1
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Jansen NA, Cestèle S, Marco SS, Schenke M, Stewart K, Patel J, Tolner EA, Brunklaus A, Mantegazza M, van den Maagdenberg AMJM. Brainstem depolarization-induced lethal apnea associated with gain-of-function SCN1AL263V is prevented by sodium channel blockade. Proc Natl Acad Sci U S A 2024; 121:e2309000121. [PMID: 38547067 PMCID: PMC10998578 DOI: 10.1073/pnas.2309000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Apneic events are frightening but largely benign events that often occur in infants. Here, we report apparent life-threatening apneic events in an infant with the homozygous SCN1AL263V missense mutation, which causes familial hemiplegic migraine type 3 in heterozygous family members, in the absence of epilepsy. Observations consistent with the events in the infant were made in an Scn1aL263V knock-in mouse model, in which apnea was preceded by a large brainstem DC-shift, indicative of profound brainstem depolarization. The L263V mutation caused gain of NaV1.1 function effects in transfected HEK293 cells. Sodium channel blockade mitigated the gain-of-function characteristics, rescued lethal apnea in Scn1aL263V mice, and decreased the frequency of severe apneic events in the patient. Hence, this study shows that SCN1AL263V can cause life-threatening apneic events, which in a mouse model were caused by profound brainstem depolarization. In addition to being potentially relevant to sudden infant death syndrome pathophysiology, these data indicate that sodium channel blockers may be considered therapeutic for apneic events in patients with these and other gain-of-function SCN1A mutations.
Collapse
Affiliation(s)
- Nico A. Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Sandrine Cestèle
- Université Côte d’Azur, Valbonne-Sophia Antipolis06560, France
- Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
| | - Silvia Sanchez Marco
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, University Hospitals Bristol, BristolBS2 8BJ, United Kingdom
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Kirsty Stewart
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, GlasgowG51 4TF, United Kingdom
| | - Jayesh Patel
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, University Hospitals Bristol, BristolBS2 8BJ, United Kingdom
| | - Else A. Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden2333 ZA, The Netherlands
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, GlasgowG51 4TF, United Kingdom
- School of Health and Wellbeing, University of Glasgow, GlasgowG12 8TB, United Kingdom
| | - Massimo Mantegazza
- Université Côte d’Azur, Valbonne-Sophia Antipolis06560, France
- Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
- Inserm, Valbonne-Sophia Antipolis06560, France
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden2333 ZA, The Netherlands
| |
Collapse
|
3
|
Morais A, Qin T, Ayata C, Harriott AM. Inhibition of persistent sodium current reduces spreading depression-evoked allodynia in a mouse model of migraine with aura. Pain 2023; 164:2564-2571. [PMID: 37318029 DOI: 10.1097/j.pain.0000000000002962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT We investigated the efficacy of inhibiting persistent Na + currents (I NaP ) in acute rodent models of migraine with aura. Cortical spreading depression (SD) is a slow wave of neuronal and glial depolarization that underlies the migraine aura. Minimally invasive optogenetic SD (opto-SD) causes periorbital mechanical allodynia in mice, suggesting SD activates trigeminal nociceptors. Persistent Na + currents contribute to neuronal intrinsic excitability and have been implicated in peripheral and cortical excitation. We examined a preferential inhibitor of I NaP, GS-458967, on SD-induced periorbital allodynia, SD susceptibility, and formalin-induced peripheral pain. Periorbital mechanical allodynia was tested in male and female Thy1-ChR2-YFP mice after a single opto-SD event using manual von Frey monofilaments. GS-458967 (1 mg/kg, s.c.) or vehicle was dosed immediately after opto-SD induction, and allodynia was tested 1 hour later. The electrical SD threshold and KCl-induced SD frequency were examined in the cortex in male Sprague-Dawley rats after 1 hour pretreatment with GS-458967 (3 mg/kg, s.c.) or vehicle. Effects of GS-458967 (0.5-5 mg/kg, p.o.) on spontaneous formalin hind paw behavior and locomotion were also examined in male CD-1 mice. GS-458967 suppressed opto-SD-induced periorbital allodynia and decreased susceptibility to SD. GS-458967 also diminished early and late phase formalin-induced paw-licking behavior with early phase paw licking responding to lower doses. GS-458967 up to 3 mg/kg had no impact on locomotor activity. These data provide evidence that I NaP inhibition can reduce opto-SD-induced trigeminal pain behavior and support I NaP inhibition as an antinociceptive strategy for both abortive and preventive treatment of migraine.
Collapse
Affiliation(s)
- Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Tao Qin
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andrea M Harriott
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
5
|
Berecki G, Bryson A, Polster T, Petrou S. Biophysical characterization and modelling of SCN1A gain-of-function predicts interneuron hyperexcitability and a predisposition to network instability through homeostatic plasticity. Neurobiol Dis 2023; 179:106059. [PMID: 36868483 DOI: 10.1016/j.nbd.2023.106059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
SCN1A gain-of-function variants are associated with early onset developmental and epileptic encephalopathies (DEEs) that possess distinct clinical features compared to Dravet syndrome caused by SCN1A loss-of-function. However, it is unclear how SCN1A gain-of-function may predispose to cortical hyper-excitability and seizures. Here, we first report the clinical features of a patient carrying a de novo SCN1A variant (T162I) associated with neonatal-onset DEE, and then characterize the biophysical properties of T162I and three other SCN1A variants associated with neonatal-onset DEE (I236V) and early infantile DEE (P1345S, R1636Q). In voltage clamp experiments, three variants (T162I, P1345S and R1636Q) exhibited changes in activation and inactivation properties that enhanced window current, consistent with gain-of-function. Dynamic action potential clamp experiments utilising model neurons incorporating Nav1.1. channels supported a gain-of-function mechanism for all four variants. Here, the T162I, I236V, P1345S, and R1636Q variants exhibited higher peak firing rates relative to wild type and the T162I and R1636Q variants produced a hyperpolarized threshold and reduced neuronal rheobase. To explore the impact of these variants upon cortical excitability, we used a spiking network model containing an excitatory pyramidal cell (PC) and parvalbumin positive (PV) interneuron population. SCN1A gain-of-function was modelled by enhancing the excitability of PV interneurons and then incorporating three simple forms of homeostatic plasticity that restored pyramidal cell firing rates. We found that homeostatic plasticity mechanisms exerted differential impact upon network function, with changes to PV-to-PC and PC-to-PC synaptic strength predisposing to network instability. Overall, our findings support a role for SCN1A gain-of-function and inhibitory interneuron hyperexcitability in early onset DEE. We propose a mechanism through which homeostatic plasticity pathways can predispose to pathological excitatory activity and contribute to phenotypic variability in SCN1A disorders.
Collapse
Affiliation(s)
- Géza Berecki
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Tilman Polster
- Krankenhaus Mara, Bethel Epilepsy Centre, Department of Epileptology, Medical School, Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA; Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
6
|
Brunklaus A, Feng T, Brünger T, Perez-Palma E, Heyne H, Matthews E, Semsarian C, Symonds JD, Zuberi SM, Lal D, Schorge S. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 2022; 145:4275-4286. [PMID: 35037686 PMCID: PMC9897196 DOI: 10.1093/brain/awac006] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).
