1
|
Sakhi IB, De Combiens E, Frachon N, Durussel F, Brideau G, Nemazanyy I, Frère P, Thévenod F, Lee WK, Zeng Q, Klein C, Lourdel S, Bignon Y. A novel transgenic mouse model highlights molecular disruptions involved in the pathogenesis of Dent disease 1. Gene 2024; 928:148766. [PMID: 39019097 DOI: 10.1016/j.gene.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.
Collapse
Affiliation(s)
- Imene Bouchra Sakhi
- University of Zurich - Institute of Anatomy, Zurich CH-8057, Switzerland; Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France.
| | - Elise De Combiens
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Fanny Durussel
- Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Perrine Frère
- Sorbonne Université, INSERM, Unité mixte de Recherche 1155, Kidney Research Centre, AP-HP, Hôpital Tenon, Paris, France
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany; Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Qinghe Zeng
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
| | - Christophe Klein
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Stéphane Lourdel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Switzerland.
| |
Collapse
|
2
|
de Combiens E, Sakhi IB, Lourdel S. A Focus on the Proximal Tubule Dysfunction in Dent Disease Type 1. Genes (Basel) 2024; 15:1175. [PMID: 39336766 PMCID: PMC11431675 DOI: 10.3390/genes15091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dent disease type 1 is a rare X-linked recessive inherited renal disorder affecting mainly young males, generally leading to end-stage renal failure and for which there is no cure. It is caused by inactivating mutations in the gene encoding ClC-5, a 2Cl-/H+ exchanger found on endosomes in the renal proximal tubule. This transporter participates in reabsorbing all filtered plasma proteins, which justifies why proteinuria is commonly observed when ClC-5 is defective. In the context of Dent disease type 1, a proximal tubule dedifferentiation was shown to be accompanied by a dysfunctional cell metabolism. However, the exact mechanisms linking such alterations to chronic kidney disease are still unclear. In this review, we gather knowledge from several Dent disease type 1 models to summarize the current hypotheses generated to understand the progression of this disorder. We also highlight some urinary biomarkers for Dent disease type 1 suggested in different studies.
Collapse
Affiliation(s)
- Elise de Combiens
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| | | | - Stéphane Lourdel
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| |
Collapse
|
3
|
Anglani F, Priante G. Modeling Dent Disease Type 1 in Flies. KIDNEY360 2024; 5:642-644. [PMID: 38814756 PMCID: PMC11150014 DOI: 10.34067/kid.0000000000000441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Franca Anglani
- Department of Medicine, Nephrology Unit, Kidney Histomorphology and Molecular Biology Laboratory, University of Padua, Padova, Italy
| | | |
Collapse
|
4
|
Braulke T, Carette JE, Palm W. Lysosomal enzyme trafficking: from molecular mechanisms to human diseases. Trends Cell Biol 2024; 34:198-210. [PMID: 37474375 DOI: 10.1016/j.tcb.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Lysosomes degrade and recycle macromolecules that are delivered through the biosynthetic, endocytic, and autophagic routes. Hydrolysis of the different classes of macromolecules is catalyzed by about 70 soluble enzymes that are transported from the Golgi apparatus to lysosomes in a mannose 6-phosphate (M6P)-dependent process. The molecular machinery that generates M6P tags for receptor-mediated targeting of lysosomal enzymes was thought to be understood in detail. However, recent studies on the M6P pathway have identified a previously uncharacterized core component, yielded structural insights in known components, and uncovered functions in various human diseases. Here we review molecular mechanisms of lysosomal enzyme trafficking and discuss its relevance for rare lysosomal disorders, cancer, and viral infection.
Collapse
Affiliation(s)
- Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wilhelm Palm
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Kalmár T, Jakab D, Maróti Z, Lakatos O, Vas T, Bereczki C, Iványi B. The Apical Endocytic-Lysosomal Apparatus in CLCN5 Mutations with Phenotypic-Genotypic Correlations in Three Cases. Int J Mol Sci 2024; 25:966. [PMID: 38256038 PMCID: PMC10815395 DOI: 10.3390/ijms25020966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Dent disease type 1 is characterized by pathogenic CLCN5 gene variants and impaired receptor-mediated endocytosis in proximal tubules. However, mutation-related abnormalities in proximal tubules have not yet been described. Here, we present three patients with CLCN5 alterations and distinct morphological changes of the apical endocytic-lysosomal apparatus. The proximal tubular ultrastructure was investigated in kidney biopsy samples of three boys genotyped for non-nephrotic proteinuria. Controls: seven patients with nephrotic-range glomerular proteinuria. The genotyping findings revealed an already-known missense mutation in one patient and hitherto undescribed frameshift variants in two patients. Low-molecular-weight proteinuria, focal global glomerulosclerosis, proximal tubular changes, and tubular calcium deposits characterized each case. Three subsets of proximal tubular cells were observed: those without any abnormality, those with aplasia of apical endocytic-lysosomal apparatus and shrinkage of cells, and those with hypoplasia of apical endocytic apparatus, accumulation of proteinaceous substance in dysmorphic lysosomes, and dysmorphic mitochondria. The distribution of subsets varied from patient to patient. In one patient with a frameshift variant, an oxidative stress-like injury of proximal tubular cells and podocytes accompanied the above-mentioned alterations. Focal aplasia/hypoplasia of apical endocytic apparatus and subsequent changes in cytoplasmic organelles characterized proximal tubules in the CLCN5 pathogenic variants.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, Albert Szent-Györgyi Medical School and Health Center, University of Szeged, 6720 Szeged, Hungary; (D.J.); (Z.M.); (C.B.)
| | - Dániel Jakab
- Department of Pediatrics, Albert Szent-Györgyi Medical School and Health Center, University of Szeged, 6720 Szeged, Hungary; (D.J.); (Z.M.); (C.B.)
| | - Zoltán Maróti
- Department of Pediatrics, Albert Szent-Györgyi Medical School and Health Center, University of Szeged, 6720 Szeged, Hungary; (D.J.); (Z.M.); (C.B.)
| | - Orsolya Lakatos
- Department of Pediatrics, University of Pécs, 7624 Pécs, Hungary;
| | - Tibor Vas
- Department of Internal Medicine, University of Pécs, 7624 Pécs, Hungary;
| | - Csaba Bereczki
- Department of Pediatrics, Albert Szent-Györgyi Medical School and Health Center, University of Szeged, 6720 Szeged, Hungary; (D.J.); (Z.M.); (C.B.)
