1
|
Hwang IY, Kalyuzhnaya MG, Lee EY. Quantitative assessment of methane bioconversion based on kinetics and bioenergetics. BIORESOURCE TECHNOLOGY 2024; 410:131269. [PMID: 39163949 DOI: 10.1016/j.biortech.2024.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
The biological conversion of methane under ambient conditions can be performed by methanotrophs that utilize methane as both a sole source of energy and a carbon source. However, compared to the established microbial chassis used for general fermentation with sugar as a feedstock, the productivity of methanotrophs is low. The fundamental knowledge of their metabolic or cellular bottlenecks is limited. In this review, the industrial-scale potential of methane bioconversion was evaluated. In particular, the enzyme kinetics associated with the oxidation and assimilation of methane were investigated to evaluate the potential of methane fermentation. The kinetics of enzymes involved in methane metabolism were compared with those used in the metabolic processes of traditional fermentation (glycolysis). Through this analysis, the current limitations of methane metabolism were identified. Methods for increasing the efficiency of methane bioconversion and directions for the industrial application of methane-based fermentation were discussed.
Collapse
Affiliation(s)
- In Yeub Hwang
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - M G Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego CA92182, USA.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Wang Y, Zhou K, Zhang H, Cheng M, Wang B, Yan X. Isolation of a facultative methanotroph Methylocystis iwaonis SD4 from rice rhizosphere and establishment of rapid genetic tools for it. Biotechnol Lett 2024; 46:713-724. [PMID: 38733438 DOI: 10.1007/s10529-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.
Collapse
Affiliation(s)
- Yinghui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Keyu Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Haili Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Baozhan Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
3
|
Zhang L, Lin W, Sardans J, Li X, Hui D, Yang Z, Wang H, Lin H, Wang Y, Guo J, Peñuelas J, Yang Y. Soil warming-induced reduction in water content enhanced methane uptake at different soil depths in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171994. [PMID: 38561130 DOI: 10.1016/j.scitotenv.2024.171994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-10 and 10-20 cm depths. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28 %, 29.51 %, and 61.05 % in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α (a type of MOB) and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model analysis indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better CH4 penetration, thereby promoting more efficient activity of MOB.
Collapse
Affiliation(s)
- Lei Zhang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Weisheng Lin
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Xiaoling Li
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Zhijie Yang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China
| | - Haizhen Wang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Hao Lin
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Yufang Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu Province, China
| | - Jianfen Guo
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China.
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Yusheng Yang
- Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China
| |
Collapse
|
4
|
He L, Lidstrom ME. Utilisation of low methane concentrations by methanotrophs. Adv Microb Physiol 2024; 85:57-96. [PMID: 39059823 DOI: 10.1016/bs.ampbs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA United States; Department of Microbiology, University of Washington, Seattle, WA United States.
| |
Collapse
|
5
|
Deng M, Yeerken S, Wang Y, Li L, Li Z, Oon YS, Oon YL, Xue Y, He X, Zhao X, Song K. Greenhouse gases emissions from aquaculture ponds: Different emission patterns and key microbial processes affected by increased nitrogen loading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172108. [PMID: 38556013 DOI: 10.1016/j.scitotenv.2024.172108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Global aquaculture production is expected to rise to meet the growing demand for food worldwide, potentially leading to increased anthropogenic greenhouse gases (GHG) emissions. As the demand for fish protein increases, so will stocking density, feeding amounts, and nitrogen loading in aquaculture ponds. However, the impact of GHG emissions and the underlying microbial processes remain poorly understood. This study investigated the GHG emission characteristics, key microbial processes, and environmental drivers underlying GHG emissions in low and high nitrogen loading aquaculture ponds (LNP and HNP). The N2O flux in HNP (43.1 ± 11.3 μmol m-2 d-1) was significantly higher than in LNP (-11.3 ± 25.1 μmol m-2 d-1), while the dissolved N2O concentration in HNP (52.8 ± 7.1 nmol L-1) was 150 % higher than in LNP (p < 0.01). However, the methane (CH4) and carbon dioxide (CO2) fluxes and concentrations showed no significant differences (p > 0.05). N2O replaced CH4 as the main source of Global Warming Potential in HNP. Pond sediments acted as a sink for N2O but a source for CH4 and CO2. The △N2O/(△N2O + △N2) in HNP (0.015 ± 0.007 %) was 7.7-fold higher than in LNP (0.002 ± 0.001 %) (p < 0.05). The chemical oxygen demand to NO2-N ratio was the most important environmental factor explaining the variability of N2O fluxes. Ammonia-oxidizing bacteria driven nitrification in water was the predominant N2O source, while comammox-driven nitrification and nosZII-driven N2O reduction in water were key processes for reducing N2O emission in LNP but decreased in HNP. The strong CH4 oxidization by Methylocystis and CO2 assimilation by algae resulted in low CH4 emissions and CO2 sink in the aquaculture pond. The Mantel test indicated that HNP increased N2O fluxes mainly through altering functional genes composition in water and sediment. Our findings suggest that there is a significant underestimation of N2O emissions without considering the significantly increased △N2O/(△N2O + △N2) caused by increased nitrogen loading.
Collapse
Affiliation(s)
- Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhouyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xugang He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Xu K, Tao C, Gu L, Zheng X, Ma Y, Yan Z, Sun Y, Cai Y, Jia Z. Identifying Active Rather than Total Methanotrophs Inhabiting Surface Soil Is Essential for the Microbial Prospection of Gas Reservoirs. Microorganisms 2024; 12:372. [PMID: 38399776 PMCID: PMC10892661 DOI: 10.3390/microorganisms12020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Methane-oxidizing bacteria (MOB) have long been recognized as an important bioindicator for oil and gas exploration. However, due to their physiological and ecological diversity, the distribution of MOB in different habitats varies widely, making it challenging to authentically reflect the abundance of active MOB in the soil above oil and gas reservoirs using conventional methods. Here, we selected the Puguang gas field of the Sichuan Basin in Southwest China as a model system to study the ecological characteristics of methanotrophs using culture-independent molecular techniques. Initially, by comparing the abundance of the pmoA genes determined by quantitative PCR (qPCR), no significant difference was found between gas well and non-gas well soils, indicating that the abundance of total MOB may not necessarily reflect the distribution of the underlying gas reservoirs. 13C-DNA stable isotope probing (DNA-SIP) in combination with high-throughput sequencing (HTS) furthermore revealed that type II methanotrophic Methylocystis was the absolutely predominant active MOB in the non-gas-field soils, whereas the niche vacated by Methylocystis was gradually filled with type I RPC-2 (rice paddy cluster-2) and Methylosarcina in the surface soils of gas reservoirs after geoscale acclimation to trace- and continuous-methane supply. The sum of the relative abundance of RPC-2 and Methylosarcina was then used as specific biotic index (BI) in the Puguang gas field. A microbial anomaly distribution map based on the BI values showed that the anomalous zones were highly consistent with geological and geophysical data, and known drilling results. Therefore, the active but not total methanotrophs successfully reflected the microseepage intensity of the underlying active hydrocarbon system, and can be used as an essential quantitative index to determine the existence and distribution of reservoirs. Our results suggest that molecular microbial techniques are powerful tools for oil and gas prospecting.
Collapse
Affiliation(s)
- Kewei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Cheng Tao
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Lei Gu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Xuying Zheng
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Yuanyuan Ma
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Zhengfei Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China;
| | - Yuanfeng Cai
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
- State Key Laboratory of Black Soils Conservation and Utilization, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
7
|
Wu Z, Cao X, Li M, Liu J, Li B. Treatment of volatile organic compounds and other waste gases using membrane biofilm reactors: A review on recent advancements and challenges. CHEMOSPHERE 2024; 349:140843. [PMID: 38043611 DOI: 10.1016/j.chemosphere.2023.140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
This article provides a comprehensive review of membrane biofilm reactors for waste gas (MBRWG) treatment, focusing on studies conducted since 2000. The first section discusses the membrane materials, structure, and mass transfer mechanism employed in MBRWG. The concept of a partial counter-diffusion biofilm in MBRWG is introduced, with identification of the most metabolically active region. Subsequently, the effectiveness of these biofilm reactors in treating single and mixed pollutants is examined. The phenomenon of membrane fouling in MBRWG is characterized, alongside an analysis of contributory factors. Furthermore, a comparison is made between membrane biofilm reactors and conventional biological treatment technologies, highlighting their respective advantages and disadvantages. It is evident that the treatment of hydrophobic gases and their resistance to volatility warrant further investigation. In addition, the emergence of the smart industry and its integration with other processes have opened up new opportunities for the utilization of MBRWG. Overcoming membrane fouling and developing stable and cost-effective membrane materials are essential factors for successful engineering applications of MBRWG. Moreover, it is worth exploring the mechanisms of co-metabolism in MBRWG and the potential for altering biofilm community structures.
