1
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Sierra NC, Gold DA. The evolution of cnidarian stinging cells supports a Precambrian radiation of animal predators. Evol Dev 2024; 26:e12469. [PMID: 38236185 DOI: 10.1111/ede.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
Cnidarians-the phylum including sea anemones, corals, jellyfish, and hydroids-are one of the oldest groups of predatory animals. Nearly all cnidarians are carnivores that use stinging cells called cnidocytes to ensnare and/or envenom their prey. However, there is considerable diversity in cnidocyte form and function. Tracing the evolutionary history of cnidocytes may therefore provide a proxy for early animal feeding strategies. In this study, we generated a time-calibrated molecular clock of cnidarians and performed ancestral state reconstruction on 12 cnidocyte types to test the hypothesis that the original cnidocyte was involved in prey capture. We conclude that the first cnidarians had only the simplest and least specialized cnidocyte type (the isorhiza) which was just as likely to be used for adhesion and/or defense as the capture of prey. A rapid diversification of specialized cnidocytes occurred through the Ediacaran (~654-574 million years ago), with major subgroups developing unique sets of cnidocytes to match their distinct feeding styles. These results are robust to changes in the molecular clock model, and are consistent with growing evidence for an Ediacaran diversification of animals. Our work also provides insight into the evolution of this complex cell type, suggesting that convergence of forms is rare, with the mastigophore being an interesting counterexample.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Goodheart JA, Rio RA, Taraporevala NF, Fiorenza RA, Barnes SR, Morrill K, Jacob MAC, Whitesel C, Masterson P, Batzel GO, Johnston HT, Ramirez MD, Katz PS, Lyons DC. A chromosome-level genome for the nudibranch gastropod Berghia stephanieae helps parse clade-specific gene expression in novel and conserved phenotypes. BMC Biol 2024; 22:9. [PMID: 38233809 PMCID: PMC10795318 DOI: 10.1186/s12915-024-01814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Collapse
Affiliation(s)
- Jessica A Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Robin A Rio
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Neville F Taraporevala
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Rose A Fiorenza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Seth R Barnes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Morrill
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Allan C Jacob
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl Whitesel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Park Masterson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Grant O Batzel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hereroa T Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - M Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Kloc M, Halasa M, Kubiak JZ, Ghobrial RM. Invertebrate Immunity, Natural Transplantation Immunity, Somatic and Germ Cell Parasitism, and Transposon Defense. Int J Mol Sci 2024; 25:1072. [PMID: 38256145 PMCID: PMC10815962 DOI: 10.3390/ijms25021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the vertebrate immune system consists of innate and adaptive branches, invertebrates only have innate immunity. This feature makes them an ideal model system for studying the cellular and molecular mechanisms of innate immunity sensu stricto without reciprocal interferences from adaptive immunity. Although invertebrate immunity is evolutionarily older and a precursor of vertebrate immunity, it is far from simple. Despite lacking lymphocytes and functional immunoglobulin, the invertebrate immune system has many sophisticated mechanisms and features, such as long-term immune memory, which, for decades, have been exclusively attributed to adaptive immunity. In this review, we describe the cellular and molecular aspects of invertebrate immunity, including the epigenetic foundation of innate memory, the transgenerational inheritance of immunity, genetic immunity against invading transposons, the mechanisms of self-recognition, natural transplantation, and germ/somatic cell parasitism.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland;
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| | - Rafik M. Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
5
|
Goodheart JA, Rio RA, Taraporevala NF, Fiorenza RA, Barnes SR, Morrill K, Jacob MAC, Whitesel C, Masterson P, Batzel GO, Johnston HT, Ramirez MD, Katz PS, Lyons DC. A chromosome-level genome for the nudibranch gastropod Berghia stephanieae helps parse clade-specific gene expression in novel and conserved phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552006. [PMID: 38014205 PMCID: PMC10680569 DOI: 10.1101/2023.08.04.552006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum has long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. The final assembled and filtered Berghia genome is comparable to other high quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes), and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Collapse
Affiliation(s)
- Jessica A. Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Robin A. Rio
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Neville F. Taraporevala
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Rose A. Fiorenza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Seth R. Barnes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Morrill
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Allan C. Jacob
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl Whitesel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Park Masterson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Grant O. Batzel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hereroa T. Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - M. Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Paul S. Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Deirdre C. Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Wu L, Lambert JD. Clade-specific genes and the evolutionary origin of novelty; new tools in the toolkit. Semin Cell Dev Biol 2023; 145:52-59. [PMID: 35659164 DOI: 10.1016/j.semcdb.2022.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Clade-specific (a.k.a. lineage-specific) genes are very common and found at all taxonomic levels and in all clades examined. They can arise by duplication of previously existing genes, which can involve partial truncations or combinations with other protein domains or regulatory sequences. They can also evolve de novo from non-coding sequences, leading to potentially truly novel protein domains. Finally, since clade-specific genes are generally defined by lack of sequence homology with other proteins, they can also arise by sequence evolution that is rapid enough that previous sequence homology can no longer be detected. In such cases, where the rapid evolution is followed by constraint, we consider them to be ontologically non-novel but likely novel at a functional level. In general, clade-specific genes have received less attention from biologists but there are increasing numbers of fascinating examples of their roles in important traits. Here we review some selected recent examples, and argue that attention to clade-specific genes is an important corrective to the focus on the conserved developmental regulatory toolkit that has been the habit of evo-devo as a field. Finally, we discuss questions that arise about the evolution of clade-specific genes, and how these might be addressed by future studies. We highlight the hypothesis that clade-specific genes are more likely to be involved in synapomorphies that arose in the stem group where they appeared, compared to other genes.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
7
|
Yap WY, Loo LW, Sha HX, Hwang JS. Enhanced production of recombinant HALT-1 pore-forming toxin using two-step chromatographic procedure. MethodsX 2023; 10:102073. [PMID: 36865650 PMCID: PMC9971028 DOI: 10.1016/j.mex.2023.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Hydra actinoporin-like toxin-1 (HALT-1) has been isolated from Hydra magnipapillata and is highly cytolytic against various human cells including erythrocyte. Previously, recombinant HALT-1 (rHALT-1) was expressed in Escherichia coli and purified by the nickel affinity chromatography. In this study, we improved the purification of rHALT-1 by two-step purifications. Bacterial cell lysate containing rHALT-1 was subjected to the sulphopropyl (SP) cation exchange chromatography with different buffers, pHs, and NaCl concentrations. The results indicated that both phosphate and acetate buffers facilitated the strong binding of rHALT-1 to SP resins, and the buffers containing 150 mM and 200 mM NaCl, respectively, removed protein impurities but retain most rHALT-1 in the column. When combining the nickel affinity chromatography and the SP cation exchange chromatography, the purity of rHALT-1 was highly enhanced. In subsequent cytotoxicity assays, 50% of cells could be lysed at ∼18 and ∼22 µg/mL of rHALT-1 purified with phosphate and acetate buffers, respectively.•HALT-1 is a soluble α-pore-forming toxin of 18.38 kDa.•rHALT-1 was purified by nickel affinity chromatography followed by SP cation exchange chromatography.•The cytotoxicity of purified rHALT-1 using 2-step purifications via either phosphate or acetate buffer was comparable to those previously reported.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Lok Wenn Loo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Hong Xi Sha
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Malaysia,Corresponding author.