Collapse
Affiliation(s)
- Andreas Brunklaus
- Correspondence to: Dr Andreas Brunklaus, MD Fraser of Allander Neurosciences Unit Office Block, Ground Floor, Zone 2 Royal Hospital for Children 1345 Govan Road Glasgow G51 4TF, UK E-mail:
| | | | | | - Eduardo Perez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Henrike Heyne
- Genomic and Personalized Medicine, Digital Health Center, Hasso Plattner Institute, Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, USA
- Institute for Molecular Medicine Finland: FIMM, Helsinki, Finland
| | - Emma Matthews
- Atkinson Morley Neuromuscular Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
- Sydney Medical School Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Schorge
- Correspondence may also be addressed to: Professor Stephanie Schorge, PhD Department of Neuroscience Physiology and Pharmacology UCL, London WC1E 6BT, UK E-mail:
| |
Collapse
|
7
|
Interneuronal dynamics facilitate the initiation of spike block in cortical microcircuits. J Comput Neurosci 2022; 50:275-298. [PMID: 35441302 DOI: 10.1007/s10827-022-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Pyramidal cell spike block is a common occurrence in migraine with aura and epileptic seizures. In both cases, pyramidal cells experience hyperexcitation with rapidly increasing firing rates, major changes in electrochemistry, and ultimately spike block that temporarily terminates neuronal activity. In cortical spreading depression (CSD), spike block propagates as a slowly traveling wave of inactivity through cortical pyramidal cells, which is thought to precede migraine attacks with aura. In seizures, highly synchronized cortical activity can be interspersed with, or terminated by, spike block. While the identifying characteristic of CSD and seizures is the pyramidal cell hyperexcitation, it is currently unknown how the dynamics of the cortical microcircuits and inhibitory interneurons affect the initiation of hyperexcitation and subsequent spike block.We tested the contribution of cortical inhibitory interneurons to the initiation of spike block using a cortical microcircuit model that takes into account changes in ion concentrations that result from neuronal firing. Our results show that interneuronal inhibition provides a wider dynamic range to the circuit and generally improves stability against spike block. Despite these beneficial effects, strong interneuronal firing contributed to rapidly changing extracellular ion concentrations, which facilitated hyperexcitation and led to spike block first in the interneuron and then in the pyramidal cell. In all cases, a loss of interneuronal firing triggered pyramidal cell spike block. However, preventing interneuronal spike block was insufficient to rescue the pyramidal cell from spike block. Our data thus demonstrate that while the role of interneurons in cortical microcircuits is complex, they are critical to the initiation of pyramidal cell spike block. We discuss the implications that localized effects on cortical interneurons have beyond the isolated microcircuit and their contribution to CSD and epileptic seizures.
Collapse
|
8
|
Abstract
Migraine is a common, chronic, disorder that is typically characterized by recurrent disabling attacks of headache and accompanying symptoms, including aura. The aetiology is multifactorial with rare monogenic variants. Depression, epilepsy, stroke and myocardial infarction are comorbid diseases. Spreading depolarization probably causes aura and possibly also triggers trigeminal sensory activation, the underlying mechanism for the headache. Despite earlier beliefs, vasodilation is only a secondary phenomenon and vasoconstriction is not essential for antimigraine efficacy. Management includes analgesics or NSAIDs for mild attacks, and, for moderate or severe attacks, triptans or 5HT1B/1D receptor agonists. Because of cardiovascular safety concerns, unreliable efficacy and tolerability issues, use of ergots to abort attacks has nearly vanished in most countries. CGRP receptor antagonists (gepants) and lasmiditan, a selective 5HT1F receptor agonist, have emerged as effective acute treatments. Intramuscular onabotulinumtoxinA may be helpful in chronic migraine (migraine on ≥15 days per month) and monoclonal antibodies targeting CGRP or its receptor, as well as two gepants, have proven effective and well tolerated for the preventive treatment of migraine. Several neuromodulation modalities have been approved for acute and/or preventive migraine treatment. The emergence of new treatment targets and therapies illustrates the bright future for migraine management.
Collapse
|
9
|
Dongol Y, Choi PM, Wilson DT, Daly NL, Cardoso FC, Lewis RJ. Voltage-Gated Sodium Channel Modulation by a New Spider Toxin Ssp1a Isolated From an Australian Theraphosid. Front Pharmacol 2021; 12:795455. [PMID: 35002728 PMCID: PMC8740163 DOI: 10.3389/fphar.2021.795455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors.
Collapse
Affiliation(s)
- Yashad Dongol
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Phil M. Choi
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David T. Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fernanda C. Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Auffenberg E, Hedrich UB, Barbieri R, Miely D, Groschup B, Wuttke TV, Vogel N, Lührs P, Zanardi I, Bertelli S, Spielmann N, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Pusch M, Dichgans M, Lerche H, Gavazzo P, Plesnila N, Freilinger T. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. J Clin Invest 2021; 131:142202. [PMID: 34546973 PMCID: PMC8553559 DOI: 10.1172/jci142202] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cortical spreading depression (CSD), a wave of depolarization followed by depression of cortical activity, is a pathophysiological process implicated in migraine with aura and various other brain pathologies, such as ischemic stroke and traumatic brain injury. To gain insight into the pathophysiology of CSD, we generated a mouse model for a severe monogenic subtype of migraine with aura, familial hemiplegic migraine type 3 (FHM3). FHM3 is caused by mutations in SCN1A, encoding the voltage-gated Na+ channel NaV1.1 predominantly expressed in inhibitory interneurons. Homozygous Scn1aL1649Q knock-in mice died prematurely, whereas heterozygous mice had a normal lifespan. Heterozygous Scn1aL1649Q knock-in mice compared with WT mice displayed a significantly enhanced susceptibility to CSD. We found L1649Q to cause a gain-of-function effect with an impaired Na+-channel inactivation and increased ramp Na+ currents leading to hyperactivity of fast-spiking inhibitory interneurons. Brain slice recordings using K+-sensitive electrodes revealed an increase in extracellular K+ in the early phase of CSD in heterozygous mice, likely representing the mechanistic link between interneuron hyperactivity and CSD initiation. The neuronal phenotype and premature death of homozygous Scn1aL1649Q knock-in mice was partially rescued by GS967, a blocker of persistent Na+ currents. Collectively, our findings identify interneuron hyperactivity as a mechanism to trigger CSD.
Collapse
Affiliation(s)
- Eva Auffenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ulrike Bs Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raffaella Barbieri
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Daniela Miely
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Niklas Vogel
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Philipp Lührs
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ilaria Zanardi
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Sara Bertelli
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Michael Pusch
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Paola Gavazzo
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Freilinger
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology, Klinikum Passau, Passau, Germany
| |
Collapse
|
11
|
Bauer PR, Tolner EA, Keezer MR, Ferrari MD, Sander JW. Headache in people with epilepsy. Nat Rev Neurol 2021; 17:529-544. [PMID: 34312533 DOI: 10.1038/s41582-021-00516-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated. Correct diagnoses and appropriate treatment of headaches in individuals with epilepsy is essential, as headaches can contribute substantially to disease burden. Here, we review the insights that have been made into the associations between headache and epilepsy over the past 5 years, including information on the pathophysiological mechanisms and genetic variants that link the two disorders. We also discuss the current best practice for the management of headaches co-occurring with epilepsy and highlight future challenges for this area of research.
Collapse
Affiliation(s)
- Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany.
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark R Keezer
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,School of Public Health, Université de Montréal, Montreal, Quebec, Canada.,Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
12
|
Lemaire L, Desroches M, Krupa M, Pizzamiglio L, Scalmani P, Mantegazza M. Modeling NaV1.1/SCN1A sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential GABAergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine. PLoS Comput Biol 2021; 17:e1009239. [PMID: 34314446 PMCID: PMC8345895 DOI: 10.1371/journal.pcbi.1009239] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/06/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
Loss of function mutations of SCN1A, the gene coding for the voltage-gated sodium channel NaV1.1, cause different types of epilepsy, whereas gain of function mutations cause sporadic and familial hemiplegic migraine type 3 (FHM-3). However, it is not clear yet how these opposite effects can induce paroxysmal pathological activities involving neuronal networks’ hyperexcitability that are specific of epilepsy (seizures) or migraine (cortical spreading depolarization, CSD). To better understand differential mechanisms leading to the initiation of these pathological activities, we used a two-neuron conductance-based model of interconnected GABAergic and pyramidal glutamatergic neurons, in which we incorporated ionic concentration dynamics in both neurons. We modeled FHM-3 mutations by increasing the persistent sodium current in the interneuron and epileptogenic mutations by decreasing the sodium conductance in the interneuron. Therefore, we studied both FHM-3 and epileptogenic mutations within the same framework, modifying only two parameters. In our model, the key effect of gain of function FHM-3 mutations is ion fluxes modification at each action potential (in particular the larger activation of voltage-gated potassium channels induced by the NaV1.1 gain of function), and the resulting CSD-triggering extracellular potassium accumulation, which is not caused only by modifications of firing frequency. Loss of function epileptogenic mutations, on the other hand, increase GABAergic neurons’ susceptibility to depolarization block, without major modifications of firing frequency before it. Our modeling results connect qualitatively to experimental data: potassium accumulation in the case of FHM-3 mutations and facilitated depolarization block of the GABAergic neuron in the case of epileptogenic mutations. Both these effects can lead to pyramidal neuron hyperexcitability, inducing in the migraine condition depolarization block of both the GABAergic and the pyramidal neuron. Overall, our findings suggest different mechanisms of network hyperexcitability for migraine and epileptogenic NaV1.1 mutations, implying that the modifications of firing frequency may not be the only relevant pathological mechanism. The voltage-gated sodium channel NaV1.1 is a major target of human mutations implicated in different pathologies. In particular, mutations identified in certain types of epilepsy cause loss of function of the channel, whereas mutations identified in certain types of migraine (in which spreading depolarizations of the cortical circuits of the brain are involved) cause instead gain of function. Here, we study dysfunctions induced by these differential effects in a two-neuron (GABAergic and pyramidal) conductance-based model with dynamic ion concentrations. We obtain results that can be related to experimental findings in both situations. Namely, extracellular potassium accumulation induced by the activity of the GABAergic neuron in the case of CSD, and higher propensity of the GABAergic neuron to depolarization block in the epileptogenic scenario, without significant modifications of its firing frequency prior to it. Both scenarios can induce hyperexcitability of the pyramidal neuron, leading in the migraine condition to depolarization block of both the GABAergic and the pyramidal neuron. Our results are successfully confronted to experimental data and suggest that modification of firing frequency is not the only key mechanism in these pathologies of neuronal excitability.