| | - Béla Iványi
- Institute of Pathology, Albert Szent-Györgyi Medical School and Health Center, University of Szeged, 6720 Szeged, Hungary;
| |
Collapse
|
6
|
Rega LR, Janssens V, Graversen JH, Moestrup SK, Cairoli S, Goffredo BM, Nevo N, Courtoy GE, Jouret F, Antignac C, Emma F, Pierreux CE, Courtoy PJ. Dietary supplementation of cystinotic mice by lysine inhibits the megalin pathway and decreases kidney cystine content. Sci Rep 2023; 13:17276. [PMID: 37828038 PMCID: PMC10570359 DOI: 10.1038/s41598-023-43105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Megalin/LRP2 is a major receptor supporting apical endocytosis in kidney proximal tubular cells. We have previously reported that kidney-specific perinatal ablation of the megalin gene in cystinotic mice, a model of nephropathic cystinosis, essentially blocks renal cystine accumulation and partially preserves kidney tissue integrity. Here, we examined whether inhibition of the megalin pathway in adult cystinotic mice by dietary supplementation (5x-fold vs control regular diet) with the dibasic amino-acids (dAAs), lysine or arginine, both of which are used to treat patients with other rare metabolic disorders, could also decrease renal cystine accumulation and protect cystinotic kidneys. Using surface plasmon resonance, we first showed that both dAAs compete for protein ligand binding to immobilized megalin in a concentration-dependent manner, with identical inhibition curves by L- and D-stereoisomers. In cystinotic mice, 2-month diets with 5x-L-lysine and 5x-L-arginine were overall well tolerated, while 5x-D-lysine induced strong polyuria but no weight loss. All diets induced a marked increase of dAA urinary excretion, most prominent under 5x-D-lysine, without sign of kidney insufficiency. Renal cystine accumulation was slowed down approx. twofold by L-dAAs, and totally suppressed by D-lysine. We conclude that prolonged dietary manipulation of the megalin pathway in kidneys is feasible, tolerable and can be effective in vivo.
Collapse
Affiliation(s)
- L R Rega
- Nephrology Research Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - V Janssens
- Cell Biology Unit, de Duve Institute and Louvain University Medical School, Brussels, Belgium
| | - J H Graversen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - S K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - S Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - B M Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - N Nevo
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - G E Courtoy
- Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, Louvain University Medical School, Brussels, Belgium
| | - F Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - C Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - F Emma
- Nephrology Research Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C E Pierreux
- Cell Biology Unit, de Duve Institute and Louvain University Medical School, Brussels, Belgium.
| | - P J Courtoy
- Cell Biology Unit, de Duve Institute and Louvain University Medical School, Brussels, Belgium.
| |
Collapse
|
7
|
Stem AD, Rogers KL, Roede JR, Roncal-Jimenez CA, Johnson RJ, Brown JM. Sugarcane ash and sugarcane ash-derived silica nanoparticles alter cellular metabolism in human proximal tubular kidney cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 332:121951. [PMID: 37301454 PMCID: PMC10321436 DOI: 10.1016/j.envpol.2023.121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Multiple epidemics of chronic kidney disease of an unknown etiology (CKDu) have emerged in agricultural communities around the world. Many factors have been posited as potential contributors, but a primary cause has yet to be identified and the disease is considered likely multifactorial. Sugarcane workers are largely impacted by disease leading to the hypothesis that exposure to sugarcane ash produced during the burning and harvest of sugarcane could contribute to CKDu. Estimated exposure levels of particles under 10 μm (PM10) have been found to be exceptionally high during this process, exceeding 100 μg/m3 during sugarcane cutting and averaging ∼1800 μg/m3 during pre-harvest burns. Sugarcane stalks consist of ∼80% amorphous silica and generate nano-sized silica particles (∼200 nm) following burning. A human proximal convoluted tubule (PCT) cell line was subjected to treatments ranging in concentration from 0.025 μg/mL to 25 μg/mL of sugarcane ash, desilicated sugarcane ash, sugarcane ash-derived silica nanoparticles (SAD SiNPs) or manufactured pristine 200 nm silica nanoparticles. The combination of heat stress and sugarcane ash exposure on PCT cell responses was also assessed. Following 6-48 h of exposure, mitochondrial activity and viability were found to be significantly reduced when exposed to SAD SiNPs at concentrations 2.5 μg/mL or higher. Oxygen consumption rate (OCR) and pH changes suggested significant alteration to cellular metabolism across treatments as early as 6 h following exposure. SAD SiNPs were found to inhibit mitochondrial function, reduce ATP generation, increase reliance on glycolysis, and reduce glycolytic reserve. Metabolomic analysis revealed several cellular energetics pathways (e.g., fatty acid metabolism, glycolysis, and TCA cycle) are significantly altered across ash-based treatments. Heat stress did not influence these responses. Such changes indicate that exposure to sugarcane ash and its derivatives can promote mitochondrial dysfunction and disrupt metabolic activity of human PCT cells.
Collapse
Affiliation(s)
- Arthur D Stem
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keegan L Rogers
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Yadavalli N, Ferguson SM. LRRK2 suppresses lysosome degradative activity in macrophages and microglia through MiT-TFE transcription factor inhibition. Proc Natl Acad Sci U S A 2023; 120:e2303789120. [PMID: 37487100 PMCID: PMC10400961 DOI: 10.1073/pnas.2303789120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/12/2023] [Indexed: 07/26/2023] Open
Abstract
Cells maintain optimal levels of lysosome degradative activity to protect against pathogens, clear waste, and generate nutrients. Here, we show that LRRK2, a protein that is tightly linked to Parkinson's disease, negatively regulates lysosome degradative activity in macrophages and microglia via a transcriptional mechanism. Depletion of LRRK2 and inhibition of LRRK2 kinase activity enhanced lysosomal proteolytic activity and increased the expression of multiple lysosomal hydrolases. Conversely, the kinase hyperactive LRRK2 G2019S Parkinson's disease mutant suppressed lysosomal degradative activity and gene expression. We identified MiT-TFE transcription factors (TFE3, TFEB, and MITF) as mediators of LRRK2-dependent control of lysosomal gene expression. LRRK2 negatively regulated the abundance and nuclear localization of these transcription factors and their depletion prevented LRRK2-dependent changes in lysosome protein levels. These observations define a role for LRRK2 in controlling lysosome degradative activity and support a model wherein LRRK2 hyperactivity may increase Parkinson's disease risk by suppressing lysosome degradative activity.