Collapse
Affiliation(s)
- Ziqing Wu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Jun Liu
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Wutkowska M, Tláskal V, Bordel S, Stein LY, Nweze JA, Daebeler A. Leveraging genome-scale metabolic models to understand aerobic methanotrophs. THE ISME JOURNAL 2024; 18:wrae102. [PMID: 38861460 PMCID: PMC11195481 DOI: 10.1093/ismejo/wrae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarizing recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidizers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidizing bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidizers as model organisms and to provide an outlook for future studies.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Vojtěch Tláskal
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid 47011, Spain
- Institute of Sustainable Processes, Valladolid 47011, Spain
| | - Lisa Y Stein
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Justus Amuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Seppey CVW, Cabrol L, Thalasso F, Gandois L, Lavergne C, Martinez-Cruz K, Sepulveda-Jauregui A, Aguilar-Muñoz P, Astorga-España MS, Chamy R, Dellagnezze BM, Etchebehere C, Fochesatto GJ, Gerardo-Nieto O, Mansilla A, Murray A, Sweetlove M, Tananaev N, Teisserenc R, Tveit AT, Van de Putte A, Svenning MM, Barret M. Biogeography of microbial communities in high-latitude ecosystems: Contrasting drivers for methanogens, methanotrophs and global prokaryotes. Environ Microbiol 2023; 25:3364-3386. [PMID: 37897125 DOI: 10.1111/1462-2920.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.
Collapse
Affiliation(s)
- Christophe V W Seppey
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany
| | - Léa Cabrol
- Aix-Marseille University, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Frederic Thalasso
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Laure Gandois
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Céline Lavergne
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karla Martinez-Cruz
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
- Environmental Physics Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| | | | - Polette Aguilar-Muñoz
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bruna Martins Dellagnezze
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Gilberto J Fochesatto
- Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Oscar Gerardo-Nieto
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Andrés Mansilla
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - Alison Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada, USA
| | - Maxime Sweetlove
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Nikita Tananaev
- Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk, Russia
- Institute of Natural Sciences, North-Eastern Federal University, Yakutsk, Russia
| | - Roman Teisserenc
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anton Van de Putte
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
10
|
Zhu YG, Peng J, Chen C, Xiong C, Li S, Ge A, Wang E, Liesack W. Harnessing biological nitrogen fixation in plant leaves. TRENDS IN PLANT SCIENCE 2023; 28:1391-1405. [PMID: 37270352 DOI: 10.1016/j.tplants.2023.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
The importance of biological nitrogen fixation (BNF) in securing food production for the growing world population with minimal environmental cost has been increasingly acknowledged. Leaf surfaces are one of the biggest microbial habitats on Earth, harboring diverse free-living N2-fixers. These microbes inhabit the epiphytic and endophytic phyllosphere and contribute significantly to plant N supply and growth. Here, we summarize the contribution of phyllosphere-BNF to global N cycling, evaluate the diversity of leaf-associated N2-fixers across plant hosts and ecosystems, illustrate the ecological adaptation of N2-fixers to the phyllosphere, and identify the environmental factors driving BNF. Finally, we discuss potential BNF engineering strategies to improve the nitrogen uptake in plant leaves and thus sustainable food production.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shule Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anhui Ge
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| |
Collapse
|
11
|
van den Bergh SG, Chardon I, Meima-Franke M, Costa OYA, Korthals GW, de Boer W, Bodelier PLE. The intrinsic methane mitigation potential and associated microbes add product value to compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:17-32. [PMID: 37542791 DOI: 10.1016/j.wasman.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Conventional agricultural activity reduces the uptake of the potent greenhouse gas methane by agricultural soils. However, the recently observed improved methane uptake capacity of agricultural soils after compost application is promising but needs mechanistic understanding. In this study, the methane uptake potential and microbiomes involved in methane cycling were assessed in green compost and household-compost with and without pre-digestion. In bottle incubations of different composts with both high and near-atmospheric methane concentrations (∼10.000 & ∼10 ppmv, respectively), green compost showed the highest potential methane uptake rates (up to 305.19 ± 94.43 nmol h-1 g dw compost-1 and 25.19 ± 6.75 pmol h-1 g dw compost-1, respectively). 16S, pmoA and mcrA amplicon sequencing revealed that its methanotrophic and methanogenic communities were dominated by type Ib methanotrophs, and more specifically by Methylocaldum szegediense and other Methylocaldum species, and Methanosarcina species, respectively. Ordination analyses showed that the abundance of type Ib methanotrophic bacteria was the main steering factor of the intrinsic methane uptake rates of composts, whilst the ammonium content was the main limiting factor, being most apparent in household composts. These results emphasize the potential of compost to contribute to methane mitigation, providing added value to compost as a product for industrial, commercial, governmental and public interests relevant to waste management. Compost could serve as a vector for the introduction of active methanotrophic bacteria in agricultural soils, potentially improving the methane uptake potential of agricultural soils and contributing to global methane mitigation, which should be the focus of future research.
Collapse
Affiliation(s)
- Stijn G van den Bergh
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, the Netherlands; Soil Biology Group, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands.
| | - Iris Chardon
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, the Netherlands.
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, the Netherlands.
| | - Ohana Y A Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, the Netherlands.
| | - Gerard W Korthals
- Biointeractions and Plant Health, Wageningen Plant Research, PO Box 16, 6700AA Wageningen, the Netherlands.
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, the Netherlands; Soil Biology Group, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands.
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, the Netherlands.
| |
Collapse
|
12
|
He L, Groom JD, Wilson EH, Fernandez J, Konopka MC, Beck DAC, Lidstrom ME. A methanotrophic bacterium to enable methane removal for climate mitigation. Proc Natl Acad Sci U S A 2023; 120:e2310046120. [PMID: 37603746 PMCID: PMC10466089 DOI: 10.1073/pnas.2310046120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
The rapid increase of the potent greenhouse gas methane in the atmosphere creates great urgency to develop and deploy technologies for methane mitigation. One approach to removing methane is to use bacteria for which methane is their carbon and energy source (methanotrophs). Such bacteria naturally convert methane to CO2 and biomass, a value-added product and a cobenefit of methane removal. Typically, methanotrophs grow best at around 5,000 to 10,000 ppm methane, but methane in the atmosphere is 1.9 ppm. Air above emission sites such as landfills, anaerobic digestor effluents, rice paddy effluents, and oil and gas wells contains elevated methane in the 500 ppm range. If such sites are targeted for methane removal, technology harnessing aerobic methanotroph metabolism has the potential to become economically and environmentally viable. The first step in developing such methane removal technology is to identify methanotrophs with enhanced ability to grow and consume methane at 500 ppm and lower. We report here that some existing methanotrophic strains grow well at 500 ppm methane, and one of them, Methylotuvimicrobium buryatense 5GB1C, consumes such low methane at enhanced rates compared to previously published values. Analyses of bioreactor-based performance and RNAseq-based transcriptomics suggest that this ability to utilize low methane is based at least in part on extremely low non-growth-associated maintenance energy and on high methane specific affinity. This bacterium is a candidate to develop technology for methane removal at emission sites. If appropriately scaled, such technology has the potential to slow global warming by 2050.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
| | - Joseph D. Groom
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
| | - Erin H. Wilson
- School of Computer Science & Engineering, University of Washington, Seattle, WA98195
| | | | | | - David A. C. Beck
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- eScience Institute, University of Washington, Seattle, WA98195
| | - Mary E. Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Department of Microbiology, University of Washington, Seattle, WA98195
| |
Collapse
|
13
|
Guo K, Glatter T, Paczia N, Liesack W. Asparagine Uptake: a Cellular Strategy of Methylocystis to Combat Severe Salt Stress. Appl Environ Microbiol 2023; 89:e0011323. [PMID: 37184406 PMCID: PMC10305061 DOI: 10.1128/aem.00113-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Methylocystis spp. are known to have a low salt tolerance (≤1.0% NaCl). Therefore, we tested various amino acids and other well-known osmolytes for their potential to act as an osmoprotectant under otherwise growth-inhibiting NaCl conditions. Adjustment of the medium to 10 mM asparagine had the greatest osmoprotective effect under severe salinity (1.50% NaCl), leading to partial growth recovery of strain SC2. The intracellular concentration of asparagine increased to 264 ± 57 mM, with a certain portion hydrolyzed to aspartate (4.20 ± 1.41 mM). In addition to general and oxidative stress responses, the uptake of asparagine specifically induced major proteome rearrangements related to the KEGG level 3 categories of "methane metabolism," "pyruvate metabolism," "amino acid turnover," and "cell division." In particular, various proteins involved in cell division (e.g., ChpT, CtrA, PleC, FtsA, FtsH1) and peptidoglycan synthesis showed a positive expression response. Asparagine-derived 13C-carbon was incorporated into nearly all amino acids. Both the exometabolome and the 13C-labeling pattern suggest that in addition to aspartate, the amino acids glutamate, glycine, serine, and alanine, but also pyruvate and malate, were most crucially involved in the osmoprotective effect of asparagine, with glutamate being a major hub between the central carbon and amino acid pathways. In summary, asparagine induced significant proteome rearrangements, leading to major changes in central metabolic pathway activity and the sizes of free amino acid pools. In consequence, asparagine acted, in part, as a carbon source for the growth recovery of strain SC2 under severe salinity. IMPORTANCE Methylocystis spp. play a major role in reducing methane emissions into the atmosphere from methanogenic wetlands. In addition, they contribute to atmospheric methane oxidation in upland soils. Although these bacteria are typical soil inhabitants, Methylocystis spp. are thought to have limited capacity to acclimate to salt stress. This called for a thorough study into potential osmoprotectants, which revealed asparagine as the most promising candidate. Intriguingly, asparagine was taken up quantitatively and acted, at least in part, as an intracellular carbon source under severe salt stress. The effect of asparagine as an osmoprotectant for Methylocystis spp. is an unexpected finding. It may provide Methylocystis spp. with an ecological advantage in wetlands, where these methanotrophs colonize the roots of submerged vascular plants. Collectively, our study offers a new avenue into research on compounds that may increase the resilience of Methylocystis spp. to environmental change.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
