1
|
Zeng J, Li Y, Jiang L, Luo L, Wang Y, Wang H, Han X, Zhao J, Gu G, Fang M, Huang Q, Yan J. Mpox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Emerg Microbes Infect 2023; 12:2204151. [PMID: 37070521 PMCID: PMC10167873 DOI: 10.1080/22221751.2023.2204151] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Current unprecedented mpox outbreaks in non-endemic regions represent a global public health concern. Although two live-attenuated vaccinia virus (VACV)-based vaccines have been urgently approved for people at high risk for mpox, a safer and more effective vaccine that can be available for the general public is desperately needed. By utilizing a simplified manufacturing strategy of mixing DNA plasmids before transcription, we developed two multi-antigen mRNA vaccine candidates, which encode four (M1, A29, B6, A35, termed as Rmix4) or six (M1, H3, A29, E8, B6, A35, termed as Rmix6) mpox virus antigens. We demonstrated that those mpox multi-antigen mRNA vaccine candidates elicited similar potent cross-neutralizing immune responses against VACV, and compared to Rmix4, Rmix6 elicited significantly stronger cellular immune responses. Moreover, immunization with both vaccine candidates protected mice from the lethal VACV challenge. Investigation of B-cell receptor (BCR) repertoire elicited by mpox individual antigen demonstrated that the M1 antigen efficiently induced neutralizing antibody responses, and all neutralizing antibodies among the top 20 frequent antibodies appeared to target the same conformational epitope as 7D11, revealing potential vulnerability to viral immune evasion. Our findings suggest that Rmix4 and Rmix6 from a simplified manufacturing process are promising candidates to combat mpox.
Collapse
Affiliation(s)
- Jiawei Zeng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Linrui Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ling Luo
- College of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yue Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hao Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaonan Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jian Zhao
- College of Life Sceinces, Henan University, Kaifeng, People’s Republic of China
| | - Guanglei Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qingrui Huang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Xia H, He YR, Zhan XY, Zha GF. Mpox virus mRNA-lipid nanoparticle vaccine candidates evoke antibody responses and drive protection against the Vaccinia virus challenge in mice. Antiviral Res 2023; 216:105668. [PMID: 37429529 DOI: 10.1016/j.antiviral.2023.105668] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In response to the human Mpox (hMPX) epidemic that began in 2022, there is an urgent need for a monkeypox vaccine. Here, we have developed a series of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccine candidates that encode a collection of four highly conserved Mpox virus (MPXV) surface proteins involved in virus attachment, entry, and transmission, namely A29L, A35R, B6R, and M1R, which are homologs to Vaccinia virus (VACV) A27, A33, B5, and L1, respectively. Despite possible differences in immunogenicity among the four antigenic mRNA-LNPs, administering these antigenic mRNA-LNPs individually (5 μg each) or an average mixture of these mRNA-LNPs at a low dose (0.5 μg each) twice elicited MPXV-specific IgG antibodies and potent VACV-specific neutralizing antibodies. Furthermore, two doses of 5 μg of A27, B5, and L1 mRNA-LNPs or a 2 μg average mixture of the four antigenic mRNA-LNPs protected mice against weight loss and death after the VACV challenge. Overall, our data suggest that these antigenic mRNA-LNP vaccine candidates are both safe and efficacious against MPXV, as well as diseases caused by other orthopoxviruses.
Collapse
Affiliation(s)
- Heng Xia
- The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Yun-Ru He
- The Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| | - Gao-Feng Zha
- The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| |
Collapse
|
3
|
Shen AM, Malekshah OM, Pogrebnyak N, Minko T. Plant-derived single domain COVID-19 antibodies. J Control Release 2023; 359:1-11. [PMID: 37225092 PMCID: PMC10231691 DOI: 10.1016/j.jconrel.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Data show a decrease in the risk of hospitalization and death from COVID-19. To date, global vaccinations for SARS-CoV-2 protections are underway, but additional treatments are urgently needed to prevent and cure infection among naïve and even vaccinated people. Neutralizing monoclonal antibodies are very promising for prophylaxis and therapy of SARS-CoV-2 infections. However, traditional large-scale methods of producing such antibodies are slow, extremely expensive and possess a high risk of contamination with viruses, prions, oncogenic DNA and other pollutants. The present study is aimed at developing an approach of producing monoclonal antibodies (mAbs) against SARS-CoV-2 spike (S) protein in plant systems which offers unique advantages, such as the lack of human and animal pathogens or bacterial toxins, relatively low-cost manufacturing, and ease of production scale-up. We selected a single N-terminal domain functional camelid-derived heavy (H)-chain antibody fragments (VHH, AKA nanobodies) targeted to receptor binding domain of SARS-CoV-2 spike protein and developed methods of their rapid production using transgenic plants and plant cell suspensions. Isolated and purified plant-derived VHH antibodies were compared with mAbs produced in traditional mammalian and bacterial expression systems. It was found that plant generated VHH using the proposed methods of transformation and purification possess the ability to bind to SARS-CoV-2 spike protein comparable to that of monoclonal antibodies derived from bacterial and mammalian cell cultures. The results of the present studies confirm the visibility of producing monoclonal single-chain antibodies with a high ability to bind the targeted COVID-19 spike protein in plant systems within a relatively shorter time span and at a lower cost when compared with traditional methods. Moreover, similar plant biotechnology approaches can be used for producing monoclonal neutralizing antibodies against other types of viruses.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Obeid M Malekshah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
4
|
Rosales-Mendoza S, Cervantes-Rincón T, Romero-Maldonado A, Monreal-Escalante E, Nieto-Gómez R. Transgenic plants expressing a Clostridium difficile spore antigen as an approach to develop low-cost oral vaccines. Biotechnol Prog 2021; 37:e3141. [PMID: 33666366 DOI: 10.1002/btpr.3141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 μg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Clostridioides difficile/genetics
- Enterotoxins/genetics
- Escherichia coli Proteins/genetics
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Molecular Farming
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Spores, Bacterial/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Edible/metabolism
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Tomás Cervantes-Rincón
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ricardo Nieto-Gómez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
5
|
Transient Gene Expression: an Approach for Recombinant Vaccine Production. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
6
|
