1
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
2
|
Hay NM, Windham MD, Mandáková T, Lysak MA, Hendriks KP, Mummenhoff K, Lens F, Pryer KM, Bailey CD. A Hyb-Seq phylogeny of Boechera and related genera using a combination of Angiosperms353 and Brassicaceae-specific bait sets. AMERICAN JOURNAL OF BOTANY 2023; 110:e16226. [PMID: 37561651 DOI: 10.1002/ajb2.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
PREMISE Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.
Collapse
Affiliation(s)
- Nikolai M Hay
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Michael D Windham
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kasper P Hendriks
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
| | - Frederic Lens
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
3
|
Leal JL, Milesi P, Salojärvi J, Lascoux M. Phylogenetic Analysis of Allotetraploid Species Using Polarized Genomic Sequences. Syst Biol 2023; 72:372-390. [PMID: 36932679 PMCID: PMC10275558 DOI: 10.1093/sysbio/syad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/14/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Phylogenetic analysis of polyploid hybrid species has long posed a formidable challenge as it requires the ability to distinguish between alleles of different ancestral origins in order to disentangle their individual evolutionary history. This problem has been previously addressed by conceiving phylogenies as reticulate networks, using a two-step phasing strategy that first identifies and segregates homoeologous loci and then, during a second phasing step, assigns each gene copy to one of the subgenomes of an allopolyploid species. Here, we propose an alternative approach, one that preserves the core idea behind phasing-to produce separate nucleotide sequences that capture the reticulate evolutionary history of a polyploid-while vastly simplifying its implementation by reducing a complex multistage procedure to a single phasing step. While most current methods used for phylogenetic reconstruction of polyploid species require sequencing reads to be pre-phased using experimental or computational methods-usually an expensive, complex, and/or time-consuming endeavor-phasing executed using our algorithm is performed directly on the multiple-sequence alignment (MSA), a key change that allows for the simultaneous segregation and sorting of gene copies. We introduce the concept of genomic polarization that, when applied to an allopolyploid species, produces nucleotide sequences that capture the fraction of a polyploid genome that deviates from that of a reference sequence, usually one of the other species present in the MSA. We show that if the reference sequence is one of the parental species, the polarized polyploid sequence has a close resemblance (high pairwise sequence identity) to the second parental species. This knowledge is harnessed to build a new heuristic algorithm where, by replacing the allopolyploid genomic sequence in the MSA by its polarized version, it is possible to identify the phylogenetic position of the polyploid's ancestral parents in an iterative process. The proposed methodology can be used with long-read and short-read high-throughput sequencing data and requires only one representative individual for each species to be included in the phylogenetic analysis. In its current form, it can be used in the analysis of phylogenies containing tetraploid and diploid species. We test the newly developed method extensively using simulated data in order to evaluate its accuracy. We show empirically that the use of polarized genomic sequences allows for the correct identification of both parental species of an allotetraploid with up to 97% certainty in phylogenies with moderate levels of incomplete lineage sorting (ILS) and 87% in phylogenies containing high levels of ILS. We then apply the polarization protocol to reconstruct the reticulate histories of Arabidopsis kamchatica and Arabidopsis suecica, two allopolyploids whose ancestry has been well documented. [Allopolyploidy; Arabidopsis; genomic polarization; homoeologs; incomplete lineage sorting; phasing; polyploid phylogenetics; reticulate evolution.].
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
4
|
Li Y, Wang L, Zhang X, Kang H, Liu C, Mao L, Fang Y. Extensive sharing of chloroplast haplotypes among East Asian Cerris oaks: The imprints of shared ancestral polymorphism and introgression. Ecol Evol 2022; 12:e9142. [PMID: 35923946 PMCID: PMC9339761 DOI: 10.1002/ece3.9142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Shared ancestral polymorphism and introgression are two main causes of chloroplast DNA (cpDNA) haplotype sharing among closely related angiosperms. In this study, we explored the roles of these two processes in shaping the phylogeographic patterns of East Asian Cerris oaks by examining the geographic distributions of randomly and locally distributed shared haplotypes, which coincide with the expectations of shared ancestry and introgression, respectively. We sequenced 1340 bp of non-coding cpDNA from Quercus acutissima (n = 418) and Q. chenii (n = 183) and compiled previously published sequence data of Q. variabilis (n = 439). The phylogenetic relationships among haplotypes were examined using a median-joining network. The geographic patterns of interspecifically shared haplotypes were assessed to test whether nearby populations have a higher degree of interspecific cpDNA sharing than distant ones. We identified a total of 27 haplotypes that were grouped into three non-species-specific lineages with overlapping distributions. Ancestral haplotypes were extensively shared and randomly distributed across populations of the three species. Some young haplotypes were locally shared in mountainous areas that may have been shared refugia. The local exchange of cpDNA resulted in an excess of similar haplotypes between nearby populations. Our study demonstrated that the haplotype sharing pattern among East Asian Cerris oaks reflected the imprints of both shared ancestral polymorphism and introgression. This pattern was also associated with the relatively stable climates and complex landscapes in East Asia, which not only allowed the long-term persistence of ancestral lineages but also connected the survived populations across refugia.
Collapse
Affiliation(s)
- Yao Li
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Lu Wang
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Xingwang Zhang
- School of Life SciencesHuaibei Normal UniversityHuaibeiChina
| | - Hongzhang Kang
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Chunjiang Liu
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lingfeng Mao
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Yanming Fang
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| |
Collapse
|
5
|
Gieroń Ż, Sitko K, Zieleźnik-Rusinowska P, Szopiński M, Rojek-Jelonek M, Rostański A, Rudnicka M, Małkowski E. Ecophysiology of Arabidopsis arenosa, a new hyperaccumulator of Cd and Zn. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125052. [PMID: 33516105 DOI: 10.1016/j.jhazmat.2021.125052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis arenosa is a pseudo-metallophyte, closely related to the model hyperaccumulator of Cd and Zn Arabidopsis halleri. A. arenosa occurs naturally in both diploid (2C) and tetraploid (4C) form, in contrast to A. halleri in which only diploid forms were found. Moreover, A. arenosa similarly to A. halleri often occupies heavy metal (HM) contaminated sites. Nevertheless, knowledge about the ecophysiology of this species is very limited. Therefore, we examined fourteen populations of A. arenosa of different ploidy from Central Europe in situ, focusing on photosynthetic efficiency, pigment content and ability to accumulate selected elements. The presented results indicate that several tetraploid populations exhibit the features of Cd and Zn hyperaccumulation. On the one hand, we noted differences in physiological parameters between the studied populations, on the other, harshness of the environment caused similar physiological response such as high HM pollution. All these features suggest that A. arenosa, especially as a new hyperaccumulator of Cd and Zn and autopolyploidyzation model, may be considered a very interesting research object, particularly when investigating the mechanisms of HMs accumulation and tolerance in plants.
