvine, California, United States
| | - Bridgette Duarte
- University of California, Institute for Clinical and Translational Science, Irvine, California, United States
| | - Kyle Cutler
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
46
|
Zhi W, Liu G, Chang C, Miao A, Zhu X, Xie L, Zhou J. Predicting Treatment Response of Breast Cancer to Neoadjuvant Chemotherapy Using Ultrasound-Guided Diffuse Optical Tomography. Transl Oncol 2017; 11:56-64. [PMID: 29175630 PMCID: PMC5714257 DOI: 10.1016/j.tranon.2017.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/24/2022] Open
Abstract
PURPOSE To prospectively investigate ultrasound-guided diffuse optical tomography (US-guided DOT) in predicting breast cancer response to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS Eighty-eight breast cancer patients, with a total of 93 lesions, were included in our study. Pre- and post-last chemotherapy, size and total hemoglobin concentration (THC) of each lesion were measured by conventional US and US-guided DOT 1 day before biopsy (time point t0, THC THC0, SIZE S0) and 1 to 2 days before surgery (time point tL, THCL, SL). The relative changes in THC and SIZE of lesions after the first and last NAC cycles were considered as the variables ΔTHC and ΔSIZE. Receiver operating characteristic curve was performed to calculate ΔTHC and ΔSIZE cutoff values to evaluate pathologic response of 93 breast cancers to NAC, which were then prospectively used to predicate response of 61 breast cancers to NAC. RESULTS The cutoff values of ΔTHC and ΔSIZE for evaluation of breast cancers NAC treatment response were 23.9% and 42.6%. At ΔTHC 23.9%, the predicted treatment response in 61 breast lesions for the time points t1 to t3 was calculated by area under the curve (AUC), which were AUC1 0.534 (P=.6668), AUC2 0.604 (P=.1893), and AUC3 0.674(P =. 0.027), respectively; for ΔSIZE 42.6%, at time points t1 to t3, AUC1 0.505 (P=.9121), AUC2 0.645 (P=.0115), and AUC3 0.719 (P=.0018). CONCLUSION US-guided DOT ΔTHC 23.9% and US ΔSIZE 42.6% can be used for the response evaluation and earlier prediction of the pathological response after three rounds of chemotherapy.
Collapse
Affiliation(s)
- Wenxiang Zhi
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Guangyu Liu
- Department of Breast Surgery, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Cai Chang
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
| | - Aiyu Miao
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Li Xie
- Clinical Statistics Center, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Jin Zhou
- Department of Ultrasonography, Fudan University, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No 270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| |
Collapse
|
47
|
Anderson PG, Kalli S, Sassaroli A, Krishnamurthy N, Makim SS, Graham RA, Fantini S. Optical Mammography in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy: Individual Clinical Response Index. Acad Radiol 2017; 24:1240-1255. [PMID: 28532642 DOI: 10.1016/j.acra.2017.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES We present an optical mammography study that aims to develop quantitative measures of pathologic response to neoadjuvant chemotherapy (NAC) in patients with breast cancer. Such quantitative measures are based on the concentrations of oxyhemoglobin ([HbO2]), deoxyhemoglobin ([Hb]), total hemoglobin ([HbT]), and hemoglobin saturation (SO2) in breast tissue at the tumor location and at sequential time points during chemotherapy. MATERIALS AND METHODS Continuous-wave, spectrally resolved optical mammography was performed in transmission and parallel-plate geometry on 10 patients before treatment initiation and at each NAC administration (mean number of optical mammography sessions: 12, range: 7-18). Data on two patients were discarded for technical reasons. The patients were categorized as responders (R, >50% decrease in tumor size), or nonresponders (NR, <50% decrease in tumor size) based on imaging and histopathology results. RESULTS At 50% completion of the NAC regimen (therapy midpoint), R (6/8) demonstrated significant decreases in SO2 (-27% ± 4%) and [HbT] (-35 ± 4 µM) at the tumor location with respect to baseline values. By contrast, NR (2/8) showed nonsignificant changes in SO2 and [HbT] at therapy midpoint. We introduce a cumulative response index as a quantitative measure of the individual patient's response to therapy. At therapy midpoint, the SO2-based cumulative response index had a sensitivity of 100% and a specificity of 100% for the identification of R. CONCLUSIONS These results show that optical mammography is a promising tool to assess individual response to NAC at therapy midpoint to guide further decision making for neoadjuvant therapy.
Collapse
Affiliation(s)
- Pamela G Anderson
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Sirishma Kalli
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Nishanth Krishnamurthy
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Shital S Makim
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Roger A Graham
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155.
| |
Collapse
|
48
|
Sorace AG, Harvey S, Syed A, Yankeelov TE. Imaging Considerations and Interprofessional Opportunities in the Care of Breast Cancer Patients in the Neoadjuvant Setting. Semin Oncol Nurs 2017; 33:425-439. [PMID: 28927763 DOI: 10.1016/j.soncn.2017.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To discuss standard-of-care and emerging imaging techniques employed for screening and detection, diagnosis and staging, monitoring response to therapy, and guiding cancer treatments. DATA SOURCES Published journal articles indexed in the National Library of Medicine database and relevant websites. CONCLUSION Imaging plays a fundamental role in the care of cancer patients and specifically, breast cancer patients in the neoadjuvant setting, providing an excellent opportunity for interprofessional collaboration between oncologists, researchers, radiologists, and oncology nurses. Quantitative imaging strategies to assess cellular, molecular, and vascular characteristics within the tumor is needed to better evaluate initial diagnosis and treatment response. IMPLICATIONS FOR NURSING PRACTICE Nurses caring for patients in all settings must continue to seek education on emerging imaging techniques. Oncology nurses provide education about the test, ensure the patient has appropriate pre-testing instructions, and manage patient expectations about timing of results availability.