Park SH, Ji KY, Kim HM, Ma SH, Park SY, Do JH, Oh DB, Kang HS, Shim JS, Joung YH. Optimization of the human colorectal carcinoma antigen GA733-2 production in tobacco plants. PLANT BIOTECHNOLOGY REPORTS 2021; 15:55-67. [PMID: 33520002 PMCID: PMC7825390 DOI: 10.1007/s11816-020-00657-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 05/02/2023]
Abstract
The colorectal carcinoma-associated protein GA733-2 is one of the representative candidate protein for the development of plant-derived colorectal cancer vaccine. Despite of its significant importance for colorectal vaccine development, low efficiency of GA733-2 production limits its wide applications. To improve productivity of GA733-2 in plants, we here tested multiple factors that affect expression of recombinant GA733-2 (rGA733-2) and rGA733 fused to fragment crystallizable (Fc) domain (rGA733-Fc) protein. The rGA733-2 and rGA733-Fc proteins were highly expressed when the pBINPLUS vector system was used for transient expression in tobacco plants. In addition, the length of interval between rGA733-2 and left border of T-DNA affected the expression of rGA733 protein. Transient expression analysis using various combinations of Agrobacterium tumefaciens strains (C58C1, LBA4404, and GV3101) and tobacco species (Nicotiana tabacum cv. Xanthi nc and Nicotiana benthamiana) revealed that higher accumulation of rGA733-2 and rGA733-Fc proteins were obtained by combination of A. tumefaciens LBA4404 and Nicotiana benthamiana. Transgenic plants generated by introduction of the rGA733-2 and rGA733-Fc expression cassettes also significantly accumulated corresponding recombinant proteins. Bioactivity and stability of the plant-derived rGA733 and rGA733-Fc were evaluated by further in vitro assay, western blot and N-glycosylation analysis. Collectively, we here suggest the optimal condition for efficient production of functional rGA733-2 protein in tobacco system.
Collapse
Affiliation(s)
- Se Hee Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054 Korea
| | - Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Doo-Byoung Oh
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, 34113 Korea
| | - Hyung Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| |
Collapse
|
7
|
Xiao Y, Zeng Y, Schante C, Joshi SB, Buchman GW, Volkin DB, Middaugh CR, Isaacs SN. Short-term and longer-term protective immune responses generated by subunit vaccination with smallpox A33, B5, L1 or A27 proteins adjuvanted with aluminum hydroxide and CpG in mice challenged with vaccinia virus. Vaccine 2020; 38:6007-6018. [PMID: 32741672 PMCID: PMC7456309 DOI: 10.1016/j.vaccine.2020.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/08/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
Abstract
Smallpox, a contagious and deadly disease caused by variola virus, was eradicated by a strategy that included vaccination with vaccinia virus, a live-virus vaccine. Because the threat of bioterrorism with smallpox persists and infections with zoonotic poxvirus infections like monkeypox continue, and there may be a time when an alternative vaccine platform is needed, recombinant-subunit vaccine strategies for poxviruses have been pursued. Our prior work focused on understanding the immune responses generated to vaccine-formulations containing the virus protein L1. In this work, we examine vaccine-formulations with additional key protein targets: A33 and B5 (components of the extracellular virus) and another protein on the mature virus (A27) adjuvanted with aluminum hydroxide (AH) with and without CpG- oligonucleotide. Each vaccine was formulated to allow either adsorption or non-adsorption of the protein (and CpG) to AH. Mice given a prime and single boost produced long-lasting antibody responses. A second boost (given ~5-months after the first) further increased antibody titers. Similar to our prior findings with L1 vaccine-formulations, the most protective A33 vaccine-formulations included CpG, resulted in the generation of IgG2a-antibody responses. Unlike the prior findings with L1 (where formulations that adsorbed both the protein and the CpG to AH resulted in 100% survival after challenge and minimal weight loss), the AH-adsorption status of A33 and CpG did not play as important a role, since both AH-adsorbed and non-adsorbed groups lost weight after challenge and had similar survival. Vaccination with B5-formulations gave different results. While CpG-containing formulations were the only ones that generated IgG2a-antibody responses, the vaccine-formulation that adsorbed B5 to AH (without CpG) was as equally effective in protecting mice after challenge. These results indicate that the mechanism of how antibodies against A33 and B5 protect differ. The data also show the complexity of designing optimized vaccine-formulations containing multiple adjuvants and recombinant protein-based antigens.
Collapse
Affiliation(s)
- Yuhong Xiao
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States
| | - Yuhong Zeng
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Carole Schante
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Sangeeta B Joshi
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - George W Buchman
- Chesapeake-Perl, Inc., 8510 A Corridor Rd., Savage, MD 20763, United States
| | - David B Volkin
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - C Russell Middaugh
- University of Kansas, Macromolecular and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Stuart N Isaacs
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Infectious Diseases, Philadelphia, PA 19104-6073, United States.
| |
Collapse
|
8
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Streatfield SJ, Kushnir N, Yusibov V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1136-59. [PMID: 26387510 PMCID: PMC7167919 DOI: 10.1111/pbi.12475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Despite progress in the prevention and treatment of infectious diseases, they continue to present a major threat to public health. The frequency of emerging and reemerging infections and the risk of bioterrorism warrant significant efforts towards the development of prophylactic and therapeutic countermeasures. Vaccines are the mainstay of infectious disease prophylaxis. Traditional vaccines, however, are failing to satisfy the global demand because of limited scalability of production systems, long production timelines and product safety concerns. Subunit vaccines are a highly promising alternative to traditional vaccines. Subunit vaccines, as well as monoclonal antibodies and other therapeutic proteins, can be produced in heterologous expression systems based on bacteria, yeast, insect cells or mammalian cells, in shorter times and at higher quantities, and are efficacious and safe. However, current recombinant systems have certain limitations associated with production capacity and cost. Plants are emerging as a promising platform for recombinant protein production due to time and cost efficiency, scalability, lack of harboured mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modification. So far, a variety of subunit vaccines, monoclonal antibodies and therapeutic proteins (antivirals) have been produced in plants as candidate countermeasures against emerging, reemerging and bioterrorism-related infections. Many of these have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, we overview ongoing efforts to producing such plant-based countermeasures.