Collapse
Affiliation(s)
- Żaneta Gieroń
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Krzysztof Sitko
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Paulina Zieleźnik-Rusinowska
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Michał Szopiński
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Adam Rostański
- Botany and Nature Protection Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Małgorzata Rudnicka
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
6
|
Back G, Walther D. Identification of cis-regulatory motifs in first introns and the prediction of intron-mediated enhancement of gene expression in Arabidopsis thaliana. BMC Genomics 2021; 22:390. [PMID: 34039279 PMCID: PMC8157754 DOI: 10.1186/s12864-021-07711-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intron mediated enhancement (IME) is the potential of introns to enhance the expression of its respective gene. This essential function of introns has been observed in a wide range of species, including fungi, plants, and animals. However, the mechanisms underlying the enhancement are as of yet poorly understood. The goal of this study was to identify potential IME-related sequence motifs and genomic features in first introns of genes in Arabidopsis thaliana. RESULTS Based on the rationale that functional sequence motifs are evolutionarily conserved, we exploited the deep sequencing information available for Arabidopsis thaliana, covering more than one thousand Arabidopsis accessions, and identified 81 candidate hexamer motifs with increased conservation across all accessions that also exhibit positional occurrence preferences. Of those, 71 were found associated with increased correlation of gene expression of genes harboring them, suggesting a cis-regulatory role. Filtering further for effect on gene expression correlation yielded a set of 16 hexamer motifs, corresponding to five consensus motifs. While all five motifs represent new motif definitions, two are similar to the two previously reported IME-motifs, whereas three are altogether novel. Both consensus and hexamer motifs were found associated with higher expression of alleles harboring them as compared to alleles containing mutated motif variants as found in naturally occurring Arabidopsis accessions. To identify additional IME-related genomic features, Random Forest models were trained for the classification of gene expression level based on an array of sequence-related features. The results indicate that introns contain information with regard to gene expression level and suggest sequence-compositional features as most informative, while position-related features, thought to be of central importance before, were found with lower than expected relevance. CONCLUSIONS Exploiting deep sequencing and broad gene expression information and on a genome-wide scale, this study confirmed the regulatory role on first-introns, characterized their intra-species conservation, and identified a set of novel sequence motifs located in first introns of genes in the genome of the plant Arabidopsis thaliana that may play a role in inducing high and correlated gene expression of the genes harboring them.
Collapse
Affiliation(s)
- Georg Back
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| |
Collapse
|
7
|
Basiri E, Jafari Marandi S, Arbabian S, Majd A, Malboobi MA. Development of male and female gametophytes and embryogenesis in the Arabidopsis thaliana. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. Proc Natl Acad Sci U S A 2020; 117:8980-8988. [PMID: 32273390 PMCID: PMC7183234 DOI: 10.1073/pnas.1919459117] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genome duplication is an important factor in the evolution of eukaryotic lineages, but it poses challenges for the regular segregation of chromosomes in meiosis and thus fertility. To survive, polyploid lineages must evolve to overcome initial challenges that accompany doubling the chromosome complement. Understanding how evolution can solve the challenge of segregating multiple homologous chromosomes promises fundamental insights into the mechanisms of genome maintenance and could open polyploidy as a crop improvement tool. We previously identified candidate genes for meiotic stabilization of Arabidopsis arenosa, which has natural diploid and tetraploid variants. Here we test the role that derived alleles of two genes under selection in tetraploid A. arenosa might have in meiotic stabilization in tetraploids. Polyploidy, which results from whole genome duplication (WGD), has shaped the long-term evolution of eukaryotic genomes in all kingdoms. Polyploidy is also implicated in adaptation, domestication, and speciation. Yet when WGD newly occurs, the resulting neopolyploids face numerous challenges. A particularly pernicious problem is the segregation of multiple chromosome copies in meiosis. Evolution can overcome this challenge, likely through modification of chromosome pairing and recombination to prevent deleterious multivalent chromosome associations, but the molecular basis of this remains mysterious. We study mechanisms underlying evolutionary stabilization of polyploid meiosis using Arabidopsis arenosa, a relative of A. thaliana with natural diploid and meiotically stable autotetraploid populations. Here we investigate the effects of ancestral (diploid) versus derived (tetraploid) alleles of two genes, ASY1 and ASY3, that were among several meiosis genes under selection in the tetraploid lineage. These genes encode interacting proteins critical for formation of meiotic chromosome axes, long linear multiprotein structures that form along sister chromatids in meiosis and are essential for recombination, chromosome segregation, and fertility. We show that derived alleles of both genes are associated with changes in meiosis, including reduced formation of multichromosome associations, reduced axis length, and a tendency to more rod-shaped bivalents in metaphase I. Thus, we conclude that ASY1 and ASY3 are components of a larger multigenic solution to polyploid meiosis in which individual genes have subtle effects. Our results are relevant for understanding polyploid evolution and more generally for understanding how meiotic traits can evolve when faced with challenges.
Collapse
|
9
|
Armstrong JJ, Takebayashi N, Wolf DE. Cold tolerance in the genus Arabidopsis. AMERICAN JOURNAL OF BOTANY 2020; 107:489-497. [PMID: 32096224 PMCID: PMC7137905 DOI: 10.1002/ajb2.1442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/02/2020] [Indexed: 05/11/2023]
Abstract
PREMISE Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution. METHODS This study examines cold tolerance within and among species in the genus Arabidopsis. We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of five Arabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT50 ). RESULTS We found variability within and among taxa in cold tolerance. There was no significant within-species relationship between latitude and cold tolerance. However, the northern taxa, A. kamchatica, A. lyrata subsp. petraea, and A. lyrata subsp. lyrata, were more cold tolerant than A. thaliana and A. halleri subsp. gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant for A. halleri subsp. gemmifera. For all taxa except A. lyrata subsp. lyrata, the LT50 values for cold-acclimated plants were higher than the January mean daily minimum temperature (Tmin ), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range. CONCLUSIONS Arabidopsis lyrata and A. kamchatica were far more cold tolerant than A. thaliana. These extremely cold-tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.
Collapse
Affiliation(s)
- Jessica J. Armstrong
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- University of Alaska Fairbanks, eCampus, P. O. Box 756700,
Fairbanks, AK 99775 USA
| | - Naoki Takebayashi
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
| | - Diana E. Wolf
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- Author for correspondence
()
| |
Collapse
|
10
|
Perlaza-Jiménez L, Walther D. A genome-wide scan for correlated mutations detects macromolecular and chromatin interactions in Arabidopsis thaliana. Nucleic Acids Res 2018; 46:8114-8132. [PMID: 29986106 PMCID: PMC6144803 DOI: 10.1093/nar/gky576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023] Open
Abstract
The concept of exploiting correlated mutations has been introduced and applied successfully to identify interactions within and between biological macromolecules. Its rationale lies in the preservation of physical interactions via compensatory mutations. With the massive increase of available sequence information, approaches based on correlated mutations have regained considerable attention. We analyzed a set of 10 707 430 single nucleotide polymorphisms detected in 1135 accessions of the plant Arabidopsis thaliana. To measure their covariance and to reveal the global genome-wide sequence correlation structure of the Arabidopsis genome, the adjusted mutual information has been estimated for each possible pair of polymorphic sites. We developed a series of filtering steps to account for genetic linkage and lineage relations between Arabidopsis accessions, as well as transitive covariance as possible confounding factors. We show that upon appropriate filtering, correlated mutations prove indeed informative with regard to molecular interactions, and furthermore, appear to reflect on chromosomal interactions. Our study demonstrates that the concept of correlated mutations can also be applied successfully to within-species sequence variation and establishes a promising approach to help unravel the complex molecular interactions in A. thaliana and other species with broad sequence information.
Collapse
Affiliation(s)
- Laura Perlaza-Jiménez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
11
|
Fulgione A, Hancock AM. Archaic lineages broaden our view on the history of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 219:1194-1198. [PMID: 29862511 DOI: 10.1111/nph.15244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 05/15/2023]
Abstract
Contents Summary 1194 I. Introduction 1194 II. Origin of the A. thaliana species 1194 III. The classic model of the history of A. thaliana 1195 IV. New genomic data from outside Eurasia challenge our view of A. thaliana history 1195 V. Conclusions 1197 Acknowledgements 1197 References 1197 SUMMARY: Natural variation in Arabidopsis thaliana has contributed to discoveries in diverse areas of plant biology. While A. thaliana has typically been considered a weed associated primarily with human-mediated environments, including agricultural and urban sites and railways, it has recently been shown that it is also native in remote natural areas, including high altitude sites in Eurasia and Africa, from the Atlas mountains in Morocco to the afro-alpine regions in Eastern and South Africa to Yunnan in China, the Himalayas and the Tibetan Plateau. This finding suggests that while A. thaliana has been extensively studied in Europe and Western Asia there are still many open questions about its population history, genotype-phenotype relationships and mechanisms of adaptation.