14
|
Hwangbo M, Shao Y, Hatzinger PB, Chu KH. Acidophilic methanotrophs: Occurrence, diversity, and possible bioremediation applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 37041665 DOI: 10.1111/1758-2229.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanotrophs have been identified and isolated from acidic environments such as wetlands, acidic soils, peat bogs, and groundwater aquifers. Due to their methane (CH4 ) utilization as a carbon and energy source, acidophilic methanotrophs are important in controlling the release of atmospheric CH4 , an important greenhouse gas, from acidic wetlands and other environments. Methanotrophs have also played an important role in the biodegradation and bioremediation of a variety of pollutants including chlorinated volatile organic compounds (CVOCs) using CH4 monooxygenases via a process known as cometabolism. Under neutral pH conditions, anaerobic bioremediation via carbon source addition is a commonly used and highly effective approach to treat CVOCs in groundwater. However, complete dechlorination of CVOCs is typically inhibited at low pH. Acidophilic methanotrophs have recently been observed to degrade a range of CVOCs at pH < 5.5, suggesting that cometabolic treatment may be an option for CVOCs and other contaminants in acidic aquifers. This paper provides an overview of the occurrence, diversity, and physiological activities of methanotrophs in acidic environments and highlights the potential application of these organisms for enhancing contaminant biodegradation and bioremediation.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Yiru Shao
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul B Hatzinger
- Aptim Federal Services, LLC, 17 Princess Road, Lawrenceville, New Jersey, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Wang J, Zhao Y, Zhou M, Hu J, Hu B. Aerobic and denitrifying methanotrophs: Dual wheels driving soil methane emission reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161437. [PMID: 36623660 DOI: 10.1016/j.scitotenv.2023.161437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The greenhouse gas methane in soils has been considered to be consumed mainly by aerobic methane-oxidizing bacteria for a long time. In the last decades, the discovery of anaerobic methanotrophs greatly complemented the methane cycle, but their contribution rates and ecological significance in soils remain undescribed. In this work, the soil samples from forest, grassland and cropland in four different climatic regions were collected to investigate these conventional and novel methanotrophs. A dual-core microbial methane sink, responsible for over 80 % of soil methane emission reduction, was unveiled. The aerobic core was performed by aerobic methanotrophic bacteria in topsoil, who played important roles in stabilizing bacterial communities. The anaerobic core was denitrifying methanotrophs in anoxic soils, including denitrifying methanotrophic bacteria from NC10 phylum and denitrifying methanotrophic archaea from ANME-2d clade. They were ubiquitous in terrestrial soils and potentially led to around 50 % of the total methane removal. Human activities such as livestock farming and rice cultivation further promoted the contribution rates of these denitrifying methanotrophs. This work elucidated the emission reduction contribution of different methanotrophs in the continental setting, which would help to reduce uncertainties in the estimations of the soil methane emission.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
16
|
Wang H, Jurasinski G, Täumer J, Kuß AW, Groß V, Köhn D, Günther A, Urich T. Linking Transcriptional Dynamics of Peat Microbiomes to Methane Fluxes during a Summer Drought in Two Rewetted Fens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5089-5101. [PMID: 36926875 DOI: 10.1021/acs.est.2c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rewetted peatlands are reestablished hot spots for CH4 emissions, which are subject to increased drought events in the course of climate change. However, the dynamics of soil methane-cycling microbiomes in rewetted peatlands during summer drought are still poorly characterized. Using a quantitative metatranscriptomic approach, we investigated the changes in the transcript abundances of methanogen and methanotroph rRNA, as well as mcrA and pmoA mRNA before, during, and after the 2018 summer drought in a coastal and a percolation fen in northern Germany. Drought changed the community structure of methane-cycling microbiomes and decreased the CH4 fluxes as well as the rRNA and mRNA transcript abundances of methanogens and methanotrophs, but they showed no recovery or increase after the drought ended. The rRNA transcript abundance of methanogens was not correlated with CH4 fluxes in both fens. In the percolation fen, however, the mcrA transcript abundance showed a positive and significant correlation with CH4 fluxes. Importantly, when integrating pmoA abundance, a stronger correlation was observed between CH4 fluxes and mcrA/pmoA, suggesting that relationships between methanogens and methanotrophs are the key determinant of CH4 turnover. Our study provides a comprehensive understanding of the methane-cycling microbiome feedbacks to drought events in rewetted peatlands.
Collapse
Affiliation(s)
- Haitao Wang
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Gerald Jurasinski
- Landscape Ecology, University of Rostock, 18059 Rostock, Germany
- Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
- Peatland Science, University of Greifswald, 17489 Greifswald, Germany
| | - Jana Täumer
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Andreas W Kuß
- Human Molecular Genetics Group, Department of Functional Genomics, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Verena Groß
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Daniel Köhn
- Landscape Ecology, University of Rostock, 18059 Rostock, Germany
| | - Anke Günther
- Landscape Ecology, University of Rostock, 18059 Rostock, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
17
|
Dillon KP, Krumins V, Deshpande A, Kerkhof LJ, Mainelis G, Fennell DE. Characterization and DNA Stable-Isotope Probing of Methanotrophic Bioaerosols. Microbiol Spectr 2022; 10:e0342122. [PMID: 36409096 PMCID: PMC9769660 DOI: 10.1128/spectrum.03421-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
The growth and activity of bacteria have been extensively studied in nearly every environment on Earth, but there have been limited studies focusing on the air. Suspended bacteria (outside of water droplets) may stay in the atmosphere for time frames that could allow for growth on volatile compounds, including the potent greenhouse gas methane. We investigated the ability of aerosolized methanotrophic bacteria to grow on methane in the airborne state in rotating gas-phase bioreactors. The physical half-life of the aerial bacterium-sized particles was 3 days. To assess the potential for airborne growth, gas-phase bioreactors containing the aerosolized cultures were amended with 1,500 ppmv 13CH4 or 12CH4. Three of seven experiments demonstrated 13C incorporation into DNA, indicating growth in air. Bacteria associated with the genera Methylocystis and Methylocaldum were detected in 13C-DNA fractions, thus indicating that they were synthesizing new DNA, suggesting growth in air. We conclude that methanotrophs outside of water droplets in the air can potentially grow under certain conditions. Based on our data, humidity seems to be a major limitation to bacterial growth in air. Furthermore, low biomass levels can pose problems for detecting 13C-DNA synthesis in our experimental system. IMPORTANCE Currently, the cellular activities of bacteria in the airborne state outside of water droplets have not been heavily studied. Evidence suggests that these airborne bacteria produce ribosomes and metabolize gaseous compounds. Despite having a potentially important impact on atmospheric chemistry, the ability of bacteria in the air to metabolize substrates such as methane is not well understood. Demonstrating that bacteria in the air can metabolize and grow on substrates will expand knowledge about the potential activities and functions of the atmospheric microbiome. This study provides evidence for DNA synthesis and, ultimately, growth of airborne methanotrophs.
Collapse
Affiliation(s)
- Kevin P. Dillon
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Aishwarya Deshpande
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Lee J. Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Donna E. Fennell
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
18
|
Ho A, Zuan ATK, Mendes LW, Lee HJ, Zulkeflee Z, van Dijk H, Kim PJ, Horn MA. Aerobic Methanotrophy and Co-occurrence Networks of a Tropical Rainforest and Oil Palm Plantations in Malaysia. MICROBIAL ECOLOGY 2022; 84:1154-1165. [PMID: 34716776 PMCID: PMC9747831 DOI: 10.1007/s00248-021-01908-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/21/2021] [Indexed: 05/11/2023]
Abstract
Oil palm (OP) plantations are gradually replacing tropical rainforest in Malaysia, one of the largest palm oil producers globally. Conversion of lands to OP plantations has been associated with compositional shifts of the microbial community, with consequences on the greenhouse gas (GHG) emissions. While the impact of the change in land use has recently been investigated for microorganisms involved in N2O emission, the response of the aerobic methanotrophs to OP agriculture remains to be determined. Here, we monitored the bacterial community composition, focusing on the aerobic methanotrophs, in OP agricultural soils since 2012, 2006, and 1993, as well as in a tropical rainforest, in 2019 and 2020. High-affinity methane uptake was confirmed, showing significantly lower rates in the OP plantations than in the tropical rainforest, but values increased with continuous OP agriculture. The bacterial, including the methanotrophic community composition, was modified with ongoing OP agriculture. The methanotrophic community composition was predominantly composed of unclassified methanotrophs, with the canonical (Methylocystis) and putative methanotrophs thought to catalyze high-affinity methane oxidation present at higher relative abundance in the oldest OP plantation. Results suggest that the methanotrophic community was relatively more stable within each site, exhibiting less temporal variations than the total bacterial community. Uncharacteristically, a 16S rRNA gene-based co-occurrence network analysis revealed a more complex and connected community in the OP agricultural soil, which may influence the resilience of the bacterial community to disturbances. Overall, we provide a first insight into the ecology and role of the aerobic methanotrophs as a methane sink in OP agricultural soils.