| |
Collapse
|
8
|
Cazet JF, Siebert S, Little HM, Bertemes P, Primack AS, Ladurner P, Achrainer M, Fredriksen MT, Moreland RT, Singh S, Zhang S, Wolfsberg TG, Schnitzler CE, Baxevanis AD, Simakov O, Hobmayer B, Juliano CE. A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state. Genome Res 2023; 33:283-298. [PMID: 36639202 PMCID: PMC10069465 DOI: 10.1101/gr.277040.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
- Lyell Immunopharma, South San Francisco, California 94080, USA
| | - Hannah Morris Little
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Philip Bertemes
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Peter Ladurner
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Matthias Achrainer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Mark T Fredriksen
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Travis Moreland
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sumeeta Singh
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, Florida 32080, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, 1010 Vienna, Austria
| | - Bert Hobmayer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA;
| |
Collapse
|
9
|
Vogg MC, Ferenc J, Buzgariu WC, Perruchoud C, Sanchez PGL, Beccari L, Nuninger C, Le Cras Y, Delucinge-Vivier C, Papasaikas P, Vincent S, Galliot B, Tsiairis CD. The transcription factor Zic4 promotes tentacle formation and prevents epithelial transdifferentiation in Hydra. SCIENCE ADVANCES 2022; 8:eabo0694. [PMID: 36563144 PMCID: PMC9788771 DOI: 10.1126/sciadv.abo0694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The molecular mechanisms that maintain cellular identities and prevent dedifferentiation or transdifferentiation remain mysterious. However, both processes are transiently used during animal regeneration. Therefore, organisms that regenerate their organs, appendages, or even their whole body offer a fruitful paradigm to investigate the regulation of cell fate stability. Here, we used Hydra as a model system and show that Zic4, whose expression is controlled by Wnt3/β-catenin signaling and the Sp5 transcription factor, plays a key role in tentacle formation and tentacle maintenance. Reducing Zic4 expression suffices to induce transdifferentiation of tentacle epithelial cells into foot epithelial cells. This switch requires the reentry of tentacle battery cells into the cell cycle without cell division and is accompanied by degeneration of nematocytes embedded in these cells. These results indicate that maintenance of cell fate by a Wnt-controlled mechanism is a key process both during homeostasis and during regeneration.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Jaroslav Ferenc
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Wanda Christa Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Paul Gerald Layague Sanchez
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Leonardo Beccari
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon 1, Lyon, France
| | - Clara Nuninger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Youn Le Cras
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Céline Delucinge-Vivier
- iGE3 Genomics Platform, University of Geneva, 1 Rue Michel-Servet, Geneva 4 1211, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Stéphane Vincent
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon F-69364, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| | - Charisios D. Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| |
Collapse
|
10
|
A novel regulatory gene promotes novel cell fate by suppressing ancestral fate in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2022; 119:e2113701119. [PMID: 35500123 PMCID: PMC9172639 DOI: 10.1073/pnas.2113701119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we demonstrate how a new cell type can arise through duplication of an ancestral cell type followed by functional divergence of the new daughter cell. Specifically, we show that stinging cells in a cnidarian (namely, a sea anemone) emerged by duplication of an ancestral neuron followed by inhibition of the RFamide neuropeptide it once secreted. This finding is evidence that stinging cells evolved from a specific subtype of neurons and suggests other neuronal subtypes may have been coopted for other novel secretory functions. Cnidocytes (i.e., stinging cells) are an unequivocally novel cell type used by cnidarians (i.e., corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis, we show that cnidocytes develop by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C2H2-type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we report a mechanism by which a truly novel regulatory gene (ZNF845) promotes the development of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide).
Collapse
|
11
|
Vogg MC, Buzgariu W, Suknovic NS, Galliot B. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in Hydra. Cold Spring Harb Perspect Biol 2021; 13:a040725. [PMID: 34230037 PMCID: PMC8635000 DOI: 10.1101/cshperspect.a040725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we discuss the developmental and homeostatic conditions necessary for Hydra regeneration. Hydra is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact Hydra polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging Hydra, regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Nenad Slavko Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
12
|
Ashwood LM, Undheim EAB, Madio B, Hamilton BR, Daly M, Hurwood DA, King GF, Prentis PJ. Venoms for all occasions: The functional toxin profiles of different anatomical regions in sea anemones are related to their ecological function. Mol Ecol 2021; 31:866-883. [PMID: 34837433 DOI: 10.1111/mec.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
The phylum Cnidaria is the oldest extant venomous group and is defined by the presence of nematocysts, specialized organelles responsible for venom production and delivery. Although toxin peptides and the cells housing nematocysts are distributed across the entire animal, nematocyte and venom profiles have been shown to differ across morphological structures in actiniarians. In this study, we explore the relationship between patterns of toxin expression and the ecological roles of discrete anatomical structures in Telmatactis stephensoni. Specifically, using a combination of proteomic and transcriptomic approaches, we examined whether there is a direct correlation between the functional similarity of regions and the similarity of their associated toxin expression profiles. We report that the regionalization of toxin production is consistent with the partitioning of the ecological roles of venom across envenomating structures, and that three major functional regions are present in T. stephensoni: tentacles, epidermis and gastrodermis. Additionally, we find that most structures that serve similar functions not only have comparable putative toxin profiles but also similar nematocyst types. There was no overlap in the putative toxins identified using proteomics and transcriptomics, but the expression patterns of specific milked venom peptides were conserved across RNA-sequencing and mass spectrometry imaging data sets. Furthermore, based on our data, it appears that acontia of T. stephensoni may be transcriptionally inactive and only mature nematocysts are present in the distal portions of the threads. Overall, we find that the venom profile of different anatomical regions in sea anemones varies according to its ecological functions.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Microscopy and Microscopy and Microanalysis, University of Queensland, St Lucia, Queensland, Australia
| | - Marymegan Daly
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
14
|
Mani S, Tlusty T. A comprehensive survey of developmental programs reveals a dearth of tree-like lineage graphs and ubiquitous regeneration. BMC Biol 2021; 19:111. [PMID: 34020630 PMCID: PMC8140435 DOI: 10.1186/s12915-021-01013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Multicellular organisms are characterized by a wide diversity of forms and complexity despite a restricted set of key molecules and mechanisms at the base of organismal development. Development combines three basic processes—asymmetric cell division, signaling, and gene regulation—in a multitude of ways to create this overwhelming diversity of multicellular life forms. Here, we use a generative model to test the limits to which such processes can be combined to generate multiple differentiation paths during development, and attempt to chart the diversity of multicellular organisms generated. Results We sample millions of biologically feasible developmental schemes, allowing us to comment on the statistical properties of cell differentiation trajectories they produce. We characterize model-generated “organisms” using the graph topology of their cell type lineage maps. Remarkably, tree-type lineage differentiation maps are the rarest in our data. Additionally, a majority of the “organisms” generated by our model appear to be endowed with the ability to regenerate using pluripotent cells. Conclusions Our results indicate that, in contrast to common views, cell type lineage graphs are unlikely to be tree-like. Instead, they are more likely to be directed acyclic graphs, with multiple lineages converging on the same terminal cell type. Furthermore, the high incidence of pluripotent cells in model-generated organisms stands in line with the long-standing hypothesis that whole body regeneration is an epiphenomenon of development. We discuss experimentally testable predictions of our model and some ways to adapt the generative framework to test additional hypotheses about general features of development. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-021-01013-4).