Collapse
Affiliation(s)
- Louisiane Lemaire
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis, France
- Université Côte d’Azur, Nice, France
- * E-mail: (LL); (MM)
| | - Mathieu Desroches
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis, France
- Université Côte d’Azur, Nice, France
| | - Martin Krupa
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis, France
- Université Côte d’Azur, Laboratoire Jean-Alexandre Dieudonné, Nice, France
| | - Lara Pizzamiglio
- Université Côte d’Azur, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Paolo Scalmani
- U.O. VII Clinical and Experimental Epileptology, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Massimo Mantegazza
- Université Côte d’Azur, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
- * E-mail: (LL); (MM)
| |
Collapse
|
13
|
Thompson CH, Ben-Shalom R, Bender KJ, George AL. Alternative splicing potentiates dysfunction of early-onset epileptic encephalopathy SCN2A variants. J Gen Physiol 2021; 152:133672. [PMID: 31995133 PMCID: PMC7054859 DOI: 10.1085/jgp.201912442] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Epileptic encephalopathies are severe forms of infantile-onset epilepsy often complicated by severe neurodevelopmental impairments. Some forms of early-onset epileptic encephalopathy (EOEE) have been associated with variants in SCN2A, which encodes the brain voltage-gated sodium channel NaV1.2. Many voltage-gated sodium channel genes, including SCN2A, undergo developmentally regulated mRNA splicing. The early onset of these disorders suggests that developmentally regulated alternative splicing of NaV1.2 may be an important consideration when elucidating the pathophysiological consequences of epilepsy-associated variants. We hypothesized that EOEE-associated NaV1.2 variants would exhibit greater dysfunction in a splice isoform that is prominently expressed during early development. We engineered five EOEE-associated NaV1.2 variants (T236S, E999K, S1336Y, T1623N, and R1882Q) into the adult and neonatal splice isoforms of NaV1.2 and performed whole-cell voltage clamp to elucidate their functional properties. All variants exhibited functional defects that could enhance neuronal excitability. Three of the five variants (T236S, E999K, and S1336Y) exhibited greater dysfunction in the neonatal isoform compared with those observed in the adult isoform. Computational modeling of a developing cortical pyramidal neuron indicated that T236S, E999K, S1336Y, and R1882Q showed hyperexcitability preferentially in immature neurons. These results suggest that both splice isoform and neuronal developmental stage influence how EOEE-associated NaV1.2 variants affect neuronal excitability.
Collapse
Affiliation(s)
- Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Roy Ben-Shalom
- Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Kevin J Bender
- Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
14
|
Suleimanova A, Talanov M, van den Maagdenberg AMJM, Giniatullin R. Deciphering in silico the Role of Mutated Na V 1.1 Sodium Channels in Enhancing Trigeminal Nociception in Familial Hemiplegic Migraine Type 3. Front Cell Neurosci 2021; 15:644047. [PMID: 34135733 PMCID: PMC8200561 DOI: 10.3389/fncel.2021.644047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.
Collapse
Affiliation(s)
- Alina Suleimanova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Goff KM, Goldberg EM. A Role for Vasoactive Intestinal Peptide Interneurons in Neurodevelopmental Disorders. Dev Neurosci 2021; 43:168-180. [PMID: 33794534 PMCID: PMC8440337 DOI: 10.1159/000515264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
GABAergic inhibitory interneurons of the cerebral cortex expressing vasoactive intestinal peptide (VIP-INs) are rapidly emerging as important regulators of network dynamics and normal circuit development. Several recent studies have also identified VIP-IN dysfunction in models of genetically determined neurodevelopmental disorders (NDDs). In this article, we review the known circuit functions of VIP-INs and how they may relate to accumulating evidence implicating VIP-INs in the mechanisms of prominent NDDs. We highlight recurring VIP-IN-mediated circuit motifs that are shared across cerebral cortical areas and how VIP-IN activity can shape sensory input, development, and behavior. Ultimately, we extract a set of themes that inform our understanding of how VIP-INs influence pathogenesis of NDDs. Using publicly available single-cell RNA sequencing data from the Allen Institute, we also identify several underexplored disease-associated genes that are highly expressed in VIP-INs. We survey these genes and their shared related disease phenotypes that may broadly implicate VIP-INs in autism spectrum disorder and intellectual disability rather than epileptic encephalopathy. Finally, we conclude with a discussion of the relevance of cell type-specific investigations and therapeutics in the age of genomic diagnosis and targeted therapeutics.
Collapse
Affiliation(s)
- Kevin M Goff
- Medical Scientist Training Program (MSTP), The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ethan M Goldberg
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Departments of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Departments of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
17
|
Bron C, Sutherland HG, Griffiths LR. Exploring the Hereditary Nature of Migraine. Neuropsychiatr Dis Treat 2021; 17:1183-1194. [PMID: 33911866 PMCID: PMC8075356 DOI: 10.2147/ndt.s282562] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Migraine is a common neurological disorder which affects 15-20% of the population; it has a high socioeconomic impact through treatment and loss of productivity. Current forms of diagnosis are primarily clinical and can be difficult owing to comorbidity and symptom overlap with other neurological disorders. As such, there is a need for better diagnostic tools in the form of genetic testing. Migraine is a complex disorder, encompassing various subtypes, and has a large genetic component. Genetic studies conducted on rare monogenic subtypes, including familial hemiplegic migraine, have led to insights into its pathogenesis via identification of causal mutations in three genes (CACNA1A, ATP1A2 and SCN1A) that are involved in transport of ions at synapses and glutamatergic transmission. Study of familial migraine with aura pedigrees has also revealed other causal genes for monogenic forms of migraine. With respect to the more common polygenic form of migraine, large genome-wide association studies have increased our understanding of the genes, pathways and mechanisms involved in susceptibility, which are largely involved in neuronal and vascular functions. Given the preponderance of female migraineurs (3:1), there is evidence to suggest that hormonal or X-linked components can also contribute to migraine, and the role of genetic variants in mitochondrial DNA in migraine has been another avenue of exploration. Epigenetic studies of migraine have shown links between hormonal variation and alterations in DNA methylation and gene expression. While there is an abundance of preliminary studies identifying many potentially causative migraine genes and pathways, more comprehensive genomic and functional analysis to better understand mechanisms may aid in better diagnostic and treatment outcomes.