Collapse
Affiliation(s)
- Narayana Yadavalli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Shawn M. Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
9
|
Zhao B, Tu C, Shen S, Qu J, Morris ME. Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice. AAPS J 2022; 24:109. [PMID: 36253507 DOI: 10.1208/s12248-022-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Megalin and cubilin, endocytic proteins present in the proximal tubule of the kidney, are responsible for reabsorbing filtered proteins from urine. Our hypothesis was that potential substrates of megalin/cubilin could be identified by examining urinary protein differences between control (WT) mice and kidney-specific megalin knockdown (KD) mice. Using the IonStar proteomics approach, 877 potential megalin/cubilin substrates were discovered, with 23 of these compounds representing known megalin/cubilin substrates. Some of the proteins with the largest fold changes in the urine between KD and WT included the known megalin substrates retinol-binding protein and vitamin D-binding protein. Of the total proteins identified as novel substrates, about three-quarters of compounds had molecular weights (MWs) below 69 kDa, the MW of albumin, and the remaining had higher MWs, with about 5% of the proteins having MWs greater than 150 kDa. Sex differences in the number of identified substrates occurred, but this may be due to differences in kidney megalin expression between both male and female megalin KD and WT animals, with the ratio of megalin between WT and KD being 2.76 and 2.14 for female and male mice, respectively. The top three ingenuity canonical pathways based on the urinary proteins in both female and male KD mice were acute phase response signaling, liver X receptor/retinoid X receptor activation, and intrinsic prothrombin activation pathways. In conclusion, analysis of urine samples from kidney-specific megalin KD and WT mice was found to be useful for the identification of potential endogenous substrates for megalin and cubilin.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
10
|
Drobny A, Prieto Huarcaya S, Dobert J, Kluge A, Bunk J, Schlothauer T, Zunke F. The role of lysosomal cathepsins in neurodegeneration: Mechanistic insights, diagnostic potential and therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119243. [PMID: 35217144 DOI: 10.1016/j.bbamcr.2022.119243] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jan Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Kluge
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Saudenova M, Promnitz J, Ohrenschall G, Himmerkus N, Böttner M, Kunke M, Bleich M, Theilig F. Behind every smile there's teeth: Cathepsin B's function in health and disease with a kidney view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119190. [PMID: 34968578 DOI: 10.1016/j.bbamcr.2021.119190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Cathepsin B (CatB) is a very abundant lysosomal protease with endo- and carboxydipeptidase activities and even ligase features. In this review, we will provide a general characterization of CatB and describe structure, structure-derived properties and location-dependent proteolytic actions. We depict CatB action within lysosome and its important roles in lysosomal biogenesis, lysosomal homeostasis and autophagy rendering this protease a key player in orchestrating lysosomal functions. Lysosomal leakage and subsequent escape of CatB into the cytosol lead to harmful actions, e.g. the role in activating the NLPR3 inflammasome, affecting immune responses and cell death. The second focus of this review addresses CatB functions in the kidney, i.e. the glomerulus, the proximal tubule and collecting duct with strong emphasis of its role in pathology of the respective segment. Finally, observations regarding CatB functions that need to be considered in cell culture will be discussed. In conclusion, CatB a physiologically important molecule may, upon aberrant expression in different cellular context, become a harmful player effectively showing its teeth behind its smile.
Collapse
Affiliation(s)
- Makhabbat Saudenova
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Jessica Promnitz
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Gerrit Ohrenschall
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Nina Himmerkus
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
12
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
13
|
Defective Cystinosin, Aberrant Autophagy−Endolysosome Pathways, and Storage Disease: Towards Assembling the Puzzle. Cells 2022; 11:cells11030326. [PMID: 35159136 PMCID: PMC8834619 DOI: 10.3390/cells11030326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients—a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through endocytosis, sorting receptors and nutrient transporters, maintaining cellular quality control via autophagy, and toggling the balance between PT differentiation and cell proliferation. Dysregulation of such endolysosome-guided trafficking pathways might thus lead to a generalized dysfunction of PT cells, often causing chronic kidney disease and life-threatening complications. In this review, we highlight the biological functions of endolysosome-residing proteins from the perspectives of understanding—and potentially reversing—the pathophysiology of rare inherited diseases affecting the kidney PT. Using cystinosis as a paradigm of endolysosome disease causing PT dysfunction, we discuss how the endolysosome governs the homeostasis of specialized epithelial cells. This review also provides a critical analysis of the molecular mechanisms through which defects in autophagy pathways can contribute to PT dysfunction, and proposes potential interventions for affected tissues. These insights might ultimately accelerate the discovery and development of new therapeutics, not only for cystinosis, but also for other currently intractable endolysosome-related diseases, eventually transforming our ability to regulate homeostasis and health.
Collapse
|
14
|
Shipman KE, Weisz OA. Making a Dent in Dent Disease. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa017. [PMID: 33015630 PMCID: PMC7519470 DOI: 10.1093/function/zqaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
Dent disease (DD) is a rare kidney disorder caused by mutations in the Cl-/H+ exchanger ClC-5. Extensive physiologic characterization of the transporter has begun to illuminate its role in endosomal ion homeostasis. Nevertheless, we have yet to understand how loss of ClC-5 function in the kidney proximal tubule impairs membrane traffic of megalin and cubilin receptors to cause the low molecular weight proteinuria characteristic of DD. This review identifies open questions that remain to be answered, evaluates the current literature addressing these questions, and suggests new testable models that may link loss of ClC-5 function to tubular proteinuria in DD.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Address correspondence to O.A.W. (e-mail: )
| |
Collapse
|
15
|
Devuyst O. The first decade of Kidney International: treasure hunt for the kidney tubule. Kidney Int 2020; 97:818-822. [PMID: 32331590 DOI: 10.1016/j.kint.2020.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Olivier Devuyst
- Department of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Anglani F, Gianesello L, Beara-Lasic L, Lieske J. Dent disease: A window into calcium and phosphate transport. J Cell Mol Med 2019; 23:7132-7142. [PMID: 31472005 PMCID: PMC6815805 DOI: 10.1111/jcmm.14590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones.
Collapse
Affiliation(s)
- Franca Anglani
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lisa Gianesello
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lada Beara-Lasic
- Division of Nephrology, New York University School of Medicine, New York, NY, USA
| | - John Lieske
- Division of Nephrology and Hypertension, Department of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Schmidtke C, Tiede S, Thelen M, Käkelä R, Jabs S, Makrypidi G, Sylvester M, Schweizer M, Braren I, Brocke-Ahmadinejad N, Cotman SL, Schulz A, Gieselmann V, Braulke T. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J Biol Chem 2019; 294:9592-9604. [PMID: 31040178 DOI: 10.1074/jbc.ra119.008852] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.
Collapse
Affiliation(s)
- Carolin Schmidtke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Stephan Tiede
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland 00014
| | - Sabrina Jabs
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany 13125
| | - Georgia Makrypidi
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Michaela Schweizer
- the Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | - Ingke Braren
- Vector Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Angela Schulz
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Thomas Braulke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246,
| |
Collapse
|
19
|
Kozyraki R, Cases O. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease. Curr Med Chem 2018; 27:3123-3150. [PMID: 30295181 DOI: 10.2174/0929867325666181008143945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.