Collapse
Affiliation(s)
- Somya Mani
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea. .,Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
15
|
Barve A, Galande AA, Ghaskadbi SS, Ghaskadbi S. DNA Repair Repertoire of the Enigmatic Hydra. Front Genet 2021; 12:670695. [PMID: 33995496 PMCID: PMC8117345 DOI: 10.3389/fgene.2021.670695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.
Collapse
Affiliation(s)
- Apurva Barve
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Centre of Excellence in Science and Mathematics Education, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alisha A Galande
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
16
|
Kyslík J, Kosakyan A, Nenarokov S, Holzer AS, Fiala I. The myxozoan minicollagen gene repertoire was not simplified by the parasitic lifestyle: computational identification of a novel myxozoan minicollagen gene. BMC Genomics 2021; 22:198. [PMID: 33743585 PMCID: PMC7981951 DOI: 10.1186/s12864-021-07515-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lineage-specific gene expansions represent one of the driving forces in the evolutionary dynamics of unique phylum traits. Myxozoa, a cnidarian subphylum of obligate parasites, are evolutionarily altered and highly reduced organisms with a simple body plan including cnidarian-specific organelles and polar capsules (a type of nematocyst). Minicollagens, a group of structural proteins, are prominent constituents of nematocysts linking Myxozoa and Cnidaria. Despite recent advances in the identification of minicollagens in Myxozoa, the evolutionary history and diversity of minicollagens in Myxozoa and Cnidaria remain elusive. RESULTS We generated new transcriptomes of two myxozoan species using a novel pipeline for filtering of closely related contaminant species in RNA-seq data. Mining of our transcriptomes and published omics data confirmed the existence of myxozoan Ncol-4, reported only once previously, and revealed a novel noncanonical minicollagen, Ncol-5, which is exclusive to Myxozoa. Phylogenetic analyses support a close relationship between myxozoan Ncol-1-3 with minicollagens of Polypodium hydriforme, but suggest independent evolution in the case of the myxozoan minicollagens Ncol-4 and Ncol-5. Additional genome- and transcriptome-wide searches of cnidarian minicollagens expanded the dataset to better clarify the evolutionary trajectories of minicollagen. CONCLUSIONS The development of a new approach for the handling of next-generation data contaminated by closely related species represents a useful tool for future applications beyond the field of myxozoan research. This data processing pipeline allowed us to expand the dataset and study the evolution and diversity of minicollagen genes in Myxozoa and Cnidaria. We identified a novel type of minicollagen in Myxozoa (Ncol-5). We suggest that the large number of minicollagen paralogs in some cnidarians is a result of several recent large gene multiplication events. We revealed close juxtaposition of minicollagens Ncol-1 and Ncol-4 in myxozoan genomes, suggesting their common evolutionary history. The unique gene structure of myxozoan Ncol-5 suggests a specific function in the myxozoan polar capsule or tubule. Despite the fact that myxozoans possess only one type of nematocyst, their gene repertoire is similar to those of other cnidarians.
Collapse
Affiliation(s)
- Jiří Kyslík
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Serafim Nenarokov
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
17
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
18
|
A tentacle for every occasion: comparing the hunting tentacles and sweeper tentacles, used for territorial competition, in the coral Galaxea fascicularis. BMC Genomics 2020; 21:548. [PMID: 32770938 PMCID: PMC7430897 DOI: 10.1186/s12864-020-06952-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background Coral reefs are among the most diverse, complex and densely populated marine ecosystems. To survive, morphologically simple and sessile cnidarians have developed mechanisms to catch prey, deter predators and compete with adjacent corals for space, yet the mechanisms underlying these functions are largely unknown. Here, we characterize the histology, toxic activity and gene expression patterns in two different types of tentacles from the scleractinian coral Galaxea fascilcularis – catch tentacles (CTs), used to catch prey and deter predators, and sweeper tentacles (STs), specialized tentacles used for territorial aggression. Results STs exhibit more mucocytes and higher expression of mucin genes than CTs, and lack the ectodermal cilia used to deliver food to the mouth and remove debris. STs and CTs also express different sensory rhodopsin-like g-protein coupled receptors, suggesting they may employ different sensory pathways. Each tentacle type has a different complement of stinging cells (nematocytes), and the expression in the two tentacles of genes encoding structural nematocyte proteins suggests the stinging cells develop within the tentacles. CTs have higher neurotoxicity to blowfly larvae and hemolytic activity compared to the STs, consistent with a role in prey capture. In contrast, STs have higher phospholipase A2 activity, which we speculate may have a role in inducing tissue damage during territorial aggression. The expression of genes encoding cytolytic toxins (actinoporins) and phospholipases also differs between the tentacle types. Conclusions These results show that the same organism utilizes two distinct tentacle types, each equipped with a different venom apparatus and toxin composition, for prey capture and defense and for territorial aggression.
Collapse
|
19
|
Ashwood LM, Norton RS, Undheim EAB, Hurwood DA, Prentis PJ. Characterising Functional Venom Profiles of Anthozoans and Medusozoans within Their Ecological Context. Mar Drugs 2020; 18:E202. [PMID: 32283847 PMCID: PMC7230708 DOI: 10.3390/md18040202] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.