Collapse
Affiliation(s)
- Charlene Bron
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland, 4059, Australia
| | - Heidi G Sutherland
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland, 4059, Australia
| |
Collapse
|
18
|
Bidirectional Modulation of the Voltage-Gated Sodium (Nav1.6) Channel by Rationally Designed Peptidomimetics. Molecules 2020; 25:molecules25153365. [PMID: 32722255 PMCID: PMC7435778 DOI: 10.3390/molecules25153365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Disruption of protein:protein interactions (PPIs) that regulate the function of voltage-gated Na+ (Nav) channels leads to neural circuitry aberrations that have been implicated in numerous channelopathies. One example of this pathophysiology is mediated by dysfunction of the PPI between Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). Thus, peptides derived from FGF14 might exert modulatory actions on the FGF14:Nav1.6 complex that are functionally relevant. The tetrapeptide Glu-Tyr-Tyr-Val (EYYV) mimics surface residues of FGF14 at the β8–β9 loop, a structural region previously implicated in its binding to Nav1.6. Here, peptidomimetics derived from EYYV (6) were designed, synthesized, and pharmacologically evaluated to develop probes with improved potency. Addition of hydrophobic protective groups to 6 and truncation to a tripeptide (12) produced a potent inhibitor of FGF14:Nav1.6 complex assembly. Conversely, addition of hydrophobic protective groups to 6 followed by addition of an N-terminal benzoyl substituent (19) produced a potentiator of FGF14:Nav1.6 complex assembly. Subsequent functional evaluation using whole-cell patch-clamp electrophysiology confirmed their inverse activities, with 12 and 19 reducing and increasing Nav1.6-mediated transient current densities, respectively. Overall, we have identified a negative and positive allosteric modulator of Nav1.6, both of which could serve as scaffolds for the development of target-selective neurotherapeutics.
Collapse
|
19
|
Mantegazza M, Broccoli V. SCN1A/Na V 1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models. Epilepsia 2020; 60 Suppl 3:S25-S38. [PMID: 31904127 DOI: 10.1111/epi.14700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
Pathogenic SCN1A/NaV 1.1 mutations cause well-defined epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome. In addition, they cause a severe form of migraine with aura, familial hemiplegic migraine. Moreover, SCN1A/NaV 1.1 variants have been inferred as risk factors in other types of epilepsy. We review here the advancements obtained studying pathologic mechanisms of SCN1A/NaV 1.1 mutations with experimental systems. We present results gained with in vitro expression systems, gene-targeted animal models, and the induced pluripotent stem cell (iPSC) technology, highlighting advantages, limits, and pitfalls for each of these systems. Overall, the results obtained in the last two decades confirm that the initial pathologic mechanism of epileptogenic SCN1A/NaV 1.1 mutations is loss-of-function of NaV 1.1 leading to hypoexcitability of at least some types of γ-aminobutyric acid (GABA)ergic neurons (including cortical and hippocampal parvalbumin-positive and somatostatin-positive ones). Conversely, more limited results point to NaV 1.1 gain-of-function for familial hemiplegic migraine (FHM) mutations. Behind these relatively simple pathologic mechanisms, an unexpected complexity has been observed, in part generated by technical issues in experimental studies and in part related to intrinsically complex pathophysiologic responses and remodeling, which yet remain to be fully disentangled.
Collapse
Affiliation(s)
- Massimo Mantegazza
- University Cote d'Azur (UCA), CNRS UMR7275, INSERM, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,Institute of Neuroscience, National Research Council (CNR), Milan, Italy
| |
Collapse
|
20
|
Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, Schorge S, Baez-Nieto D, Wang HR, Allen A, Pan JQ, Lerche H, Heyne H, Symonds JD, Zuberi SM, Sanders S, Sheidley BR, Craiu D, Olson HE, Weckhuysen S, DeJonge P, Helbig I, Van Esch H, Busa T, Milh M, Isidor B, Depienne C, Poduri A, Campbell AJ, Dimidschstein J, Møller RS, Lal D. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 2020; 61:387-399. [PMID: 32090326 DOI: 10.1111/epi.16438] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Felix Steckler
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Ismael I Ghanty
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Katrine M Johannesen
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Amplexa Genetics, Odense, Denmark
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.,School of Pharmacy, University College London, London, UK
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Henrike Heyne
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Stephan Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Pediatric Neurology Discipline, Bucharest, Romania.,Alexandru Obregia Hospital, Pediatric Neurology Clinic, Bucharest, Romania
| | - Heather E Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter DeJonge
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neuropediatrics, University of Kiel, Kiel, Germany
| | - Hilde Van Esch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Genetics of Cognition, University Hospitals Leuven, Leuven, Belgium
| | - Tiffany Busa
- Genetics Department, Timone Enfants University Hospital Center, Public Assistance-Marseille Hospitals, Marseille, France
| | - Matthieu Milh
- Medical Genetics and Functional Genomics, National Institute of Health and Medical Research, Mixed Unit of Research S910, Aix-Marseille University, Marseille, France.,Hematology Laboratory, Le Mans Hospital Center, Le Mans, France
| | - Bertrand Isidor
- Medical Genetics Department, Nantes University Hospital Center, Nantes, France
| | - Christel Depienne
- Institute of Human Genetics, Essen University Hospital, Essen, Germany.,Brain and Spinal Cord Institute, National Institute of Health and Medical Research, Unit 1127, National Center for Scientific Research, Mixed Unit of Research 7225, Sorbonne Universities, Pierre and Marie Curie University, Mixed Unit of Research S 1127, Brain & Spine Institute, Paris, France
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Rikke S Møller
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
21
|
Jansen NA, Dehghani A, Linssen MML, Breukel C, Tolner EA, van den Maagdenberg AMJM. First FHM3 mouse model shows spontaneous cortical spreading depolarizations. Ann Clin Transl Neurol 2019; 7:132-138. [PMID: 31880072 PMCID: PMC6952313 DOI: 10.1002/acn3.50971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 01/19/2023] Open
Abstract
Here we show, for the first time, spontaneous cortical spreading depolarization (CSD) events - the electrophysiological correlate of the migraine aura - in animals by using the first generated familial hemiplegic migraine type 3 (FHM3) transgenic mouse model. The mutant mice express L263V-mutated α1 subunits in voltage-gated NaV 1.1 sodium channels (Scn1aL263V ). CSDs consistently propagated from visual to motor cortex, recapitulating what has been shown in patients with migraine with aura. This model may be valuable for the preclinical study of migraine with aura and other diseases in which spreading depolarization is a prominent feature.
Collapse
Affiliation(s)
- Nico A Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anisa Dehghani
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot M L Linssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Brunklaus A, Schorge S, Smith AD, Ghanty I, Stewart K, Gardiner S, Du J, Pérez‐Palma E, Symonds JD, Collier AC, Lal D, Zuberi SM. SCN1A
variants from bench to bedside—improved clinical prediction from functional characterization. Hum Mutat 2019; 41:363-374. [PMID: 31782251 DOI: 10.1002/humu.23943] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Brunklaus
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of NeurologyUniversity College LondonLondon UK
- School of PharmacyUniversity College LondonLondon UK
| | - Alexander D. Smith
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Ismael Ghanty
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Kirsty Stewart
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Sarah Gardiner
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Eduardo Pérez‐Palma
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Joseph D. Symonds
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Dennis Lal
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridge Massachusetts
- Analytic and Translational Genetics UnitMassachusetts General HospitalBoston Massachusetts
- Epilepsy Center, Neurological InstituteCleveland ClinicCleveland Ohio
- Genomic Medicine InstituteLerner Research Institute Cleveland ClinicCleveland Ohio
| | - Sameer M. Zuberi
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| |
Collapse
|
23
|
Barbieri R, Bertelli S, Pusch M, Gavazzo P. Late sodium current blocker GS967 inhibits persistent currents induced by familial hemiplegic migraine type 3 mutations of the SCN1A gene. J Headache Pain 2019; 20:107. [PMID: 31730442 PMCID: PMC6858687 DOI: 10.1186/s10194-019-1056-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/29/2019] [Indexed: 01/31/2023] Open
Abstract
Background Familial hemiplegic migraine (FHM) is a group of genetic migraine, associated with hemiparesis and aura. Three causative different genes have been identified, all of which are involved in membrane ion transport. Among these, SCN1A encodes the voltage-gated Na+ channel Nav1.1, and FHM caused by mutations of SCN1A is named FHM3. For 7 of the 12 known FHM3-causing SCNA1 mutations functional consequences have been investigated, and even if gain of function effect seems to be a predominant phenotype, for several mutations conflicting results have been obtained and the available data do not reveal a univocal FHM3 pathomechanism. Methods To obtain a more complete picture, here, we characterized by patch clamp approach the remaining 5 mutations (Q1489H, I1498M, F1499 L, M1500 V, F1661 L) in heterologous expression systems. Results With the exception of I1498M, all mutants exhibited the same current density as WT and exhibited a shift of the steady state inactivation to more positive voltages, an accelerated recovery from inactivation, and an increase of the persistent current, revealing that most FHM3 mutations induce a gain of function. We also determined the effect of GS967, a late Na+ current blocker, on the above mentioned mutants as well as on previously characterized ones (L1649Q, L1670 W, F1774S). GS967 inhibited persistent currents of all SCNA1 FMH3-related mutants and dramatically slowed the recovery from fast inactivation of WT and mutants, consistent with the hypothesis that GS967 specifically binds to and thereby stabilizes the fast inactivated state. Simulation of neuronal firing showed that enhanced persistent currents cause an increase of ionic fluxes during action potential repolarization and consequent accumulation of K+ and/or exhaustion of neuronal energy resources. In silico application of GS967 largely reduced net ionic currents in neurons without impairing excitability. Conclusion In conclusion, late Na+ current blockers appear a promising specific pharmacological treatment of FHM3.