Collapse
Affiliation(s)
- Renata Kozyraki
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| | - Olivier Cases
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| |
Collapse
|
20
|
Yang J, Chen C, Tang X. Cholesterol-Modified Caged siRNAs for Photoregulating Exogenous and Endogenous Gene Expression. Bioconjug Chem 2018. [DOI: 10.1021/acs.bioconjchem.8b00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| | - Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Host Cell Proteases: Cathepsins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7123490 DOI: 10.1007/978-3-319-75474-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cathepsins are proteolytic enzymes with a broad spectrum of substrates. They are known to reside within endo-lysosomes where they acquire optimal conditions for proteolytic activity and substrate cleavage. However, cathepsins have been detected in locations other than the canonical compartments of the endocytotic pathway. They are often secreted from cells in either proteolytically inactive proform or as mature and active enzyme; this may happen in both physiological and pathological conditions. Moreover, cytosolic and nuclear forms of cathepsins have been described and are currently an emerging field of research aiming at understanding their functions in such unexpected cellular locations. This chapter summarizes the canonical pathways of biosynthesis and transport of cathepsins in healthy cells. We further describe how cathepsins can reach unexpected locations such as the extracellular space or the cytosol and the nuclear matrix. No matter where viruses and cathepsins encounter, several outcomes can be perceived. Thus, scenarios are discussed on how cathepsins may support virus entry into host cells, involve in viral fusion factor and polyprotein processing in different host cell compartments, or help in packaging of viral particles during maturation. It is of note to mention that this review is not meant to comprehensively cover the present literature on viruses encountering cathepsins but rather illustrates, on some representative examples, the possible roles of cathepsins in replication of viruses and in the course of disease.
Collapse
|
22
|
Abstract
Lowe syndrome is an X-linked disease that is characterized by congenital cataracts, central hypotonia, intellectual disability and renal Fanconi syndrome. The disease is caused by mutations in OCRL, which encodes an inositol polyphosphate 5-phosphatase (OCRL) that acts on phosphoinositides - quantitatively minor constituents of cell membranes that are nonetheless pivotal regulators of intracellular trafficking. In this Review we summarize the considerable progress made over the past decade in understanding the cellular roles of OCRL in regulating phosphoinositide balance along the endolysosomal pathway, a fundamental system for the reabsorption of proteins and solutes by proximal tubular cells. We discuss how studies of OCRL have led to important discoveries about the basic mechanisms of membrane trafficking and describe the key features and limitations of the currently available animal models of Lowe syndrome. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterized by renal Fanconi syndrome in the absence of extrarenal pathologies. Understanding how mutations in OCRL give rise to two clinical entities with differing extrarenal manifestations represents an opportunity to identify molecular pathways that could be targeted to develop treatments for these conditions.
Collapse
|
23
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
24
|
Fu Y, Zhu JY, Zhang F, Richman A, Zhao Z, Han Z. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes. Cell Tissue Res 2017; 368:615-627. [PMID: 28180992 DOI: 10.1007/s00441-017-2575-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.
Collapse
Affiliation(s)
- Yulong Fu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Fujian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Zhanzheng Zhao
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| |
Collapse
|
25
|
Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 2017; 89:58-67. [PMID: 26759048 DOI: 10.1016/j.kint.2015.11.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/19/2023]
Abstract
Proximal tubule protein uptake is mediated by 2 receptors, megalin and cubilin. These receptors rescue a variety of filtered ligands, including biomarkers, essential vitamins, and hormones. Receptor gene knockout animal models have identified important functions of the receptors and have established their essential role in modulating urinary protein excretion. Rare genetic syndromes associated with dysfunction of these receptors have been identified and characterized, providing additional information on the importance of these receptors in humans. Using various disease models in combination with receptor gene knockout, the implications of receptor dysfunction in acute and chronic kidney injury have been explored and have pointed to potential new roles of these receptors. Based on data from animal models, this paper will review current knowledge on proximal tubule endocytic receptor function and regulation, and their role in renal development, protein reabsorption, albumin uptake, and normal renal physiology. These findings have implications for the pathophysiology and diagnosis of proteinuric renal diseases. We will examine the limitations of the different models and compare the findings to phenotypic observations in inherited human disorders associated with receptor dysfunction. Furthermore, evidence from receptor knockout mouse models as well as human observations suggesting a role of protein receptors for renal disease will be discussed in light of conditions such as chronic kidney disease, diabetes, and hypertension.
Collapse
Affiliation(s)
- Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
26
|
Markmann S, Krambeck S, Hughes CJ, Mirzaian M, Aerts JMFG, Saftig P, Schweizer M, Vissers JPC, Braulke T, Damme M. Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II. Mol Cell Proteomics 2017; 16:438-450. [PMID: 28062798 DOI: 10.1074/mcp.m116.063636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/24/2016] [Indexed: 01/01/2023] Open
Abstract
The efficient receptor-mediated targeting of soluble lysosomal proteins to lysosomes requires the modification with mannose 6-phosphate (M6P) residues. Although the absence of M6P results in misrouting and hypersecretion of lysosomal enzymes in many cells, normal levels of lysosomal enzymes have been reported in liver of patients lacking the M6P-generating phosphotransferase (PT). The identity of lysosomal proteins depending on M6P has not yet been comprehensively analyzed. In this study we purified lysosomes from liver of PT-defective mice and 67 known soluble lysosomal proteins were identified that illustrated quantitative changes using an ion mobility-assisted data-independent label-free LC-MS approach. After validation of various differentially expressed lysosomal components by Western blotting and enzyme activity assays, the data revealed a small number of lysosomal proteins depending on M6P, including neuraminidase 1, cathepsin F, Npc2, and cathepsin L, whereas the majority reach lysosomes by alternative pathways. These data were compared with findings on cultured hepatocytes and liver sinusoid endothelial cells isolated from the liver of wild-type and PT-defective mice. Our findings show that the relative expression, targeting efficiency and lysosomal localization of lysosomal proteins tested in cultured hepatic cells resemble their proportion in isolated liver lysosomes. Hypersecretion of newly synthesized nonphosphorylated lysosomal proteins suggest that secretion-recapture mechanisms contribute to maintain major lysosomal functions in liver.