Collapse
Affiliation(s)
- Lauren M. Ashwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eivind A. B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Hurwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
20
|
Buzgariu W, Curchod ML, Perruchoud C, Galliot B. Combining BrdU-Labeling to Detection of Neuronal Markers to Monitor Adult Neurogenesis in Hydra. Methods Mol Biol 2020; 2047:3-24. [PMID: 31552646 DOI: 10.1007/978-1-4939-9732-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nervous system is produced and maintained in adult Hydra through the continuous production of nerve cells and mechanosensory cells (nematocytes or cnidocytes). De novo neurogenesis occurs slowly in intact animals that replace their dying nerve cells, at a faster rate in animals regenerating their head as a complete apical nervous system is built in few days. To dissect the molecular mechanisms that underlie these properties, a precise monitoring of the markers of neurogenesis and nematogenesis is required. Here we describe the conditions for an efficient BrdU-labeling coupled to an immunodetection of neuronal markers, either regulators of neurogenesis, here the homeoprotein prdl-a, or neuropeptides such as RFamide or Hym-355. This method can be performed on whole-mount animals as well as on macerated tissues when cells retain their morphology. Moreover, when antibodies are not available, BrdU-labeling can be combined with the analysis of gene expression by whole-mount in situ hybridization. This co-immunodetection procedure is well adapted to visualize and quantify the dynamics of de novo neurogenesis. Upon continuous BrdU labeling, the repeated measurements of BrdU-labeling indexes in specific cellular populations provide a precise monitoring of nematogenesis as well as neurogenesis, in homeostatic or developmental conditions.
Collapse
Affiliation(s)
- Wanda Buzgariu
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marie-Laure Curchod
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
21
|
Yap WY, Tan KJSX, Hwang JS. Expansion of Hydra actinoporin-like toxin (HALT) gene family: Expression divergence and functional convergence evolved through gene duplication. Toxicon 2019; 170:10-20. [PMID: 31513812 DOI: 10.1016/j.toxicon.2019.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
Abstract
Hydra actinoporin-like toxin 1 (HALT-1) was previously shown to cause cytolysis and haemolysis in a number of human cells and has similar functional properties to the actinoporins equinatoxin and sticholysin. In addition to HALT-1, five other HALTs (HALTs 2, 3, 4, 6 and 7) were also isolated from Hydra magnipapillata and expressed as recombinant proteins in this study. We demonstrated that recombinant HALTs have cytolytic activity on HeLa cells but each exhibited a different range of toxicity. All six recombinant HALTs bound to sulfatide, while rHALT-1 and rHALT-3 bound to two additional sphingolipids, lysophosphatidic acid and sphingosine-1-phosphate as indicated by the protein-lipid overlay assay. When either tryptophan133 or tyrosine129 of HALT-1 was mutated, the mutant protein lost binding to sulfatide, lysophosphatidic acid and sphingosine-1-phosphate. As further verification of HALTs' binding to sulfatide, we performed ELISA for each HALT. To determine the cell-type specific gene expression of seven HALTs in Hydra, we searched for individual HALT expression in the single-cell RNA-seq data set of Single Cell Portal. The results showed that HALT-1, 4 and 7 were expressed in differentiating stenoteles. HALT-1 and HALT-6 were expressed in the female germline during oogenesis. HALT-2 was strongly expressed in the gland and mucous cells in the endoderm. Information on HALT-3 and HALT-5 could not be found in the single-cell data set. Our findings show that subfunctionalisation of gene expression following duplication enabled HALTs to become specialized in various cell types of the interstitial cell lineage.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Katrina Joan Shu Xian Tan
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
22
|
Doonan LB, Lynham S, Quinlan C, Ibiji SC, Winter CE, Padilla G, Jaimes-Becerra A, Morandini AC, Marques AC, Long PF. Venom Composition Does Not Vary Greatly Between Different Nematocyst Types Isolated from the Primary Tentacles of Olindias sambaquiensis (Cnidaria: Hydrozoa). THE BIOLOGICAL BULLETIN 2019; 237:26-35. [PMID: 31441701 DOI: 10.1086/705113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this quantitative proteomics study we determined the variety and relative abundance of toxins present in enriched preparations of two nematocyst types isolated from the primary tentacles of the adult medusa stage of the hydrozoan Olindias sambaquiensis. The two nematocyst types were microbasic mastigophores and microbasic euryteles, and these were recovered from the macerated tentacle tissues by using a differential centrifugation approach. Soluble protein extracts from these nematocysts were tagged with tandem mass tag isobaric labels and putative toxins identified using tandem mass spectrometry coupled with a stringent bioinformatics annotation pipeline. Astonishingly, the venom composition of the two capsule types was nearly identical, and there was also little difference in the comparative abundance of toxins between the two nematocyst preparations. This homogeneity suggested that the same toxin complement was present regardless of the penetrative ability of the nematocyst type. Predicted toxin protein families that constituted the venom closely matched those of the toxic proteome of O. sambaquiensis published four years previously, suggesting that venom composition in this species changes little over time. Retaining an array of different nematocyst types to deliver a single venom, rather than sustaining the high metabolic cost necessary to maintain a dynamically evolving venom, may be more advantageous, given the vastly different interspecific interactions that adult medusa encounter in coastal zones.
Collapse
|
23
|
Regionalized nervous system in Hydra and the mechanism of its development. Gene Expr Patterns 2019; 31:42-59. [PMID: 30677493 DOI: 10.1016/j.gep.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022]
Abstract
The last common ancestor of Bilateria and Cnidaria is considered to develop a nervous system over 500 million years ago. Despite the long course of evolution, many of the neuron-related genes, which are active in Bilateria, are also found in the cnidarian Hydra. Thus, Hydra is a good model to study the putative primitive nervous system in the last common ancestor that had the great potential to evolve to a more advanced one. Regionalization of the nervous system is one of the advanced features of bilaterian nervous system. Although a regionalized nervous system is already known to be present in Hydra, its developmental mechanisms are poorly understood. In this study we show how it is formed and maintained, focusing on the neuropeptide Hym-176 gene and its paralogs. First, we demonstrate that four axially localized neuron subsets that express different combination of the neuropeptide Hym-176 gene and its paralogs cover almost an entire body, forming a regionalized nervous system in Hydra. Second, we show that positional information governed by the Wnt signaling pathway plays a key role in determining the regional specificity of the neuron subsets as is the case in bilaterians. Finally, we demonstrated two basic mechanisms, regionally restricted new differentiation and phenotypic conversion, both of which are in part conserved in bilaterians, are involved in maintaining boundaries between the neuron subsets. Therefore, this study is the first comprehensive analysis of the anatomy and developmental regulation of the divergently evolved and axially regionalized peptidergic nervous system in Hydra, implicating an ancestral origin of neural regionalization.