Collapse
Affiliation(s)
- R Barbieri
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy
| | - S Bertelli
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy.,International School of Advanced Studies (SISSA), Via Bonomea, 265, Trieste, Italy
| | - M Pusch
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy
| | - P Gavazzo
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy.
| |
Collapse
|
24
|
Desroches M, Faugeras O, Krupa M, Mantegazza M. Modeling cortical spreading depression induced by the hyperactivity of interneurons. J Comput Neurosci 2019; 47:125-140. [PMID: 31620945 DOI: 10.1007/s10827-019-00730-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 09/05/2019] [Indexed: 01/30/2023]
Abstract
Cortical spreading depression (CSD) is a wave of transient intense neuronal firing leading to a long lasting depolarizing block of neuronal activity. It is a proposed pathological mechanism of migraine with aura. Some forms of migraine are associated with a genetic mutation of the Nav1.1 channel, resulting in its gain of function and implying hyperexcitability of interneurons. This leads to the counterintuitive hypothesis that intense firing of interneurons can cause CSD ignition. To test this hypothesis in silico, we developed a computational model of an E-I pair (a pyramidal cell and an interneuron), in which the coupling between the cells in not just synaptic, but takes into account also the effects of the accumulation of extracellular potassium caused by the activity of the neurons and of the synapses. In the context of this model, we show that the intense firing of the interneuron can lead to CSD. We have investigated the effect of various biophysical parameters on the transition to CSD, including the levels of glutamate or GABA, frequency of the interneuron firing and the efficacy of the KCC2 co-transporter. The key element for CSD ignition in our model was the frequency of interneuron firing and the related accumulation of extracellular potassium, which induced a depolarizing block of the pyramidal cell. This constitutes a new mechanism of CSD ignition.
Collapse
Affiliation(s)
- Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902, Sophia Antipolis Cedex, France.,Université Côte d'Azur, 06108, Nice Cedex 2, France
| | - Olivier Faugeras
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902, Sophia Antipolis Cedex, France.,Université Côte d'Azur, 06108, Nice Cedex 2, France
| | - Martin Krupa
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902, Sophia Antipolis Cedex, France. .,Université Côte d'Azur, 06108, Nice Cedex 2, France. .,JAD Laboratory, Université de Nice Sophia Antipolis, 06108, Nice Cedex 2, France.
| | - Massimo Mantegazza
- Université Côte d'Azur, 06108, Nice Cedex 2, France.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), LabEx ICST, 06560, Valbonne-Sophia Antipolis, France
| |
Collapse
|
25
|
SCN9A Epileptic Encephalopathy Mutations Display a Gain-of-function Phenotype and Distinct Sensitivity to Oxcarbazepine. Neurosci Bull 2019; 36:11-24. [PMID: 31372899 DOI: 10.1007/s12264-019-00413-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/12/2019] [Indexed: 02/05/2023] Open
Abstract
Genetic mutants of voltage-gated sodium channels (VGSCs) are considered to be responsible for the increasing number of epilepsy syndromes. Previous research has indicated that mutations of one of the VGSC genes, SCN9A (Nav1.7), result in febrile seizures and Dravet syndrome in humans. Despite these recent efforts, the electrophysiological basis of SCN9A mutations remains unclear. Here, we performed a genetic screen of patients with febrile seizures and identified a novel missense mutation of SCN9A (W1150R). Electrophysiological characterization of different SCN9A mutants in HEK293T cells, the previously-reported N641Y and K655R variants, as well as the newly-found W1150R variant, revealed that the current density of the W1150R and N641Y variants was significantly larger than that of the wild-type (WT) channel. The time constants of recovery from fast inactivation of the N641Y and K655R variants were markedly lower than in the WT channel. The W1150R variant caused a negative shift of the G-V curve in the voltage dependence of steady-state activation. All mutants displayed persistent currents larger than the WT channel. In addition, we found that oxcarbazepine (OXC), one of the antiepileptic drugs targeting VGSCs, caused a significant shift to more negative potential for the activation and inactivation in WT and mutant channels. OXC-induced inhibition of currents was weaker in the W1150R variant than in the WT. Furthermore, with administering OXC the time constant of the N641Y variant was longer than those of the other two SCN9A mutants. In all, our results indicated that the point mutation W1150R resulted in a novel gain-of-function variant. These findings indicated that SCN9A mutants contribute to an increase in seizure, and show distinct sensitivity to OXC.
Collapse
|
26
|
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20:72. [PMID: 31226929 PMCID: PMC6734342 DOI: 10.1186/s10194-019-1017-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Findings Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. Conclusions The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
27
|
Bertelli S, Barbieri R, Pusch M, Gavazzo P. Gain of function of sporadic/familial hemiplegic migraine-causing SCN1A mutations: Use of an optimized cDNA. Cephalalgia 2018; 39:477-488. [PMID: 29986598 DOI: 10.1177/0333102418788336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Familial hemiplegic migraine 3 is an autosomal dominant headache disorder associated with aura and transient hemiparesis, caused by mutations of the neuronal voltage-gated sodium channel Nav1.1. While a gain-of function phenotype is generally assumed to underlie familial hemiplegic migraine, this has not been fully explored. Indeed, a major obstacle in studying in vitro neuronal sodium channels is the difficulty in propagating and mutagenizing expression plasmids containing their cDNAs. The aim of this work was to study the functional effect of two previously uncharacterized hemiplegic migraine causing mutations, Leu1670Trp (L1670W) and Phe1774Ser (F1774S). METHODS A novel SCN1A containing-plasmid was designed in silico and synthesized, and migraine mutations were inserted in this background. Whole-cell patch clamp was performed to investigate the functional properties of mutant Nav1.1 transiently expressed in Human Embryonic Kidney 293 cells. RESULTS AND CONCLUSIONS We generated an optimized Nav1.1 expression plasmid that was extremely simple to handle and used the novel plasmid to study the functional effects of two migraine mutations. We observed that L1670W, but not F1774S, reduced current density and that both mutations led to a dramatic increase in persistent sodium currents, a depolarizing shift of the steady state-inactivation voltage-dependence, and a faster recovery from inactivation. The results are consistent with a major gain-of function effect underlying familial hemiplegic migraine 3. Our optimization strategy will help to characterize in an efficient manner the effect in vitro of mutations of neuronal voltage-gated sodium channels.