Collapse
Affiliation(s)
- Sandra Markmann
- From the ‡Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,§Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | - Svenja Krambeck
- From the ‡Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,§Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | | | - Mina Mirzaian
- ¶Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Johannes M F G Aerts
- ¶Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Paul Saftig
- ‖Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Michaela Schweizer
- **Morphology Unit, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas Braulke
- From the ‡Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;
| | - Markus Damme
- ‖Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany;
| |
Collapse
|
27
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|
28
|
Aisa MC, Cappuccini B, Barbati A, Orlacchio A, Baglioni M, Di Renzo GC. Biochemical parameters of renal impairment/injury and surrogate markers of nephron number in intrauterine growth-restricted and preterm neonates at 30-40 days of postnatal corrected age. Pediatr Nephrol 2016; 31:2277-2287. [PMID: 27557556 DOI: 10.1007/s00467-016-3484-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Premature and/or intrauterine growth-restricted neonates have an increased risk of developing postnatal renal injuries in later life. Studies on renal physiology in these neonates at a corrected age of 30-40 days are scarce and mostly relate to preterm infants. The data from these studies often lack the results of correlation analyses between biochemical parameters and nephron number-data which could provide additional insight and/or improve recognition of individuals at higher risk of renal failure. METHODS Urinary total protein and albumin levels and N-acetyl-β-D-glucosaminidase and cathepsin B activity were evaluated in preterm and intrauterine growth-restricted infants at a corrected age of 30-40 days and compared to data from a healthy control neonate population. The data were then associated with predominant susceptibility factors of renal damage related to low nephron number, such as gestational age, birth weight, total renal volume and renal cortex volume. RESULTS Compared to the control neonate population, we found significantly increased levels of all biochemical parameters tested in the intrauterine growth-restricted neonates, whereas in the preterm infants we observed a significant increase in cathepsin B activity, total protein level and, to a lesser extent, albumin level. Cathepsin B activity showed a significant, strong and inverse correlation with all surrogate markers of nephron number and was also strongly and positively correlated with urinary albumin level. CONCLUSIONS At this postnatal age, we found that lower nephron number in low birth weight neonates was associated to tubular impairment/injury that could be concurrent with a dysfunction of glomerular permeability. Urinary cathepsin B activity may be a candidate marker for the early prediction of renal susceptibility to damage in low birth weight neonates.
Collapse
Affiliation(s)
- Maria Cristina Aisa
- Section of Obstetrics and Gynecology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy. .,Section of Biochemistry, Department of Agricultural Sciences, Food and Environment, University of Perugia, Perugia, Italy.
| | - Benito Cappuccini
- Department of Neonatology, Hospital S. M. della Misericordia, Perugia, Italy.,Centre of Perinatal Medicine, University of Perugia, Perugia, Italy.,GeBiSa, Research Foundation, Perugia, Italy
| | - Antonella Barbati
- Section of Obstetrics and Gynecology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Aldo Orlacchio
- Centre of Perinatal Medicine, University of Perugia, Perugia, Italy.,GeBiSa, Research Foundation, Perugia, Italy
| | | | - Gian Carlo Di Renzo
- Section of Obstetrics and Gynecology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.,Centre of Perinatal Medicine, University of Perugia, Perugia, Italy.,GeBiSa, Research Foundation, Perugia, Italy
| |
Collapse
|
29
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
30
|
Daryadel A, Haubitz M, Figueiredo M, Steubl D, Roos M, Mäder A, Hettwer S, Wagner CA. The C-Terminal Fragment of Agrin (CAF), a Novel Marker of Renal Function, Is Filtered by the Kidney and Reabsorbed by the Proximal Tubule. PLoS One 2016; 11:e0157905. [PMID: 27380275 PMCID: PMC4933355 DOI: 10.1371/journal.pone.0157905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
Agrin, a multidomain proteoglycan and neurotrypsin, a neuronal serine protease, are important for forming (neuromuscular) synapses. Proteolytical activity of neurotrypsin produces a C-terminal fragment of agrin, termed CAF, of approximately 22 kDA molecular size which also circulates in blood. The presence of CAF in urine suggests either glomerular filtration or secretion into urine. Blood levels of CAF have been identified as a potential novel marker of kidney function. Here we describe that several nephron segments in the mouse kidney express agrin and neutrotrypsin in addition to the localization of both protein in the glomerulum. Agrin mRNA and protein was detected in almost all nephron segments and mRNA abundance was highest in the inner medullary collecting duct. Neurotrypsin mRNA was mostly detected in the thick ascending limb of the loop of Henle, the distal convoluted tubule, and the inner medullary collecting duct. Moreover, we show that the proximal tubule absorbs injected recombinant CAF by a process shared with receptor-mediated and fluid phase endocytosis. Co-injection of CAF with recombinant human transferrin, a substrate of the receptor-mediated endocytic pathway as well as with FITC-labelled dextran (10 kDa), a marker of fluid phase endocytosis, showed partial colocalization of CAF with both markers. Further colocalization of CAF with the lysosomal marker cathepsin B suggested degradation of CAF by the lysosome in the proximal tubule. Thus, the murine kidney expresses agrin and neurotrypsin in nephron segments beyond the glomerulum. CAF is filtered by the glomerulum and is reabsorbed by endocytosis by the proximal tubule. Thus, impaired kidney function could impair glomerular clearance of CAF and thereby increase circulating CAF levels.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | - Marta Figueiredo
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Dominik Steubl
- Department of Nephrology, Klinikum rechts der Isar, Munich, Germany
| | - Marcel Roos
- Department of Nephrology, Klinikum rechts der Isar, Munich, Germany
| | | | | | - Carsten A. Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 2016; 12:453-71. [PMID: 27263398 DOI: 10.1038/nrneph.2016.75] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalence of obesity-related glomerulopathy is increasing in parallel with the worldwide obesity epidemic. Glomerular hypertrophy and adaptive focal segmental glomerulosclerosis define the condition pathologically. The glomerulus enlarges in response to obesity-induced increases in glomerular filtration rate, renal plasma flow, filtration fraction and tubular sodium reabsorption. Normal insulin/phosphatidylinositol 3-kinase/Akt and mTOR signalling are critical for podocyte hypertrophy and adaptation. Adipokines and ectopic lipid accumulation in the kidney promote insulin resistance of podocytes and maladaptive responses to cope with the mechanical forces of renal hyperfiltration. Although most patients have stable or slowly progressive proteinuria, up to one-third develop progressive renal failure and end-stage renal disease. Renin-angiotensin-aldosterone blockade is effective in the short-term but weight loss by hypocaloric diet or bariatric surgery has induced more consistent and dramatic antiproteinuric effects and reversal of hyperfiltration. Altered fatty acid and cholesterol metabolism are increasingly recognized as key mediators of renal lipid accumulation, inflammation, oxidative stress and fibrosis. Newer therapies directed to lipid metabolism, including SREBP antagonists, PPARα agonists, FXR and TGR5 agonists, and LXR agonists, hold therapeutic promise.
Collapse
|
32
|
Abstract
The oculocerebrorenal syndrome of Lowe is a rare X-linked multisystemic disorder characterized by the triad of congenital cataracts, intellectual disability, and proximal renal tubular dysfunction. Whereas the ocular manifestations and severe muscular hypotonia are the typical first diagnostic clues apparent at birth, the manifestations of incomplete renal Fanconi syndrome are often recognized only later in life. Other characteristic features are progressive severe growth retardation and behavioral problems, with tantrums. Many patients develop a debilitating arthropathy. Treatment is symptomatic, and the life span rarely exceeds 40 years. The causative oculocerebrorenal syndrome of Lowe gene (OCRL) encodes the inositol polyphosphate 5-phosphatase OCRL-1. OCRL variants have not only been found in classic Lowe syndrome, but also in patients with a predominantly renal phenotype classified as Dent disease type 2 (Dent-2). Recent data indicate that there is a phenotypic continuum between Dent-2 disease and Lowe syndrome, suggesting that there are individual differences in the ability to compensate for the loss of enzyme function. Extensive research has demonstrated that OCRL-1 is involved in multiple intracellular processes involving endocytic trafficking and actin skeleton dynamics. This explains the multi-organ manifestations of the disease. Still, the mechanisms underlying the wide phenotypic spectrum are poorly understood, and we are far from a causative therapy. In this review, we provide an update on clinical and molecular genetic findings in Lowe syndrome and the cellular and physiological functions of OCRL-1.