Collapse
Affiliation(s)
- Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
12
|
Buckley J, Holub EB, Koch MA, Vergeer P, Mable BK. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 2018; 19:496. [PMID: 29945543 PMCID: PMC6020377 DOI: 10.1186/s12864-018-4806-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 11/22/2022] Open
Abstract
Background Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts. Electronic supplementary material The online version of this article (10.1186/s12864-018-4806-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. .,Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, D69120, Heidelberg, Germany
| | - Philippine Vergeer
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O.Box 47, 6700, AA, Wageningen, The Netherlands
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
13
|
Hosaka A, Saito R, Takashima K, Sasaki T, Fu Y, Kawabe A, Ito T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T. Evolution of sequence-specific anti-silencing systems in Arabidopsis. Nat Commun 2017; 8:2161. [PMID: 29255196 PMCID: PMC5735166 DOI: 10.1038/s41467-017-02150-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
The arms race between parasitic sequences and their hosts is a major driving force for evolution of gene control systems. Since transposable elements (TEs) are potentially deleterious, eukaryotes silence them by epigenetic mechanisms such as DNA methylation. Little is known about how TEs counteract silencing to propagate during evolution. Here, we report behavior of sequence-specific anti-silencing proteins used by Arabidopsis TEs and evolution of those proteins and their target sequences. We show that VANC, a TE-encoded anti-silencing protein, induces extensive DNA methylation loss throughout TEs. Related VANC proteins have evolved to hypomethylate TEs of completely different spectra. Targets for VANC proteins often form tandem repeats, which vary considerably between related TEs. We propose that evolution of VANC proteins and their targets allow propagation of TEs while causing minimal host damage. Our findings provide insight into the evolutionary dynamics of these apparently "selfish" sequences. They also provide potential tools to edit epigenomes in a sequence-specific manner.
Collapse
Affiliation(s)
- Aoi Hosaka
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan.
| | - Raku Saito
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Kazuya Takashima
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Taku Sasaki
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yu Fu
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Akira Kawabe
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama Kamigamo, Kyoto, 606-8555, Japan
| | - Tasuku Ito
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
14
|
Bothe H, Słomka A. Divergent biology of facultative heavy metal plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:45-61. [PMID: 29028613 DOI: 10.1016/j.jplph.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/04/2023]
Abstract
Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9 Str., 30-387 Cracow, Poland.
| |
Collapse
|
15
|
Hohmann N, Koch MA. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes. BMC Genomics 2017; 18:810. [PMID: 29058582 PMCID: PMC5651623 DOI: 10.1186/s12864-017-4220-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Background Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Results Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Conclusions Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4220-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Hohmann
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,Present address: Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - Marcus A Koch
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Sitko K, Rusinowski S, Kalaji HM, Szopiński M, Małkowski E. Photosynthetic Efficiency as Bioindicator of Environmental Pressure in A. halleri. PLANT PHYSIOLOGY 2017; 175:290-302. [PMID: 28455400 PMCID: PMC5580744 DOI: 10.1104/pp.17.00212] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/26/2017] [Indexed: 05/20/2023]
Abstract
In earlier ecophysiological studies that were conducted on Arabidopsis halleri plants, scientists focused on the mechanisms of Cd and Zn hyperaccumulation but did not take into consideration the environmental factors that can significantly affect the physiological responses of plants in situ. In this study, we investigated A. halleri that was growing on two nonmetalliferous and three metalliferous sites, which were characterized by different environmental conditions. We compared these populations in order to find differences within the metallicolous and nonmetallicolous groups that have not yet been investigated. The concentrations of several elements in the plant and soil samples also were investigated. To our knowledge, the concentration and fluorescence of chlorophyll were measured for A. halleri in situ for the first time. Our study confirmed the hyperaccumulation of Cd and Zn for each metallicolous population. For the metallicolous populations, the inhibition of parameters that describe the efficiency of the photosynthetic apparatus with increasing accumulations of heavy metals in the shoots also was observed. It was found that the nonmetallicolous plant populations from the summit of Ciemniak Mountain had larger antenna dimensions and chlorophyll content but a lower percentage of active reaction centers. To our knowledge, in this study, the internal high physiological diversity within the populations that inhabit metalliferous and nonmetalliferous sites is presented for the first time.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | | | - Hazem M Kalaji
- SI Technology, 01-460 Warsaw, Poland
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland
| | - Michał Szopiński
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Eugeniusz Małkowski
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
17
|
Zhu W, Hu B, Becker C, Doğan ES, Berendzen KW, Weigel D, Liu C. Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol 2017; 18:157. [PMID: 28830561 PMCID: PMC5568265 DOI: 10.1186/s13059-017-1281-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The merging of two diverged genomes can result in hybrid offspring that phenotypically differ greatly from both parents. In plants, interspecific hybridization plays important roles in evolution and speciation. In addition, many agricultural and horticultural species are derived from interspecific hybridization. However, the detailed mechanisms responsible for non-additive phenotypic novelty in hybrids remain elusive. RESULTS In an interspecific hybrid between Arabidopsis thaliana and A. lyrata, the vast majority of genes that become upregulated or downregulated relative to the parents originate from A. thaliana. Among all differentially expressed A. thaliana genes, the majority is downregulated in the hybrid. To understand why parental origin affects gene expression in this system, we compare chromatin packing patterns and epigenomic landscapes in the hybrid and parents. We find that the chromatin of A. thaliana, but not that of A. lyrata, becomes more compact in the hybrid. Parental patterns of DNA methylation and H3K27me3 deposition are mostly unaltered in the hybrid, with the exception of higher CHH DNA methylation in transposon-rich regions. However, A. thaliana genes enriched for the H3K27me3 mark are particularly likely to differ in expression between the hybrid and parent. CONCLUSIONS It has long been suspected that genome-scale properties cause the differential responses of genes from one or the other parent to hybridization. Our work links global chromatin compactness and H3K27me3 histone modification to global differences in gene expression in an interspecific Arabidopsis hybrid.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Bo Hu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany.,Present Address: Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria
| | - Ezgi Süheyla Doğan
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Kenneth Wayne Berendzen
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany.
| | - Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany. .,Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany.
| |
Collapse
|
18
|
Asaf S, Khan AL, Khan MA, Waqas M, Kang SM, Yun BW, Lee IJ. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis. Sci Rep 2017; 7:7556. [PMID: 28790364 PMCID: PMC5548756 DOI: 10.1038/s41598-017-07891-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/05/2017] [Indexed: 11/26/2022] Open
Abstract
We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.
Collapse
Affiliation(s)
- Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abdul Latif Khan
- Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
19
|
Stein RJ, Höreth S, de Melo JRF, Syllwasschy L, Lee G, Garbin ML, Clemens S, Krämer U. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. THE NEW PHYTOLOGIST 2017; 213:1274-1286. [PMID: 27735064 PMCID: PMC5248639 DOI: 10.1111/nph.14219] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Leaf mineral composition, the leaf ionome, reflects the complex interaction between a plant and its environment including local soil composition, an influential factor that can limit species distribution and plant productivity. Here we addressed within-species variation in plant-soil interactions and edaphic adaptation using Arabidopsis halleri, a well-suited model species as a facultative metallophyte and metal hyperaccumulator. We conducted multi-element analysis of 1972 paired leaf and soil samples from 165 European populations of A. halleri, at individual resolution to accommodate soil heterogeneity. Results were further confirmed under standardized conditions upon cultivation of 105 field-collected genotypes on an artificially metal-contaminated soil in growth chamber experiments. Soil-independent between- and within-population variation set apart leaf accumulation of zinc, cadmium and lead from all other nutrient and nonessential elements, concurring with differential hypothesized ecological roles in either biotic interaction or nutrition. For these metals, soil-leaf relationships were element-specific, differed between metalliferous and nonmetalliferous soils and were geographically structured both in the field and under standardized growth conditions, implicating complex scenarios of recent ecological adaptation. Our study provides an example and a reference for future related work and will serve as a basis for the molecular-genetic dissection and ecological analysis of the observed phenotypic variation.