Collapse
Affiliation(s)
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
10
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015; 33:1024-42. [PMID: 25819757 DOI: 10.1016/j.biotechadv.2015.03.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
Collapse
Affiliation(s)
- Pavel Krenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Ivan Luptovciak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Doskocilova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
11
|
Ko K. Expression of recombinant vaccines and antibodies in plants. Monoclon Antib Immunodiagn Immunother 2015; 33:192-8. [PMID: 24937251 DOI: 10.1089/mab.2014.0049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants.
Collapse
Affiliation(s)
- Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University , Seoul, Korea
| |
Collapse
|
12
|
Hilary Koprowski, MD: A Lifetime of Work. Monoclon Antib Immunodiagn Immunother 2014; 33:1-43. [DOI: 10.1089/mab.2014.kop.biblio] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Mathew LG, Herbst-Kralovetz MM, Mason HS. Norovirus Narita 104 virus-like particles expressed in Nicotiana benthamiana induce serum and mucosal immune responses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:807539. [PMID: 24949472 PMCID: PMC4037605 DOI: 10.1155/2014/807539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/07/2014] [Indexed: 01/03/2023]
Abstract
Narita 104 virus is a human pathogen belonging to the norovirus (family Caliciviridae) genogroup II. Noroviruses cause epidemic gastroenteritis worldwide. To explore the potential of developing a plant-based vaccine, a plant optimized gene encoding Narita 104 virus capsid protein (NaVCP) was expressed transiently in Nicotiana benthamiana using a tobacco mosaic virus expression system. NaVCP accumulated up to approximately 0.3 mg/g fresh weight of leaf at 4 days postinfection. Initiation of hypersensitive response-like symptoms followed by tissue necrosis necessitated a brief infection time and was a significant factor limiting expression. Transmission electron microscopy of plant-derived NaVCP confirmed the presence of fully assembled virus-like particles (VLPs). In this study, an optimized method to express and partially purify NaVCP is described. Further, partially purified NaVCP was used to immunize mice by intranasal delivery and generated significant mucosal and serum antibody responses. Thus, plant-derived Narita 104 VLPs have potential for use as a candidate subunit vaccine or as a component of a multivalent subunit vaccine, along with other genotype-specific plant-derived VLPs.
Collapse
Affiliation(s)
- Lolita George Mathew
- Center for Infectious Diseases and Vaccinology (CIDV), The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287, USA
- The School of Life Sciences, 1001 South McAllister Avenue, Tempe, AZ 85287, USA
| | - Melissa M. Herbst-Kralovetz
- Center for Infectious Diseases and Vaccinology (CIDV), The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287, USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA
| | - Hugh S. Mason
- Center for Infectious Diseases and Vaccinology (CIDV), The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287, USA
- The School of Life Sciences, 1001 South McAllister Avenue, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Shamloul M, Trusa J, Mett V, Yusibov V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 2014:51204. [PMID: 24796351 PMCID: PMC4174718 DOI: 10.3791/51204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Collapse
Affiliation(s)
| | - Jason Trusa
- Fraunhofer USA Center for Molecular Biotechnology
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology
| | | |
Collapse
|
15
|
Paul M, Ma JKC. Plant-made immunogens and effective delivery strategies. Expert Rev Vaccines 2014; 9:821-33. [DOI: 10.1586/erv.10.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF. Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. BIOCHEMISTRY (MOSCOW) 2013; 78:342-54. [DOI: 10.1134/s0006297913040032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
|
18
|
Gleba YY, Tusé D, Giritch A. Plant viral vectors for delivery by Agrobacterium. Curr Top Microbiol Immunol 2013; 375:155-92. [PMID: 23949286 DOI: 10.1007/82_2013_352] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plant viral vectors delivered by Agrobacterium are the basis of several manufacturing processes that are currently in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, protein nanoparticles such as virus-like particles (VLPs), and other protein and protein-RNA scaffolds. Viral vectors delivered by agrobacterial T-DNA transfer (magnifection) have also become important tools in research. In recent years, essential advances have been made both in the development of second-generation vectors designed using the 'deconstructed virus' approach, as well as in the development of upstream manufacturing processes that are robust and fully scalable. The strategy relies on Agrobacterium as a vector to deliver DNA copies of one or more viral RNA/DNA replicons; the bacteria are delivered into leaves by vacuum infiltration, and the viral machinery takes over from the point of T-DNA transfer to the plant cell nucleus, driving massive RNA and protein production and, if required, cell-to-cell spread of the replicons. Among the most often used viral backbones are those of the RNA viruses Tobacco mosaic virus (TMV), Potato virus X (PVX) and Cowpea mosaic virus (CPMV), and the DNA geminivirus Bean yellow dwarf virus. Prototypes of industrial processes that provide for high yield, rapid scale up and fast manufacturing cycles have been designed, and several GMP-compliant and GMP-certified manufacturing facilities are in place. These efforts have been successful as evidenced by the fact that several antibodies and vaccine antigens produced by magnifection are currently in clinical development.
Collapse
Affiliation(s)
- Yuri Y Gleba
- Nomad Bioscience GmbH, Weinbergweg 22, Halle (Saale), Germany,
| | | | | |
Collapse
|
19
|
Cohen ME, Xiao Y, Eisenberg RJ, Cohen GH, Isaacs SN. Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors. PLoS One 2011; 6:e20597. [PMID: 21687676 PMCID: PMC3110783 DOI: 10.1371/journal.pone.0020597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.