Collapse
|
33
|
Devuyst O, Luciani A. Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule. J Physiol 2015; 593:4151-64. [PMID: 25820368 DOI: 10.1113/jp270087] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/16/2015] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS The reabsorptive activity of renal proximal tubule cells is mediated by receptor-mediated endocytosis and polarized transport systems that reflect final cell differentiation. Loss-of-function mutations of the endosomal chloride-proton exchanger ClC-5 (Dent's disease) cause a major trafficking defect in proximal tubule cells, associated with lysosomal dysfunction, oxidative stress and dedifferentiation/proliferation. A similar but milder defect is associated with mutations in CFTR (cystic fibrosis transmembrane conductance regulator). Vesicular chloride transport appears to be important for the integrity of the endolysosomal pathway in epithelial cells. ABSTRACT The epithelial cells lining the proximal tubules of the kidney reabsorb a large amount of filtered ions and solutes owing to receptor-mediated endocytosis and polarized transport systems that reflect final cell differentiation. Dedifferentiation of proximal tubule cells and dysfunction of receptor-mediated endocytosis characterize Dent's disease, a rare disorder caused by inactivating mutations in the CLCN5 gene that encodes the endosomal chloride-proton exchanger, ClC-5. The disease is characterized by a massive urinary loss of solutes (renal Fanconi syndrome), with severe metabolic complications and progressive renal failure. Investigations of mutations affecting the gating of ClC-5 revealed that the proximal tubule dysfunction may occur despite normal endosomal acidification. In addition to defective endocytosis, proximal tubule cells lacking ClC-5 show a trafficking defect in apical receptors and transporters, as well as lysosomal dysfunction and typical features of dedifferentiation, proliferation and oxidative stress. A similar but milder defect is observed in mouse models with defective CFTR, a chloride channel that is also expressed in the endosomes of proximal tubule cells. These data suggest a major role for endosomal chloride transport in the maintenance of epithelial differentiation and reabsorption capacity of the renal proximal tubule.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Markmann S, Thelen M, Cornils K, Schweizer M, Brocke-Ahmadinejad N, Willnow T, Heeren J, Gieselmann V, Braulke T, Kollmann K. Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting. Traffic 2015; 16:743-59. [DOI: 10.1111/tra.12284] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Sandra Markmann
- Department for Biochemistry, Children's Hospital; University Medical Center Hamburg-Eppendorf; D-20246 Hamburg Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology; University of Bonn; Nussallee 11 D-53115 Bonn Germany
| | - Kerstin Cornils
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation; University Medical Center Hamburg-Eppendorf; D-20246 Hamburg Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg, ZMNH; University Medical Center Hamburg-Eppendorf; 20246 Hamburg Germany
| | - Nahal Brocke-Ahmadinejad
- Institute of Biochemistry and Molecular Biology; University of Bonn; Nussallee 11 D-53115 Bonn Germany
| | - Thomas Willnow
- Max Delbrück Center for Molecular Medicine; 13125 Berlin-Buch Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology; University Medical Center Hamburg-Eppendorf; D-20246 Hamburg Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology; University of Bonn; Nussallee 11 D-53115 Bonn Germany
| | - Thomas Braulke
- Department for Biochemistry, Children's Hospital; University Medical Center Hamburg-Eppendorf; D-20246 Hamburg Germany
| | - Katrin Kollmann
- Department for Biochemistry, Children's Hospital; University Medical Center Hamburg-Eppendorf; D-20246 Hamburg Germany
| |
Collapse
|
35
|
Surendran K, Vitiello SP, Pearce DA. Lysosome dysfunction in the pathogenesis of kidney diseases. Pediatr Nephrol 2014; 29:2253-61. [PMID: 24217784 PMCID: PMC4018427 DOI: 10.1007/s00467-013-2652-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022]
Abstract
The lysosome, an organelle central to macromolecule degradation and recycling, plays a pivotal role in normal cell processes, ranging from autophagy to redox regulation. Not surprisingly, lysosomes are an integral part of the renal epithelial molecular machinery that facilitates normal renal physiology. Two inherited diseases that manifest as kidney dysfunction are Fabry's disease and cystinosis, each of which is caused by a primary biochemical defect at the lysosome resulting from loss-of-function mutations in genes that encode lysosomal proteins. The functions of the lysosomes in the kidney and how lysosomal dysfunction might contribute to Fabry's disease and cystinosis are discussed. Unlike most other pediatric renal diseases, therapies are available for Fabry's disease and cystinosis, but require early diagnosis. Recent analysis of ceroid neuronal lipofuscinosis type 3 (Cln3) null mice, a mouse model of lysosomal disease that is primarily associated with neurological deficits, revealed renal functional abnormalities. As current and future therapeutics increase the life-span of those suffering from diseases like neuronal ceroid lipofuscinosis, it remains a distinct possibility that many more lysosomal disorders that primarily manifest as infant and juvenile neurodegenerative diseases may also include renal disease phenotypes.
Collapse
Affiliation(s)
- Kameswaran Surendran
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA,Department of Pediatrics, Sanford School of Medicine, Sioux Falls, SD 57104, USA
| | - Seasson P. Vitiello
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA,Augustana College, Sioux Falls, SD
| | - David A. Pearce
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA,Department of Pediatrics, Sanford School of Medicine, Sioux Falls, SD 57104, USA,Corresponding Author: David A. Pearce, Sanford Research/USD, 2301 East 60th Street North, Sioux Falls, SD, 57104-0589, Telephone: 605 312-6004, FAX: 605 312-6071,
| |
Collapse
|
36
|
Gaide Chevronnay HP, Janssens V, Van Der Smissen P, N'Kuli F, Nevo N, Guiot Y, Levtchenko E, Marbaix E, Pierreux CE, Cherqui S, Antignac C, Courtoy PJ. Time course of pathogenic and adaptation mechanisms in cystinotic mouse kidneys. J Am Soc Nephrol 2014; 25:1256-69. [PMID: 24525030 DOI: 10.1681/asn.2013060598] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cystinosis, a main cause of Fanconi syndrome, is reproduced in congenic C57BL/6 cystinosin knockout (KO) mice. To identify the sequence of pathogenic and adaptation mechanisms of nephropathic cystinosis, we defined the onset of Fanconi syndrome in KO mice between 3 and 6 months of age and analyzed the correlation with structural and functional changes in proximal tubular cells (PTCs), with focus on endocytosis of ultrafiltrated disulfide-rich proteins as a key source of cystine. Despite considerable variation between mice at the same age, typical event sequences were delineated. At the cellular level, amorphous lysosomal inclusions preceded cystine crystals and eventual atrophy without crystals. At the nephron level, lesions started at the glomerulotubular junction and then extended distally. In situ hybridization and immunofluorescence revealed progressive loss of expression of megalin, cubilin, sodium-glucose cotransporter 2, and type IIa sodium-dependent phosphate cotransporter, suggesting apical dedifferentiation accounting for Fanconi syndrome before atrophy. Injection of labeled proteins revealed that defective endocytosis in S1 PTCs led to partial compensatory uptake by S3 PTCs, suggesting displacement of endocytic load and injury by disulfide-rich cargo. Increased PTC apoptosis allowed luminal shedding of cystine crystals and was partially compensated for by tubular proliferation. We conclude that lysosomal storage triggered by soluble cystine accumulation induces apical PTC dedifferentiation, which causes transfer of the harmful load of disulfide-rich proteins to more distal cells, possibly explaining longitudinal progression of swan-neck lesions. Furthermore, our results suggest that subsequent adaptation mechanisms include lysosomal clearance of free and crystalline cystine into urine and ongoing tissue repair.