Collapse
Affiliation(s)
- Sara Bertelli
- 1 Istituto di Biofisica (Biophysics Institute, National Research Council), Genova, Italy.,2 Scuola Internazionale Superiore di Studi Avanzati (SISSA) (International School for Advanced Studies), Trieste, Italy
| | - Raffaella Barbieri
- 1 Istituto di Biofisica (Biophysics Institute, National Research Council), Genova, Italy
| | - Michael Pusch
- 1 Istituto di Biofisica (Biophysics Institute, National Research Council), Genova, Italy
| | - Paola Gavazzo
- 1 Istituto di Biofisica (Biophysics Institute, National Research Council), Genova, Italy
| |
Collapse
|
28
|
|
29
|
Brownstein CA, Goldstein RD, Thompson CH, Haynes RL, Giles E, Sheidley B, Bainbridge M, Haas EA, Mena OJ, Lucas J, Schaber B, Holm IA, George AL, Kinney HC, Poduri AH. SCN1A variants associated with sudden infant death syndrome. Epilepsia 2018; 59:e56-e62. [PMID: 29601086 DOI: 10.1111/epi.14055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
We identified SCN1A variants in 2 infants who died of sudden infant death syndrome (SIDS) with hippocampal abnormalities from an exome sequencing study of 10 cases of SIDS but no history of seizures. One harbored SCN1A G682V, and the other had 2 SCN1A variants in cis: L1296M and E1308D, a variant previously associated with epilepsy. Functional evaluation in a heterologous expression system demonstrated partial loss of function for both G682V and the compound variant L1296M/E1308D. Our cases represent a novel association between SCN1A and SIDS, extending the SCN1A spectrum from epilepsy to SIDS. Our findings provide insights into SIDS and support genetic evaluation focused on epilepsy genes in SIDS.
Collapse
Affiliation(s)
- Catherine A Brownstein
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Richard D Goldstein
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Christopher H Thompson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robin L Haynes
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Emma Giles
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Beth Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Elisabeth A Haas
- Department of Pathology, Rady Children's Hospital-San Diego, San Diego, CA, USA
| | - Othon J Mena
- Office of the Medical Examiner, County of San Diego Medical Examiner's Office, San Diego, CA, USA
| | - Jonathan Lucas
- Office of the Medical Examiner, County of San Diego Medical Examiner's Office, San Diego, CA, USA
| | - Bethann Schaber
- Office of the Medical Examiner, County of San Diego Medical Examiner's Office, San Diego, CA, USA
| | - Ingrid A Holm
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hannah C Kinney
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Annapurna H Poduri
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Malcolmson J, Kleyner R, Tegay D, Adams W, Ward K, Coppinger J, Nelson L, Meisler MH, Wang K, Robison R, Lyon GJ. SCN8A mutation in a child presenting with seizures and developmental delays. Cold Spring Harb Mol Case Stud 2017; 2:a001073. [PMID: 27900360 PMCID: PMC5111007 DOI: 10.1101/mcs.a001073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The SCN8A gene encodes the sodium voltage-gated channel alpha subunit 8. Mutations in this gene have been associated with early infantile epileptic encephalopathy type 13. With the use of whole-exome sequencing, a de novo missense mutation in SCN8A was identified in a 4-yr-old female who initially exhibited symptoms of epilepsy at the age of 5 mo that progressed to a severe condition with very little movement, including being unable to sit or walk on her own.
Collapse
Affiliation(s)
- Janet Malcolmson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;; Genetic Counseling Graduate Program, Long Island University (LIU), Brookville, New York 11548, USA
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - David Tegay
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Whit Adams
- Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA
| | - Kenneth Ward
- Affiliated Genetics, Salt Lake City, Utah 84109, USA
| | | | - Lesa Nelson
- Affiliated Genetics, Salt Lake City, Utah 84109, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-5618, USA
| | - Kai Wang
- Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA;; Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90089, USA;; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Reid Robison
- Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;; Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA
| |
Collapse
|
31
|
Mantegazza M, Cestèle S. Pathophysiological mechanisms of migraine and epilepsy: Similarities and differences. Neurosci Lett 2017; 667:92-102. [PMID: 29129678 DOI: 10.1016/j.neulet.2017.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Migraine and epilepsy are episodic disorders with distinct features, but they have some clinical and pathophysiological overlaps. We review here clinical overlaps between seizures and migraine attacks, activities of neuronal networks observed during seizures and migraine attacks, and molecular and cellular mechanisms of migraine identified in genetic forms, focusing on genetic variants identified in hemiplegic migraine and their functional effects. Epilepsy and migraine can be generated by dysfunctions of the same neuronal networks, but these dysfunctions can be disease-specific, even if pathogenic mutations target the same protein. Studies of rare monogenic forms have allowed the identification of some molecular/cellular dysfunctions that provide a window on pathological mechanisms: we have begun to disclose the tip of the iceberg.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Côte d'Azur (UCA), 660 route des Lucioles, 06560 Valbonne, Sophia Antipolis, France; Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 660 Route des Lucioles, 06560 Valbonne, Sophia Antipolis, France.
| | - Sandrine Cestèle
- Université Côte d'Azur (UCA), 660 route des Lucioles, 06560 Valbonne, Sophia Antipolis, France; Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 660 Route des Lucioles, 06560 Valbonne, Sophia Antipolis, France
| |
Collapse
|
32
|
Pharmacology of the Na v1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A 2017; 114:6836-6841. [PMID: 28607094 DOI: 10.1073/pnas.1621263114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.
Collapse
|
33
|
Terragni B, Scalmani P, Franceschetti S, Cestèle S, Mantegazza M. Post-translational dysfunctions in channelopathies of the nervous system. Neuropharmacology 2017; 132:31-42. [PMID: 28571716 DOI: 10.1016/j.neuropharm.2017.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Channelopathies comprise various diseases caused by defects of ion channels. Modifications of their biophysical properties are common and have been widely studied. However, ion channels are heterogeneous multi-molecular complexes that are extensively modulated and undergo a maturation process comprising numerous steps of structural modifications and intracellular trafficking. Perturbations of these processes can give rise to aberrant channels that cause pathologies. Here we review channelopathies of the nervous system associated with dysfunctions at the post-translational level (folding, trafficking, degradation, subcellular localization, interactions with associated proteins and structural post-translational modifications). We briefly outline the physiology of ion channels' maturation and discuss examples of defective mechanisms, focusing in particular on voltage-gated sodium channels, which are implicated in numerous neurological disorders. We also shortly introduce possible strategies to develop therapeutic approaches that target these processes. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Benedetta Terragni
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Paolo Scalmani
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Silvana Franceschetti
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Sandrine Cestèle
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
34
|
Sutherland HG, Griffiths LR. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache 2017; 57:537-569. [PMID: 28271496 DOI: 10.1111/head.13053] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
35
|
CaMKII modulates sodium current in neurons from epileptic Scn2a mutant mice. Proc Natl Acad Sci U S A 2017; 114:1696-1701. [PMID: 28137877 DOI: 10.1073/pnas.1615774114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monogenic epilepsies with wide-ranging clinical severity have been associated with mutations in voltage-gated sodium channel genes. In the Scn2aQ54 mouse model of epilepsy, a focal epilepsy phenotype is caused by transgenic expression of an engineered NaV1.2 mutation displaying enhanced persistent sodium current. Seizure frequency and other phenotypic features in Scn2aQ54 mice depend on genetic background. We investigated the neurophysiological and molecular correlates of strain-dependent epilepsy severity in this model. Scn2aQ54 mice on the C57BL/6J background (B6.Q54) exhibit a mild disorder, whereas animals intercrossed with SJL/J mice (F1.Q54) have a severe phenotype. Whole-cell recording revealed that hippocampal pyramidal neurons from B6.Q54 and F1.Q54 animals exhibit spontaneous action potentials, but F1.Q54 neurons exhibited higher firing frequency and greater evoked activity compared with B6.Q54 neurons. These findings correlated with larger persistent sodium current and depolarized inactivation in neurons from F1.Q54 animals. Because calcium/calmodulin protein kinase II (CaMKII) is known to modify persistent current and channel inactivation in the heart, we investigated CaMKII as a plausible modulator of neuronal sodium channels. CaMKII activity in hippocampal protein lysates exhibited a strain-dependence in Scn2aQ54 mice with higher activity in F1.Q54 animals. Heterologously expressed NaV1.2 channels exposed to activated CaMKII had enhanced persistent current and depolarized channel inactivation resembling the properties of F1.Q54 neuronal sodium channels. By contrast, inhibition of CaMKII attenuated persistent current, evoked a hyperpolarized channel inactivation, and suppressed neuronal excitability. We conclude that CaMKII-mediated modulation of neuronal sodium current impacts neuronal excitability in Scn2aQ54 mice and may represent a therapeutic target for the treatment of epilepsy.