Collapse
|
24
|
Sunagar K, Columbus-Shenkar YY, Fridrich A, Gutkovich N, Aharoni R, Moran Y. Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone. BMC Biol 2018; 16:108. [PMID: 30261880 PMCID: PMC6161364 DOI: 10.1186/s12915-018-0578-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an “explosive” organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development. However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. Results In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1—cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte-specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. Conclusions Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development, and evolution of cnidocytes. Electronic supplementary material The online version of this article (10.1186/s12915-018-0578-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel. .,Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Nadya Gutkovich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
25
|
Expansion of cap superfamily proteins in the genome of Mesocestoides corti : An extreme case of a general bilaterian trend. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Columbus-Shenkar YY, Sachkova MY, Macrander J, Fridrich A, Modepalli V, Reitzel AM, Sunagar K, Moran Y. Dynamics of venom composition across a complex life cycle. eLife 2018; 7:35014. [PMID: 29424690 PMCID: PMC5832418 DOI: 10.7554/elife.35014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022] Open
Abstract
Little is known about venom in young developmental stages of animals. The appearance of toxins and stinging cells during early embryonic stages in the sea anemone Nematostella vectensis suggests that venom is already expressed in eggs and larvae of this species. Here, we harness transcriptomic, biochemical and transgenic tools to study venom production dynamics in Nematostella. We find that venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings can be explained by the vastly different interspecific interactions of each life stage, as individuals develop from a miniature non-feeding mobile planula to a larger sessile polyp that predates on other animals and interact differently with predators. Indeed, behavioral assays involving prey, predators and Nematostella are consistent with this hypothesis. Further, the results of this work suggest a much wider and dynamic venom landscape than initially appreciated in animals with a complex life cycle. Some animals produce a mixture of toxins, commonly known as venom, to protect themselves from predators and catch prey. Cnidarians – a group of animals that includes sea anemones, jellyfish and corals – have stinging cells on their tentacles that inject venom into the animals they touch. The sea anemone Nematostella goes through a complex life cycle. Nematostella start out life in eggs. They then become swimming larvae, barely visible to the naked eye, that do not feed. Adult Nematostella are cylindrical, stationary ‘polyps’ that are several inches long. They use tentacles at the end of their tube-like bodies to capture small aquatic animals. Sea anemones therefore change how they interact with predators and prey at different stages of their life. Most research on venomous animals focuses on adults, so until now it was not clear whether the venom changes along their maturation. Columbus-Shenkar, Sachkova et al. genetically modified Nematostella so that the cells that produce distinct venom components were labeled with different fluorescent markers. The composition of the venom could then be linked to how the anemones interacted with their fish and shrimp predators at each life stage. The results of the experiments showed that Nematostella mothers pass on a toxin to their eggs that makes them unpalatable to predators. Larvae then produce high levels of other toxins that allow them to incapacitate or kill potential predators. Adults have a different mix of toxins that likely help them capture prey. Venom is often studied because the compounds it contains have the potential to be developed into new drugs. The jellyfish and coral relatives of Nematostella may also produce different venoms at different life stages. This means that there are likely to be many toxins that we have not yet identified in these animals. As some jellyfish venoms are very active on humans and reef corals have a pivotal role in ocean ecology, further research into the venoms produced at different life stages could help us to understand and preserve marine ecosystems, as well as having medical benefits.
Collapse
Affiliation(s)
- Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, United States
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, United States
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Spatio-temporal expression of Mesocestoides corti McVAL2 during strobilar development. Exp Parasitol 2017; 181:30-39. [DOI: 10.1016/j.exppara.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/09/2017] [Accepted: 07/23/2017] [Indexed: 11/18/2022]
|
28
|
Babonis LS, Martindale MQ. PaxA, but not PaxC, is required for cnidocyte development in the sea anemone Nematostella vectensis. EvoDevo 2017; 8:14. [PMID: 28878874 PMCID: PMC5584322 DOI: 10.1186/s13227-017-0077-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Background Pax genes are a family of conserved transcription factors that regulate many aspects of developmental morphogenesis, notably the development of ectodermal sensory structures including eyes. Nematostella vectensis, the starlet sea anemone, has numerous Pax orthologs, many of which are expressed early during embryogenesis. The function of Pax genes in this eyeless cnidarian is unknown. Results Here, we show that PaxA, but not PaxC, plays a critical role in the development of cnidocytes in N. vectensis. Knockdown of PaxA results in a loss of developing cnidocytes and downregulation of numerous cnidocyte-specific genes, including a variant of the transcription factor Mef2. We also demonstrate that the co-expression of Mef2 in a subset of the PaxA-expressing cells is associated with the development with a second lineage of cnidocytes and show that knockdown of the neural progenitor gene SoxB2 results in downregulation of expression of PaxA, Mef2, and several cnidocyte-specific genes. Because PaxA is not co-expressed with SoxB2 at any time during cnidocyte development, we propose a simple model for cnidogenesis whereby a SoxB2-expressing progenitor cell population undergoes division to give rise to PaxA-expressing cnidocytes, some of which also express Mef2. Discussion The role of PaxA in cnidocyte development among hydrozoans has not been studied, but the conserved role of SoxB2 in regulating the fate of a progenitor cell that gives rise to neurons and cnidocytes in Nematostella and Hydractinia echinata suggests that this SoxB2/PaxA pathway may well be conserved across cnidarians.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA.,Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
29
|
Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism. Sci Rep 2017; 7:9010. [PMID: 28827642 PMCID: PMC5566210 DOI: 10.1038/s41598-017-09955-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022] Open
Abstract
Myxozoa is a diverse, speciose group of microscopic parasites, recently placed within the phylum Cnidaria. Myxozoans are highly reduced in size and complexity relative to free-living cnidarians, yet they have retained specialized organelles known as polar capsules, akin to the nematocyst stinging capsules of free-living species. Whereas in free-living cnidarians the stinging capsules are used for prey capture or defense, in myxozoans they have the essential function of initiating the host infection process. To explore the evolutionary adaptation of polar capsules to parasitism, we used as a model organism Ceratonova shasta, which causes lethal disease in salmonids. Here, we report the first isolation of C. shasta myxospore polar capsules using a tailored dielectrophoresis-based microfluidic chip. Using electron microscopy and functional analysis we demonstrated that C. shasta tubules have no openings and are likely used to anchor the spore to the host. Proteomic analysis of C. shasta polar capsules suggested that they have retained typical structural and housekeeping proteins found in nematocysts of jellyfish, sea anemones and Hydra, but have lost the most important functional group in nematocysts, namely toxins. Our findings support the hypothesis that polar capsules and nematocysts are homologous organelles, which have adapted to their distinct functions.
Collapse
|
30
|
Jaimes-Becerra A, Chung R, Morandini AC, Weston AJ, Padilla G, Gacesa R, Ward M, Long PF, Marques AC. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria. Toxicon 2017; 137:19-26. [PMID: 28711466 DOI: 10.1016/j.toxicon.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023]
Abstract
Cnidarians are probably the oldest group of animals to be venomous, yet our current picture of cnidarian venom evolution is highly imbalanced due to limited taxon sampling. High-throughput tandem mass spectrometry was used to determine venom composition of the scyphozoan Chrysaora lactea and two cubozoans Tamoya haplonema and Chiropsalmus quadrumanus. Protein recruitment patterns were then compared against 5 other cnidarian venom proteomes taken from the literature. A total of 28 putative toxin protein families were identified, many for the first time in Cnidaria. Character mapping analysis revealed that 17 toxin protein families with predominantly cytolytic biological activities were likely recruited into the cnidarian venom proteome before the lineage split between Anthozoa and Medusozoa. Thereafter, venoms of Medusozoa and Anthozoa differed during subsequent divergence of cnidarian classes. Recruitment and loss of toxin protein families did not correlate with accepted phylogenetic patterns of Cnidaria. Selective pressures that drive toxin diversification independent of taxonomic positioning have yet to be identified in Cnidaria and now warrant experimental consideration.