Collapse
Affiliation(s)
- Ricardo J. Stein
- Department of Plant PhysiologyRuhr University BochumUniversitätsstrasse 150 ND3/30D‐44801BochumGermany
| | - Stephan Höreth
- Department of Plant PhysiologyUniversity of BayreuthUniversitätsstrasse 30D‐95440BayreuthGermany
- Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthUniversitätsstrasse 30D‐95440BayreuthGermany
| | - J. Romário F. de Melo
- Department of Plant PhysiologyRuhr University BochumUniversitätsstrasse 150 ND3/30D‐44801BochumGermany
| | - Lara Syllwasschy
- Department of Plant PhysiologyRuhr University BochumUniversitätsstrasse 150 ND3/30D‐44801BochumGermany
| | - Gwonjin Lee
- Department of Plant PhysiologyRuhr University BochumUniversitätsstrasse 150 ND3/30D‐44801BochumGermany
| | - Mário L. Garbin
- Programa de Pós‐Graduação em Ecologia de EcossistemasUniversidade Vila VelhaRua Comissário José Dantas de MeloBoa Vista29102‐770Vila VelhaEspírito SantoBrasil
| | - Stephan Clemens
- Department of Plant PhysiologyUniversity of BayreuthUniversitätsstrasse 30D‐95440BayreuthGermany
- Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthUniversitätsstrasse 30D‐95440BayreuthGermany
| | - Ute Krämer
- Department of Plant PhysiologyRuhr University BochumUniversitätsstrasse 150 ND3/30D‐44801BochumGermany
| |
Collapse
|
20
|
Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc Natl Acad Sci U S A 2017; 114:E1027-E1035. [PMID: 28115687 DOI: 10.1073/pnas.1615123114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the biological species concept, two species are considered distinct if reproductive barriers prevent gene flow between them. In Central Europe, the diploid species Arabidopsis lyrata and Arabidopsis arenosa are genetically isolated, thus fitting this concept as "good species." Nonetheless, interspecific gene flow involving their tetraploid forms has been described. The reasons for this ploidy-dependent reproductive isolation remain unknown. Here, we show that hybridization between diploid A. lyrata and A. arenosa causes mainly inviable seed formation, revealing a strong postzygotic reproductive barrier separating these two species. Although viability of hybrid seeds was impaired in both directions of hybridization, the cause for seed arrest differed. Hybridization of A. lyrata seed parents with A. arenosa pollen donors resulted in failure of endosperm cellularization, whereas the endosperm of reciprocal hybrids cellularized precociously. Endosperm cellularization failure in both hybridization directions is likely causal for the embryo arrest. Importantly, natural tetraploid A. lyrata was able to form viable hybrid seeds with diploid and tetraploid A. arenosa, associated with the reestablishment of normal endosperm cellularization. Conversely, the defects of hybrid seeds between tetraploid A. arenosa and diploid A. lyrata were aggravated. According to these results, we hypothesize that a tetraploidization event in A. lyrata allowed the production of viable hybrid seeds with A. arenosa, enabling gene flow between the two species.
Collapse
|
21
|
Design and validation of sixteen single nucleotide polymorphism to investigate plastid DNA sequence variation in Noccaea caerulescens (Brassicaceae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0622-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Xia S, Wang Z, Zhang H, Hu K, Zhang Z, Qin M, Dun X, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Altered Transcription and Neofunctionalization of Duplicated Genes Rescue the Harmful Effects of a Chimeric Gene in Brassica napus. THE PLANT CELL 2016; 28:2060-2078. [PMID: 27559024 PMCID: PMC5059798 DOI: 10.1105/tpc.16.00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/24/2016] [Indexed: 05/04/2023]
Abstract
Chimeric genes contribute to the evolution of diverse functions in plants and animals. However, new chimeric genes also increase the risk of developmental defects. Here, we show that the chimeric gene Brassica napus male sterile 4 (Bnams4b ) is responsible for genic male sterility in the widely used canola line 7365A (Bnams3 ms3ms4bms4b ). Bnams4b originated via exon shuffling ∼4.6 million years ago. It causes defects in the normal functions of plastids and induces aborted anther formation and/or albino leaves and buds. Evidence of the age of the mutation, its tissue expression pattern, and its sublocalization indicated that it coevolved with BnaC9.Tic40 (BnaMs3). In Arabidopsis thaliana, Bnams4b results in complete male sterility that can be rescued by BnaC9.Tic40, suggesting that BnaC9.Tic40 might restore fertility through effects on protein level. Another suppressor gene, Bnams4a , rescues sterility by reducing the level of transcription of Bnams4b Our results suggest that Brassica plants have coevolved altered transcription patterns and neofunctionalization of duplicated genes that can block developmental defects resulting from detrimental chimeric genes.
Collapse
Affiliation(s)
- Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, Kudoh H, Marhold K. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant modelArabidopsis arenosa. Mol Ecol 2016; 25:3929-49. [DOI: 10.1111/mec.13721] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Filip Kolář
- Natural History Museum; University of Oslo; PO Box 1172 Blindern Oslo NO-0318 Norway
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Gabriela Fuxová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Eliška Záveská
- Institute of Botany; University of Innsbruck; Innsbruck AT-6020 Austria
| | - Atsushi J. Nagano
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
- Faculty of Agriculture; Ryukoku University; Shiga JP-612-8577 Japan
- JST PRESTO; Saitama JP-332-0012 Japan
| | - Lucie Hyklová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Magdalena Lučanová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Hiroshi Kudoh
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
| | - Karol Marhold
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; Slovak Academy of Sciences; Bratislava SK-845 23 Slovak Republic
| |
Collapse
|
24
|
Abstract
Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment.
Collapse
|
25
|
Buckley J, Kilbride E, Cevik V, Vicente JG, Holub EB, Mable BK. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol Biol 2016; 16:93. [PMID: 27150007 PMCID: PMC4858910 DOI: 10.1186/s12862-016-0665-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Examining allelic variation of R-genes in closely related perennial species of Arabidopsis thaliana is critical to understanding how population structure and ecology interact with selection to shape the evolution of innate immunity in plants. We finely sampled natural populations of Arabidopsis lyrata from the Great Lakes region of North America (A. l. lyrata) and broadly sampled six European countries (A. l. petraea) to investigate allelic variation of two R-genes (RPM1 and WRR4) and neutral genetic markers (Restriction Associated DNA sequences and microsatellites) in relation to mating system, phylogeographic structure and subspecies divergence. Results Fine-scale sampling of populations revealed strong effects of mating system and population structure on patterns of polymorphism for both neutral loci and R-genes, with no strong evidence for selection. Broad geographic sampling revealed evidence of balancing selection maintaining polymorphism in R-genes, with elevated heterozygosity and diversity compared to neutral expectations and sharing of alleles among diverged subspecies. Codon-based tests detected both positive and purifying selection for both R-genes, as commonly found for animal immune genes. Conclusions Our results highlight that combining fine and broad-scale sampling strategies can reveal the multiple factors influencing polymorphism and divergence at potentially adaptive genes such as R-genes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0665-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. .,Current address: Center for Adaptation to a Changing Environment, ETH Zurich, Zurich, 8092, Switzerland.