Collapse
Affiliation(s)
| | - Virginie Janssens
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Francisca N'Kuli
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Nathalie Nevo
- Inserm, U574, Hôpital Necker-Enfants Malades and Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Yves Guiot
- Pathology Department, Saint-Luc University Clinics, Brussels, Belgium
| | - Elena Levtchenko
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium; and
| | - Etienne Marbaix
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium; Pathology Department, Saint-Luc University Clinics, Brussels, Belgium
| | - Christophe E Pierreux
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Stéphanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, California
| | - Corinne Antignac
- Inserm, U574, Hôpital Necker-Enfants Malades and Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Raggi C, Luciani A, Nevo N, Antignac C, Terryn S, Devuyst O. Dedifferentiation and aberrations of the endolysosomal compartment characterize the early stage of nephropathic cystinosis. Hum Mol Genet 2013; 23:2266-78. [DOI: 10.1093/hmg/ddt617] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
39
|
Nielsen R, Mollet G, Esquivel EL, Weyer K, Nielsen PK, Antignac C, Christensen EI. Increased lysosomal proteolysis counteracts protein accumulation in the proximal tubule during focal segmental glomerulosclerosis. Kidney Int 2013; 84:902-10. [DOI: 10.1038/ki.2013.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 12/26/2022]
|
40
|
Govan JM, Uprety R, Thomas M, Lusic H, Lively MO, Deiters A. Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy. ACS Chem Biol 2013; 8:2272-82. [PMID: 23915424 DOI: 10.1021/cb400293e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is typically needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent, and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity.
Collapse
Affiliation(s)
- Jeane M. Govan
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Rajendra Uprety
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Meryl Thomas
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Hrvoje Lusic
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Mark O. Lively
- Wake Forest University School of Medicine, Center for Structural Biology, Winston-Salem,
North Carolina 27157, United States
| | - Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| |
Collapse
|
41
|
Govan JM, Young DD, Lusic H, Liu Q, Lively MO, Deiters A. Optochemical control of RNA interference in mammalian cells. Nucleic Acids Res 2013; 41:10518-28. [PMID: 24021631 PMCID: PMC3905849 DOI: 10.1093/nar/gkt806] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.
Collapse
Affiliation(s)
- Jeane M Govan
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA, Department of Chemistry, College of William & Mary, Williamsburg, VA 32187, USA, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hemphill J, Chou C, Chin JW, Deiters A. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 2013; 135:13433-9. [PMID: 23931657 DOI: 10.1021/ja4051026] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photocaging provides a method to spatially and temporally control biological function and gene expression with high resolution. Proteins can be photochemically controlled through the site-specific installation of caging groups on amino acid side chains that are essential for protein function. The photocaging of a synthetic gene network using unnatural amino acid mutagenesis in mammalian cells was demonstrated with an engineered bacteriophage RNA polymerase. A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and used in the photochemical activation of genes under control of an orthogonal T7 promoter, demonstrating tight spatial and temporal control. The synthetic gene expression system was validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered transcription of short hairpin RNA constructs for the induction of RNA interference.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
43
|
Chen C, Yang RL. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells. Braz J Med Biol Res 2013; 46:643-9. [PMID: 23903687 PMCID: PMC3854414 DOI: 10.1590/1414-431x20132979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/15/2013] [Indexed: 02/26/2023] Open
Abstract
MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid
culture of Pestalotiopsis photiniae isolated from the Chinese
Podocarpaceae plant Podocarpus macrophyllus. MP significantly
inhibited the proliferation of HeLa tumor cell lines. After treatment with MP,
characteristic apoptotic features such as DNA fragmentation and chromatin
condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP
induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western
blotting and real-time reverse transcription-polymerase chain reaction were used to
investigate protein and mRNA expression. MP caused significant cell cycle arrest by
upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and
p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was
increased after treatment with various MP concentrations. mRNA expression of the cell
cycle-related genes, p21CIP1, p16INK4a and Gadd45α, was significantly upregulated and mRNA levels
demonstrated significantly increased translation of p73,
JunB, FKHR, and Bim. The
results indicate that MP may be a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- C Chen
- College of Life Science, Hebei University, Baoding, China
| | | |
Collapse
|
44
|
Fervenza FC. A patient with nephrotic-range proteinuria and focal global glomerulosclerosis. Clin J Am Soc Nephrol 2013; 8:1979-87. [PMID: 23886564 DOI: 10.2215/cjn.03400313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A young male is evaluated for nephrotic-range proteinuria, hypercalciuria, and an elevated serum creatinine. A renal biopsy is performed and shows focal global glomerulosclerosis. The absence of nephrotic syndrome suggest that glomerulosclerosis was a secondary process. Further analysis of the proteinuria showed it to be due mainly to low-molecular weight proteins. The case illustrates the crucial role of electron microscopy as well as evaluation of the identity of the proteinuria that accompanies a biopsy finding of focal and global or focal and segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
45
|
Carpentier S, N'Kuli F, Grieco G, Van Der Smissen P, Janssens V, Emonard H, Bilanges B, Vanhaesebroeck B, Gaide Chevronnay HP, Pierreux CE, Tyteca D, Courtoy PJ. Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling. Traffic 2013; 14:933-48. [PMID: 23621784 DOI: 10.1111/tra.12079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/27/2022]
Abstract
Recycling is a limiting step for receptor-mediated endocytosis. We first report three in vitro or in vivo evidences that class III PI3K/VPS34 is the key PI3K isoform regulating apical recycling. A substractive approach, comparing in Opossum Kidney (OK) cells a pan-class I/II/III PI3K inhibitor (LY294002) with a class I/II PI3K inhibitor (ZSTK474), suggested that class III PI3K/VPS34 inhibition induced selective apical endosome swelling and sequestration of the endocytic receptor, megalin/LRP-2, causing surface down-regulation. GFP-(FYVE)x2 overexpression to sequester PI(3)P caused undistinguishable apical endosome swelling. In mouse kidney proximal tubular cells, conditional Vps34 inactivation also led to vacuolation and intracellular megalin redistribution. We next report that removal of LY294002 from LY294002-treated OK cells induced a spectacular burst of recycling tubules and restoration of megalin surface pool. Acute triggering of recycling tubules revealed recruitment of dynamin-GFP and dependence of dynamin-GTPase, guidance directionality by microtubules, and suggested that a microfilamentous net constrained endosomal swelling. We conclude that (i) besides its role in endosome fusion, PI3K-III is essential for endosome fission/recycling; and (ii) besides its role in endocytic entry, dynamin also supports tubulation of recycling endosomes. The unleashing of recycling upon acute reversal of PI3K inhibition may help study its dynamics and associated machineries.