Collapse
Affiliation(s)
- Matthew E. Cohen
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuhong Xiao
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roselyn J. Eisenberg
- Department of Microbiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stuart N. Isaacs
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
20
|
Whaley KJ, Hiatt A, Zeitlin L. Emerging antibody products and Nicotiana manufacturing. HUMAN VACCINES 2011; 7:349-56. [PMID: 21358287 PMCID: PMC3166493 DOI: 10.4161/hv.7.3.14266] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/21/2010] [Indexed: 12/19/2022]
Abstract
Antibody based products are not widely available to address multiple global health challenges due to high costs, limited manufacturing capacity, and long manufacturing lead times. Nicotiana-based manufacturing of antibody products may now begin to address these challenges as a result of revolutionary advances in transient expression and altered glycosylation pathways. This review provides examples of emerging antibody-based products (mucosal and systemic) that could be competitive and commercially viable when the attributes of Nicotiana-based manufacturing (large scale, versatile, rapid, low cost) are utilized.
Collapse
|
21
|
Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: formation of dense fluorescent aggregates for sensitive virus tracking. Virology 2010; 410:268-81. [PMID: 21145088 DOI: 10.1016/j.virol.2010.10.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/14/2010] [Accepted: 10/30/2010] [Indexed: 01/12/2023]
Abstract
A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering a cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic peptides cleaved GFP from HC-Pro but expressed GFP inefficiently. WSMV-GFP vectors with homologous NIa-Pro heptapeptide cleavage sites did not release GFP from HC-Pro, but efficiently expressed GFP as dense fluorescent aggregates. However, insertion of one or two spacer amino acids on either side of NIb/CP heptapeptide cleavage site or deletion in HC-Pro cistron improved processing by NIa-Pro. WSMV-GFP vectors were remarkably stable in wheat for seven serial passages and for 120 days postinoculation. Mite transmission efficiencies of WSMV-GFP vectors correlated with the amount of free GFP produced. WSMV-GFP vectors infected the same range of cereal hosts as wild-type virus, and GFP fluorescence was detected in most wheat tissues.
Collapse
|
22
|
Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol 2010; 161:721-48. [PMID: 20860656 DOI: 10.1111/j.1476-5381.2010.00939.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The use of biological agents has generally been confined to military-led conflicts. However, there has been an increase in non-state-based terrorism, including the use of asymmetric warfare, such as biological agents in the past few decades. Thus, it is becoming increasingly important to consider strategies for preventing and preparing for attacks by insurgents, such as the development of pre- and post-exposure medical countermeasures. There are a wide range of prophylactics and treatments being investigated to combat the effects of biological agents. These include antibiotics (for both conventional and unconventional use), antibodies, anti-virals, immunomodulators, nucleic acids (analogues, antisense, ribozymes and DNAzymes), bacteriophage therapy and micro-encapsulation. While vaccines are commercially available for the prevention of anthrax, cholera, plague, Q fever and smallpox, there are no licensed vaccines available for use in the case of botulinum toxins, viral encephalitis, melioidosis or ricin. Antibiotics are still recommended as the mainstay treatment following exposure to anthrax, plague, Q fever and melioidosis. Anti-toxin therapy and anti-virals may be used in the case of botulinum toxins or smallpox respectively. However, supportive care is the only, or mainstay, post-exposure treatment for cholera, viral encephalitis and ricin - a recommendation that has not changed in decades. Indeed, with the difficulty that antibiotic resistance poses, the development and further evaluation of techniques and atypical pharmaceuticals are fundamental to the development of prophylaxis and post-exposure treatment options. The aim of this review is to present an update on prophylaxis and post-exposure treatment recommendations and research initiatives for biological agents in the open literature from 2007 to 2009.
Collapse
Affiliation(s)
- S Ramasamy
- Defence Science & Technology Organisation, Human Protection and Performance Division, Fishermans Bend, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859-76. [PMID: 20673010 DOI: 10.1586/erv.10.85] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.
Collapse
Affiliation(s)
- Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Kennedy RB, Poland GA. The identification of HLA class II-restricted T cell epitopes to vaccinia virus membrane proteins. Virology 2010; 408:232-40. [PMID: 20961593 PMCID: PMC2975829 DOI: 10.1016/j.virol.2010.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 12/12/2022]
Abstract
Three decades after the eradication of smallpox, the threat of bioterrorism and outbreaks of emerging diseases such as monkeypox have renewed interest in the development of safe and effective next-generation poxvirus vaccines and biodefense research. Current smallpox vaccines contain live virus and are contraindicated for a large percentage of the population. Safer, yet still effective inactivated and subunit vaccines are needed, and epitope identification is an essential step in the development of these subunit vaccines. In this study we focused on 4 vaccinia membrane proteins known to be targeted by humoral responses in vaccinees. In spite of the narrow focus of the study we identified 36 T cell epitopes, and provide additional support for the physical linkage between T and B epitopes. This information may prove useful in peptide and protein-based subunit vaccine development as well as in the study of CD4 responses to poxviruses.