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Volkan Cevik
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK.,Current address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR47UH, UK
| | - Joana G Vicente
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK
| | - Eric B Holub
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
26
|
Wasowicz P, Pauwels M, Pasierbinski A, Przedpelska-Wasowicz EM, Babst-Kostecka AA, Saumitou-Laprade P, Rostanski A. Phylogeography of Arabidopsis halleri (Brassicaceae) in mountain regions of Central Europe inferred from cpDNA variation and ecological niche modelling. PeerJ 2016; 4:e1645. [PMID: 26835186 PMCID: PMC4734066 DOI: 10.7717/peerj.1645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to investigate phylogeographical patterns present within A. halleri in Central Europe. 1,281 accessions sampled from 52 populations within the investigated area were used in the study of genetic variation based on chloroplast DNA. Over 500 high-quality species occurrence records were used in ecological niche modelling experiments. We evidenced the presence of a clear phylogeographic structure within A. halleri in Central Europe. Our results showed that two genetically different groups of populations are present in western and eastern part of the Carpathians. The hypothesis of the existence of a glacial refugium in the Western Carpathians adn the Bohemian Forest cannot be rejected from our data. It seems, however, that the evidence collected during the present study is not conclusive. The area of Sudetes was colonised after LGM probably by migrants from the Bohemian Forest.
Collapse
Affiliation(s)
- Pawel Wasowicz
- Icelandic Institute of Natural History, Iceland
- Faculty of Biology and Environmental Protection, Department of Botany and Nature Protection, University of Silesia, Katowice, Poland
| | - Maxime Pauwels
- Unité Evo-Eco-Paléo (EEP)—UMR 8198, Université de Lille—Sciences et Technologies, CNRS, Villeneuve d’Ascq, France
| | - Andrzej Pasierbinski
- Faculty of Biology and Environmental Protection, Department of Botany and Nature Protection, University of Silesia, Katowice, Poland
| | | | | | - Pierre Saumitou-Laprade
- Unité Evo-Eco-Paléo (EEP)—UMR 8198, Université des Sciences et Technologies de Lille (Lille I), Villeneuve d’Ascq, France
| | - Adam Rostanski
- Faculty of Biology and Environmental Protection, Department of Botany and Nature Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
27
|
Bomblies K, Higgins JD, Yant L. Meiosis evolves: adaptation to external and internal environments. THE NEW PHYTOLOGIST 2015; 208:306-23. [PMID: 26075313 DOI: 10.1111/nph.13499] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/03/2015] [Indexed: 05/23/2023]
Abstract
306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James D Higgins
- Department of Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Levi Yant
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Hohmann N, Wolf EM, Lysak MA, Koch MA. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History. THE PLANT CELL 2015; 27:2770-84. [PMID: 26410304 PMCID: PMC4682323 DOI: 10.1105/tpc.15.00482] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/13/2015] [Accepted: 09/05/2015] [Indexed: 05/18/2023]
Abstract
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.
Collapse
Affiliation(s)
- Nora Hohmann
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Eva M Wolf
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Ricachenevsky FK, Menguer PK, Sperotto RA, Fett JP. Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:1-17. [PMID: 26025516 DOI: 10.1016/j.plantsci.2015.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 05/20/2023]
Abstract
Zinc (Zn) is an essential micronutrient for all organisms, with key catalytic and structural functions. Zn deficiency in plants, common in alkaline soils, results in growth arrest and sterility. On the other hand, Zn can become toxic at elevated concentrations. Several studies revealed molecules involved with metal acquisition in roots, distribution within the plant and translocation to seeds. Transmembrane Zn transport proteins and Zn chelators are involved in avoiding its toxic effects. Plant species with the capacity to hyperaccumulate and hypertolerate Zn have been characterized. Plants that accumulate and tolerate high amounts of Zn and produce abundant biomass may be useful for phytoremediation, allowing cleaning of metal-contaminated soils. The study of Zn hyperaccumulators may provide indications of genes and processes useful for biofortification, for developing crops with high amounts of nutrients in edible tissues. Future research needs to focus on functional characterization of Zn transporters in planta, elucidation of Zn uptake and sensing mechanisms, and on understanding the cross-talk between Zn homeostasis and other physiological processes. For this, new research should use multidisciplinary approaches, combining traditional and emerging techniques, such as genome-encoded metal sensors and multi-element imaging, quantification and speciation using synchrotron-based methods.
Collapse
Affiliation(s)
- Felipe Klein Ricachenevsky
- Centro de Biotecnologia & Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Paloma Koprovski Menguer
- Centro de Biotecnologia & Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; John Innes Centre, Norwich, United Kingdom.
| | - Raul Antonio Sperotto
- Centro de Ciências Biológicas e da Saúde & Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, RS, Brazil.
| | - Janette Palma Fett
- Centro de Biotecnologia & Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Koenig D, Weigel D. Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nat Rev Genet 2015; 16:285-98. [DOI: 10.1038/nrg3883] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Krämer U. Planting molecular functions in an ecological context with Arabidopsis thaliana. eLife 2015; 4:e06100. [PMID: 25807084 PMCID: PMC4373673 DOI: 10.7554/elife.06100] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
The vascular plant Arabidopsis thaliana is a central genetic model and universal reference organism in plant and crop science. The successful integration of different fields of research in the study of A. thaliana has made a large contribution to our molecular understanding of key concepts in biology. The availability and active development of experimental tools and resources, in combination with the accessibility of a wealth of cumulatively acquired knowledge about this plant, support the most advanced systems biology approaches among all land plants. Research in molecular ecology and evolution has also brought the natural history of A. thaliana into the limelight. This article showcases our current knowledge of the natural history of A. thaliana from the perspective of the most closely related plant species, providing an evolutionary framework for interpreting novel findings and for developing new hypotheses based on our knowledge of this plant.
Collapse
Affiliation(s)
- Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
32
|
Kazemi-Dinan A, Sauer J, Stein RJ, Krämer U, Müller C. Is there a trade-off between glucosinolate-based organic and inorganic defences in a metal hyperaccumulator in the field? Oecologia 2015; 178:369-78. [DOI: 10.1007/s00442-014-3218-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/31/2014] [Indexed: 11/30/2022]
|
33
|
Hohmann N, Schmickl R, Chiang TY, Lučanová M, Kolář F, Marhold K, Koch MA. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol Biol 2014; 14:224. [PMID: 25344686 PMCID: PMC4216345 DOI: 10.1186/s12862-014-0224-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. RESULTS Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. CONCLUSIONS Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.
Collapse
Affiliation(s)
- Nora Hohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| | - Roswitha Schmickl
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, Cheng-Kung University, Tainan, Taiwan.
| | - Magdalena Lučanová
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Filip Kolář
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Karol Marhold
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Institute of Botany Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-845 23, Slovakia.
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| |
Collapse
|
34
|
LI YAN, KONG YAN, ZHANG ZHE, YIN YANQIANG, LIU BIN, LV GUANGHUI, WANG XIYONG. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. J Genet 2014; 93:313-23. [DOI: 10.1007/s12041-014-0362-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
One or three species in Megadenia (Brassicaceae): insight from molecular studies. Genetica 2014; 142:337-50. [PMID: 25027851 DOI: 10.1007/s10709-014-9778-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Megadenia Maxim. is a small genus of the Brassicaceae endemic to East Asia with three disjunct areas of distribution: the eastern edge of the Qinghai-Tibetan Plateau, the Eastern Sayan Mountains in southern Siberia, and Chandalaz Ridge in the southern Sikhote-Alin Mountains. Although distinct species (M. pygmaea Maxim., M. bardunovii Popov, and M. speluncarum Vorob., Vorosch. and Gorovoj) have been described from each area, they have lately been reduced to synonymy with M. pygmaea due to high morphological similarity. Here, we present the first molecular study of Megadenia. Using the sequences of 11 noncoding regions from the cytoplasmic (chloroplast and mitochondrial) and nuclear genomes, we assessed divergence within the genus and explored the relationships between Megadenia and Biscutella L. Although M. bardunovii, M. speluncarum, and M. pygmaea were found to be indiscernible with regard to the nuclear and mitochondrial markers studied, our data on the plastid genome revealed their distinctness and a clear subdivision of the genus into three lineages matching the three described species. All of the phylogenetic analyses of the chloroplast DNA sequences provide strong support for the inclusion of Megadenia and Biscutella in the tribe Biscutelleae. A dating analysis shows that the genus Megadenia is of Miocene origin and diversification within the genus, which has led to the three extant lineages, most likely occurred during the Early-Middle Pleistocene, in agreement with the vicariance pattern. Given the present-day distribution, differences in habitat preferences and in some anatomical traits, and lack of a direct genealogical relationship, M. pygmaea, M. bardunovii, and M. speluncarum should be treated as distinct species or at least subspecies.
