1
|
Mosoh DA. Widely-targeted in silico and in vitro evaluation of veratrum alkaloid analogs as FAK inhibitors and dual targeting of FAK and Hh/SMO pathways for cancer therapy: A critical analysis. Int J Biol Macromol 2024; 281:136201. [PMID: 39368576 DOI: 10.1016/j.ijbiomac.2024.136201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Focal Adhesive Kinase (FAK), a key player in aggressive cancers, mediates signals crucial for progression, invasion, and metastasis. Despite advances in targeted therapies, drug resistance is still a challenge, and survival rates remain low, particularly for late-stage patients, emphasizing the need for innovative cancer therapeutics. Cyclopamine, a veratrum alkaloid, has shown promising anti-tumor properties, but the search for more potent analogs with enhanced affinity for the biological target continues. This study employs a hybrid virtual screening approach combining pharmacophore model-based virtual screening (PB-VS) and docking-based virtual screening (DB-VS) to identify potential inhibitors of the FAK catalytic domain. PB-VS on the PubChem database yielded a set of hits, which were then docked with the FAK catalytic domain in two stages (1st and 2nd DB-VS). Hits were ranked based on docking scores and interactions with the active site. The top three compounds underwent molecular dynamics simulations, alongside two control compounds (SMO inhibitor(s) and FAK inhibitor(s)), to assess stability through RMSD, RMSF, Rg, and SASA analyses. ADMET properties were evaluated, and compounds were filtered based on drug-likeness criteria. Molecular dynamics simulations demonstrated the stability of compounds when complexed with the FAK catalytic domain. Compounds 16 (-25 kcal/mol), 87 (-27.47 kcal/mol), and 88 (-18.94 kcal/mol) exhibited comparable docking scores, interaction profiles, stability, and binding energies, indicating their potential as lead candidates. However, further validation and optimization through quantitative structure-activity relationship (QSAR) studies are essential to refine their efficacy and therapeutic potential. The in vitro cell-based assay demonstrated that compound 101PF, a FAK inhibitor, significantly inhibited the proliferation and migration of A549 cells. However, the results regarding the combined effects of FAK and SMO inhibitors were inconclusive, highlighting the need for further investigation. This study contributes to developing more effective anti-cancer drugs by improving the understanding of potential cyclopamine-based veratrum alkaloid analogs with enhanced interactions with the FAK catalytic domain.
Collapse
Affiliation(s)
- Dexter Achu Mosoh
- Centre for Biodiversity Exploration and Conservation (CBEC), 15, Kundan Residency, 4th Mile Mandla Road, Tilhari, Jabalpur, M.P 482021, India; Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India; School of Sciences, Sanjeev Agrawal Global Educational (SAGE) University, Bhopal, M.P 462022, India; Prof. Wagner A. Vendrame's Laboratory, Environmental Horticulture Department, University of Florida, Institute of Food and Agricultural Sciences, 2550 Hull Rd., Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Ghorbanlou M, Moradi F, Shabani R, Mehdizadeh M. Upregulation of apoptotic genes and downregulation of target genes of Sonic Hedgehog signaling pathway in DAOY medulloblastoma cell line treated with arsenic trioxide. J Chemother 2024; 36:506-519. [PMID: 38130211 DOI: 10.1080/1120009x.2023.2294574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Sonic hedgehog (SHH) medulloblastoma etiology is associated with the SHH molecular pathway activation at different levels. We investigated the effect of arsenic trioxide as a downstream-level inhibitor of the SHH signaling pathway on morphology, cytotoxicity, migration, and SHH-related and apoptotic gene expression of DAOY cells. Cells were treated at various arsenic trioxide (ATO)concentrations (1, 2, 3, 5, and 10 μM) for different times (24 and 48 hr). Following treatments, the morphology of the cells was investigated at ×20 and ×40 magnification by an inverted microscope. Then, cytotoxicity was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue assays. Cell migration was analyzed through the wound-healing assay. Furthermore, the expression of SHH-related (GLI1, GLI2, SMO, and MYCN) and apoptotic genes (BAX, BCL2, and TP53) was assessed by real-time quantitative polymerase chain reaction (qPCR). Finally, GLI1, SMO, and MYCN markers were analyzed through immunocytochemistry. Data were analyzed by SPSS (version 16) and P≤0.05 was considered significant. Morphological changes were seen at 3 and 2 μM in 24 and 48 hr of treatment, respectively. The MTT assay showed a dose-dependent cytotoxicity indicating an IC50 value of 3.39±0.35 and 2.05±0.64 μM in 24 and 48hr treatment, respectively. In addition, the trypan blue assay showed higher IC50 values of 4.29±0.25 and 3.92±0.22 μM in 24 and 48 hr treatment, respectively. The wound-healing assay indicated a dose-dependent reduction of cell migration speed showing a 50% reduction at 2.89±0.26 μM. Significant downregulation of GLI1 and GLI2, as well as the upregulation of BAX, BAX/BCL2 ratio, and TP53 were evident. Significant increases in GLI1 and MYCN markers were also evident in immunocytochemistry. ATO, as a downstream effective inhibitor of the SHH pathway, substantially leads to cell death, cell migration inhibition, apoptosis upregulation, and downregulation of SHH target genes in DAOY medulloblastoma. Since ATO is a toxic chemotherapeutic agent, it must be used at low concentrations (2 μM) in order not to damage healthy cells.
Collapse
Affiliation(s)
- Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Knecht-Gurwin K, Stefaniak AA, Chlebicka I, Szepietowski JC. Basal Cell Carcinoma: Comprehensive Review with Emphasis on Scar Tissue Manifestation and Post-Vaccination Incidence. Biomedicines 2024; 12:1769. [PMID: 39200233 PMCID: PMC11351840 DOI: 10.3390/biomedicines12081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Basal cell carcinoma (BCC) arising within scar tissue is a rare but clinically significant phenomenon. This comprehensive review aims to provide a succinct overview of the current state of knowledge regarding the etiological factors, pathogenesis, clinical presentation, and management of BCC. This study constitutes a literature review pertaining to BCC, with a particular emphasis on BCC developing within scar tissue. It also provides a clinical case presentation of a patient who had developed BCC in a BCG post-vaccination scar and a review of analogous findings available in the existing literature. Despite the fact that an array of mechanisms play a role in injury-related BCC growth, the main mechanism remains ambiguous and yet to be elucidated. The review also includes a detailed description of the various therapeutic options available for BCC, ranging from surgical interventions to novel pharmacological treatments. By examining these intersections, the review seeks to elucidate the potential mechanisms, identify risk factors, and suggest considerations for clinical practice. The findings underscore the importance of vigilant dermatological assessment in patients with scar tissue and those recently vaccinated, aiming to improve early detection and optimize management strategies for BCC.