Collapse
Affiliation(s)
- Adrian Ho
- Institute for Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | - Lucas W Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), Sao Paulo, Brazil
| | - Hyo Jung Lee
- Department of Biology, Kunsan National University, Gunsan, South Korea
| | - Zufarzaana Zulkeflee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | - Hester van Dijk
- Institute for Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Pil Joo Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, South Korea
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
19
|
Guo K, Hakobyan A, Glatter T, Paczia N, Liesack W. Methylocystis sp. Strain SC2 Acclimatizes to Increasing NH 4+ Levels by a Precise Rebalancing of Enzymes and Osmolyte Composition. mSystems 2022; 7:e0040322. [PMID: 36154142 PMCID: PMC9600857 DOI: 10.1128/msystems.00403-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anna Hakobyan
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
20
|
Jiang M, Xu P, Wu L, Zhao J, Wu H, Lin S, Yang T, Tu J, Hu R. Methane emission, methanogenic and methanotrophic communities during rice-growing seasons differ in diversified rice rotation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156781. [PMID: 35724786 DOI: 10.1016/j.scitotenv.2022.156781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Appropriate crop rotation in rice field is an important measure to maintain soil fertility and rice productivity. However, the effects of different rice rotation systems on methane (CH4) emission and the underlying mechanisms, as well as rice grain yields have not been well assessed. Here, a 2-year field study involving three rice rotation systems (Wh-PR: wheat-flooded rice rotation, Ra-PR: rapeseed-flooded rice rotation, Ra-UR: rapeseed-aerobic rice rotation) was conducted. CH4 emissions, methanogenic and methanotrophic communities and rice grain yields were measured during rice growing seasons to determine which rice rotation pattern can reduce CH4 emissions and improve rice grain yields. The average cumulative CH4 emission was 136.19 kg C ha-1 in Ra-PR system, which was significantly higher than that in Wh-PR and Ra-UR systems by 60.6 % and 14.6-fold, respectively. These results were mainly attributed to the low soil dissolved organic carbon in Wh-PR system and the well aerated soil condition in Ra-UR system, as compared with Ra-PR system. Rice grain yields exhibited no significant differences among the three rotation systems in 2019 and 2020. The abundances of methanogens in Ra-PR system were obviously higher than those in Wh-PR and Ra-UR systems. While the abundances of methanotrophs were comparable between Ra-PR and Wh-PR systems, which exhibited significantly lower abundances than that in Ra-UR system. CH4 fluxes showed markedly positive relations to the abundances of methanogens, while exhibited no relationship with the abundances of methanotrophs. Both methanogenic and methanotrophic community compositions differed considerably in Wh-PR and Ra-UR systems in comparison with Ra-PR system. Specifically, the relative low abundances of Methanothrix and Type I methanotrophs occurred in Wh-PR and Ra-UR systems, whereas Methanosarcina, Methanocella, Methanomassiliicoccus and type II methanotrophs (Methylocystis and Methylosinus) were found in higher relative abundances in Wh-PR and Ra-UR systems. Overall, changing the preceding upland crop types or introducing aerobic rice to substitute flooded rice in rice-based rotation systems could diminish CH4 emissions, mainly by regulating soil properties and eventually changing soil methanogenic and methanotrophic communities.
Collapse
Affiliation(s)
- Mengdie Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 43070, China
| | - Peng Xu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 43070, China; Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lei Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jinsong Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 43070, China
| | - Hongtao Wu
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Shan Lin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 43070, China
| | - Tewu Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junming Tu
- Huanggang Academy of Agriculture Science, Huanggang 43800, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 43070, China.
| |
Collapse
|
21
|
Comesaña-Gándara B, García-Depraect O, Santos-Beneit F, Bordel S, Lebrero R, Muñoz R. Recent trends and advances in biogas upgrading and methanotrophs-based valorization. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Täumer J, Marhan S, Groß V, Jensen C, Kuss AW, Kolb S, Urich T. Linking transcriptional dynamics of CH 4-cycling grassland soil microbiomes to seasonal gas fluxes. THE ISME JOURNAL 2022; 16:1788-1797. [PMID: 35388141 PMCID: PMC9213473 DOI: 10.1038/s41396-022-01229-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Soil CH4 fluxes are driven by CH4-producing and -consuming microorganisms that determine whether soils are sources or sinks of this potent greenhouse gas. To date, a comprehensive understanding of underlying microbiome dynamics has rarely been obtained in situ. Using quantitative metatranscriptomics, we aimed to link CH4-cycling microbiomes to net surface CH4 fluxes throughout a year in two grassland soils. CH4 fluxes were highly dynamic: both soils were net CH4 sources in autumn and winter and sinks in spring and summer, respectively. Correspondingly, methanogen mRNA abundances per gram soil correlated well with CH4 fluxes. Methanotroph to methanogen mRNA ratios were higher in spring and summer, when the soils acted as net CH4 sinks. CH4 uptake was associated with an increased proportion of USCα and γ pmoA and pmoA2 transcripts. We assume that methanogen transcript abundance may be useful to approximate changes in net surface CH4 emissions from grassland soils. High methanotroph to methanogen ratios would indicate CH4 sink properties. Our study links for the first time the seasonal transcriptional dynamics of CH4-cycling soil microbiomes to gas fluxes in situ. It suggests mRNA transcript abundances as promising indicators of dynamic ecosystem-level processes.
Collapse
Affiliation(s)
- Jana Täumer
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Verena Groß
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Corinna Jensen
- Human Molecular Genetics Group, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Andreas W Kuss
- Human Molecular Genetics Group, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Steffen Kolb
- RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Tim Urich
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
23
|
Schmidt MP, Mamet SD, Senger C, Schebel A, Ota M, Tian TW, Aziz U, Stein LY, Regier T, Stanley K, Peak D, Siciliano SD. Positron-emitting radiotracers spatially resolve unexpected biogeochemical relationships linked with methane oxidation in Arctic soils. GLOBAL CHANGE BIOLOGY 2022; 28:4211-4224. [PMID: 35377512 DOI: 10.1111/gcb.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4 ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.
Collapse
Affiliation(s)
- Michael P Schmidt
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- USDA-ARS United States Salinity Laboratory, Riverside, California, USA
| | - Steven D Mamet
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Curtis Senger
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alixandra Schebel
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mitsuaki Ota
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony W Tian
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Umair Aziz
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tom Regier
- Canadian Light Source, Inc., Saskatoon, Saskatchewan, Canada
| | - Kevin Stanley
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Derek Peak
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Tentori EF, Fang S, Richardson RE. RNA Biomarker Trends across Type I and Type II Aerobic Methanotrophs in Response to Methane Oxidation Rates and Transcriptome Response to Short-Term Methane and Oxygen Limitation in Methylomicrobium album BG8. Microbiol Spectr 2022; 10:e0000322. [PMID: 35678574 PMCID: PMC9241951 DOI: 10.1128/spectrum.00003-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022] Open
Abstract
Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker pmoA were found to vary quantitatively with respect to methane oxidation rates in the model aerobic methanotroph Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures grown in membrane bioreactors, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per-cell pmoA mRNA transcript levels strongly correlated with per-cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). The inclusion of both type I and type II aerobic methanotrophs suggests a universal trend between in situ activity level and pmoA RNA biomarker levels which can aid in improving estimates of both subsurface and atmospheric methane. Additionally, genome-wide expression data (obtained by transcriptome sequencing [RNA-seq]) were used to explore transcriptomic responses of steady-state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response. IMPORTANCE Methanotrophs are naturally occurring microorganisms capable of oxidizing methane, having an impact on global net methane emissions. Additionally, they have also gained interest for their biotechnological applications in single-cell protein production, biofuels, and bioplastics. Having better ways of measuring methanotroph activity and understanding how methanotrophs respond to changing conditions is imperative for both optimization in controlled-growth applications and understanding in situ methane oxidation rates. In this study, we explored the applicability of methane oxidation biomarkers as a universal indicator of methanotrophic activity and explored methanotroph transcriptomic response to short-term changes in substrate availability. Our results contribute to better understanding the activity of aerobic methanotrophs, their core metabolic pathways, and their stress responses.
Collapse
Affiliation(s)
- Egidio F. Tentori
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Shania Fang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Ruth E. Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
25
|
Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 2022; 20:513-528. [PMID: 35414013 DOI: 10.1038/s41579-022-00724-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
The atmosphere has recently been recognized as a major source of energy sustaining life. Diverse aerobic bacteria oxidize the three most abundant reduced trace gases in the atmosphere, namely hydrogen (H2), carbon monoxide (CO) and methane (CH4). This Review describes the taxonomic distribution, physiological role and biochemical basis of microbial oxidation of these atmospheric trace gases, as well as the ecological, environmental, medical and astrobiological importance of this process. Most soil bacteria and some archaea can survive by using atmospheric H2 and CO as alternative energy sources, as illustrated through genetic studies on Mycobacterium cells and Streptomyces spores. Certain specialist bacteria can also grow on air alone, as confirmed by the landmark characterization of Methylocapsa gorgona, which grows by simultaneously consuming atmospheric CH4, H2 and CO. Bacteria use high-affinity lineages of metalloenzymes, namely hydrogenases, CO dehydrogenases and methane monooxygenases, to utilize atmospheric trace gases for aerobic respiration and carbon fixation. More broadly, trace gas oxidizers enhance the biodiversity and resilience of soil and marine ecosystems, drive primary productivity in extreme environments such as Antarctic desert soils and perform critical regulatory services by mitigating anthropogenic emissions of greenhouse gases and toxic pollutants.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia. .,Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
26
|
Samanta D, Govil T, Saxena P, Gadhamshetty V, Krumholz LR, Salem DR, Sani RK. Enhancement of Methane Catalysis Rates in Methylosinus trichosporium OB3b. Biomolecules 2022; 12:560. [PMID: 35454149 PMCID: PMC9024549 DOI: 10.3390/biom12040560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Particulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (α, β, and γ) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of Methylosinus trichosporium OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was -5.2, -5.7, -4.2, and -3.8 kcal/mol, respectively, suggesting the existence of more than one active site within the monomeric subunits due to the presence of multiple binding sites within the pMMO monomer. The evaluation of tunnels and cavities of the active sites and the docking results showed that each active site is specific to the radius of the substrate. To increase the catalysis rates of methane in the pMMO of M. trichosporium OB3b, selected amino acid residues interacting at the binding site of ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene were mutated. Based on screening the strain energy, docking energy, and physiochemical properties, five mutants were downselected, B:Leu31Ser, B:Phe96Gly, B:Phe92Thr, B:Trp106Ala, and B:Tyr110Phe, which showed the docking energy of -6.3, -6.7, -6.3, -6.5, and -6.5 kcal/mol, respectively, as compared to the wild type (-5.2 kcal/mol) with ethylbenzene. These results suggest that these five mutants would likely increase methane oxidation rates compared to wild-type pMMO.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (D.S.); (T.G.); (P.S.); (D.R.S.)