Collapse
|
36
|
|
37
|
Nguyen NNT, Ranwez V, Vile D, Soulié MC, Dellagi A, Expert D, Gosti F. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack. FRONTIERS IN PLANT SCIENCE 2014; 5:70. [PMID: 24653728 PMCID: PMC3949115 DOI: 10.3389/fpls.2014.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/10/2014] [Indexed: 05/25/2023]
Abstract
Multigenic families of Plant Defensin type 1 (PDF1) have been described in several species, including the model plant Arabidopsis thaliana as well as zinc tolerant and hyperaccumulator A. halleri. In A. thaliana, PDF1 transcripts (AtPDF1) accumulate in response to pathogen attack following synergic activation of ethylene/jasmonate pathways. However, in A. halleri, PDF1 transcripts (AhPDF1) are constitutively highly accumulated. Through an evolutionary approach, we investigated the possibility of A. halleri or A. thaliana species specialization in different PDF1s in conveying zinc tolerance and/or the response to pathogen attack via activation of the jasmonate (JA) signaling pathway. The accumulation of each PDF1 from both A. halleri and A. thaliana was thus compared in response to zinc excess and MeJA application. In both species, PDF1 paralogues were barely or not at all responsive to zinc. However, regarding the PDF1 response to JA signaling activation, A. thaliana had a higher number of PDF1s responding to JA signaling activation. Remarkably, in A. thaliana, a slight but significant increase in zinc tolerance was correlated with activation of the JA signaling pathway. In addition, A. halleri was found to be more tolerant to the necrotrophic pathogen Botrytis cinerea than A. thaliana. Since PDF1s are known to be promiscuous antifungal proteins able to convey zinc tolerance, we propose, on the basis of the findings of this study, that high constitutive PDF1 transcript accumulation in A. halleri is a potential way to skip the JA signaling activation step required to increase the PDF1 transcript level in the A. thaliana model species. This could ultimately represent an adaptive evolutionary process that would promote a PDF1 joint effect on both zinc tolerance and the response to pathogens in the A. halleri extremophile species.
Collapse
Affiliation(s)
- Nga N. T. Nguyen
- Unité Mixte de Recherche, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/CNRS/INRA/Université Montpellier IIMontpellier, France
| | - Vincent Ranwez
- Unité Mixte de Recherche, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Montpellier SupAgro/CIRAD/INRAMontpellier, France
| | - Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759 INRA/SupAgroMontpellier, France
| | - Marie-Christine Soulié
- Laboratoire des Interactions Plantes-Pathogènes, Unité Mixte de Recherche 217, Université Pierre et Marie Curie (UPMC Univ. Paris 06)Paris, France
| | - Alia Dellagi
- Laboratoire des Interactions Plantes-Pathogènes, Unité Mixte de Recherche 217 INRA/AgroParisTech/UPMCParis, France
| | - Dominique Expert
- Laboratoire des Interactions Plantes-Pathogènes, Unité Mixte de Recherche 217 INRA/AgroParisTech/UPMCParis, France
| | - Françoise Gosti
- Unité Mixte de Recherche, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/CNRS/INRA/Université Montpellier IIMontpellier, France
| |
Collapse
|
38
|
Yan C, Hu Q, Sun G. Nuclear and chloroplast DNA phylogeny reveals complex evolutionary history of Elymus pendulinus. Genome 2014; 57:97-109. [DOI: 10.1139/gen-2014-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo complex reticulate evolution. In this study, 13 accessions of tetraploid Elymus pendulinus were analyzed using two low-copy nuclear genes (RPB2 and PepC) and two regions of chloroplast genome (Rps16 and trnD-trnT). Previous studies suggested that Pseudoroegneria (St) and an unknown diploid (Y) were genome donors to E. pendulinus, and that Pseudoroegneria was the maternal donor. Our results revealed an extreme reticulate pattern, with at least four distinct gene lineages coexisting within this species that might be acquired through a possible combination of allotetraploidization and introgression from both within and outside the tribe Hordeeae. Chloroplast DNA data identified two potential maternal genome donors (Pseudoroegneria and an unknown species outside Hordeeae) to E. pendulinus. Nuclear gene data indicated that both Pseudoroegneria and an unknown Y diploid have contributed to the nuclear genome of E. pendulinus, in agreement with cytogenetic data. However, unexpected contributions from Hordeum and unknown aliens from within or outside Hordeeae to E. pendulinus without genome duplication were observed. Elymus pendulinus provides a remarkable instance of the previously unsuspected chimerical nature of some plant genomes and the resulting phylogenetic complexity produced by multiple historical reticulation events.
Collapse
Affiliation(s)
- Chi Yan
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Qianni Hu
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Genlou Sun
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
39
|
Higgins JD, Wright KM, Bomblies K, Franklin FCH. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy. FRONTIERS IN PLANT SCIENCE 2014; 4:546. [PMID: 24427164 PMCID: PMC3879461 DOI: 10.3389/fpls.2013.00546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/13/2013] [Indexed: 05/20/2023]
Abstract
Arabidopsis arenosa is a close relative of the model plant A. thaliana, and exists in nature as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole genome duplication and do not commonly show meiotic errors such as multivalent and univalent formation, which can lead to chromosome non-disjunction and reduced fertility. A genome scan for genes strongly differentiated between diploid and autotetraploid A. arenosa identified a subset of meiotic genes that may be responsible for adaptation to polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its polyploid state, and the functionality of the identified potentially adaptive polymorphisms, a thorough cytological analysis is required. Therefore, in this chapter we describe methods and techniques to analyze male meiosis in A. arenosa, including optimum plant growth conditions, and immunocytological and cytological approaches developed with the specific purpose of understanding meiotic adaptation in an autotetraploid. In addition we present a meiotic cytological atlas to be used as a reference for particular stages and discuss observations arising from a comparison of meiosis between diploid and autotetraploid A. arenosa.
Collapse
Affiliation(s)
- James D. Higgins
- School of Biosciences, The University of BirminghamBirmingham, UK
- *Correspondence: James D. Higgins, School of Biological Sciences, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK e-mail:
| | - Kevin M. Wright
- Department of Organismic and Evolutionary Biology, Harvard University, CambridgeMA, USA
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, CambridgeMA, USA
| | | |
Collapse
|
40
|
Shahzad Z, Ranwez V, Fizames C, Marquès L, Le Martret B, Alassimone J, Godé C, Lacombe E, Castillo T, Saumitou-Laprade P, Berthomieu P, Gosti F. Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. THE NEW PHYTOLOGIST 2013; 200:820-833. [PMID: 23865749 DOI: 10.1111/nph.12396] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/28/2013] [Indexed: 05/11/2023]
Abstract
Plant defensins are recognized for their antifungal properties. However, a few type 1 defensins (PDF1s) were identified for their cellular zinc (Zn) tolerance properties after a study of the metal extremophile Arabidopsis halleri. In order to investigate whether different paralogues would display specialized functions, the A. halleri PDF1 family was characterized at the functional and genomic levels. Eleven PDF1s were isolated from A. halleri. Their ability to provide Zn tolerance in yeast cells, their activity against Fusarium oxysporum f. sp. melonii, and their level of expression in planta were compared with those of the seven A. thaliana PDF1s. The genomic organization of the PDF1 family was comparatively analysed within the Arabidopsis genus. AhPDF1s and AtPDF1s were able to confer Zn tolerance and AhPDF1s also displayed antifungal activity. PDF1 transcripts were constitutively more abundant in A. halleri than in A. thaliana. Within the Arabidopsis genus, the PDF1 family is evolutionarily dynamic, in terms of gain and loss of gene copy. Arabidopsis halleri PDF1s display no superior abilities to provide Zn tolerance. A constitutive increase in AhPDF1 transcript accumulation is proposed to be an evolutionary innovation co-opting the promiscuous PDF1 protein for its contribution to Zn tolerance in A. halleri.