Collapse
|
25
|
Pearton M, Kang SM, Song JM, Kim YC, Quan FS, Anstey A, Ivory M, Prausnitz MR, Compans RW, Birchall JC. Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 2010; 28:6104-13. [PMID: 20685601 PMCID: PMC3371415 DOI: 10.1016/j.vaccine.2010.05.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 11/22/2022]
Abstract
Virus-like particles (VLPs) have a number of features that make them attractive influenza vaccine candidates. Microneedle (MN) devices are being developed for the convenient and pain-free delivery of vaccines across the skin barrier layer. Whilst MN-based vaccines have demonstrated proof-of-concept in mice, it is vital to understand how MN targeting of VLPs to the skin epidermis affects activation and migration of Langerhans cells (LCs) in the real human skin environment. MNs coated with vaccine reproducibly penetrated freshly excised human skin, depositing 80% of the coating within 60 s of insertion. Human skin experiments showed that H1 (A/PR/8/34) and H5 (A/Viet Nam/1203/04) VLPs, delivered via MN, stimulated LCs resulting in changes in cell morphology and a reduction in cell number in epidermal sheets. LC response was significantly more pronounced in skin treated with H1 VLPs, compared with H5 VLPs. Our data provides strong evidence that MN-facilitated delivery of influenza VLP vaccines initiates a stimulatory response in LCs in human skin. The results support and validate animal data, suggesting that dendritic cells (DCs) targeted through deposition of the vaccine in skin generate immune response. The study also demonstrates the value of using human skin alongside animal studies for preclinical testing of intra-dermal (ID) vaccines.
Collapse
Affiliation(s)
- Marc Pearton
- Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3NB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:277-87. [PMID: 20051035 DOI: 10.1111/j.1467-7652.2009.00458.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
When grown for energy production instead for smoking, tobacco can generate a large amount of inexpensive biomass more efficiently than almost any other agricultural crop. Tobacco possesses potent oil biosynthesis machinery and can accumulate up to 40% of seed weight in oil. In this work, we explored two metabolic engineering approaches to enhance the oil content in tobacco green tissues for potential biofuel production. First, an Arabidopsis thaliana gene diacylglycerol acyltransferase (DGAT) coding for a key enzyme in triacylglycerol (TAG) biosynthesis, was expressed in tobacco under the control of a strong ribulose-biphosphate carboxylase small subunit promoter. This modification led to up to a 20-fold increase in TAG accumulation in tobacco leaves and translated into an overall of about a twofold increase in extracted fatty acids (FA) up to 5.8% of dry biomass in Nicotiana tabacum cv Wisconsin, and up to 6% in high-sugar tobacco variety NC-55. Modified tobacco plants also contained elevated amounts of phospholipids. This increase in lipids was accompanied by a shift in the FA composition favourable for their utilization as biodiesel. Second, we expressed in tobacco Arabidopsis gene LEAFY COTYLEDON 2 (LEC2), a master regulator of seed maturation and seed oil storage under the control of an inducible Alc promoter. Stimulation of LEC2 expression in mature tobacco plants by acetaldehyde led to the accumulation of up to 6.8% per dry weight of total extracted FA. The obtained data reveal the potential of metabolically modified plant biomass for the production of biofuel.
Collapse
Affiliation(s)
- Vyacheslav Andrianov
- Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Andrianov V, Brodzik R, Spitsin S, Bandurska K, McManus H, Koprowski H, Golovkin M. Production of recombinant anthrax toxin receptor (ATR/CMG2) fused with human Fc in planta. Protein Expr Purif 2010; 70:158-62. [PMID: 19796689 DOI: 10.1016/j.pep.2009.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/23/2022]
Abstract
Mass vaccination against anthrax with existing vaccines is costly and unsafe due to potential side effects. For post-infection treatment, passive immunotherapy measures are currently available, most based on anthrax protective antigen (PA)-specific therapeutic antibodies. Efficient against wild-type strains, these treatment(s) might fail to protect against infections caused by genetically engineered Bacillus anthracis strains. A recent discovery revealed that the von Willebrand factor A (VWA) domain of human capillary morphogenesis protein 2 (CMG2) is an exceptionally effective anthrax toxin receptor (ATR) proficient in helping to resolve this issue. Here we describe in planta production of chimeric recombinant protein (immunoadhesin) comprised of functional ATR domain fused with the human immunoglobulin Fc fragment (pATR-Fc). The fusion design allowed us to obtain pATR-Fc in plant green tissues in a soluble form making it fairly easy to purify by Protein-A chromatography. Standardized pATR-Fc preparations (purity>90%) were shown to efficiently bind anthrax PA as demonstrated by ELISA and Western blot analysis. Recombinant pATR-Fc was also shown to protect J774A1 macrophage cells against the anthrax toxin. This study confirmed that plant-derived pATR-Fc antibody-like protein is a prospective candidate for anthrax immunotherapy.
Collapse
Affiliation(s)
- V Andrianov
- Biotechnology Foundation Laboratories at Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kim TG, Yang MS. Current trends in edible vaccine development using transgenic plants. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3084-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Tremblay R, Wang D, Jevnikar AM, Ma S. Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 2010; 28:214-21. [PMID: 19961918 PMCID: PMC7132750 DOI: 10.1016/j.biotechadv.2009.11.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/06/2009] [Accepted: 11/19/2009] [Indexed: 01/06/2023]
Abstract
Molecular farming of pharmaceuticals in plants has the potential to provide almost unlimited amounts of recombinant proteins for use in disease diagnosis, prevention or treatment. Tobacco has been and will continue to be a major crop for molecular farming and offers several practical advantages over other crops. It produces significant leaf biomass, has high soluble protein content and is a non-food crop, minimizing the risk of food-chain contamination. This, combined with its flexibility and highly-efficient genetic transformation/regeneration, has made tobacco particularly well suited for plant-based production of biopharmaceutical products. The goal of this review is to provide an update on the use of tobacco for molecular farming of biopharmaceuticals as well the technologies developed to enhance protein production/purification/efficacy. We show that tobacco is a robust biological reactor with a multitude of applications and may hold the key to success in plant molecular farming.