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (V.G.); (L.R.K.)
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (D.S.); (T.G.); (P.S.); (D.R.S.)
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (D.S.); (T.G.); (P.S.); (D.R.S.)
| | - Venkata Gadhamshetty
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (V.G.); (L.R.K.)
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Lee R. Krumholz
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (V.G.); (L.R.K.)
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - David R. Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (D.S.); (T.G.); (P.S.); (D.R.S.)
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (D.S.); (T.G.); (P.S.); (D.R.S.)
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (V.G.); (L.R.K.)
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center, Rapid City, SD 57701, USA
| |
Collapse
|
27
|
Kambara H, Shinno T, Matsuura N, Matsushita S, Aoi Y, Kindaichi T, Ozaki N, Ohashi A. Environmental Factors Affecting the Community of Methane-oxidizing Bacteria. Microbes Environ 2022; 37. [PMID: 35342121 PMCID: PMC8958294 DOI: 10.1264/jsme2.me21074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Methane-oxidizing bacteria (MOB) are ubiquitous and play an important role in the mitigation of global warming by reducing methane. MOB are commonly classified into Type I and Type II, belonging to Gammaproteobacteria and Alphaproteobacteria, respectively, and the diversity of MOB has been examined. However, limited information is currently available on favorable environments for the respective MOB. To investigate the environmental factors affecting the dominant type in the MOB community, we performed MOB enrichment using down-flow hanging sponge reactors under 38 different environmental conditions with a wide range of methane (0.01–80%) and ammonium concentrations (0.001–2,000 mg N L–1) and pH 4–7. Enrichment results revealed that pH was a crucial factor influencing the MOB type enriched. Type II was dominantly enriched at low pH (4–5), whereas Type I was dominant around neutral pH (6–7). However, there were some unusual cultivated biomass samples. Even though high methane oxidation activity was observed, very few or zero conventional MOB were detected using common FISH probes and primer sets for the 16S rRNA gene and pmoA gene amplification. Mycobacterium mostly dominated the microbial community in the biomass cultivated at very high NH4+ concentrations, strongly implying that it exhibits methane oxidation activity. Collectively, the present results revealed the presence of many unknown phylogenetic groups with the capacity for methane oxidation other than the reported MOB.
Collapse
Affiliation(s)
- Hiromi Kambara
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University
| | - Takahiro Shinno
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University
| | | | - Shuji Matsushita
- Agricultural Technology Research Center, Hiroshima Prefectural Technology Research Institute
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University
| |
Collapse
|
28
|
Kubaczyński A, Walkiewicz A, Pytlak A, Grządziel J, Gałązka A, Brzezińska M. Biochar dose determines methane uptake and methanotroph abundance in Haplic Luvisol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151259. [PMID: 34715215 DOI: 10.1016/j.scitotenv.2021.151259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Biochar promotes C sequestration and improvement of soil properties. Nevertheless, the effects of biochar addition on soil condition are poorly understood, especially with respect to greenhouse gas (GHG) emissions. A large proportion of GHG emissions derive from agriculture and, thus, recognition of the effect of biochar addition to soil on GHG emissions from terrestrial ecosystems is an important issue. The purpose of our study was to evaluate the short- and long-term effects of biochar application on soil in aspects of: GHG exchange (CH4 and CO2), basic physicochemical soil properties and structure of microbial communities in Haplic Luvisol. Soil was collected from fallow fields enriched with three doses of wood offcuts biochar (10, 20 and 30 Mg ha-1) and incubated at two moisture levels (60 and 100% WHC) with the addition of 1% CH4. To evaluate the influence of biochar aging in soil, the samples were analysed directly (short-term response) and five years (long-term response) after amendment. Generally, biochar addition increased soil pH, redox potential (Eh), organic carbon (SOC) and dissolved organic carbon (DOC) contents. Under 60% WHC, direct biochar application to the soil resulted in a clear improvement in the CH4 uptake rate. In contrast to that (at 100% WHC) methane uptake rates were twofold decreased. The positive effect was reduced due to biochar aging in the soil, but five years after application, at 60% WHC and the highest biochar dose (30 Mg ha-1) still significantly enhanced CH4 oxidation. From a short-term perspective, biochar application increased CO2 emissions, but after five years this effect was not observed. Microbial tests confirmed that the improvement in CH4 oxidation was correlated with methanotroph abundance in the soil. Moreover, an increase of Methylocystis abundance in the soil enriched with biochar along with enhanced CH4 uptake rates confirm the positive biochar influence on methanotrophic communities.
Collapse
Affiliation(s)
- Adam Kubaczyński
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Anna Walkiewicz
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Anna Pytlak
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland.
| | - Małgorzata Brzezińska
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
29
|
Evidence for methanobactin "Theft" and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. THE ISME JOURNAL 2022; 16:211-220. [PMID: 34290379 PMCID: PMC8692452 DOI: 10.1038/s41396-021-01062-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Aerobic methanotrophy is strongly controlled by copper, and methanotrophs are known to use different mechanisms for copper uptake. Some methanotrophs secrete a modified polypeptide-methanobactin-while others utilize a surface-bound protein (MopE) and a secreted form of it (MopE*) for copper collection. As different methanotrophs have different means of sequestering copper, competition for copper significantly impacts methanotrophic activity. Herein, we show that Methylomicrobium album BG8, Methylocystis sp. strain Rockwell, and Methylococcus capsulatus Bath, all lacking genes for methanobactin biosynthesis, are not limited for copper by multiple forms of methanobactin. Interestingly, Mm. album BG8 and Methylocystis sp. strain Rockwell were found to have genes similar to mbnT that encodes for a TonB-dependent transporter required for methanobactin uptake. Data indicate that these methanotrophs "steal" methanobactin and such "theft" enhances the ability of these strains to degrade methylmercury, a potent neurotoxin. Further, when mbnT was deleted in Mm. album BG8, methylmercury degradation in the presence of methanobactin was indistinguishable from when MB was not added. Mc. capsulatus Bath lacks anything similar to mbnT and was unable to degrade methylmercury either in the presence or absence of methanobactin. Rather, Mc. capsulatus Bath appears to rely on MopE/MopE* for copper collection. Finally, not only does Mm. album BG8 steal methanobactin, it synthesizes a novel chalkophore, suggesting that some methanotrophs utilize both competition and cheating strategies for copper collection. Through a better understanding of these strategies, methanotrophic communities may be more effectively manipulated to reduce methane emissions and also enhance mercury detoxification in situ.
Collapse
|
30
|
Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M, Peura S. Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes. Front Microbiol 2021; 12:669937. [PMID: 34456882 PMCID: PMC8397446 DOI: 10.3389/fmicb.2021.669937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.
Collapse
Affiliation(s)
- Gaëtan Martin
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
31
|
Hakobyan A, Liesack W. Unexpected metabolic versatility among type II methanotrophs in the Alphaproteobacteria. Biol Chem 2021; 401:1469-1477. [PMID: 32769217 DOI: 10.1515/hsz-2020-0200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Aerobic methane-oxidizing bacteria, or methanotrophs, play a crucial role in the global methane cycle. Their methane oxidation activity in various environmental settings has a great mitigation effect on global climate change. Alphaproteobacterial methanotrophs were among the first to be taxonomically characterized, nowadays unified in the Methylocystaceae and Beijerinckiaceae families. Originally thought to have an obligate growth requirement for methane and related one-carbon compounds as a source of carbon and energy, it was later shown that various alphaproteobacterial methanotrophs are facultative, able to grow on multi-carbon compounds such as acetate. Most recently, we expanded our knowledge of the metabolic versatility of alphaproteobacterial methanotrophs. We showed that Methylocystis sp. strain SC2 has the capacity for mixotrophic growth on H2 and CH4. This mini-review will summarize the change in perception from the long-held paradigm of obligate methanotrophy to today's recognition of alphaproteobacterial methanotrophs as having both facultative and mixotrophic capabilities.