Collapse
Affiliation(s)
| | | | | | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chałubińskiego 1, 50-368 Wrocław, Poland; (K.K.-G.); (A.A.S.); (I.C.)
| |
Collapse
|
4
|
Tan QX, Shannon NB, Lim WK, Teo JX, Yap DRY, Lek SM, Tan JWS, Tan SJJ, Hendrikson J, Liu Y, Ng G, Chong CYL, Guo W, Koh KKN, Ng CCY, Rajasegaran V, Wong JS, Seo CJ, Ong CK, Lim TKH, Teh BT, Kon OL, Chia CS, Soo KC, Iyer NG, Ong CAJ. Transcriptomic convergence despite genomic divergence drive field cancerization in synchronous squamous tumors. Front Oncol 2024; 14:1272432. [PMID: 38939336 PMCID: PMC11208456 DOI: 10.3389/fonc.2024.1272432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Field cancerization is suggested to arise from imbalanced differentiation in individual basal progenitor cells leading to clonal expansion of mutant cells that eventually replace the epithelium, although without evidence. Methods We performed deep sequencing analyses to characterize the genomic and transcriptomic landscapes of field change in two patients with synchronous aerodigestive tract tumors. Results Our data support the emergence of numerous genetic alterations in cancer-associated genes but refutes the hypothesis that founder mutation(s) underpin this phenomenon. Mutational signature analysis identified defective homologous recombination as a common underlying mutational process unique to synchronous tumors. Discussion Our analyses suggest a common etiologic factor defined by mutational signatures and/or transcriptomic convergence, which could provide a therapeutic opportunity.
Collapse
Affiliation(s)
- Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Nicholas B. Shannon
- Department of Head and Neck Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Daniel R. Y. Yap
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Sze Min Lek
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Joey W. S. Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Shih Jia J. Tan
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Ying Liu
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Gillian Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Clara Y. L. Chong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Wanyu Guo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Kelvin K. N. Koh
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Cedric C. Y. Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Vikneswari Rajasegaran
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Jolene S.M. Wong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
| | - Chin Jin Seo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
| | - Choon Kiat Ong
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Lymphoma Genomics Translational Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Tony K. H. Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Pathology Academic Clinical Program, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore, Singapore
| | - Oi Lian Kon
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Claramae S. Chia
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Khee Chee Soo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Chin-Ann J. Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
5
|
Abe Y, Sano T, Otsuka N, Ogawa M, Tanaka N. PRMT5-mediated methylation of STAT3 is required for lung cancer stem cell maintenance and tumour growth. Commun Biol 2024; 7:593. [PMID: 38760429 PMCID: PMC11101626 DOI: 10.1038/s42003-024-06290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
STAT3 is constitutively activated in many cancer types, including lung cancer, and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases, such as JAK and SRC, but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here, we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells. PRMT5 expression is also induced by STAT3, suggesting the presence of a positive feedback loop in cancer cells. Furthermore, methylation of STAT3 at arginine 609 by PRMT5 is important for its transcriptional activity and support of tumour growth and CSC maintenance. Indeed, NSCLC cells expressing the STAT3 mutant which R609 was replaced to alanine (R609K) show significantly impaired tumour growth in nude mice. Overall, our study reveals a mechanism by which STAT3 remains activated in NSCLC and provides a new target for cancer therapeutic approaches.
Collapse
Affiliation(s)
- Yoshinori Abe
- Laboratory of Molecular Analysis, Nippon Medical School, Tokyo, Japan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Naoki Otsuka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Masashi Ogawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan.
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
6
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
7
|
Lu Y, Wang S, Jiao Y. The Effects of Deregulated Ribosomal Biogenesis in Cancer. Biomolecules 2023; 13:1593. [PMID: 38002277 PMCID: PMC10669593 DOI: 10.3390/biom13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomes are macromolecular ribonucleoprotein complexes assembled from RNA and proteins. Functional ribosomes arise from the nucleolus, require ribosomal RNA processing and the coordinated assembly of ribosomal proteins (RPs), and are frequently hyperactivated to support the requirement for protein synthesis during the self-biosynthetic and metabolic activities of cancer cells. Studies have provided relevant information on targeted anticancer molecules involved in ribosome biogenesis (RiBi), as increased RiBi is characteristic of many types of cancer. The association between unlimited cell proliferation and alterations in specific steps of RiBi has been highlighted as a possible critical driver of tumorigenesis and metastasis. Thus, alterations in numerous regulators and actors involved in RiBi, particularly in cancer, significantly affect the rate and quality of protein synthesis and, ultimately, the transcriptome to generate the associated proteome. Alterations in RiBi in cancer cells activate nucleolar stress response-related pathways that play important roles in cancer-targeted interventions and immunotherapies. In this review, we focus on the association between alterations in RiBi and cancer. Emphasis is placed on RiBi deregulation and its secondary consequences, including changes in protein synthesis, loss of RPs, adaptive transcription and translation, nucleolar stress regulation, metabolic changes, and the impaired ribosome biogenesis checkpoint.