Collapse
Affiliation(s)
- Reynald Tremblay
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - David Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Anthony M. Jevnikar
- Transplantation Immunology Group, Lawson Health Research Institute, London, Ontario, Canada N6A 4G5
| | - Shengwu Ma
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
- Transplantation Immunology Group, Lawson Health Research Institute, London, Ontario, Canada N6A 4G5
- Plantigen Inc., 700 Collip Circle, London, Ontario, Canada N6G 4X8
| |
Collapse
|
30
|
Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. TRENDS IN PLANT SCIENCE 2009; 14:669-79. [PMID: 19836291 PMCID: PMC2787751 DOI: 10.1016/j.tplants.2009.09.009] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/30/2009] [Accepted: 09/24/2009] [Indexed: 05/17/2023]
Abstract
Plant cells are ideal bioreactors for the production and oral delivery of vaccines and biopharmaceuticals, eliminating the need for expensive fermentation, purification, cold storage, transportation and sterile delivery. Plant-made vaccines have been developed for two decades but none has advanced beyond Phase I. However, two plant-made biopharmaceuticals are now advancing through Phase II and Phase III human clinical trials. In this review, we evaluate the advantages and disadvantages of different plant expression systems (stable nuclear and chloroplast or transient viral) and their current limitations or challenges. We provide suggestions for advancing this valuable concept for clinical applications and conclude that greater research emphasis is needed on large-scale production, purification, functional characterization, oral delivery and preclinical evaluation.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, College of Medicine, 336 Biomolecular Science Building, Orlando, FL 32816-2364, USA.
| | | | | | | |
Collapse
|
31
|
Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. TRENDS IN PLANT SCIENCE 2009; 14:669-679. [PMID: 19836291 DOI: 10.1016/j.plants.2009.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/30/2009] [Accepted: 09/24/2009] [Indexed: 05/23/2023]
Abstract
Plant cells are ideal bioreactors for the production and oral delivery of vaccines and biopharmaceuticals, eliminating the need for expensive fermentation, purification, cold storage, transportation and sterile delivery. Plant-made vaccines have been developed for two decades but none has advanced beyond Phase I. However, two plant-made biopharmaceuticals are now advancing through Phase II and Phase III human clinical trials. In this review, we evaluate the advantages and disadvantages of different plant expression systems (stable nuclear and chloroplast or transient viral) and their current limitations or challenges. We provide suggestions for advancing this valuable concept for clinical applications and conclude that greater research emphasis is needed on large-scale production, purification, functional characterization, oral delivery and preclinical evaluation.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, College of Medicine, 336 Biomolecular Science Building, Orlando, FL 32816-2364, USA.
| | | | | | | |
Collapse
|
32
|
Webster DE, Wang L, Mulcair M, Ma C, Santi L, Mason HS, Wesselingh SL, Coppel RL. Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:846-55. [PMID: 19781007 DOI: 10.1111/j.1467-7652.2009.00447.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Increasing numbers of plant-made vaccines and pharmaceuticals are entering the late stage of product development and commercialization. Despite the theoretical benefits of such production, expression of parasite antigens in plants, particularly those from Plasmodium, the causative parasites for malaria, have achieved only limited success. We have previously shown that stable transformation of tobacco plants with a plant-codon optimized form of the Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) gene resulted in PyMSP4/5 expression of up to approximately 0.25% of total soluble protein. In this report, we describe the rapid expression of PyMSP4/5 in Nicotiana benthamiana leaves using the deconstructed tobacco mosaic virus-based magnICON expression system. PyMSP4/5 yields of up to 10% TSP or 1-2 mg/g of fresh weight were consistently achieved. Characterization of the recombinant plant-made PyMSP4/5 indicates that it is structurally similar to PyMSP4/5 expressed by Escherichia coli. It is notable that the plant-made PyMSP4/5 protein retained its immunogenicity following long-term storage at ambient temperature within freeze-dried leaves. With assistance from a mucosal adjuvant the PyMSP4/5-containing leaves induced PyMSP4/5-specific antibodies when delivered orally to naïve mice or mice primed by a DNA vaccine. This study provides evidence that immunogenic Plasmodium antigens can be produced in large quantities in plants using the magnICON viral vector system.
Collapse
Affiliation(s)
- Diane E Webster
- School of Biological Sciences, Monash University, Clayton, Vic, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kennedy RB, Ovsyannikova I, Poland GA. Smallpox vaccines for biodefense. Vaccine 2009; 27 Suppl 4:D73-9. [PMID: 19837292 PMCID: PMC2764553 DOI: 10.1016/j.vaccine.2009.07.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022]
Abstract
Few diseases can match the enormous impact that smallpox has had on mankind. Its influence can be seen in the earliest recorded histories of ancient civilizations in Egypt and Mesopotamia. With fatality rates up to 30%, smallpox left its survivors with extensive scarring and other serious sequelae. It is estimated that smallpox killed 500 million people in the 19th and 20th centuries. Given the ongoing concerns regarding the use of variola as a biological weapon, this review will focus on the licensed vaccines as well as current research into next-generation vaccines to protect against smallpox and other poxviruses.
Collapse
|
34
|
Hooper JW, Ferro AM, Golden JW, Silvera P, Dudek J, Alterson K, Custer M, Rivers B, Morris J, Owens G, Smith JF, Kamrud KI. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine 2009; 28:494-511. [PMID: 19833247 DOI: 10.1016/j.vaccine.2009.09.133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/18/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 1970s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRPs) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 x 10(6)pfu of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine.
Collapse
Affiliation(s)
- Jay W Hooper
- US Army Medical Research Institute of Infectious Diseases, Virology Division, 1425 Porter Street, Fort Detrick, MD 21702, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Karg SR, Kallio PT. The production of biopharmaceuticals in plant systems. Biotechnol Adv 2009; 27:879-894. [PMID: 19647060 DOI: 10.1016/j.biotechadv.2009.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022]
Abstract
Biopharmaceuticals present the fastest growing segment in the pharmaceutical industry, with an ever widening scope of applications. Whole plants as well as contained plant cell culture systems are being explored for their potential as cheap, safe, and scalable production hosts. The first plant-derived biopharmaceuticals have now reached the clinic. Many biopharmaceuticals are glycoproteins; as the Golgi N-glycosylation machinery of plants differs from the mammalian machinery, the N-glycoforms introduced on plant-produced proteins need to be taken into consideration. Potent systems have been developed to change the plant N-glycoforms to a desired or even superior form compared to the native mammalian N-glycoforms. This review describes the current status of biopharmaceutical production in plants for industrial applications. The recent advances and tools which have been utilized to generate glycoengineered plants are also summarized and compared with the relevant mammalian systems whenever applicable.