Collapse
Affiliation(s)
- Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Vincent Ranwez
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France
| | - Cécile Fizames
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Laurence Marquès
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Bénédicte Le Martret
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Julien Alassimone
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Cécile Godé
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Lille1, F-59655, Villeneuve d'Ascq Cedex, France
| | - Eric Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Teddy Castillo
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Pierre Saumitou-Laprade
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Lille1, F-59655, Villeneuve d'Ascq Cedex, France
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Françoise Gosti
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| |
Collapse
|
41
|
Remington DL, Leinonen PH, Leppälä J, Savolainen O. Complex genetic effects on early vegetative development shape resource allocation differences between Arabidopsis lyrata populations. Genetics 2013; 195:1087-102. [PMID: 23979581 PMCID: PMC3813839 DOI: 10.1534/genetics.113.151803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs.
Collapse
Affiliation(s)
- David L Remington
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | | | | | | |
Collapse
|
42
|
Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 2013; 23:2151-6. [PMID: 24139735 DOI: 10.1016/j.cub.2013.08.059] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/20/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023]
Abstract
Whole genome duplication (WGD) is a major factor in the evolution of multicellular eukaryotes, yet by doubling the number of homologs, WGD severely challenges reliable chromosome segregation, a process conserved across kingdoms. Despite this, numerous genome-duplicated (polyploid) species persist in nature, indicating early problems can be overcome. Little is known about which genes are involved--only one has been molecularly characterized. To gain new insights into the molecular basis of adaptation to polyploidy, we investigated genome-wide patterns of differentiation between natural diploids and tetraploids of Arabidopsis arenosa, an outcrossing relative of A. thaliana. We first show that diploids are not preadapted to polyploid meiosis. We then use a genome scanning approach to show that although polymorphism is extensively shared across ploidy levels, there is strong ploidy-specific differentiation in 39 regions spanning 44 genes. These are discrete, mostly single-gene peaks of sharply elevated differentiation. Among these peaks are eight meiosis genes whose encoded proteins coordinate a specific subset of early meiotic functions, suggesting these genes comprise a polygenic solution to WGD-associated chromosome segregation challenges. Our findings indicate that even conserved meiotic processes can be capable of nimble evolutionary shifts when required.
Collapse
Affiliation(s)
- Levi Yant
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Jesse D Hollister
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Kevin M Wright
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Brian J Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - James D Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| |
Collapse
|
43
|
Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U. Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet 2013; 9:e1003707. [PMID: 23990800 PMCID: PMC3749932 DOI: 10.1371/journal.pgen.1003707] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/22/2013] [Indexed: 12/27/2022] Open
Abstract
Among the rare colonizers of heavy-metal rich toxic soils, Arabidopsis halleri is a compelling model extremophile, physiologically distinct from its sister species A. lyrata, and A. thaliana. Naturally selected metal hypertolerance and extraordinarily high leaf metal accumulation in A. halleri both require Heavy Metal ATPase4 (HMA4) encoding a PIB-type ATPase that pumps Zn(2+) and Cd(2+) out of specific cell types. Strongly enhanced HMA4 expression results from a combination of gene copy number expansion and cis-regulatory modifications, when compared to A. thaliana. These findings were based on a single accession of A. halleri. Few studies have addressed nucleotide sequence polymorphism at loci known to govern adaptations. We thus sequenced 13 DNA segments across the HMA4 genomic region of multiple A. halleri individuals from diverse habitats. Compared to control loci flanking the three tandem HMA4 gene copies, a gradual depletion of nucleotide sequence diversity and an excess of low-frequency polymorphisms are hallmarks of positive selection in HMA4 promoter regions, culminating at HMA4-3. The accompanying hard selective sweep is segmentally eclipsed as a consequence of recurrent ectopic gene conversion among HMA4 protein-coding sequences, resulting in their concerted evolution. Thus, HMA4 coding sequences exhibit a network-like genealogy and locally enhanced nucleotide sequence diversity within each copy, accompanied by lowered sequence divergence between paralogs in any given individual. Quantitative PCR corroborated that, across A. halleri, three genomic HMA4 copies generate overall 20- to 130-fold higher transcript levels than in A. thaliana. Together, our observations constitute an unexpectedly complex profile of polymorphism resulting from natural selection for increased gene product dosage. We propose that these findings are paradigmatic of a category of multi-copy genes from a broad range of organisms. Our results emphasize that enhanced gene product dosage, in addition to neo- and sub-functionalization, can account for the genomic maintenance of gene duplicates underlying environmental adaptation.
Collapse
Affiliation(s)
- Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Liège, Belgium
| | - Juergen Kroymann
- Laboratoire d'Ecologie, Systématique et Evolution, Université Paris-Sud/CNRS, Orsay, France
| | | | - María Bernal
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| | - Patrick Motte
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
44
|
Koch MA, German DA. Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. FRONTIERS IN PLANT SCIENCE 2013; 4:267. [PMID: 23914192 PMCID: PMC3728732 DOI: 10.3389/fpls.2013.00267] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Taxonomy and systematics provide the names and evolutionary framework for any biological study. Without these names there is no access to a biological context of the evolutionary processes which gave rise to a given taxon: close relatives and sister species (hybridization), more distantly related taxa (ancestral states), for example. This is not only true for the single species a research project is focusing on, but also for its relatives, which might be selected for comparative approaches and future research. Nevertheless, taxonomical and systematic knowledge is rarely fully explored and considered across biological disciplines. One would expect the situation to be more developed with model organisms such as Noccaea, Arabidopsis, Schrenkiella and Eutrema (Thellungiella). However, we show the reverse. Using Arabidopsis halleri and Noccaea caerulescens, two model species among metal accumulating taxa, we summarize and reflect past taxonomy and systematics of Arabidopsis and Noccaea and provide a modern synthesis of taxonomic, systematic and evolutionary perspectives. The same is presented for several species of Eutrema s. l. and Schrenkiella recently appeared as models for studying stress tolerance in plants and widely known under the name Thellungiella.
Collapse
Affiliation(s)
- Marcus A. Koch
- Department of Biodiversity and Plant Systematics, Center for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Dmitry A. German
- Department of Biodiversity and Plant Systematics, Center for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- South-Siberian Botanical Garden, Altai State UniversityBarnaul, Russia
| |
Collapse
|
45
|
Signatures of demography and recombination at coding genes in naturally-distributed populations of Arabidopsis lyrata subsp. petraea. PLoS One 2013; 8:e58916. [PMID: 23554957 PMCID: PMC3595216 DOI: 10.1371/journal.pone.0058916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/08/2013] [Indexed: 11/19/2022] Open
Abstract
Demography impacts the observed standing level of genetic diversity present in populations. Distinguishing the relative impacts of demography from selection requires a baseline of expressed gene variation in naturally occurring populations. Six nuclear genes were sequenced to estimate the patterns and levels of genetic diversity in natural Arabidopsis lyrata subsp. petraea populations that differ in demographic histories since the Pleistocene. As expected, northern European populations have genetic signatures of a strong population bottleneck likely due to glaciation during the Pleistocene. Levels of diversity in the northern populations are about half of that in central European populations. Bayesian estimates of historical population size changes indicate that central European populations also have signatures of population size change since the last glacial maxima, suggesting that these populations are not as stable as previously thought. Time since divergence amongst northern European populations is higher than amongst central European populations, suggesting that the northern European populations were established before the Pleistocene and survived glaciation in small separated refugia. Estimates of demography based on expressed genes are complementary to estimates based on microsatellites and transposable elements, elucidating temporal shifts in population dynamics and confirming the importance of marker selection for tests of demography.