Collapse
Affiliation(s)
- Sarah Carpentier
- CELL Unit, Université catholique de Louvain & de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients. Proc Natl Acad Sci U S A 2013; 110:7014-9. [PMID: 23572577 DOI: 10.1073/pnas.1302063110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled.
Collapse
|
47
|
Lee D, Gleich K, Fraser SA, Katerelos M, Mount PF, Power DA. Limited capacity of proximal tubular proteolysis in mice with proteinuria. Am J Physiol Renal Physiol 2013; 304:F1009-19. [PMID: 23344573 DOI: 10.1152/ajprenal.00601.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Albuminuria is associated with the additional loss in the urine of small molecular weight proteins normally degraded by the proximal convoluted tubule (PCT), and competition for binding to the megalin/cubilin reuptake system has been considered the likely cause. We have previously reported that deficiency of the intrinsic lysosomal protein Limp-2 causes tubular proteinuria due to reduced fusion of endosomes with lysosomes in the PCT leading to inadequate proteolysis. To determine whether this mechanism also contributes to the tubular proteinuria induced by albumin overload in normal mice, wild-type (WT) mice received daily BSA injections intraperitoneally for 10 days, using untreated Limp-2(-/-) mice as positive controls for inadequate proteolysis. BSA overload induced significant urinary loss of megalin and cubilin ligands in WT mice. Tubular uptake of Alexa-conjugated BSA, administered by intravenous injection, was not reduced in the PCT of mice receiving intraperitoneal BSA. Expression of the tubular protein receptor megalin was also unchanged. There was a delay in proteolysis of reabsorbed proteins in WT mice receiving BSA, evidenced by an increased quantity of retinol-binding protein (RBP) in the kidney cortex, increased basal distribution of endocytosed RBP in cells of the PCT, and persistence of exogenous Alexa-conjugated BSA and RBP after injection. Upregulation of cathepsin L and normal fusion of lysosomes with endosomes were apparently not sufficient to maintain normal clearance of endocytosed proteins. The data suggest that in the presence of competition from albumin overload, reabsorption of filtered proteins is limited by the capacity of lysosomal degradation rather than receptor-mediated endocytosis.
Collapse
Affiliation(s)
- D Lee
- Department of Nephrology, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Röchert AK, Pohl S, Lübke T, Michalski JC, Käkelä R, Walkley SU, Braulke T. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. ACTA ACUST UNITED AC 2012; 135:2661-75. [PMID: 22961545 DOI: 10.1093/brain/aws209] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mucolipidosis II is a neurometabolic lysosomal trafficking disorder of infancy caused by loss of mannose 6-phosphate targeting signals on lysosomal proteins, leading to lysosomal dysfunction and accumulation of non-degraded material. However, the identity of storage material and mechanisms of neurodegeneration in mucolipidosis II are unknown. We have generated 'knock-in' mice with a common mucolipidosis II patient mutation that show growth retardation, progressive brain atrophy, skeletal abnormalities, elevated lysosomal enzyme activities in serum, lysosomal storage in fibroblasts and brain and premature death, closely mimicking the mucolipidosis II disease in humans. The examination of affected mouse brains at different ages by immunohistochemistry, ultrastructural analysis, immunoblotting and mass spectrometric analyses of glycans and anionic lipids revealed that the expression and proteolytic processing of distinct lysosomal proteins such as α-l-fucosidase, β-hexosaminidase, α-mannosidase or Niemann-Pick C2 protein are more significantly impacted by the loss of mannose 6-phosphate residues than enzymes reaching lysosomes independently of this targeting mechanism. As a consequence, fucosylated N-glycans, GM2 and GM3 gangliosides, cholesterol and bis(monoacylglycero)phosphate accumulate progressively in the brain of mucolipidosis II mice. Prominent astrogliosis and the accumulation of organelles and storage material in focally swollen axons were observed in the cerebellum and were accompanied by a loss of Purkinje cells. Moreover, an increased neuronal level of the microtubule-associated protein 1 light chain 3 and the formation of p62-positive neuronal aggregates indicate an impairment of constitutive autophagy in the mucolipidosis II brain. Our findings demonstrate the essential role of mannose 6-phosphate for selected lysosomal proteins to maintain the capability for degradation of sequestered components in lysosomes and autophagolysosomes and prevent neurodegeneration. These lysosomal proteins might be a potential target for a valid therapeutic approach for mucolipidosis II disease.
Collapse
Affiliation(s)
- K Kollmann
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Luminal acidification is of pivotal importance for the physiology of the secretory and endocytic pathways and its diverse trafficking events. Acidification by the proton-pumping V-ATPase requires charge compensation by counterion currents that are commonly attributed to chloride. The molecular identification of intracellular chloride transporters and the improvement of methodologies for measuring intraorganellar pH and chloride have facilitated the investigation of the physiology of vesicular chloride transport. New data question the requirement of chloride for pH regulation of various organelles and furthermore ascribe functions to chloride that are beyond merely electrically shunting the proton pump. This review surveys the currently established and proposed intracellular chloride transporters and gives an overview of membrane-trafficking steps that are affected by the perturbation of chloride transport. Finally, potential mechanisms of membrane-trafficking modulation by chloride are discussed and put into the context of organellar ion homeostasis in general.
Collapse
Affiliation(s)
- Tobias Stauber
- Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany.
| | | |
Collapse
|
50
|
Hennings JC, Picard N, Huebner AK, Stauber T, Maier H, Brown D, Jentsch TJ, Vargas-Poussou R, Eladari D, Hübner CA. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol Med 2012; 4:1057-71. [PMID: 22933323 PMCID: PMC3491836 DOI: 10.1002/emmm.201201527] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 11/09/2022] Open
Abstract
The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co-localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co-operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V-ATPase and the pathophysiology of a4-related symptoms.
Collapse
|