Collapse
Affiliation(s)
| | - Shizhuo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| | - Yisheng Jiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| |
Collapse
|
8
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. Infect Immun 2023; 91:e0000223. [PMID: 37594275 PMCID: PMC10501217 DOI: 10.1128/iai.00002-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined that E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting apoptosis through both the intrinsic and executioner pathways. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic and nuclear colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown (KD) of XIAP during infection significantly increased apoptosis and Caspase-3, -7, and -9 levels. Furthermore, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, RNAi KD of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to HeLa cells with functional HECT Ub ligase catalytic activity (TRP120-WT). This investigation reveals a mechanism whereby E. chaffeensis modulates Notch signaling to stabilize XIAP and inhibit apoptosis.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
Petroni M, La Monica V, Fabretti F, Augusto M, Battaglini D, Polonara F, Di Giulio S, Giannini G. The Multiple Faces of the MRN Complex: Roles in Medulloblastoma and Beyond. Cancers (Basel) 2023; 15:3599. [PMID: 37509263 PMCID: PMC10377613 DOI: 10.3390/cancers15143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hypomorphic mutations in MRN complex genes are frequently found in cancer, supporting their role as oncosuppressors. However, unlike canonical oncosuppressors, MRN proteins are often overexpressed in tumor tissues, where they actively work to counteract DSBs induced by both oncogene-dependent RS and radio-chemotherapy. Moreover, at the same time, MRN genes are also essential genes, since the constitutive KO of each component leads to embryonic lethality. Therefore, even though it is paradoxical, MRN genes may work as oncosuppressive, oncopromoting, and essential genes. In this review, we discussed how alterations in the MRN complex impact the physiopathology of cancer, in light of our recent discoveries on the gene-dosage-dependent effect of NBS1 in Medulloblastoma. These updates aim to understand whether MRN complex can be realistically used as a prognostic/predictive marker and/or as a therapeutic target for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Marialaura Petroni
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Veronica La Monica
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Mariaconcetta Augusto
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Damiana Battaglini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Polonara
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| |
Collapse
|
10
|
Yan H, Wu W, Hu Y, Li J, Xu J, Chen X, Xu Z, Yang X, Yang B, He Q, Luo P. Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis. Nat Commun 2023; 14:2756. [PMID: 37179400 PMCID: PMC10182995 DOI: 10.1038/s41467-023-38430-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The hepatotoxicity of regorafenib is one of the most noteworthy concerns for patients, however the mechanism is poorly understood. Hence, there is a lack of effective intervention strategies. Here, by comparing the target with sorafenib, we show that regorafenib-induced liver injury is mainly due to its nontherapeutic target Eph receptor A2 (EphA2). EphA2 deficiency attenuated liver damage and cell apoptosis under regorafenib treatment in male mice. Mechanistically, regorafenib inhibits EphA2 Ser897 phosphorylation and reduces ubiquitination of p53 by altering the intracellular localization of mouse double minute 2 (MDM2) by affecting the extracellular signal-regulated kinase (ERK)/MDM2 axis. Meanwhile, we found that schisandrin C, which can upregulate the phosphorylation of EphA2 at Ser897 also has protective effect against the toxicity in vivo. Collectively, our findings identify the inhibition of EphA2 Ser897 phosphorylation as a key cause of regorafenib-induced hepatotoxicity, and chemical activation of EphA2 Ser897 represents a potential therapeutic strategy to prevent regorafenib-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310002, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310018, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| |
Collapse
|
11
|
Luchini C, Mattiolo P, Basturk O, Mafficini A, Ozcan K, Lawlor RT, Hong SM, Brosens LA, Marchegiani G, Pea A, Manfrin E, Sciacca G, Zampieri F, Polati R, De Robertis R, Milella M, D'Onofrio M, Malleo G, Salvia R, Adsay V, Scarpa A. Acinar Cystic Transformation of the Pancreas: Histomorphology and Molecular Analysis to Unravel its Heterogeneous Nature. Am J Surg Pathol 2023; 47:379-386. [PMID: 36649476 DOI: 10.1097/pas.0000000000002017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acinar cystic transformation (ACT) of the pancreas, previously called acinar cell cystadenoma, is a poorly understood and rare entity among pancreatic cystic lesions. This study aims to clarify its real nature. This research cohort included 25 patients with pancreatic ACT, representing the largest series in the literature. We describe their clinicopathological features and molecular profile using next-generation sequencing. ACT arose more often in women (F/M≃2:1), in the body-tail region, with a mean size of ~4 cm. At the latest follow-up, all patients were alive and disease free. Histologically, a typical acinar epithelium lined all cysts, intermingled with ductal-like epithelium in 11/25 (44%) cases. All the cases lacked any evidence of malignancy. Three ACT showed peculiar features: 1 showed an extensive and diffuse microcystic pattern, and the other 2 harbored foci of low-grade pancreatic intraepithelial neoplasia (PanIN) in the ductal-like epithelium. Next-generation sequencing revealed the presence of 2 pathogenic/likely pathogenic mutations in 2 different cases, 1 with ductal-like epithelium and 1 with PanIN, and affecting KRAS (c.34G>C, p.G12R) and SMO (c.1685G>A, p.R562Q) genes, respectively. The other case with PanIN was not available for sequencing. Overall, our findings support that ACT is a benign entity, potentially arising from heterogeneous conditions/background, including: (1) acinar microcysts, (2) malformations, (3) obstructive/inflammatory setting, (4) genetic predisposition, (5) possible neoplastic origin. Although all indications are that ACT is benign, the potential occurrence of driver mutations suggests discussing a potential role of long-term surveillance for these patients.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Kerem Ozcan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Lodewijk A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, and Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Antonio Pea
- Department of Surgery, The Pancreas Institute
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Section of Pathology
| | - Giuseppe Sciacca
- Department of Diagnostics and Public Health, Section of Pathology
| | | | - Rita Polati
- Department of Diagnostics and Public Health, Section of Pathology
| | | | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Section of Radiology
| | | | | | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523066. [PMID: 36711597 PMCID: PMC9881962 DOI: 10.1101/2023.01.06.523066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting intrinsic apoptosis. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown of XIAP during infection significantly increased apoptosis and Caspase-3, -7 and -9 levels. Further, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, iRNA knockdown of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to WT. This investigation reveals a mechanism whereby E. chaffeensis repurposes Notch signaling to stabilize XIAP and inhibit apoptosis. Author Summary Ehrlichia chaffeensis is a tick-borne, obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. E. chaffeensis survives by mobilizing various molecular strategies to promote cell survival, including modulation of apoptosis. This investigation reveals an E. chaffeensis initiated, Notch signaling regulated, antiapoptotic mechanism involving inhibitor of apoptosis proteins (IAPs). Herein, we demonstrate that E. chaffeensis induced Notch activation results in Notch intracellular domain stabilization of X-linked inhibitor of apoptosis protein (XIAP) to inhibit intrinsic apoptosis. This study highlights a novel mechanistic strategy whereby intracellular pathogens repurpose evolutionarily conserved eukaryotic signaling pathways to engage an antiapoptotic program for intracellular survival.