Collapse
Affiliation(s)
- Anna Hakobyan
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
| | - Werner Liesack
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
| |
Collapse
|
32
|
Awala SI, Gwak JH, Kim YM, Kim SJ, Strazzulli A, Dunfield PF, Yoon H, Kim GJ, Rhee SK. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME JOURNAL 2021; 15:3636-3647. [PMID: 34158629 PMCID: PMC8630023 DOI: 10.1038/s41396-021-01037-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. “Methylacidiphilum” isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol. In nature, propane probably serves primarily as a supplemental growth substrate for these bacteria when growing on methane.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yong-Man Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hyeokjun Yoon
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
33
|
Shi LD, Wang Z, Liu T, Wu M, Lai CY, Rittmann BE, Guo J, Zhao HP. Making good use of methane to remove oxidized contaminants from wastewater. WATER RESEARCH 2021; 197:117082. [PMID: 33819663 DOI: 10.1016/j.watres.2021.117082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Being an energetic fuel, methane is able to support microbial growth and drive the reduction of various electron acceptors. These acceptors include a broad range of oxidized contaminants (e.g., nitrate, nitrite, perchlorate, bromate, selenate, chromate, antimonate and vanadate) that are ubiquitously detected in water environments and pose threats to human and ecological health. Using methane as electron donor to biologically reduce these contaminants into nontoxic forms is a promising solution to remediate polluted water, considering that methane is a widely available and inexpensive electron donor. The understanding of methane-based biological reduction processes and the responsible microorganisms has grown in the past decade. This review summarizes the fundamentals of metabolic pathways and microorganisms mediating microbial methane oxidation. Experimental demonstrations of methane as an electron donor to remove oxidized contaminants are summarized, compared, and evaluated. Finally, the review identifies opportunities and unsolved questions that deserve future explorations for broadening understanding of methane oxidation and promoting its practical applications.
Collapse
Affiliation(s)
- Ling-Dong Shi
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, U.S.A
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, Stott MB. Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol 2021; 12:651744. [PMID: 33841379 PMCID: PMC8024496 DOI: 10.3389/fmicb.2021.651744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Methylacidiphilum, a clade of metabolically flexible thermoacidophilic methanotrophs from the phylum Verrucomicrobia, can utilize a variety of substrates including methane, methanol, and hydrogen for growth. However, despite sequentially oxidizing methane to carbon dioxide via methanol and formate intermediates, growth on formate as the only source of reducing equivalents (i.e., NADH) has not yet been demonstrated. In many acidophiles, the inability to grow on organic acids has presumed that diffusion of the protonated form (e.g., formic acid) into the cell is accompanied by deprotonation prompting cytosolic acidification, which leads to the denaturation of vital proteins and the collapse of the proton motive force. In this work, we used a combination of biochemical, physiological, chemostat, and transcriptomic approaches to demonstrate that Methylacidiphilum sp. RTK17.1 can utilize formate as a substrate when cells are able to maintain pH homeostasis. Our findings show that Methylacidiphilum sp. RTK17.1 grows optimally with a circumneutral intracellular pH (pH 6.52 ± 0.04) across an extracellular range of pH 1.5–3.0. In batch experiments, formic acid addition resulted in no observable cell growth and cell death due to acidification of the cytosol. Nevertheless, stable growth on formic acid as the only source of energy was demonstrated in continuous chemostat cultures (D = 0.0052 h−1, td = 133 h). During growth on formic acid, biomass yields remained nearly identical to methanol-grown chemostat cultures when normalized per mole electron equivalent. Transcriptome analysis revealed the key genes associated with stress response: methane, methanol, and formate metabolism were differentially expressed in response to growth on formic acid. Collectively, these results show formic acid represents a utilizable source of energy/carbon to the acidophilic methanotrophs within geothermal environments. Findings expand the known metabolic flexibility of verrucomicrobial methanotrophs to include organic acids and provide insight into potential survival strategies used by these species during methane starvation.
Collapse
Affiliation(s)
- Carlo R Carere
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Kathryn Wigley
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Luke Carman
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Karen M Houghton
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
35
|
Kroeger ME, Meredith LK, Meyer KM, Webster KD, de Camargo PB, de Souza LF, Tsai SM, van Haren J, Saleska S, Bohannan BJM, Rodrigues JLM, Berenguer E, Barlow J, Nüsslein K. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. THE ISME JOURNAL 2021; 15:658-672. [PMID: 33082572 PMCID: PMC8027882 DOI: 10.1038/s41396-020-00804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023]
Abstract
The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.
Collapse
Affiliation(s)
- Marie E. Kroeger
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA ,grid.148313.c0000 0004 0428 3079Present Address: Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA
| | - Kyle M. Meyer
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA ,grid.47840.3f0000 0001 2181 7878Department of Integrative Biology, University of California–Berkeley, Berkeley, CA USA
| | - Kevin D. Webster
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, Tucson, AZ USA
| | - Plinio Barbosa de Camargo
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Leandro Fonseca de Souza
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Siu Mui Tsai
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Joost van Haren
- grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XHonors College, University of Arizona, Tucson, AZ USA
| | - Scott Saleska
- grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Brendan J. M. Bohannan
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Jorge L. Mazza Rodrigues
- grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California, Davis, CA USA
| | - Erika Berenguer
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK ,grid.4991.50000 0004 1936 8948Environmental Change Institute, University of Oxford, Oxford, UK
| | - Jos Barlow
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Klaus Nüsslein
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA
| |
Collapse
|
36
|
Picone N, Blom P, Wallenius AJ, Hogendoorn C, Mesman R, Cremers G, Gagliano AL, D'Alessandro W, Quatrini P, Jetten MSM, Pol A, Op den Camp HJM. Methylacidimicrobium thermophilum AP8, a Novel Methane- and Hydrogen-Oxidizing Bacterium Isolated From Volcanic Soil on Pantelleria Island, Italy. Front Microbiol 2021; 12:637762. [PMID: 33643272 PMCID: PMC7907005 DOI: 10.3389/fmicb.2021.637762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60°C), low pH (3–5) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60°C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at μmax (0.051 ± 0.001 h−1, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3–5 at 50°C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 ± 1 μM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Pieter Blom
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Anna J Wallenius
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Rob Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | | | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
37
|
Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv 2021; 47:107700. [PMID: 33548453 DOI: 10.1016/j.biotechadv.2021.107700] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Methane, the predominant element in natural gas and biogas, represents a promising alternative to carbon feedstocks in the biotechnological industry due to its low cost and high abundance. The bioconversion of methane to value-added products can enhance the value of gas and mitigate greenhouse gas emissions. Methanotrophs, methane-utilizing bacteria, can make a significant contribution to the production of various valuable biofuels and chemicals from methane. Type II methanotrophs in comparison with Type I methanotrophs have distinct advantages, including high acetyl-CoA flux and the co-incorporation of two important greenhouse gases (methane and CO2), making it a potential microbial cell-factory platform for methane-derived biomanufacturing. Herein, we review the most recent advances in Type II methanotrophs related to multi-omics studies and metabolic engineering. Representative examples and prospects of metabolic engineering strategies for the production of suitable products are also discussed.
Collapse
Affiliation(s)
- Diep Thi Ngoc Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Thu Thi Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
38
|
Täumer J, Kolb S, Boeddinghaus RS, Wang H, Schöning I, Schrumpf M, Urich T, Marhan S. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. GLOBAL CHANGE BIOLOGY 2021; 27:929-940. [PMID: 33135275 DOI: 10.1111/gcb.15430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 05/11/2023]
Abstract
Aerated topsoils are important sinks for atmospheric methane (CH4 ) via oxidation by CH4 -oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land-use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land-use intensity of grasslands had a negative effect on PMORs (-40%) in almost all regions and fertilization was the predominant factor of grassland land-use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)-α was the dominant group of MOBs in the forests. In contrast, USC-γ was absent in more than half of the forest soils but present in almost all grassland soils. USC-α abundance had a direct positive effect on PMOR in forest, while in grasslands USC-α and USC-γ abundance affected PMOR positively with a more pronounced contribution of USC-γ than USC-α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC-α, and a positive on USC-γ abundance. We conclude that reduction in grassland land-use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.
Collapse
Affiliation(s)
- Jana Täumer
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Steffen Kolb
- RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Runa S Boeddinghaus
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ingo Schöning
- Department for Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Marion Schrumpf
- Department for Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
39
|
Qin L, Tian P, Cui Q, Hu S, Jian W, Xie C, Yang X, Shen H. Bacillus circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:644597. [PMID: 33936131 PMCID: PMC8079787 DOI: 10.3389/fpls.2021.644597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.