Collapse
Affiliation(s)
- Adrian Jaimes-Becerra
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, 05508-090 São Paulo, SP, Brazil.
| | - Ray Chung
- Proteomics Facility, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - André C Morandini
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, 05508-090 São Paulo, SP, Brazil
| | - Andrew J Weston
- Mass Spectrometry Laboratory, UCL School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Gabriel Padilla
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1374, 05508-000 Sao Paulo, SP, Brazil
| | - Ranko Gacesa
- Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Malcolm Ward
- Proteomics Facility, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Paul F Long
- Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom; Brazil Institute, King's College London, Strand, London WC2R 2LS, United Kingdom; Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, 05508-000 São Paulo, SP, Brazil
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, 05508-090 São Paulo, SP, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hypólito do Rego, km. 131,5, 11600-000 São Sebastião, Brazil
| |
Collapse
|
31
|
Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra. ZOOLOGY 2017; 123:53-63. [PMID: 28720323 DOI: 10.1016/j.zool.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/24/2022]
Abstract
Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra.
Collapse
|
32
|
Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones. Toxins (Basel) 2016; 8:toxins8120368. [PMID: 27941639 PMCID: PMC5198562 DOI: 10.3390/toxins8120368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022] Open
Abstract
Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (Nematostella vectensis, Stomphia coccinea, Epiactis japonica, Heteractis crispa, and Diadumene leucolena); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and Hydra. Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved.
Collapse
|
33
|
Rentzsch F, Layden M, Manuel M. The cellular and molecular basis of cnidarian neurogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27882698 PMCID: PMC6680159 DOI: 10.1002/wdev.257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete‐scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 This article is categorized under:
Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Organ System Comparisons Between Species
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Michaël Manuel
- Sorbonne Universités, UMPC Univ Paris 06, CNRS, Evolution Paris-Seine, Institut de Biologie Paris-Seine (IBPS), Paris, France
| |
Collapse
|
34
|
Wenger Y, Buzgariu W, Galliot B. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150040. [PMID: 26598723 PMCID: PMC4685579 DOI: 10.1098/rstb.2015.0040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory-motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution.
Collapse
Affiliation(s)
- Y Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - W Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - B Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
35
|
Babonis LS, Martindale MQ, Ryan JF. Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol 2016; 16:114. [PMID: 27216622 PMCID: PMC4877951 DOI: 10.1186/s12862-016-0683-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The evolution of novel genes is thought to be a critical component of morphological innovation but few studies have explicitly examined the contribution of novel genes to the evolution of novel tissues. Nematosomes, the free-floating cellular masses that circulate through the body cavity of the sea anemone Nematostella vectensis, are the defining apomorphy of the genus Nematostella and are a useful model for understanding the evolution of novel tissues. Although many hypotheses have been proposed, the function of nematosomes is unknown. To gain insight into their putative function and to test hypotheses about the role of lineage-specific genes in the evolution of novel structures, we have re-examined the cellular and molecular biology of nematosomes. RESULTS Using behavioral assays, we demonstrate that nematosomes are capable of immobilizing live brine shrimp (Artemia salina) by discharging their abundant cnidocytes. Additionally, the ability of nematosomes to engulf fluorescently labeled bacteria (E. coli) reveals the presence of phagocytes in this tissue. Using RNA-Seq, we show that the gene expression profile of nematosomes is distinct from that of the tentacles and the mesenteries (their tissue of origin) and, further, that nematosomes (a Nematostella-specific tissue) are enriched in Nematostella-specific genes. CONCLUSIONS Despite the small number of cell types they contain, nematosomes are distinct among tissues, both functionally and molecularly. We provide the first evidence that nematosomes comprise part of the innate immune system in N. vectensis, and suggest that this tissue is potentially an important place to look for genes associated with pathogen stress. Finally, we demonstrate that Nematostella-specific genes comprise a significant proportion of the differentially expressed genes in all three of the tissues we examined and may play an important role in novel cell functions.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL, 32080, USA.
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
36
|
Minicollagen cysteine-rich domains encode distinct modes of polymerization to form stable nematocyst capsules. Sci Rep 2016; 6:25709. [PMID: 27166560 PMCID: PMC4863159 DOI: 10.1038/srep25709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/21/2016] [Indexed: 12/04/2022] Open
Abstract
The stinging capsules of cnidarians, nematocysts, function as harpoon-like organelles with unusual biomechanical properties. The nanosecond discharge of the nematocyst requires a dense protein network of the capsule structure withstanding an internal pressure of up to 150 bar. Main components of the capsule are short collagens, so-called minicollagens, that form extended polymers by disulfide reshuffling of their cysteine-rich domains (CRDs). Although CRDs have identical cysteine patterns, they exhibit different structures and disulfide connectivity at minicollagen N and C-termini. We show that the structurally divergent CRDs have different cross-linking potentials in vitro and in vivo. While the C-CRD can participate in several simultaneous intermolecular disulfides and functions as a cystine knot after minicollagen synthesis, the N-CRD is monovalent. Our combined experimental and computational analyses reveal the cysteines in the C-CRD fold to exhibit a higher structural propensity for disulfide bonding and a faster kinetics of polymerization. During nematocyst maturation, the highly reactive C-CRD is instrumental in efficient cross-linking of minicollagens to form pressure resistant capsules. The higher ratio of C-CRD folding types evidenced in the medusozoan lineage might have fostered the evolution of novel, predatory nematocyst types in cnidarians with a free-swimming medusa stage.
Collapse
|
37
|
Buzgariu W, Al Haddad S, Tomczyk S, Wenger Y, Galliot B. Multi-functionality and plasticity characterize epithelial cells in Hydra. Tissue Barriers 2015; 3:e1068908. [PMID: 26716072 PMCID: PMC4681288 DOI: 10.1080/21688370.2015.1068908] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra.