Collapse
|
13
|
Eirew P, O'Flanagan C, Ting J, Salehi S, Brimhall J, Wang B, Biele J, Algara T, Lee SR, Hoang C, Yap D, McKinney S, Bates C, Kong E, Lai D, Beatty S, Andronescu M, Zaikova E, Funnell T, Ceglia N, Chia S, Gelmon K, Mar C, Shah S, Roth A, Bouchard-Côté A, Aparicio S. Accurate determination of CRISPR-mediated gene fitness in transplantable tumours. Nat Commun 2022; 13:4534. [PMID: 35927228 PMCID: PMC9352714 DOI: 10.1038/s41467-022-31830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Assessing tumour gene fitness in physiologically-relevant model systems is challenging due to biological features of in vivo tumour regeneration, including extreme variations in single cell lineage progeny. Here we develop a reproducible, quantitative approach to pooled genetic perturbation in patient-derived xenografts (PDXs), by encoding single cell output from transplanted CRISPR-transduced cells in combination with a Bayesian hierarchical model. We apply this to 181 PDX transplants from 21 breast cancer patients. We show that uncertainty in fitness estimates depends critically on the number of transplant cell clones and the variability in clone sizes. We use a pathway-directed allelic series to characterize Notch signaling, and quantify TP53 / MDM2 drug-gene conditional fitness in outlier patients. We show that fitness outlier identification can be mirrored by pharmacological perturbation. Overall, we demonstrate that the gene fitness landscape in breast PDXs is dominated by inter-patient differences.
Collapse
Affiliation(s)
- Peter Eirew
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jerome Ting
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Sohrab Salehi
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jazmine Brimhall
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- AbCellera Biologics Inc., Vancouver, BC, Canada
| | - Beixi Wang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Justina Biele
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- AbCellera Biologics Inc., Vancouver, BC, Canada
| | - Teresa Algara
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - So Ra Lee
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Corey Hoang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- British Columbia Institute of Technology, Vancouver, BC, Canada
| | - Damian Yap
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Steven McKinney
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Cherie Bates
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Esther Kong
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel Lai
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Sean Beatty
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Elena Zaikova
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Tyler Funnell
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nicholas Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen Chia
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Karen Gelmon
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Colin Mar
- Department of Diagnostic Radiology, BC Cancer, Vancouver, BC, Canada
| | - Sohrab Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | | | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Conod A, Silvano M, Ruiz I Altaba A. On the origin of metastases: Induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Rep 2022; 38:110490. [PMID: 35263600 DOI: 10.1016/j.celrep.2022.110490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
How metastatic cells arise is unclear. Here, we search for the induction of recently characterized pro-metastatic states as a surrogate for the origin of metastasis. Since cell-death-inducing therapies can paradoxically promote metastasis, we ask if such treatments induce pro-metastatic states in human colon cancer cells. We find that post-near-death cells acquire pro-metastatic states (PAMEs) and form distant metastases in vivo. These PAME ("let's go" in Greek) cells exhibit a multifactorial cytokine storm as well as signs of enhanced endoplasmic reticulum (ER) stress and nuclear reprogramming, requiring CXCL8, INSL4, IL32, PERK-CHOP, and NANOG. PAMEs induce neighboring tumor cells to become PAME-induced migratory cells (PIMs): highly migratory cells that re-enact the storm and enhance PAME migration. Metastases are thus proposed to originate from the induction of pro-metastatic states through intrinsic and extrinsic cues in a pro-metastatic tumoral ecosystem, driven by an impending cell-death experience involving ER stress modulation, metastatic reprogramming, and paracrine recruitment via a cytokine storm.
Collapse
Affiliation(s)
- Arwen Conod
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ariel Ruiz I Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Nguyen NM, Cho J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int J Mol Sci 2022; 23:ijms23031733. [PMID: 35163655 PMCID: PMC8835893 DOI: 10.3390/ijms23031733] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. Unfortunately, however, their reputation has been tarnished by the emergence of resistance during therapy, necessitating clarification of mechanisms underlying the drug resistance. In this review, we briefly overview canonical and non-canonical Hh pathways and their inhibitors as targeted cancer therapy. In addition, we summarize the mechanisms of resistance to Smoothened (SMO) inhibitors, including point mutations of the drug binding pocket or downstream molecules of SMO, and non-canonical mechanisms to reinforce Hh pathway output. A distinct mechanism involving loss of primary cilia is also described to maintain GLI activity in resistant tumors. Finally, we address the main strategies to circumvent the drug resistance. These strategies include the development of novel and potent inhibitors targeting different components of the canonical Hh pathway or signaling molecules of the non-canonical pathway. Further studies are necessary to avoid emerging resistance to Hh inhibitors and establish an optimal customized regimen with improved therapeutic efficacy to treat various types of cancer, including basal cell carcinoma.
Collapse
|
17
|
van der Ploeg P, Uittenboogaard A, Bosch SL, van Diest PJ, Wesseling-Rozendaal YJ, van de Stolpe A, Lambrechts S, Bekkers RL, Piek JM. Signal transduction pathway activity in high-grade serous carcinoma, its precursors and Fallopian tube epithelium. Gynecol Oncol 2022; 165:114-120. [DOI: 10.1016/j.ygyno.2022.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
|
18
|
Transient Activation of Hedgehog Signaling Inhibits Cellular Senescence and Inflammation in Radiated Swine Salivary Glands through Preserving Resident Macrophages. Int J Mol Sci 2021; 22:ijms222413493. [PMID: 34948290 PMCID: PMC8708934 DOI: 10.3390/ijms222413493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Salivary gland function is commonly and irreversibly damaged by radiation therapy for head and neck cancer. This damage greatly decreases the patient’s quality of life and is difficult to remedy. Previously, we found that the transient activation of Hedgehog signaling alleviated salivary hypofunction after radiation in both mouse and pig models through the inhibition of radiation-induced cellular senescence that is mediated by resident macrophages in mouse submandibular glands. Here we report that in swine parotid glands sharing many features with humans, the Hedgehog receptor PTCH1 is mainly expressed in macrophages, and levels of PTCH1 and multiple macrophage markers are significantly decreased by radiation but recovered by transient Hedgehog activation. These parotid macrophages mainly express the M2 macrophage marker ARG1, while radiation promotes expression of pro-inflammatory cytokine that is reversed by transient Hedgehog activation. Hedgehog activation likely preserves parotid macrophages after radiation through inhibition of P53 signaling and consequent cellular senescence. Consistently, VEGF, an essential anti-senescence cytokine downstream of Hedgehog signaling, is significantly decreased by radiation but recovered by transient Hedgehog activation. These findings indicate that in the clinically-relevant swine model, transient Hedgehog activation restores the function of irradiated salivary glands through the recovery of resident macrophages and the consequent inhibition of cellular senescence and inflammation.