Collapse
Affiliation(s)
- Lijun Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Peidong Tian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qunyao Cui
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuping Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wei Jian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chengjian Xie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xingyong Yang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- *Correspondence: Xingyong Yang,
| | - Hong Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- College of Resources and Environment Science, Southwest University, Chongqing, China
- Hong Shen,
| |
Collapse
|
40
|
Belova SE, Danilova OV, Ivanova AA, Merkel AY, Dedysh SN. Methane-Oxidizing Communities in Lichen-Dominated Forested Tundra Are Composed Exclusively of High-Affinity USCα Methanotrophs. Microorganisms 2020; 8:microorganisms8122047. [PMID: 33371270 PMCID: PMC7766663 DOI: 10.3390/microorganisms8122047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Upland soils of tundra function as a constant sink for atmospheric CH4 but the identity of methane oxidizers in these soils remains poorly understood. Methane uptake rates of -0.4 to -0.6 mg CH4-C m-2 day-1 were determined by the static chamber method in a mildly acidic upland soil of the lichen-dominated forested tundra, North Siberia, Russia. The maximal CH4 oxidation activity was localized in an organic surface soil layer underlying the lichen cover. Molecular identification of methanotrophic bacteria based on retrieval of the pmoA gene revealed Upland Soil Cluster Alpha (USCα) as the only detectable methanotroph group. Quantification of these pmoA gene fragments by means of specific qPCR assay detected ~107pmoA gene copies g-1 dry soil. The pmoA diversity was represented by seven closely related phylotypes; the most abundant phylotype displayed 97.5% identity to pmoA of Candidatus Methyloaffinis lahnbergensis. Further analysis of prokaryote diversity in this soil did not reveal 16S rRNA gene fragments from well-studied methanotrophs of the order Methylococcales and the family Methylocystaceae. The largest group of reads (~4% of all bacterial 16S rRNA gene fragments) that could potentially belong to methanotrophs was classified as uncultivated Beijerinckiaceae bacteria. These reads displayed 96-100 and 95-98% sequence similarity to 16S rRNA gene of Candidatus Methyloaffinis lahnbergensis and "Methylocapsa gorgona" MG08, respectively, and were represented by eight species-level operational taxonomic units (OTUs), two of which were highly abundant. These identification results characterize subarctic upland soils, which are exposed to atmospheric methane concentrations only, as a unique habitat colonized mostly by USCα methanotrophs.
Collapse
|
41
|
Jawaharraj K, Shrestha N, Chilkoor G, Dhiman SS, Islam J, Gadhamshetty V. Valorization of methane from environmental engineering applications: A critical review. WATER RESEARCH 2020; 187:116400. [PMID: 32979578 DOI: 10.1016/j.watres.2020.116400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/09/2023]
Abstract
Wastewater and waste management sectors alone account for 18% of the anthropogenic methane (CH4) emissions. This study presents a critical overview of methanotrophs ("methane oxidizing microorganisms") for valorizing typically discarded CH4 from environmental engineering applications, focusing on wastewater treatment plants. Methanotrophs can convert CH4 into valuable bioproducts including chemicals, biodiesel, DC electricity, polymers, and S-layers, all under ambient conditions. As discarded CH4 and its oxidation products can also be used as a carbon source in nitrification and annamox processes. Here we discuss modes of CH4 assimilation by methanotrophs in both natural and engineered systems. We also highlight the technical challenges and technological breakthroughs needed to enable targeted CH4 oxidation in wastewater treatment plants.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Namita Shrestha
- Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute 47803, IN, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States
| | - Saurabh Sudha Dhiman
- BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; Biological and Chemical Engineering, South Dakota School of Mines & Technology, Rapid City 57701, SD, United States
| | - Jamil Islam
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States.
| |
Collapse
|
42
|
Reis PCJ, Ruiz-González C, Crevecoeur S, Soued C, Prairie YT. Rapid shifts in methanotrophic bacterial communities mitigate methane emissions from a tropical hydropower reservoir and its downstream river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141374. [PMID: 32823225 DOI: 10.1016/j.scitotenv.2020.141374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Methane-oxidizing bacteria (MOB) present in the water column mitigate methane (CH4) emissions from hydropower complexes to the atmosphere. By creating a discontinuity in rivers, dams cause large environmental variations, including in CH4 and oxygen concentrations, between upstream, reservoir, and downstream segments. Although highest freshwater methanotrophic activity is often detected at low oxygen concentrations, CH4 oxidation in well-oxygenated downstream rivers below dams has also been reported. Here we combined DNA and RNA high-throughput sequencing with microscopic enumeration (by CARD-FISH) and biogeochemical data to investigate the abundance, composition, and potential activity of MOB taxa from upstream to downstream waters in the tropical hydropower complex Batang Ai (Malaysia). High relative abundance of MOB (up to 61% in 16S rRNA sequences and 19% in cell counts) and enrichment of stable isotopic signatures of CH4 (up to 0‰) were detected in the hypoxic hypolimnion of the reservoir and in the outflowing downstream river. MOB community shifts along the river-reservoir system reflected environmental sorting of taxa and an interrupted hydrologic connectivity in which downstream MOB communities resembled reservoir's hypolimnetic communities but differed from upstream and surface reservoir communities. In downstream waters, CH4 oxidation was accompanied by fast cell growth of particular MOB taxa. Our results suggest that rapid shifts in active MOB communities allow the mitigation of CH4 emissions from different zones of hydropower complexes, including in quickly re-oxygenated rivers downstream of dams.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, Canada.
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Sophie Crevecoeur
- Canada Centre for Inland Waters, Water Science and Technology Branch - Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Cynthia Soued
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
43
|
Jung GY, Rhee SK, Han YS, Kim SJ. Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland. Microorganisms 2020; 8:microorganisms8111719. [PMID: 33147874 PMCID: PMC7716213 DOI: 10.3390/microorganisms8111719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023] Open
Abstract
Methane-oxidizing bacteria are crucial players in controlling methane emissions. This study aimed to isolate and characterize a novel wetland methanotroph to reveal its role in the wetland environment based on genomic information. Based on phylogenomic analysis, the isolated strain, designated as B8, is a novel species in the genus Methylocystis. Strain B8 grew in a temperature range of 15 °C to 37 °C (optimum 30–35 °C) and a pH range of 6.5 to 10 (optimum 8.5–9). Methane, methanol, and acetate were used as carbon sources. Hydrogen was produced under oxygen-limited conditions. The assembled genome comprised of 3.39 Mbp and 59.9 mol% G + C content. The genome contained two types of particulate methane monooxygenases (pMMO) for low-affinity methane oxidation (pMMO1) and high-affinity methane oxidation (pMMO2). It was revealed that strain B8 might survive atmospheric methane concentration. Furthermore, the genome had various genes for hydrogenase, nitrogen fixation, polyhydroxybutyrate synthesis, and heavy metal resistance. This metabolic versatility of strain B8 might enable its survival in wetland environments.
Collapse
Affiliation(s)
- Gi-Yong Jung
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Young-Soo Han
- Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3311; Fax: +82-42-868-3414
| |
Collapse
|
44
|
Cai Y, Zhou X, Shi L, Jia Z. Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. MICROBIAL ECOLOGY 2020; 80:859-871. [PMID: 32803363 DOI: 10.1007/s00248-020-01570-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
Upland soil clusters alpha and gamma (USCα and USCγ) are considered a major biological sink of atmospheric methane and are often detected in forest and grassland soils. These clusters are phylogenetically classified using the particulate methane monooxygenase gene pmoA because of the difficulty of cultivation. Recent studies have established a direct link of pmoA genes to 16S rRNA genes based on their isolated strain or draft genomes. However, whether the results of pmoA-based assays could be largely represented by 16S rRNA gene sequencing in upland soils remains unclear. In this study, we collected 20 forest soils across China and compared methane-oxidizing bacterial (MOB) communities by high-throughput sequencing of 16S rRNA and pmoA genes using different primer sets. The results showed that 16S rRNA gene sequencing and the semi-nested polymerase chain reaction (PCR) of the pmoA gene (A189/A682r nested with a mixture of mb661 and A650) consistently revealed the dominance of USCα (accounting for more than 50% of the total MOB) in 12 forest soils. A189f/A682r successfully amplified pmoA genes (mainly RA14 of USCα) in only three forest soils. A189f/mb661 could amplify USCα (mainly JR1) in several forest soils but showed a strong preferential amplification of Methylocystis and many other type I MOB groups. A189f/A650 almost exclusively amplified USCα (mainly JR1) and largely discriminated against Methylocystis and most of the other MOB groups. The semi-nested PCR approach weakened the bias of A189f/mb661 and A189f/A650 for JR1 and balanced the coverage of all USCα members. The canonical correspondence analysis indicated that soil NH4+-N and pH were the main environmental factors affecting the MOB community of Chinese forest soils. The RA14 of the USCα group prefers to live in soils with low pH, low temperature, low elevation, high precipitation, and rich in nitrogen. JR1's preferences for temperature and elevation were opposite to RA14. Our study suggests that combining the deep sequencing of 16S rRNA and pmoA genes to characterize MOB in forest soils is the best choice.
Collapse
Affiliation(s)
- Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Xue Zhou
- College of agricultural science and engineering, Hohai University, Nanjing, 210098, Jiangsu Province, China
| | - Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
45
|
Chiri E, Greening C, Lappan R, Waite DW, Jirapanjawat T, Dong X, Arndt SK, Nauer PA. Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. THE ISME JOURNAL 2020; 14:2715-2731. [PMID: 32709975 PMCID: PMC7784690 DOI: 10.1038/s41396-020-0722-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 01/29/2023]
Abstract
Termite mounds have recently been confirmed to mitigate approximately half of termite methane (CH4) emissions, but the aerobic CH4 oxidising bacteria (methanotrophs) responsible for this consumption have not been resolved. Here, we describe the abundance, composition and CH4 oxidation kinetics of the methanotroph communities in the mounds of three distinct termite species sampled from Northern Australia. Results from three independent methods employed show that methanotrophs are rare members of microbial communities in termite mounds, with a comparable abundance but distinct composition to those of adjoining soil samples. Across all mounds, the most abundant and prevalent methane monooxygenase sequences were affiliated with upland soil cluster α (USCα), with sequences homologous to Methylocystis and tropical upland soil cluster (TUSC) also detected. The reconstruction of a metagenome-assembled genome of a mound USCα representative highlighted the metabolic capabilities of this group of methanotrophs. The apparent Michaelis-Menten kinetics of CH4 oxidation in mounds were estimated from in situ reaction rates. Methane affinities of the communities were in the low micromolar range, which is one to two orders of magnitude higher than those of upland soils, but significantly lower than those measured in soils with a large CH4 source such as landfill cover soils. The rate constant of CH4 oxidation, as well as the porosity of the mound material, were significantly positively correlated with the abundance of methanotroph communities of termite mounds. We conclude that termite-derived CH4 emissions have selected for distinct methanotroph communities that are kinetically adapted to elevated CH4 concentrations. However, factors other than substrate concentration appear to limit methanotroph abundance and hence these bacteria only partially mitigate termite-derived CH4 emissions. Our results also highlight the predominant role of USCα in an environment with elevated CH4 concentrations and suggest a higher functional diversity within this group than previously recognised.