Collapse
Affiliation(s)
- Saskia R Karg
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| | - Pauli T Kallio
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
36
|
Comparative evaluation of the immune responses and protection engendered by LC16m8 and Dryvax smallpox vaccines in a mouse model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1261-71. [PMID: 19605597 DOI: 10.1128/cvi.00040-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The immune response elicited by LC16m8, a candidate smallpox vaccine that was developed in Japan by cold selection during serial passage of the Lister vaccine virus in primary rabbit kidney cells, was compared to Dryvax in a mouse model. LC16m8 carries a mutation resulting in the truncation of the B5 protein, an important neutralizing target of the extracellular envelope form of vaccinia virus (EV). LC16m8 elicited a broad-spectrum immunoglobulin G (IgG) response that neutralized both EV and the intracellular mature form of vaccinia virus and provoked cell-mediated immune responses, including the activation of CD4+ and CD8+ cells, similarly to Dryvax. Mice inoculated with LC16m8 had detectable but low levels of anti-B5 IgG compared to Dryvax, but both Dryvax and LC16m8 sera neutralized vaccinia virus EV in vitro. A truncated B5 protein (approximately 8 kDa) was expressed abundantly in LC16m8-infected cells, and both murine immune sera and human vaccinia virus immunoglobulin recognized the truncated recombinant B5 protein in antigen-specific enzyme-linked immunosorbent assays. At a high-dose intranasal challenge (100 or 250 50% lethal doses), LC16m8 and Dryvax conferred similar levels of protection against vaccinia virus strain WR postvaccination. Taken together, the results extend our current understanding of the protective immune responses elicited by LC16m8 and indicate that the relative efficacy in a mouse model rivals that of previously licensed smallpox vaccines.
Collapse
|
37
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
38
|
Brodzik R, Spitsin S, Pogrebnyak N, Bandurska K, Portocarrero C, Andryszak K, Koprowski H, Golovkin M. Generation of plant-derived recombinant DTP subunit vaccine. Vaccine 2009; 27:3730-4. [PMID: 19464556 DOI: 10.1016/j.vaccine.2009.03.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
The current diphtheria-tetanus-pertussis (DTP) pediatric vaccine is produced from the corresponding pathogenic bacteria Corynebacterium diphtheriae, Clostridium tetani and Bordetella pertussis; five injected doses of DTaP (acellular) vaccine are required for every child in the standard US vaccination schedule. Because the vaccine is derived from native live sources, adverse effects are possible and production is complex and costly. To address issues of safety, ease of renewability and expense, we used recombinant technology in an effort to develop a subunit DPT vaccine derived in non-pathogenic plant expression systems. Expression of diphtheria toxin (DT), tetanus fragment-C (TetC) and the non-toxic S1 subunit of pertussis toxin (PTX S1) antigenic proteins in soluble form in low-alkaloid tobacco plants and carrot cell cultures allowed efficient downstream purification to levels suitable for intramuscular injection in BALB/c mice. At working concentrations of 5mug per dose, these preparations induced high levels of antigen-specific IgGs in mouse sera. Our results clearly support the feasibility of producing recombinant pediatric vaccine components in plants.
Collapse
Affiliation(s)
- R Brodzik
- Biotechnology Foundation Laboratories at Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 2009; 27:449-67. [PMID: 19356740 PMCID: PMC7126855 DOI: 10.1016/j.biotechadv.2009.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/12/2022]
Abstract
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Rakesh Tuli
- Corresponding author. National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001 (U.P.) India. Tel.: +91 522 2205848; fax: +91 522 2205839.
| |
Collapse
|
40
|
Immunological assessment of plant-derived avian flu H5/HA1 variants. Vaccine 2009; 27:1289-92. [DOI: 10.1016/j.vaccine.2008.12.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/23/2008] [Accepted: 12/28/2008] [Indexed: 11/21/2022]
|
41
|
Plant-produced vaccines: promise and reality. Drug Discov Today 2008; 14:16-24. [PMID: 18983932 DOI: 10.1016/j.drudis.2008.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/21/2022]
Abstract
Plant-produced vaccines are a much-hyped development of the past two decades, whose time to embrace reality may have finally come. Vaccines have been developed against viral, bacterial, parasite and allergenic antigens, for humans and for animals; a wide variety of plants have been used for stable transgenic expression as well as for transient expression via Agrobacterium tumefaciens and plant viral vectors. A great many products have shown significant immunogenicity; several have shown efficacy in target animals or in animal models. The realised potential of plant-produced vaccines is discussed, together with future prospects for production and registration.
Collapse
|
42
|
Yusibov V, Rabindran S. Recent progress in the development of plant derived vaccines. Expert Rev Vaccines 2008; 7:1173-83. [PMID: 18844592 DOI: 10.1586/14760584.7.8.1173] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant subunit vaccines have been with us for the last 30 years and they provide us with the unique opportunity to choose from the many available production systems that can be used for recombinant protein expression. Plants have become an attractive production platform for recombinant biopharmaceuticals and vaccines have been at the forefront of this new and expanding industry sector. The particular advantages of plant-based vaccines in terms of cost, safety and scalability are discussed in the light of recent successful clinical trials and the likely impact of plant systems on the vaccine industry is evaluated.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 1971, USA.
| | | |
Collapse
|
43
|
Mett V, Farrance CE, Green BJ, Yusibov V. Plants as biofactories. Biologicals 2008; 36:354-8. [PMID: 18938088 DOI: 10.1016/j.biologicals.2008.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/09/2008] [Indexed: 12/01/2022] Open
Abstract
Cell substrates are a key component of successful vaccine development and throughout the last several decades there has been a dramatic increase in the types of cells available for vaccine production. Nevertheless, there is a continued demand for new and innovative approaches for vaccine development and manufacturing. Recent developments involving cells of insect and plant origin are attracting considerable scientific interest. Here we review vaccine antigen production in plant-based systems as was presented by Dr. Vidadi Yusibov of Fraunhofer USA Center for Molecular Biotechnology at the IABS International Scientific Workshop on NEW CELLS FOR NEW VACCINES II that was held in Wilmington, Delaware on September 17-19, 2007.