Collapse
|
19
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
20
|
Murugesan M, Premkumar K. Systemic Multi-Omics Analysis Reveals Amplified P4HA1 Gene Associated With Prognostic and Hypoxic Regulation in Breast Cancer. Front Genet 2021; 12:632626. [PMID: 33692831 PMCID: PMC7937963 DOI: 10.3389/fgene.2021.632626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer (BC) is a common malignant tumor in females around the world. While multimodality therapies exist, the mortality rate remains high. The hypoxic condition was one of the potent determinants in BC progression. The molecular mechanisms underpinning hypoxia and their association with BC can contribute to a better understanding of tailored therapies. In this study, two hypoxic induced BC transcriptomic cohorts (GSE27813 and GSE47533) were assessed from the GEO database. The P4HA1 gene was identified as a putative candidate and significantly regulated in hypoxic BC cells compared to normal BC cells at different time intervals (6 h, 9 h, 16 h, 32 h, and 48 h). In patients with Luminal (p < 1E-12), triple-negative subclasses (p = 1.35059E-10), Stage 1 (p = 8.8817E-16), lymph node N1 (p = 1.62436E-12), and in the 40–80 age group (p = 1.62447E-12), the expression of P4HA1 was closely associated with the clinical subtypes of BC. Furthermore, at the 10q22.1 chromosomal band, the P4HA1 gene displayed a high copy number elevation and was associated with a poor clinical regimen with overall survival, relapse-free survival, and distant metastases-free survival in BC patients. In addition, using BioGRID, the protein–protein interaction (PPI) network was built and the cellular metabolic processes, and hedgehog pathways are functionally enriched with GO and KEGG terms. This tentative result provides insight into the molecular function of the P4HA1 gene, which is likely to promote hypoxic-mediated carcinogenesis, which may favor early detection of BC and therapeutic stratification.
Collapse
Affiliation(s)
- Manikandan Murugesan
- Department of Biomedical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, India
| | - Kumpati Premkumar
- Department of Biomedical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
21
|
Xu Y, Wang P, Li M, Wu Z, Li X, Shen J, Xu R. Natural small molecule triptonide inhibits lethal acute myeloid leukemia with FLT3-ITD mutation by targeting Hedgehog/FLT3 signaling. Biomed Pharmacother 2021; 133:111054. [PMID: 33254022 DOI: 10.1016/j.biopha.2020.111054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia harboring internal tandem duplication of FMS-like tyrosine kinase 3 (FLT3-ITD AML) is a subset of highly aggressive malignancies with poor clinical outcome. Despite some advances in the development of FLT3 tyrosine kinase inhibitors (FLT3 inhibitors), most of FLT3-ITD AML patients suffer from lethal disease relapse, suggesting the requirement of novel targets and agents. Here we describe a natural small molecule, triptonide that can efficiently inhibit FLT3-ITD-driven AML in vitro and in vivo. Mechanistically, triptonide targeted Hedgehog/FLT3 signaling by inhibiting its critical effectors, which are GLI2, c-Myc and FLT3 and induced apoptosis of FLT3-ITD-driven leukemia cells. In addition, we also observed that triptonide activated tumor suppressor p53. In vivo, triptonide treatment markedly suppressed lethal FLT3-ITD-driven AML with good tolerance and prolonged survival time in orthotopic mouse model. Our studies identify Hedgehog/FLT3 axis as a novel target for treating FLT3-ITD-driven leukemia and demonstrate that triptonide is an active lead compound that can kill FLT3-ITD-driven leukemia cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Signal Transduction
- Tandem Repeat Sequences
- Triterpenes/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
- Zinc Finger Protein Gli2/genetics
- Zinc Finger Protein Gli2/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Mice
Collapse
Affiliation(s)
- Ying Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ping Wang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Mengyuan Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhaoxing Wu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xian Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310009, China.
| | - Rongzhen Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
22
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
23
|
Abe Y, Tanaka N. Fine-Tuning of GLI Activity through Arginine Methylation: Its Mechanisms and Function. Cells 2020; 9:cells9091973. [PMID: 32859041 PMCID: PMC7565022 DOI: 10.3390/cells9091973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma-associated oncogene (GLI) family consists of GLI1, GLI2, and GLI3 in mammals. This family has important roles in development and homeostasis. To achieve these roles, the GLI family has widespread outputs. GLI activity is therefore strictly regulated at multiple levels, including via post-translational modifications for context-dependent GLI target gene expression. The protein arginine methyl transferase (PRMT) family is also associated with embryogenesis, homeostasis, and cancer mainly via epigenetic modifications. In the PRMT family, PRMT1, PRMT5, and PRMT7 reportedly regulate GLI1 and GLI2 activity. PRMT1 methylates GLI1 to upregulate its activity and target gene expression. Cytoplasmic PRMT5 methylates GLI1 and promotes GLI1 protein stabilization. Conversely, nucleic PRMT5 interacts with MENIN to suppress growth arrest-specific protein 1 expression, which assists Hedgehog ligand binding to Patched, indirectly resulting in downregulated GLI1 activity. PRMT7-mediated GLI2 methylation upregulates its activity through the dissociation of GLI2 and Suppressor of Fused. Together, PRMT1, PRMT5, and PRMT7 regulate GLI activity at multiple revels. Furthermore, the GLI and PRMT families have strong links with various cancers through cancer stem cell maintenance. Therefore, PRMT-mediated regulation of GLI activity would have important roles in cancer stem cell maintenance.
Collapse
|
24
|
Hong KD, Lee Y, Kim BH, Lee SI, Moon HY. Expression of GLI1 Correlates with Expression of Lymphangiogenesis Proteins, Vascular Endothelial Growth Factor C and Vascular Endothelial Growth Factor Receptor 3, in Colorectal Cancer. Am Surg 2020. [DOI: 10.1177/000313481307900232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aberrant activation of the hedgehog (Hh) signaling pathway is associated with tumorigenesis in various tissues. In colorectal cancer (CRC), evidence for Hh activation is inconsistent, and the relationship between the Hh signaling pathway and lymphangiogenesis has not been studied. The aim of this study was to determine the relationship between Hh signaling and lymphangio-genesis and the association of this relationship with lymph node metastasis in CRC. We investigated 189 patients who underwent curative surgical resection for CRC between 2002 and 2004 at Korea University Guro Hospital. Paraffin-embedded specimens of colorectal adenocarcinoma and adjacent normal mucosa were evaluated. Immunohistochemical staining for Sonic hedgehog (Shh), Gli1, vascular endothelial growth factor C (VEGFC), and VEGF receptor 3 (VEGFR3) was performed for each specimen. Tumor specimen showed significantly strong staining of Shh, Gli1, VEGFC, and VEGFR3 compared with a normal specimen. Shh expression was not associated with Gli1 expression. Gli1 expression correlated positively with VEGFC and VEGFR3 expression ( P < 0.05 in both) but not with lymph node metastasis. Activation of the Hh signaling pathway associated with Gli1 promotes expression of lymphangiogenesis proteins, VEGFC and VEGFR3, in CRC. Further studies are necessary to determine the association of this relationship with lymph node metastasis in CRC.