Collapse
Affiliation(s)
- Eleonora Chiri
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC, 3121, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Thanavit Jirapanjawat
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC, 3121, Australia.
| | - Philipp A Nauer
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC, 3121, Australia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
46
|
Guggenheim C, Freimann R, Mayr MJ, Beck K, Wehrli B, Bürgmann H. Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Front Microbiol 2020; 11:579427. [PMID: 33178162 PMCID: PMC7593551 DOI: 10.3389/fmicb.2020.579427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
In stratified lakes, methane-oxidizing bacteria (MOB) are strongly mitigating methane fluxes to the atmosphere by consuming methane entering the water column from the sediments. MOB communities in lakes are diverse and vertically structured, but their spatio-temporal dynamics along the water column as well as physico-chemical parameters and interactions with other bacterial species that drive the community assembly have so far not been explored in depth. Here, we present a detailed investigation of the MOB and bacterial community composition and a large set of physico-chemical parameters in a shallow, seasonally stratified, and sub-alpine lake. Four highly resolved vertical profiles were sampled in three different years and during various stages of development of the stratified water column. Non-randomly assembled MOB communities were detected in all compartments. We could identify methane and oxygen gradients and physico-chemical parameters like pH, light, available copper and iron, and total dissolved nitrogen as important drivers of the MOB community structure. In addition, MOB were well-integrated into a bacterial-environmental network. Partial redundancy analysis of the relevance network of physico-chemical variables and bacteria explained up to 84% of the MOB abundances. Spatio-temporal MOB community changes were 51% congruent with shifts in the total bacterial community and 22% of variance in MOB abundances could be explained exclusively by the bacterial community composition. Our results show that microbial interactions may play an important role in structuring the MOB community along the depth gradient of stratified lakes.
Collapse
Affiliation(s)
- Carole Guggenheim
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Remo Freimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Magdalena J Mayr
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Karin Beck
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Bernhard Wehrli
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
47
|
Bagnoud A, Pramateftaki P, Bogard MJ, Battin TJ, Peter H. Microbial Ecology of Methanotrophy in Streams Along a Gradient of CH 4 Availability. Front Microbiol 2020; 11:771. [PMID: 32477286 PMCID: PMC7241049 DOI: 10.3389/fmicb.2020.00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Despite the recognition of streams and rivers as sources of methane (CH4) to the atmosphere, the role of CH4 oxidation (MOX) in these ecosystems remains poorly understood to date. Here, we measured the kinetics of MOX in stream sediments of 14 sites to resolve the ecophysiology of CH4 oxidizing bacteria (MOB) communities. The streams cover a gradient of land cover and associated physicochemical parameter and differed in stream- and porewater CH4 concentrations. Michealis–Menten kinetic parameter of MOX, maximum reaction velocity (Vmax), and CH4 concentration at half Vmax (KS) increased with CH4 supply. KS values in the micromolar range matched the CH4 concentrations measured in shallow stream sediments and indicate that MOX is mostly driven by low-affinity MOB. 16S rRNA gene sequencing identified MOB classified as Methylococcaceae and particularly Crenothrix. Their relative abundance correlated with pmoA gene counts and MOX rates, underscoring their pivotal role as CH4 oxidizers in stream sediments. Building on the concept of enterotypes, we identify two distinct groups of co-occurring MOB. While there was no taxonomic difference among the members of each cluster, one cluster contained abundant and common MOB, whereas the other cluster contained rare operational taxonomic units (OTUs) specific to a subset of streams. These integrated analyses of changes in MOB community structure, gene abundance, and the corresponding ecosystem process contribute to a better understanding of the distal controls on MOX in streams.
Collapse
Affiliation(s)
- Alexandre Bagnoud
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew J Bogard
- Groupe de recherche interuniversitaire en limnologie, Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Hakobyan A, Zhu J, Glatter T, Paczia N, Liesack W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab Eng 2020; 61:181-196. [PMID: 32479801 DOI: 10.1016/j.ymben.2020.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Methane, a non-expensive natural substrate, is used by Methylocystis spp. as a sole source of carbon and energy. Here, we assessed whether Methylocystis sp. strain SC2 is able to also utilize hydrogen as an energy source. The addition of 2% H2 to the culture headspace had the most significant positive effect on the growth yield under CH4 (6%) and O2 (3%) limited conditions. The SC2 biomass yield doubled from 6.41 (±0.52) to 13.82 (±0.69) mg cell dry weight per mmol CH4, while CH4 consumption was significantly reduced. Regardless of H2 addition, CH4 utilization was increasingly redirected from respiration to fermentation-based pathways with decreasing O2/CH4 mixing ratios. Theoretical thermodynamic calculations confirmed that hydrogen utilization under oxygen-limited conditions doubles the maximum biomass yield compared to fully aerobic conditions without H2 addition. Hydrogen utilization was linked to significant changes in the SC2 proteome. In addition to hydrogenase accessory proteins, the production of Group 1d and Group 2b hydrogenases was significantly increased in both short- and long-term incubations. Both long-term incubation with H2 (37 d) and treatments with chemical inhibitors revealed that SC2 growth under hydrogen-utilizing conditions does not require the activity of complex I. Apparently, strain SC2 has the metabolic capacity to channel hydrogen-derived electrons into the quinone pool, which provides a link between hydrogen oxidation and energy production. In summary, H2 may be a promising alternative energy source in biotechnologically oriented methanotroph projects that aim to maximize biomass yield from CH4, such as the production of high-quality feed protein.
Collapse
Affiliation(s)
- Anna Hakobyan
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jing Zhu
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
49
|
He D, Zhang L, Dumont MG, He JS, Ren L, Chu H. The response of methanotrophs to additions of either ammonium, nitrate or urea in alpine swamp meadow soil as revealed by stable isotope probing. FEMS Microbiol Ecol 2020; 95:5498294. [PMID: 31125053 DOI: 10.1093/femsec/fiz077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Different forms of nitrogen (N) are deposited on the Qinghai-Tibetan plateau (QTP), while their differential effects on soil methanotrophs and their activity remain elusive. We constructed microcosms amended with different N fertilizers (ammonia, nitrate and urea) using the soils sampled from a swamp meadow on the QTP. The responses of active methanotrophs to different forms of nitrogen were determined by stable isotope probing with 5% 13C-methane. At the early stage of incubation, all N fertilizers, especially urea, suppressed methane oxidation compared with the control. The methane oxidation rate increased during the incubation, suggesting an adaptation and stimulation of some methanotrophs to elevated methane. At the onset of the incubation, the type II methanotrophs Methylocystis were most abundant, but decreased during the incubation and were replaced by the type Ia methanotrophs Methylomonas. Ammonia and urea had similar effects on the methanotroph communities, both characterized by an elevation in the proportion of Methylobacter and more diverse methanotroph communities. Nitrate had less effect on the methanotroph community. Our results uncovered the active methanotrophs responding to different nitrogen forms, and suggested that urea-N might have large effects on methanotroph diversity and activity in swamp meadow soils on the QTP.
Collapse
Affiliation(s)
- Dan He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jin-Sheng He
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.,State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Lijuan Ren
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China
| |
Collapse
|
50
|
Pan-Genome-Based Analysis as a Framework for Demarcating Two Closely Related Methanotroph Genera Methylocystis and Methylosinus. Microorganisms 2020; 8:microorganisms8050768. [PMID: 32443820 PMCID: PMC7285482 DOI: 10.3390/microorganisms8050768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
The Methylocystis and Methylosinus are two of the five genera that were included in the first taxonomic framework of methanotrophic bacteria created half a century ago. Members of both genera are widely distributed in various environments and play a key role in reducing methane fluxes from soils and wetlands. The original separation of these methanotrophs in two distinct genera was based mainly on their differences in cell morphology. Further comparative studies that explored various single-gene-based phylogenies suggested the monophyletic nature of each of these genera. Current availability of genome sequences from members of the Methylocystis/Methylosinus clade opens the possibility for in-depth comparison of the genomic potentials of these methanotrophs. Here, we report the finished genome sequence of Methylocystis heyeri H2T and compare it to 23 currently available genomes of Methylocystis and Methylosinus species. The phylogenomic analysis confirmed that members of these genera form two separate clades. The Methylocystis/Methylosinus pan-genome core comprised 1173 genes, with the accessory genome containing 4941 and 11,192 genes in the shell and the cloud, respectively. Major differences between the genome-encoded environmental traits of these methanotrophs include a variety of enzymes for methane oxidation and dinitrogen fixation as well as genomic determinants for cell motility and photosynthesis.
Collapse
|