Collapse
Affiliation(s)
- Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
44
|
Portocarrero C, Markley K, Koprowski H, Spitsin S, Golovkin M. Immunogenic properties of plant-derived recombinant smallpox vaccine candidate pB5. Vaccine 2008; 26:5535-40. [PMID: 18706953 DOI: 10.1016/j.vaccine.2008.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/17/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022]
Abstract
The extracellular virion membrane protein B5 is a potent inducer of immune responses capable of protecting mice and primates against poxvirus infections. Here, we examined the antibody response induced in mice immunized intramuscularly (i.m.) or intranasally (i.n.) with plant-derived B5 (pB5) accompanied or not with plant total soluble protein (TSP) at various concentrations. Increasing amounts of TSP inhibited the pB5-specific response in both i.m.- and i.n.-immunized mice, with more dramatic effects in the latter. pB5 administered to mucosal surfaces induced specific IgG and IgA responses, whereas i.m. immunization produced high serum IgG titers and no IgA. A 6-fold increase in pB5 dosage administered i.n. led to an antibody response comparable to that obtained by i.m. injection. Our study addresses the quality/quantity issues of the pB5 subunit preparation and demonstrates the feasibility of mucosal administration of plant-derived smallpox subunit vaccine in obtaining a potent immune response. Overall, this work points to the practicability of needle-free mucosal administration of such vaccines in light of purity, dosage and adjuvant formulation.
Collapse
Affiliation(s)
- Carla Portocarrero
- Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, PA 19107-6799, United States
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Bandurska K, Brodzik R, Spitsin S, Kohl T, Portocarrero C, Smirnov Y, Pogrebnyak N, Sirko A, Koprowski H, Golovkin M. Plant-produced hepatitis B core protein chimera carrying anthrax protective antigen domain-4. Hybridoma (Larchmt) 2008; 27:241-7. [PMID: 18707542 DOI: 10.1089/hyb.2008.0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hepatitis B core antigen (HBcAg) can generate a strong immune response and is recognized as an effective carrier for foreign epitopes. The domain-4 epitope of the anthrax protective antigen (PA-D4) plays an essential role in generating protective immunity against virulent Bacillus anthracis. Here we report the successful production of a recombinant protein comprised of the antigenic PA-D4 integrated into the c/e1 loop of HBcAg in transgenic low-alkaloid Nicotiana tabacum. Sera of mice injected with the plant-derived purified HB/PA-D4 protein exhibited significant anti-PA- and anti-HBcAg-specific IgG titers; however, formation of virus-like particles (VLP) was not observed. These data support the feasibility of producing complex protein chimeras in plants.
Collapse
Affiliation(s)
- Katarzyna Bandurska
- Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins.
Collapse
Affiliation(s)
- Chiara Lico
- UTS BIOTEC, Section of Genetics and Plant Genomics, ENEA CR Casaccia, Rome, Italy
| | | | | |
Collapse
|
48
|
Brodzik R, Spitsin S, Golovkin M, Bandurska K, Portocarrero C, Okulicz M, Steplewski Z, Koprowski H. Plant-derived EpCAM antigen induces protective anti-cancer response. Cancer Immunol Immunother 2008; 57:317-23. [PMID: 17634938 PMCID: PMC11030716 DOI: 10.1007/s00262-007-0366-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/28/2007] [Indexed: 11/28/2022]
Abstract
Immunotherapy holds great promise for treatment of infectious and malignant diseases and might help to prevent the occurrence and recurrence of cancer. We produced a plant-derived tumor-associated colorectal cancer antigen EpCAM (pGA733) at high yields using two modern plant expression systems. The full antigenic domain of EpCAM was efficiently purified to confirm its antigenic and immunogenic properties as compared to those of the antigen expressed in the baculovirus system (bGA733). Recombinant plant-derived antigen induced a humoral immune response in BALB/c mice. Sera from those mice efficiently inhibited the growth of SW948 colorectal carcinoma cells xenografted in nude mice, as compared to the EpCAM-specific mAb CO17-1A. Our results support the feasibility of producing anti-cancer recombinant vaccines using plant expression systems.
Collapse
MESH Headings
- Animals
- Antibodies/blood
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/isolation & purification
- Beta vulgaris/genetics
- Beta vulgaris/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/isolation & purification
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/therapy
- Epithelial Cell Adhesion Molecule
- Gene Expression Regulation, Plant/genetics
- Humans
- Immune Sera/pharmacology
- Immunotherapy/methods
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Nicotiana/genetics
- Nicotiana/immunology
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Robert Brodzik
- Biotechnology Foundation Laboratories, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107 USA
| | - Sergei Spitsin
- Biotechnology Foundation Laboratories, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107 USA
| | - Max Golovkin
- Biotechnology Foundation Laboratories, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107 USA
| | - Katarzyna Bandurska
- Biotechnology Foundation Laboratories, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107 USA
| | - Carla Portocarrero
- Biotechnology Foundation Laboratories, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107 USA
| | - Monika Okulicz
- Present Address: Department of Animal Physiology and Biochemistry, August Cieszkowski Agricultural University, Wolynska 35, 60-637 Poznan, Poland
| | - Zenon Steplewski
- Biotechnology Foundation Laboratories, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107 USA
| | - Hilary Koprowski
- Biotechnology Foundation Laboratories, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107 USA
| |
Collapse
|