Collapse
Affiliation(s)
- Kwang Dae Hong
- Departments of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngseok Lee
- Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Baek-Hui Kim
- Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Il Lee
- Departments of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hong Young Moon
- Departments of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
26
|
Scheffold A, Baig AH, Chen Z, von Löhneysen SE, Becker F, Morita Y, Avila AI, Groth M, Lechel A, Schmid F, Kraus JM, Kestler HA, Stilgenbauer S, Philipp M, Burkhalter MD. Elevated Hedgehog activity contributes to attenuated DNA damage responses in aged hematopoietic cells. Leukemia 2019; 34:1125-1134. [PMID: 31728056 PMCID: PMC7214262 DOI: 10.1038/s41375-019-0641-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 01/13/2023]
Abstract
Accumulation of DNA damage and myeloid-skewed differentiation characterize aging of the hematopoietic system, yet underlying mechanisms remain incompletely understood. Here, we show that aging hematopoietic progenitor cells particularly of the myeloid branch exhibit enhanced resistance to bulky DNA lesions—a relevant type of DNA damage induced by toxins such as cancer drugs or endogenous aldehydes. We identified aging-associated activation of the Hedgehog (Hh) pathway to be connected to this phenotype. Inhibition of Hh signaling reverts DNA damage tolerance and DNA damage-resistant proliferation in aged hematopoietic progenitors. Vice versa, elevating Hh activity in young hematopoietic progenitors is sufficient to impair DNA damage responses. Altogether, these findings provide experimental evidence for aging-associated increases in Hh activity driving DNA damage tolerance in myeloid progenitors and myeloid-skewed differentiation. Modulation of Hh activity could thus be explored as a therapeutic strategy to prevent DNA damage tolerance, myeloid skewing, and disease development in the aging hematopoietic system.
Collapse
Affiliation(s)
- Annika Scheffold
- Department of Internal Medicine III, University Hospital Ulm, 89081, Ulm, Germany
| | - Ali H Baig
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Zhiyang Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | | | - Friedrich Becker
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Alush I Avila
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081, Ulm, Germany
| | - Florian Schmid
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University Hospital Ulm, 89081, Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany.,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany. .,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
27
|
Rezaei-Lotfi S, Hunter N, Farahani RM. β-Catenin: A Metazoan Filter for Biological Noise? Front Genet 2019; 10:1004. [PMID: 31681432 PMCID: PMC6805772 DOI: 10.3389/fgene.2019.01004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023] Open
Abstract
Molecular noise refers to fluctuations of biological signals that facilitate phenotypic heterogeneity in a population. While endogenous mechanisms exist to limit genetic noise in biological systems, such restrictions are sometimes removed to propel phenotypic variability as an adaptive strategy. Herein, we review evidence for the potential role of β-catenin in restricting gene expression noise by transcriptional and post-transcriptional mechanisms. We discuss mechanisms that restrict intrinsic noise subsequent to nuclear mobilization of β-catenin. Nuclear β-catenin promotes initiation of transcription but buffers against the resultant noise by restraining transcription elongation. Acceleration of cell cycle, mediated via Wnt/β-catenin downstream signals, further diminishes intrinsic noise by curtailing the efficiency of protein synthesis. Extrinsic noise, on the other hand, is restricted by β-catenin–mediated regulation of major cellular stress pathways.
Collapse
Affiliation(s)
- Saba Rezaei-Lotfi
- IDR/Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ramin M Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Ozretić P, Hanžić N, Proust B, Sabol M, Trnski D, Radić M, Musani V, Ciribilli Y, Milas I, Puljiz Z, Bosnar MH, Levanat S, Slade N. Expression profiles of p53/p73, NME and GLI families in metastatic melanoma tissue and cell lines. Sci Rep 2019; 9:12470. [PMID: 31462745 PMCID: PMC6713730 DOI: 10.1038/s41598-019-48882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Unlike other tumours, TP53 is rarely mutated in melanoma; however, it fails to function as a tumour suppressor. We assume that its functions might be altered through interactions with several families of proteins, including p53/p73, NME and GLI. To elucidate the potential interplay among these families we analysed the expression profiles of aforementioned genes and proteins in a panel of melanoma cell lines, metastatic melanoma specimens and healthy corresponding tissue. Using qPCR a higher level of NME1 gene expression and lower levels of Δ40p53β, ΔNp73, GLI1, GLI2 and PTCH1 were observed in tumour samples compared to healthy tissue. Protein expression of Δ133p53α, Δ160p53α and ΔNp73α isoforms, NME1 and NME2, and N'ΔGLI1, GLI1FL, GLI2ΔN isoforms was elevated in tumour tissue, whereas ∆Np73β was downregulated. The results in melanoma cell lines, in general, support these findings. In addition, we correlated expression profiles with clinical features and outcome. Higher Δ133p53β and p53α mRNA and both GLI1 mRNA and GLI3R protein expression had a negative impact on the overall survival. Shorter overall survival was also connected with lower p53β and NME1 gene expression levels. In conclusion, all examined genes may have implications in melanoma development and functional inactivity of TP53.