Collapse
Affiliation(s)
- W Buzgariu
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Al Haddad
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Tomczyk
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - Y Wenger
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - B Galliot
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| |
Collapse
|
38
|
Mutagenesis and functional analysis of the pore-forming toxin HALT-1 from Hydra magnipapillata. Toxins (Basel) 2015; 7:407-22. [PMID: 25654788 PMCID: PMC4344632 DOI: 10.3390/toxins7020407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/27/2015] [Indexed: 12/02/2022] Open
Abstract
Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity. In this study, we have used site-directed mutagenesis to investigate the role of amino acids in the pore-forming N-terminal region and the conserved aromatic cluster required for cell membrane binding. A total of 10 mutants of HALT-1 were constructed and tested for their haemolytic and cytolytic activity on human erythrocytes and HeLa cells, respectively. Insertion of 1–4 negatively charged residues in the N-terminal region of HALT-1 strongly reduced haemolytic and cytolytic activity, suggesting that the length or charge of the N-terminal region is critical for pore-forming activity. Moreover, substitution of amino acids in the conserved aromatic cluster reduced haemolytic and cytolytic activity by more than 80%, suggesting that these aromatic amino acids are important for attachment to the lipid membrane as shown for other actinoporins. The results suggest that HALT-1 and other actinoporins share similar mechanisms of pore formation and that it is critical for HALT-1 to maintain an amphipathic helix at the N-terminus and an aromatic amino acid-rich segment at the site of membrane binding.
Collapse
|
39
|
Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The Dynamically Evolving Nematocyst Content of an Anthozoan, a Scyphozoan, and a Hydrozoan. Mol Biol Evol 2014; 32:740-53. [DOI: 10.1093/molbev/msu335] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
40
|
Arendsee ZW, Li L, Wurtele ES. Coming of age: orphan genes in plants. TRENDS IN PLANT SCIENCE 2014; 19:698-708. [PMID: 25151064 DOI: 10.1016/j.tplants.2014.07.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/27/2014] [Accepted: 07/17/2014] [Indexed: 05/19/2023]
Abstract
Sizable minorities of protein-coding genes from every sequenced eukaryotic and prokaryotic genome are unique to the species. These so-called ‘orphan genes’ may evolve de novo from non-coding sequence or be derived from older coding material. They are often associated with environmental stress responses and species-specific traits or regulatory patterns. However, difficulties in studying genes where comparative analysis is impossible, and a bias towards broadly conserved genes, have resulted in underappreciation of their importance. We review here the identification, possible origins, evolutionary trends, and functions of orphans with an emphasis on their role in plant biology. We exemplify several evolutionary trends with an analysis of Arabidopsis thaliana and present QQS as a model orphan gene.
Collapse
|
41
|
Lapébie P, Ruggiero A, Barreau C, Chevalier S, Chang P, Dru P, Houliston E, Momose T. Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian. PLoS Genet 2014; 10:e1004590. [PMID: 25233086 PMCID: PMC4169000 DOI: 10.1371/journal.pgen.1004590] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at "oral" and "aboral" poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes.
Collapse
Affiliation(s)
- Pascal Lapébie
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Antonella Ruggiero
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Carine Barreau
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Patrick Chang
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Philippe Dru
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Tsuyoshi Momose
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| |
Collapse
|
42
|
Babonis LS, Martindale MQ. Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 2014; 54:714-22. [PMID: 24771087 DOI: 10.1093/icb/icu027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how new cell types arise is critical for understanding the evolution of organismal complexity. Questions of this nature, however, can be difficult to answer due to the challenge associated with defining the identity of a truly novel cell. Cnidarians (anemones, jellies, and their allies) provide a unique opportunity to investigate the molecular regulation and development of cell-novelty because they possess a cell that is unique to the cnidarian lineage and that also has a very well-characterized phenotype: the cnidocyte (stinging cell). Because cnidocytes are thought to differentiate from the cell lineage that also gives rise to neurons, cnidocytes can be expected to express many of the same genes expressed in their neural "sister" cells. Conversely, only cnidocytes posses a cnidocyst (the explosive organelle that gives cnidocytes their sting); therefore, those genes or gene-regulatory relationships required for the development of the cnidocyst can be expected to be expressed uniquely (or in unique combination) in cnidocytes. This system provides an important opportunity to: (1) construct the gene-regulatory network (GRN) underlying the differentiation of cnidocytes, (2) assess the relative contributions of both conserved and derived genes in the cnidocyte GRN, and (3) test hypotheses about the role of novel regulatory relationships in the generation of novel cell types. In this review, we summarize common challenges to studying the evolution of novelty, introduce the utility of cnidocyte differentiation in the model cnidarian, Nematostella vectensis, as a means of overcoming these challenges, and describe an experimental approach that leverages comparative tissue-specific transcriptomics to generate hypotheses about the GRNs underlying the acquisition of the cnidocyte identity.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| |
Collapse
|
43
|
Glasser E, Rachamim T, Aharonovich D, Sher D. Hydra actinoporin-like toxin-1, an unusual hemolysin from the nematocyst venom of Hydra magnipapillata which belongs to an extended gene family. Toxicon 2014; 91:103-13. [PMID: 24768765 DOI: 10.1016/j.toxicon.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/23/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023]
Abstract
Cnidarians rely on their nematocysts and the venom injected through these unique weaponry systems to catch prey and protect themselves from predators. The development and physiology of the nematocysts of Hydra magnipapillata, a classic model organism, have been intensively studied, yet the composition and biochemical activity of their venom components are mostly unknown. Here, we show that hydra actinoporin-like toxins (HALTs), which have previously been associated with Hydra nematocysts, belong to a multigene family comprising six genes, which have diverged from a single common ancestor. All six genes are expressed in a population of Hydra magnipapillata. When expressed recombinantly, HALT-1 (Δ-HYTX-Hma1a), an actinoporin-like protein found in the stenoteles (the main penetrating nematocysts used in prey capture), reveals hemolytic activity, albeit about two-thirds lower than that of the anemone actinoporin equinatoxin II (EqTII, Δ-AITX-Aeq1a). HALT-1 also differs from EqTII in the size of its pores, and likely does not utilize sphingomyelin as a membrane receptor. We describe features of the HALT-1 sequence which may contribute to this difference in activity, and speculate on the role of this unusual family of pore-forming toxins in the ecology of Hydra.
Collapse
Affiliation(s)
- Eliezra Glasser
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel
| | - Tamar Rachamim
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel.
| |
Collapse
|
44
|
Buzgariu W, Crescenzi M, Galliot B. Robust G2 pausing of adult stem cells in Hydra. Differentiation 2014; 87:83-99. [PMID: 24703763 DOI: 10.1016/j.diff.2014.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration.