Collapse
|
36
|
Fan C, Wolking S, Lehmann-Horn F, Hedrich UB, Freilinger T, Lerche H, Borck G, Kubisch C, Jurkat-Rott K. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia 2016; 36:1238-1247. [PMID: 26763045 PMCID: PMC5105328 DOI: 10.1177/0333102415608360] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction Familial hemiplegic migraine (FHM) is a rare autosomal dominant subtype of migraine with aura. The FHM3 subtype is caused by mutations in SCN1A, which is also the most frequent epilepsy gene encoding the voltage-gated Na+ channel NaV1.1. The aim of this study was to explore the clinical, genetic and pathogenetic features of a pure FHM3 family. Methods A three-generation family was enrolled in this study for genetic testing and assessment of clinical features. Whole cell patch-clamp was performed to determine the functions of identified mutant NaV1.1 channels, which were transiently expressed in human tsA201 cells together with β1 and β2 subunits. Results and conclusions We identified a novel SCN1A (p.Leu1624Pro) mutation in a pure FHM family with notably early-onset attacks at mean age of 7. L1624P locates in S3 of domain IV, the same domain as two of four known pure FHM3 mutations. Compared to WT channels, L1624P displayed an increased threshold-near persistent current in addition to other gain-of-function features such as: a slowing of fast inactivation, a positive shift in steady-state inactivation, a faster recovery and higher channel availability during repetitive stimulation. Similar to the known FHM3 mutations, this novel mutation predicts hyperexcitability of GABAergic inhibitory neurons.
Collapse
Affiliation(s)
- Chunxiang Fan
- 1 Division of Neurophysiology, Ulm University, Germany
| | - Stefan Wolking
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | | | - Ulrike Bs Hedrich
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Tobias Freilinger
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Holger Lerche
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Guntram Borck
- 3 Institute of Human Genetics, Ulm University, Germany
| | - Christian Kubisch
- 4 Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Germany
| | | |
Collapse
|
37
|
Pellacani S, Sicca F, Di Lorenzo C, Grieco GS, Valvo G, Cereda C, Rubegni A, Santorelli FM. The Revolution in Migraine Genetics: From Aching Channels Disorders to a Next-Generation Medicine. Front Cell Neurosci 2016; 10:156. [PMID: 27378853 PMCID: PMC4904011 DOI: 10.3389/fncel.2016.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022] Open
Abstract
Channelopathies are a heterogeneous group of neurological disorders resulting from dysfunction of ion channels located in cell membranes and organelles. The clinical scenario is broad and symptoms such as generalized epilepsy (with or without fever), migraine (with or without aura), episodic ataxia and periodic muscle paralysis are some of the best known consequences of gain- or loss-of-function mutations in ion channels. We review the main clinical effects of ion channel mutations associated with a significant impact on migraine headache. Given the increasing and evolving use of genetic analysis in migraine research-greater emphasis is now placed on genetic markers of dysfunctional biological systems-we also show how novel information in rare monogenic forms of migraine might help to clarify the disease mechanisms in the general population of migraineurs. Next-generation sequencing (NGS) and more accurate and precise phenotyping strategies are expected to further increase understanding of migraine pathophysiology and genetics.
Collapse
Affiliation(s)
- Simona Pellacani
- Clinical Neurophysiology Laboratory, IRCCS Stella Maris FoundationPisa, Italy
| | - Federico Sicca
- Clinical Neurophysiology Laboratory, IRCCS Stella Maris FoundationPisa, Italy
- Molecular Medicine, IRCCS Stella Maris FoundationPisa, Italy
| | | | - Gaetano S. Grieco
- Genomic and Post-Genomic Center, C. Mondino National Institute of NeurologyPavia, Italy
| | - Giulia Valvo
- Clinical Neurophysiology Laboratory, IRCCS Stella Maris FoundationPisa, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, C. Mondino National Institute of NeurologyPavia, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Stella Maris FoundationPisa, Italy
| | | |
Collapse
|
38
|
Chen SP, Tolner EA, Eikermann-Haerter K. Animal models of monogenic migraine. Cephalalgia 2016; 36:704-21. [PMID: 27154999 DOI: 10.1177/0333102416645933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/01/2016] [Indexed: 01/18/2023]
Abstract
Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan Faculty of Medicine, National Yang-Ming University School of Medicine, Taiwan Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Else A Tolner
- Departments of Human Genetics and Neurology, Leiden University Medical Centre, the Netherlands
| | - Katharina Eikermann-Haerter
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
39
|
Abstract
Migraine is a common multifactorial episodic brain disorder with strong genetic basis. Monogenic subtypes include rare familial hemiplegic migraine, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, familial advanced sleep-phase syndrome (FASPS), and retinal vasculopathy with cerebral leukodystrophy. Functional studies of disease-causing mutations in cellular and/or transgenic models revealed enhanced (glutamatergic) neurotransmission and abnormal vascular function as key migraine mechanisms. Common forms of migraine (both with and without an aura), instead, are thought to have a polygenic makeup. Genome-wide association studies have already identified over a dozen genes involved in neuronal and vascular mechanisms. Here, we review the current state of molecular genetic research in migraine, also with respect to functional and pathway analyses. We will also discuss how novel experimental approaches for the identification and functional characterization of migraine genes, such as next-generation sequencing, induced pluripotent stem cell, and optogenetic technologies will further our understanding of the molecular pathways involved in migraine pathogenesis.
Collapse
|
40
|
Abstract
Since the launch of our journal as Nature Clinical Practice Neurology in 2005, we have seen remarkable progress in many areas of neurology research, but what does the future hold? Will advances in basic research be translated into effective disease-modifying therapies, and will personalized medicine finally become a reality? For this special Viewpoint article, we invited a panel of Advisory Board members and other journal contributors to outline their research priorities and predictions in neurology for the next 10 years.
Collapse
|
41
|
Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Manocchio L, Medoro A, Taglialatela M. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 2015; 9:259. [PMID: 26236192 PMCID: PMC4502356 DOI: 10.3389/fncel.2015.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | | - Paolo Ambrosino
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Michela De Maria
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Laura Manocchio
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples Federico II Naples, Italy ; Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| |
Collapse
|
42
|
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 2014; 71:2787-814. [PMID: 24442513 PMCID: PMC11113927 DOI: 10.1007/s00018-013-1550-7] [Citation(s) in RCA: 429] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/15/2013] [Accepted: 12/30/2013] [Indexed: 01/07/2023]
Abstract
Calcium (Ca(2+)) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca(2+) signaling pathways to couple the Ca(2+) signal to their biochemical machinery. Ca(2+) influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca(2+) from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca(2+). Inside the cell, Ca(2+) is controlled by the buffering action of cytosolic Ca(2+)-binding proteins and by its uptake and release by mitochondria. The uptake of Ca(2+) in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca(2+) from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na(+)/Ca(2+) exchanger in the plasma membrane also participates in the control of neuronal Ca(2+). The impaired ability of neurons to maintain an adequate energy level may impact Ca(2+) signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca(2+) signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca(2+) signaling in the most important neurological disorders will then be considered.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Tito Calì
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Denis Ottolini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Ernesto Carafoli
- Venetian Institute for Molecular Medicine (VIMM), Via G.Orus, 2, 35129 Padua, Italy
| |
Collapse
|
43
|
Anderson LL, Thompson CH, Hawkins NA, Nath RD, Petersohn AA, Rajamani S, Bush WS, Frankel WN, Vanoye CG, Kearney JA, George AL. Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia 2014; 55:1274-83. [PMID: 24862204 PMCID: PMC4126848 DOI: 10.1111/epi.12657] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Evidence from basic neurophysiology and molecular genetics has implicated persistent sodium current conducted by voltage-gated sodium (NaV ) channels as a contributor to the pathogenesis of epilepsy. Many antiepileptic drugs target NaV channels and modulate neuronal excitability, mainly by a use-dependent block of transient sodium current, although suppression of persistent current may also contribute to the efficacy of these drugs. We hypothesized that a drug or compound capable of preferential inhibition of persistent sodium current would have antiepileptic activity. METHODS We examined the antiepileptic activity of two selective persistent sodium current blockers ranolazine, a U.S. Food and Drug Administration (FDA)-approved drug for treatment of angina pectoris, and GS967, a novel compound with more potent effects on persistent current, in the epileptic Scn2a(Q54) mouse model. We also examined the effect of GS967 in the maximal electroshock model and evaluated effects of the compound on neuronal excitability, propensity for hilar neuron loss, development of mossy fiber sprouting, and survival of Scn2a(Q54) mice. RESULTS We found that ranolazine was capable of reducing seizure frequency by approximately 50% in Scn2a(Q54) mice. The more potent persistent current blocker GS967 reduced seizure frequency by >90% in Scn2a(Q54) mice and protected against induced seizures in the maximal electroshock model. GS967 greatly attenuated abnormal spontaneous action potential firing in pyramidal neurons acutely isolated from Scn2a(Q54) mice. In addition to seizure suppression in vivo, GS967 treatment greatly improved the survival of Scn2a(Q54) mice, prevented hilar neuron loss, and suppressed the development of hippocampal mossy fiber sprouting. SIGNIFICANCE Our findings indicate that the selective persistent sodium current blocker GS967 has potent antiepileptic activity and that this compound could inform development of new agents.