Collapse
Affiliation(s)
- Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Nikolina Hanžić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Diana Trnski
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Martina Radić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Povo (Trento), IT-38123, Italy
| | - Ivan Milas
- Sestre milosrdnice University Hospital Center, Vinogradska cesta 29, HR-10000, Zagreb, Croatia
| | - Zvonimir Puljiz
- Sestre milosrdnice University Hospital Center, Vinogradska cesta 29, HR-10000, Zagreb, Croatia
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Sonja Levanat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Neda Slade
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
29
|
Norum JH, Frings O, Kasper M, Bergholtz H, Zell Thime H, Bergström Å, Andersson A, Kuiper R, Fredlund E, Sørlie T, Toftgård R. GLI1‐induced mammary gland tumours are transplantable and maintain major molecular features. Int J Cancer 2019; 146:1125-1138. [DOI: 10.1002/ijc.32522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jens Henrik Norum
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Oliver Frings
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska Institutet Stockholm Sweden
| | - Maria Kasper
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Helga Bergholtz
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Helene Zell Thime
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Åsa Bergström
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Agneta Andersson
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Raoul Kuiper
- Department of Laboratory Medicine and Center for Innovative Medicine (CIMED)Karolinska Institutet Huddinge Sweden
| | - Erik Fredlund
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska Institutet Stockholm Sweden
| | - Therese Sørlie
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Rune Toftgård
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| |
Collapse
|
30
|
Galván-Ramírez MDLL, Ramírez De Arellano A, Rodríguez-Pérez LR, Lopez-Pulido EI, Muñoz-Valle JF, Pereira-Suárez AL. Hormonal modulation of Toxoplasma gondii infection: Regulation of hormonal receptors and cytokine production in THP-1 cells. Exp Parasitol 2019; 204:107721. [PMID: 31288023 DOI: 10.1016/j.exppara.2019.107721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/05/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan able to infect humans and it is common in pregnant women. During pregnancy and lactation, there are changes in the concentration of 17β-estradiol (E2), progesterone (Prg), and prolactin (PRL). It is known that a proinflamatory response reduces the susceptibility to be infected, and this response may change according to hormonal impairment. Monocytes and macrophages are the main barrier against many intracellular microorganisms, due to their ability to produce cytokines. The aim of this work was to determine the effect of E2, progesterone, and PRL on the infective capacity of T. gondii, proinflamatory immune response modulation and the expression of hormonal receptors on THP-1 cell stimulated with T. gondii. METHODS The THP-1 cells were infected with 1500 T. gondii tachyzoites, of RH strain. Stimuli were conducted with recombinant PRL (200 ng/mL), E2 (40 nM) y Prg (40 nM). MTT assays were performed to evaluate cellular viability. Western blot assays were carried out to evaluate the expression of the hormonal receptors (PRLR, ERα, and ERβ). Cytokines produced were measured with a magnetic bead kit directed to 17 cytokines. RESULTS Stimuli with E2 and Prg increased T. gondii infection in monocytes after 48 h; however, no differences in infection were observed in PRL stimulus. The E2 decreased the secretion of IL-12 and IL-1β and PRL did not modify the production of these cytokines in THP-1 cells stimulated with T. gondii; however, both hormones increased the production of IL-10. Besides, PRL augmented the production of IL-4 and IL-13. In contrast, Prg reduced these cytokines. Our results show that T. gondii induces the expression of ERα and ERβ and lowers PRLR. The hormones modify the expression of the receptors of other hormones: Prg decreases PRLR, ERβ and increases ERα; E2 diminishes PRLR; and PRL decreases ERα and ERβ expression. CONCLUSION The hormones can increase T. gondii infection and could be mediating an anti-inflammatory response in THP-1 cells. T. gondii induces changes in the expression of hormonal receptors.
Collapse
Affiliation(s)
- María de la Luz Galván-Ramírez
- Departamento de Fisiología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, Mexico
| | - Adrián Ramírez De Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, Mexico
| | - Laura Rocío Rodríguez-Pérez
- Departamento de Fisiología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, Mexico
| | - Edgar I Lopez-Pulido
- Departamento de Clínicas, Centro Universitario de Los Altos, Tepatitlán de Morelos, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, Mexico; Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México.
| |
Collapse
|
31
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
32
|
Abe Y, Suzuki Y, Kawamura K, Tanaka N. MEP50/PRMT5-mediated methylation activates GLI1 in Hedgehog signalling through inhibition of ubiquitination by the ITCH/NUMB complex. Commun Biol 2019; 2:23. [PMID: 30675521 PMCID: PMC6338668 DOI: 10.1038/s42003-018-0275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Transcription factor GLI1 is an effecter of Hedgehog (HH) signalling and activated in a broad spectrum of cancers. However, the role of the HH-GLI1 pathway in cancer and the activation mechanism of GLI1 in HH signalling after dissociation from its inhibitor, SUFU, are not fully understood. Here, we found that GLI1 associated with the methylosome protein 50 (MEP50)/protein arginine methyltransferase 5 (PRMT5) complex and was methylated. Association of MEP50/PRMT5 with GLI1 was enhanced and expression of MEP50 and PRMT5 was activated by HH signals, suggesting their role in positive feedback regulation. Methylated GLI1 lost its ability to bind ubiquitin ligase ITCH/NUMB, resulting in nuclear accumulation and activation of GLI1. Moreover, protein expression of GLI1 was enhanced by MEP50/PRMT5 and expression of MEP50, PRMT5, and GLI1 target genes was upregulated in HH-expressing cancers. These results suggest that MEP50/PRMT5 is important for HH signal-induced GLI1 activation, especially in cancers.
Collapse
Affiliation(s)
- Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-cho 1-396, Nakahara-ku, Kawasaki, Kanagawa 211-8533 Japan
| | - Yosuke Suzuki
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-cho 1-396, Nakahara-ku, Kawasaki, Kanagawa 211-8533 Japan
| | - Kenji Kawamura
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-cho 1-396, Nakahara-ku, Kawasaki, Kanagawa 211-8533 Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-cho 1-396, Nakahara-ku, Kawasaki, Kanagawa 211-8533 Japan
| |
Collapse
|
33
|
Pietrobono S, Stecca B. Targeting the Oncoprotein Smoothened by Small Molecules: Focus on Novel Acylguanidine Derivatives as Potent Smoothened Inhibitors. Cells 2018; 7:cells7120272. [PMID: 30558232 PMCID: PMC6316656 DOI: 10.3390/cells7120272] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Hedgehog-GLI (HH) signaling was originally identified as a critical morphogenetic pathway in embryonic development. Since its discovery, a multitude of studies have reported that HH signaling also plays key roles in a variety of cancer types and in maintaining tumor-initiating cells. Smoothened (SMO) is the main transducer of HH signaling, and in the last few years, it has emerged as a promising therapeutic target for anticancer therapy. Although vismodegib and sonidegib have demonstrated effectiveness for the treatment of basal cell carcinoma (BCC), their clinical use has been hampered by severe side effects, low selectivity against cancer stem cells, and the onset of mutation-driven drug resistance. Moreover, SMO antagonists are not effective in cancers where HH activation is due to mutations of pathway components downstream of SMO, or in the case of noncanonical, SMO-independent activation of the GLI transcription factors, the final mediators of HH signaling. Here, we review the current and rapidly expanding field of SMO small-molecule inhibitors in experimental and clinical settings, focusing on a class of acylguanidine derivatives. We also discuss various aspects of SMO, including mechanisms of resistance to SMO antagonists.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit⁻Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| | - Barbara Stecca
- Tumor Cell Biology Unit⁻Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| |
Collapse
|
34
|
Nikanjam M, Cohen PR, Kato S, Sicklick JK, Kurzrock R. Advanced basal cell cancer: concise review of molecular characteristics and novel targeted and immune therapeutics. Ann Oncol 2018; 29:2192-2199. [PMID: 30219896 PMCID: PMC6290882 DOI: 10.1093/annonc/mdy412] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metastatic basal cell carcinoma is an ultra-rare manifestation of a common disease, appearing in 0.0028%-0.5% of basal cell carcinomas. Initial therapeutic efforts focused on cytotoxic chemotherapy administration. However, it is now known that the Hedgehog signaling pathway is crucial for basal cell proliferation and Hedgehog pathway mutations may lead to tumorigenesis; thus, small-molecule inhibitors of alterations in the components of this pathway, including smoothened (SMO) and GLI, have been the focus of recent therapeutic developments. Indeed, the European Medicines Agency and the Food and Drug Administration have approved the SMO inhibitors, vismodegib and sonidegib, with additional GLI inhibitors currently in clinical trials. Molecular profiling of these tumors has revealed other potential targets for therapy, including high tumor mutational burden and PD-L1 amplification, which predict response to immune checkpoint blockade (PD-1 and PD-L1 inhibitors). An illustrative patient with a giant, advanced, unresectable basal cell carcinoma who obtained an ongoing complete remission after treatment with a combination of an immune checkpoint inhibitor (due to the tumor's high mutational burden) and the Hedgehog inhibitor vismodegib is described. A fuller understanding of the genomic portfolio of these patients can assist in developing novel, rational therapeutic approaches that should continue to improve responses and outcomes.