Collapse
Affiliation(s)
- Wanda Buzgariu
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | | - Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
45
|
Moran Y, Fredman D, Praher D, Li XZ, Wee LM, Rentzsch F, Zamore PD, Technau U, Seitz H. Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res 2014; 24:651-63. [PMID: 24642861 PMCID: PMC3975064 DOI: 10.1101/gr.162503.113] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In bilaterians, which comprise most of extant animals, microRNAs (miRNAs) regulate the majority of messenger RNAs (mRNAs) via base-pairing of a short sequence (the miRNA “seed”) to the target, subsequently promoting translational inhibition and transcript instability. In plants, many miRNAs guide endonucleolytic cleavage of highly complementary targets. Because little is known about miRNA function in nonbilaterian animals, we investigated the repertoire and biological activity of miRNAs in the sea anemone Nematostella vectensis, a representative of Cnidaria, the sister phylum of Bilateria. Our work uncovers scores of novel miRNAs in Nematostella, increasing the total miRNA gene count to 87. Yet only a handful are conserved in corals and hydras, suggesting that microRNA gene turnover in Cnidaria greatly exceeds that of other metazoan groups. We further show that Nematostella miRNAs frequently direct the cleavage of their mRNA targets via nearly perfect complementarity. This mode of action resembles that of small interfering RNAs (siRNAs) and plant miRNAs. It appears to be common in Cnidaria, as several of the miRNA target sites are conserved among distantly related anemone species, and we also detected miRNA-directed cleavage in Hydra. Unlike in bilaterians, Nematostella miRNAs are commonly coexpressed with their target transcripts. In light of these findings, we propose that post-transcriptional regulation by miRNAs functions differently in Cnidaria and Bilateria. The similar, siRNA-like mode of action of miRNAs in Cnidaria and plants suggests that this may be an ancestral state.
Collapse
Affiliation(s)
- Yehu Moran
- Department for Molecular Evolution and Development, Center for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Glauber KM, Dana CE, Park SS, Colby DA, Noro Y, Fujisawa T, Chamberlin AR, Steele RE. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra. Development 2014; 140:4788-96. [PMID: 24255098 DOI: 10.1242/dev.094490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes.
Collapse
Affiliation(s)
- Kristine M Glauber
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Dev Biol 2013; 386:237-51. [PMID: 24355748 DOI: 10.1016/j.ydbio.2013.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/24/2022]
Abstract
To preserve genome integrity, an evolutionarily conserved small RNA-based silencing mechanism involving PIWI proteins and PIWI-interacting RNAs (piRNAs) represses potentially deleterious transposons in animals. Although there has been extensive research into PIWI proteins in bilaterians, these proteins remain to be examined in ancient phyla. Here, we investigated the PIWI proteins Hywi and Hyli in the cnidarian Hydra, and found that both PIWI proteins are enriched in multipotent stem cells, germline stem cells, and in the female germline. Hywi and Hyli localize to the nuage, a perinuclear organelle that has been implicated in piRNA-mediated transposon silencing, together with other conserved nuage and piRNA pathway components. Our findings provide the first report of nuage protein localization patterns in a non-bilaterian. Hydra PIWI proteins possess symmetrical dimethylarginines: modified residues that are known to aid in PIWI protein localization to the nuage and proper piRNA loading. piRNA profiling suggests that transposons are the major targets of the piRNA pathway in Hydra. Our data suggest that piRNA biogenesis through the ping-pong amplification cycle occurs in Hydra and that Hywi and Hyli are likely to preferentially bind primary and secondary piRNAs, respectively. Presumptive piRNA clusters are unidirectionally transcribed and primarily give rise to piRNAs that are antisense to transposons. These results indicate that various conserved features of PIWI proteins, the piRNA pathway, and their associations with the nuage were likely established before the evolution of bilaterians.
Collapse
|
48
|
Moran Y, Praher D, Schlesinger A, Ayalon A, Tal Y, Technau U. Analysis of soluble protein contents from the nematocysts of a model sea anemone sheds light on venom evolution. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:329-339. [PMID: 23151943 PMCID: PMC3627010 DOI: 10.1007/s10126-012-9491-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/18/2012] [Indexed: 05/29/2023]
Abstract
The nematocyst is one of the most complex intracellular structures found in nature and is the defining feature of the phylum Cnidaria (sea anemones, corals, jellyfish, and hydroids). This miniature stinging organelle contains and delivers venom into prey and foe yet little is known about its toxic components. In the present study, we identified by tandem mass spectrometry 20 proteins released upon discharge from the nematocyst of the model sea anemone Nematostella vectensis. The availability of genomic and transcriptomic data for this species enabled accurate identification and phylogenetic study of these components. Fourteen of these proteins could not be identified in other animals suggesting that they might be the products of taxonomically restricted genes, a finding which fits well their origin from a taxon-specific organelle. Further, we studied by in situ hybridization the localization of two of the transcripts encoding the putative nematocyst venom proteins: a metallopeptidase related to the Tolloid family and a cysteine-rich protein. Both transcripts were detected in nematocytes, which are the cells containing nematocysts, and the metallopeptidase was found also in pharyngeal gland cells. Our findings reveal for the first time the possible venom components of a sea anemone nematocyst and suggest their evolutionary origins.
Collapse
Affiliation(s)
- Yehu Moran
- Department of Molecular Evolution and Development, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
49
|
Wenger Y, Galliot B. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome. BMC Genomics 2013; 14:204. [PMID: 23530871 PMCID: PMC3764976 DOI: 10.1186/1471-2164-14-204] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/14/2013] [Indexed: 01/11/2023] Open
Abstract
Background Evolutionary studies benefit from deep sequencing technologies that generate
genomic and transcriptomic sequences from a variety of organisms. Genome
sequencing and RNAseq have complementary strengths. In this study, we
present the assembly of the most complete Hydra transcriptome to
date along with a comparative analysis of the specific features of RNAseq
and genome-predicted transcriptomes currently available in the freshwater
hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we
combined Illumina and 454 Titanium reads, giving the primacy to Illumina
over 454 reads to correct homopolymer errors. This strategy yielded an
RNAseq transcriptome that contains 48’909 unique sequences including
splice variants, representing approximately 24’450 distinct genes.
Comparative analysis to the available genome-predicted transcriptomes
identified 10’597 novel Hydra transcripts that encode 529
evolutionarily-conserved proteins. The annotation of 170 human orthologs
points to critical functions in protein biosynthesis, FGF and TOR signaling,
vesicle transport, immunity, cell cycle regulation, cell death,
mitochondrial metabolism, transcription and chromatin regulation. However, a
majority of these novel transcripts encodes short ORFs, at least 767 of them
corresponding to pseudogenes. This RNAseq transcriptome also lacks
11’270 predicted transcripts that correspond either to silent genes or
to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454
reads and we produced, with genome assistance, an extensive and accurate
Hydra transcriptome. The comparative analysis of the RNAseq
transcriptome with genome-predicted transcriptomes lead to the
identification of large populations of novel as well as missing transcripts
that might reflect Hydra-specific evolutionary events.
Collapse
Affiliation(s)
- Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
50
|
Brinkman DL, Aziz A, Loukas A, Potriquet J, Seymour J, Mulvenna J. Venom proteome of the box jellyfish Chironex fleckeri. PLoS One 2012; 7:e47866. [PMID: 23236347 PMCID: PMC3517583 DOI: 10.1371/journal.pone.0047866] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis). The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs) were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome.
Collapse
Affiliation(s)
- Diane L. Brinkman
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ammar Aziz
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
| | - Jeremy Potriquet
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
| | - Jamie Seymour
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
- Queensland Emergency Medical Research Foundation, Queensland, Australia
| | - Jason Mulvenna
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|