Collapse
Affiliation(s)
| | | | | | - Ravi D. Nath
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | - William S. Bush
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | | | - Carlos G. Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Alfred L. George
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
44
|
|
45
|
Weller CM, Pelzer N, de Vries B, López MA, De Fàbregues O, Pascual J, Arroyo MAR, Koelewijn SC, Stam AH, Haan J, Ferrari MD, Terwindt GM, van den Maagdenberg AMJM. Two novel SCN1A mutations identified in families with familial hemiplegic migraine. Cephalalgia 2014; 34:1062-9. [PMID: 24707016 DOI: 10.1177/0333102414529195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Familial hemiplegic migraine (FHM) is a rare monogenic subtype of migraine with aura, characterized by motor auras. The majority of FHM families have mutations in the CACNA1A and ATP1A2 genes; less than 5% of FHM families are explained by mutations in the SCN1A gene. Here we screened two Spanish FHM families for mutations in the FHM genes. METHODS We assessed the clinical features of both FHM families and performed direct sequencing of all coding exons (and adjacent sequences) of the CACNA1A, ATP1A2, PRRT2 and SCN1A genes. RESULTS FHM patients in both families had pure hemiplegic migraine with highly variable severity and frequency of attacks. We identified a novel SCN1A missense mutation p.Ile1498Met in all three tested hemiplegic migraine patients of one family. In the other family, novel SCN1A missense mutation p.Phe1661Leu was identified in six out of eight tested hemiplegic migraine patients. Both mutations affect amino acid residues that either reside in an important functional domain (in the case of Ile(1498)) or are known to be important for kinetic properties of the NaV1.1 channel (in the case of Phe(1661)). CONCLUSIONS We identified two mutations in families with FHM. SCN1A mutations are an infrequent but important cause of FHM. Genetic testing is indicated in families when no mutations are found in other FHM genes.
Collapse
Affiliation(s)
- Claudia M Weller
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Nadine Pelzer
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | | | | | - Julio Pascual
- Department of Neurology, University Hospital Central de Asturias and INEUROPA, Spain
| | | | | | - Anine H Stam
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Center, the Netherlands Department of Neurology, Rijnland Hospital, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, the Netherlands Department of Neurology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
46
|
Barros J, Ferreira A, Brandão AF, Lemos C, Correia F, Damásio J, Tuna A, Sequeiros J, Coutinho P, Alonso I, Pereira-Monteiro J. Familial hemiplegic migraine due to L263V SCN1A mutation: discordance for epilepsy between two kindreds from Douro Valley. Cephalalgia 2014; 34:1015-20. [PMID: 24646837 DOI: 10.1177/0333102414527015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND SCN1A is the most relevant gene in epilepsy. Only seven SCN1A mutations have been identified in 10 familial hemiplegic migraine (FHM) kindreds worldwide. CASES AND KINDREDS In 2009, we presented a kindred with FHM due to the L263V SCN1A mutation. In the current study, we report a novel FHM3 kindred from the same village. The first family exhibited the co-occurrence of FHM and epilepsy. No case of epilepsy was observed in the new kindred. An L263V mutation was found in all patients, and the haplotype analysis supports a unique mutational event. COMMENTS Despite its bioelectric activity, the SCN1A L263V mutation most likely requires a combination of several endogenous or environmental induction stimuli to attain an epileptogenic threshold.
Collapse
Affiliation(s)
- José Barros
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Augusto Ferreira
- Centro Hospitalar de Entre Douro e Vouga (CHEDV), Santa Maria da Feira, Portugal
| | - Ana F Brandão
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Fernando Correia
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Portugal
| | - Joana Damásio
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Portugal
| | - Assunção Tuna
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Portugal
| | - Jorge Sequeiros
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Paula Coutinho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Isabel Alonso
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - José Pereira-Monteiro
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| |
Collapse
|
47
|
Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators. Eur J Med Chem 2014; 74:23-30. [DOI: 10.1016/j.ejmech.2013.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/16/2013] [Accepted: 12/22/2013] [Indexed: 11/24/2022]
|
48
|
Uchitel OD, González Inchauspe C, Di Guilmi MN. Calcium channels and synaptic transmission in familial hemiplegic migraine type 1 animal models. Biophys Rev 2014; 6:15-26. [PMID: 28509957 DOI: 10.1007/s12551-013-0126-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca2+ channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina.
| | - Carlota González Inchauspe
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| | - Mariano N Di Guilmi
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| |
Collapse
|
49
|
Vanoye CG, Gurnett CA, Holland KD, George AL, Kearney JA. Novel SCN3A variants associated with focal epilepsy in children. Neurobiol Dis 2013; 62:313-22. [PMID: 24157691 DOI: 10.1016/j.nbd.2013.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/16/2013] [Accepted: 10/11/2013] [Indexed: 01/24/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for initiating and propagating action potentials in the brain. More than 800 mutations in genes encoding neuronal NaV channels including SCN1A and SCN2A have been associated with human epilepsy. Only one epilepsy-associated mutation has been identified in SCN3A encoding the NaV1.3 neuronal sodium channel. We performed a genetic screen of pediatric patients with focal epilepsy of unknown cause and identified four novel SCN3A missense variants: R357Q, D766N, E1111K and M1323V. We determined the functional consequences of these variants along with the previously reported K354Q mutation using heterologously expressed human NaV1.3. Functional defects were heterogeneous among the variants. The most severely affected was R357Q, which had a significantly smaller current density and slower activation than the wild-type (WT) channel as well as depolarized voltage dependences of activation and inactivation. Also notable was E1111K, which evoked a significantly greater level of persistent sodium current than WT channels. Interestingly, a common feature shared by all variant channels was increased current activation in response to depolarizing voltage ramps revealing a functional property consistent with conferring neuronal hyper-excitability. Discovery of a common biophysical defect among variants identified in unrelated pediatric epilepsy patients suggests that SCN3A may contribute to neuronal hyperexcitability and epilepsy.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alfred L George
- Department of Medicine, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
50
|
Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc Natl Acad Sci U S A 2013; 110:17546-51. [PMID: 24101488 DOI: 10.1073/pnas.1309827110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura. Mutations causing FHM type 3 have been identified in SCN1A, the gene encoding the Nav1.1 Na(+) channel, which is also a major target of epileptogenic mutations and is particularly important for the excitability of GABAergic neurons. However, functional studies of NaV1.1 FHM mutations have generated controversial results. In particular, it has been shown that the NaV1.1-L1649Q mutant is nonfunctional when expressed in a human cell line because of impaired plasma membrane expression, similarly to NaV1.1 mutants that cause severe epilepsy, but we have observed gain-of-function effects for other NaV1.1 FHM mutants. Here we show that NaV1.1-L1649Q is nonfunctional because of folding defects that are rescuable by incubation at lower temperatures or coexpression of interacting proteins, and that a partial rescue is sufficient for inducing an overall gain of function because of the modifications in gating properties. Strikingly, when expressed in neurons, the mutant was partially rescued and was a constitutive gain of function. A computational model showed that 35% rescue can be sufficient for inducing gain of function. Interestingly, previously described folding-defective epileptogenic NaV1.1 mutants show loss of function also when rescued. Our results are consistent with gain of function as the functional effect of NaV1.1 FHM mutations and hyperexcitability of GABAergic neurons as the pathomechanism of FHM type 3.
Collapse
|