Collapse
|
46
|
Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 2012; 8:e1003093. [PMID: 23284289 PMCID: PMC3527224 DOI: 10.1371/journal.pgen.1003093] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
Genome duplication, which results in polyploidy, is disruptive to fundamental biological processes. Genome duplications occur spontaneously in a range of taxa and problems such as sterility, aneuploidy, and gene expression aberrations are common in newly formed polyploids. In mammals, genome duplication is associated with cancer and spontaneous abortion of embryos. Nevertheless, stable polyploid species occur in both plants and animals. Understanding how natural selection enabled these species to overcome early challenges can provide important insights into the mechanisms by which core cellular functions can adapt to perturbations of the genomic environment. Arabidopsis arenosa includes stable tetraploid populations and is related to well-characterized diploids A. lyrata and A. thaliana. It thus provides a rare opportunity to leverage genomic tools to investigate the genetic basis of polyploid stabilization. We sequenced the genomes of twelve A. arenosa individuals and found signatures suggestive of recent and ongoing selective sweeps throughout the genome. Many of these are at genes implicated in genome maintenance functions, including chromosome cohesion and segregation, DNA repair, homologous recombination, transcriptional regulation, and chromatin structure. Numerous encoded proteins are predicted to interact with one another. For a critical meiosis gene, ASYNAPSIS1, we identified a non-synonymous mutation that is highly differentiated by cytotype, but present as a rare variant in diploid A. arenosa, indicating selection may have acted on standing variation already present in the diploid. Several genes we identified that are implicated in sister chromatid cohesion and segregation are homologous to genes identified in a yeast mutant screen as necessary for survival of polyploid cells, and also implicated in genome instability in human diseases including cancer. This points to commonalities across kingdoms and supports the hypothesis that selection has acted on genes controlling genome integrity in A. arenosa as an adaptive response to genome doubling.
Collapse
Affiliation(s)
- Jesse D. Hollister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian J. Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elisabeth Svedin
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Katherine S. Xue
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian P. Dilkes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Roux C, Pauwels M, Ruggiero MV, Charlesworth D, Castric V, Vekemans X. Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and A. lyrata. Mol Biol Evol 2012; 30:435-47. [PMID: 23104079 PMCID: PMC3548311 DOI: 10.1093/molbev/mss246] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.
Collapse
Affiliation(s)
- Camille Roux
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université de Lille, Sciences et Technologies, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
48
|
Schmickl R, Paule J, Klein J, Marhold K, Koch MA. The evolutionary history of the Arabidopsis arenosa complex: diverse tetraploids mask the Western Carpathian center of species and genetic diversity. PLoS One 2012; 7:e42691. [PMID: 22880083 PMCID: PMC3411824 DOI: 10.1371/journal.pone.0042691] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/11/2012] [Indexed: 01/02/2023] Open
Abstract
The Arabidopsis arenosa complex is closely related to the model plant Arabidopsis thaliana. Species and subspecies in the complex are mainly biennial, predominantly outcrossing, herbaceous, and with a distribution range covering most parts of latitudes and the eastern reaches of Europe. In this study we present the first comprehensive evolutionary history of the A. arenosa species complex, covering its natural range, by using chromosome counts, nuclear AFLP data, and a maternally inherited marker from the chloroplast genome [trnL intron (trnL) and trnL/F intergenic spacer (trnL/F-IGS) of tRNA(Leu) and tRNA(Phe), respectively]. We unravel the broad-scale cytogeographic and phylogeographic patterns of diploids and tetraploids. Diploid cytotypes were exclusively found on the Balkan Peninsula and in the Carpathians while tetraploid cytotypes were found throughout the remaining distribution range of the A. arenosa complex. Three centers of genetic diversity were identified: the Balkan Peninsula, the Carpathians, and the unglaciated Eastern and Southeastern Alps. All three could have served as long-term refugia during Pleistocene climate oscillations. We hypothesize that the Western Carpathians were and still are the cradle of speciation within the A. arenosa complex due to the high species number and genetic diversity and the concurrence of both cytotypes there.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Juraj Paule
- Senckenberg Research Institute, Frankfurt am Main, Germany
| | - Johannes Klein
- Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karol Marhold
- Department of Vascular Plant Taxonomy, Institute of Botany SAS, Bratislava, Slovakia
| | - Marcus A. Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
49
|
Pyhäjärvi T, Aalto E, Savolainen O. Time scales of divergence and speciation among natural populations and subspecies of Arabidopsis lyrata (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2012; 99:1314-1322. [PMID: 22822172 DOI: 10.3732/ajb.1100580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY Plant populations that face new environments adapt and diverge simultaneously, and both processes leave footprints in their genetic diversity. Arabidopsis lyrata is an excellent species for studying these processes. Pairs of populations and subspecies of A. lyrata represent different stages of divergence. These populations are also known to be locally adapted and display various stages of emerging reproductive isolation. METHODS We used nucleotide diversity data from 19 loci to estimate divergence times and levels of diversity among nine A. lyrata populations. Traditional distance-based methods and model-based clustering analysis were used to supplement pairwise coalescence-based analysis of divergence. KEY RESULTS Estimated divergence times varied from 130,000 generations between North American and European subspecies to 39,000 generations between central European and Scandinavian populations. In concordance with previous studies, the highest level of diversity was found in Central Europe and the lowest in North America and a diverged Russian Karhumäki population. Local adaptation among Northern and central European populations has emerged during the last 39,000 generations. Populations that are reproductively isolated by prezygotic mechanisms have been separated for a longer time period of ∼70,000 generations but still have shared nucleotide polymorphism. CONCLUSIONS In A. lyrata, reproductively isolated populations started to diverge ∼70,000 generations ago and more closely related, locally adapted populations have been separate lineages for ∼39,000 generations. However, based on the posterior distribution of divergence times, the processes leading to reproductive isolation and local adaptation are likely to temporally coincide.
Collapse
|
50
|
Leinonen PH, Remington DL, Leppälä J, Savolainen O. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata. Mol Ecol 2012; 22:709-23. [PMID: 22724431 DOI: 10.1111/j.1365-294x.2012.05678.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding how genetic variation at individual loci contributes to adaptation of populations to different local environments is an important topic in modern evolutionary biology. To date, most evidence has pointed to conditionally neutral quantitative trait loci (QTL) showing fitness effects only in some environments, while there has been less evidence for single-locus fitness trade-offs. At QTL underlying local adaptation, alleles from the local population are expected to show a fitness advantage. Cytoplasmic genomes also can have a role in local adaptation, but the role of cytonuclear interactions in adaptive differentiation has remained largely unknown. We mapped genomic regions underlying adaptive differentiation in multiple fitness components and flowering time in diverged populations of a perennial plant Arabidopsis lyrata. Experimental hybrids for this purpose were grown in natural field conditions of the parental populations in Norway and North Carolina (NC), USA, and in the greenhouse. We found QTL where high fitness and early flowering were associated with local alleles, indicating a role of different selection pressures in phenotypic differentiation. At two QTL regions, a fitness component showing local adaptation between the parental populations also showed signs of putative fitness trade-offs. Beneficial dominance effects of conditionally neutral QTL for different fitness components resulted in hybrid vigour at the Norwegian site in the F(2) hybrids. We also found that cytoplasmic genomes contributed to local adaptation and hybrid vigour by interacting with nuclear QTL, but these interactions did not show evidence for cytonuclear coadaptation (high fitness of local alleles combined with the local cytoplasm).
Collapse
|