Collapse
|
49
|
Yu YH, Zhu X, Mo QG, Cui Y. Prediction of neoadjuvant chemotherapy response using diffuse optical spectroscopy in breast cancer. Clin Transl Oncol 2017; 20:524-533. [PMID: 28921461 PMCID: PMC5978895 DOI: 10.1007/s12094-017-1745-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/20/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Near-infrared diffuse optical spectroscopy (DOS) has been recently used to predict neoadjuvant chemotherapy response (NAC). In the present study, we explore the change in blood-oxygen content using DOS to predict NAC response against breast cancer. MATERIALS AND METHODS A total of 20 patients were enrolled and underwent DOS scan with blood-oxygen detection before each treatment cycle. The first DOS scan was performed before NAC treatment (pretreatment), and subsequent scans were performed after each NAC treatment circle. Changes in blood content and oxygen content by DOS were evaluated and compared with tumor size, and their changes were analyzed in response versus nonresponse group. RESULTS Thirteen patients were classified into response and seven patients into nonresponse group. The tumor blood content value (-1.06 ± 0.43) and oxygen content value (0.48 ± 0.17) of DOS at pretreatment was significantly different from presurgery in response group (P < 0.05), but not in nonresponse group. In response group, the percentage change in blood content (median 91.19%) was significantly larger than tumor size (median 48.89%) (P = 0.0035), while in oxygen content (median 47.11%) is not (P = 0.2815). Comparing each cycle, the percentage change in blood content could distinguish responder from non-responder as early as after the first treatment cycle (19.1 versus 6.6%, P = 0.0265). Blood content percentage sensitivity was 76.9% and specificity was 85.7% (AUC 0.912), while oxygen content percentage sensitivity was 76.9% and specificity was 71.4% (AUC 0.797). CONCLUSION Both blood and oxygen content measured by DOS could be used to discriminate responder to the treatment versus non-responder. Among the two, percentage change of blood content was more precise and earlier than that of oxygen content to predicted breast tumor response. The percentage change in blood content could distinguish responder from non-responder after the first treatment cycle.
Collapse
Affiliation(s)
- Ying-Hua Yu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiao Zhu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China
| | - Qin-Guo Mo
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China.
| | - Ying Cui
- The Graduate School, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
50
|
Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian SV, Meier R, Rummeny E, Ntziachristos V. Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer. Clin Cancer Res 2017; 23:6912-6922. [PMID: 28899968 DOI: 10.1158/1078-0432.ccr-16-3200] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
Purpose: In a pilot study, we introduce fast handheld multispectral optoacoustic tomography (MSOT) of the breast at 28 wavelengths, aiming to identify high-resolution optoacoustic (photoacoustic) patterns of breast cancer and noncancerous breast tissue.Experimental Design: We imaged 10 female patients ages 48-81 years with malignant nonspecific breast cancer or invasive lobular carcinoma. Three healthy volunteers ages 31-36 years were also imaged. Fast-MSOT was based on unique single-frame-per-pulse (SFPP) image acquisition employed to improve the accuracy of spectral differentiation over using a small number of wavelengths. Breast tissue was illuminated at the 700-970 nm spectral range over 0.56 seconds total scan time. MSOT data were guided by ultrasonography and X-ray mammography or MRI.Results: The extended spectral range allowed the computation of oxygenated hemoglobin (HBO2), deoxygenated hemoglobin (HB), total blood volume (TBV), lipid, and water contributions, allowing first insights into in vivo high-resolution breast tissue MSOT cancer patterns. TBV and Hb/HBO2 images resolved marked differences between cancer and control tissue, manifested as a vessel-rich tumor periphery with highly heterogeneous spatial appearance compared with healthy tissue. We observe significant TBV variations between different tumors and between tumors over healthy tissues. Water and fat lipid layers appear disrupted in cancer versus healthy tissue; however, offer weaker contrast compared with TBV images.Conclusions: In contrast to optical methods, MSOT resolves physiologic cancer features with high resolution and revealed patterns not offered by other radiologic modalities. The new features relate to personalized and precision medicine potential. Clin Cancer Res; 23(22); 6912-22. ©2017 AACR.
Collapse
Affiliation(s)
- Gael Diot
- Chair of Biological Imaging, Technische Universität München, München, Germany
| | - Stephan Metz
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Aurelia Noske
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbara Schroeder
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Saak V Ovsepian
- Chair of Biological Imaging, Technische Universität München, München, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Reinhard Meier
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Ernst Rummeny
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technische Universität München, München, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|