Collapse
Affiliation(s)
- M Nikanjam
- Department of Medicine, Center for Personalized Cancer Therapy and Division of Hematology-Oncology, UC San Diego Moores Cancer Center, San Diego, La Jolla.
| | - P R Cohen
- Department of Dermatology, Department of Surgery, University of California San Diego, San Diego, La Jolla, USA
| | - S Kato
- Department of Medicine, Center for Personalized Cancer Therapy and Division of Hematology-Oncology, UC San Diego Moores Cancer Center, San Diego, La Jolla
| | - J K Sicklick
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, San Diego, La Jolla, USA
| | - R Kurzrock
- Department of Medicine, Center for Personalized Cancer Therapy and Division of Hematology-Oncology, UC San Diego Moores Cancer Center, San Diego, La Jolla
| |
Collapse
|
35
|
Wei Y, Maximov V, Morrissy SA, Taylor MD, Pallas DC, Kenney AM. p53 Function Is Compromised by Inhibitor 2 of Phosphatase 2A in Sonic Hedgehog Medulloblastoma. Mol Cancer Res 2018; 17:186-198. [PMID: 30224541 DOI: 10.1158/1541-7786.mcr-18-0485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/10/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
Abstract
Medulloblastomas, the most common malignant pediatric brain tumors, have been genetically defined into four subclasses, namely WNT-activated, Sonic Hedgehog (SHH)-activated, Group 3, and Group 4. Approximately 30% of medulloblastomas have aberrant SHH signaling and thus are referred to as SHH-activated medulloblastoma. The tumor suppressor gene TP53 has been recently recognized as a prognostic marker for patients with SHH-activated medulloblastoma; patients with mutant TP53 have a significantly worse outcome than those with wild-type TP53. It remains unknown whether p53 activity is impaired in SHH-activated, wild-type TP53 medulloblastoma, which is about 80% of the SHH-activated medulloblastomas. Utilizing the homozygous NeuroD2:SmoA1 mouse model with wild-type Trp53, which recapitulates human SHH-activated medulloblastoma, it was discovered that the endogenous Inhibitor 2 of Protein Phosphatase 2A (SET/I2PP2A) suppresses p53 function by promoting accumulation of phospho-MDM2 (S166), an active form of MDM2 that negatively regulates p53. Knockdown of I2PP2A in SmoA1 primary medulloblastoma cells reduced viability and proliferation in a p53-dependent manner, indicating the oncogenic role of I2PP2A. Importantly, this mechanism is conserved in the human medulloblastoma cell line ONS76 with wild-type TP53. Taken together, these findings indicate that p53 activity is inhibited by I2PP2A upstream of PP2A in SHH-activated and TP53-wildtype medulloblastomas. IMPLICATIONS: This study suggests that I2PP2A represents a novel therapeutic option and its targeting could improve the effectiveness of current therapeutic regimens for SHH-activated or other subclasses of medulloblastoma with wild-type TP53.
Collapse
Affiliation(s)
- Yun Wei
- Department of Pediatrics, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Atlanta, Georgia
| | - Victor Maximov
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sorana A Morrissy
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Taylor
- The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
| | - David C Pallas
- Winship Cancer Institute, Atlanta, Georgia.,Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Anna Marie Kenney
- Department of Pediatrics, Emory University, Atlanta, Georgia. .,Winship Cancer Institute, Atlanta, Georgia
| |
Collapse
|
36
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:E2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
37
|
Uehara I, Tanaka N. Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers (Basel) 2018; 10:cancers10070219. [PMID: 29954119 PMCID: PMC6071291 DOI: 10.3390/cancers10070219] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism. Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation and tissue remodeling, is important for cancer proliferation, metastasis, and maintenance of cancer stem cells (CSCs) that self-renew and generate the diverse cells comprising the tumor. Furthermore, p53 has been demonstrated to inhibit inflammatory responses, and functional loss of p53 causes excessive inflammatory reactions. Moreover, the generation and maintenance of CSCs are supported by the inflammatory tumor microenvironment. Considering that the functions of p53 inhibit reprogramming of somatic cells to stem cells, p53 may have a major role in the inflammatory microenvironment as a tumor suppressor. Here, we review our current understanding of the mechanisms underlying the roles of p53 in regulation of the inflammatory microenvironment, tumor microenvironment, and tumor suppression.
Collapse
Affiliation(s)
- Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| |
Collapse
|
38
|
Zhu D, Osuka S, Zhang Z, Reichert ZR, Yang L, Kanemura Y, Jiang Y, You S, Zhang H, Devi NS, Bhattacharya D, Takano S, Gillespie GY, Macdonald T, Tan C, Nishikawa R, Nelson WG, Olson JJ, Van Meir EG. BAI1 Suppresses Medulloblastoma Formation by Protecting p53 from Mdm2-Mediated Degradation. Cancer Cell 2018; 33:1004-1016.e5. [PMID: 29894688 PMCID: PMC6002773 DOI: 10.1016/j.ccell.2018.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/29/2017] [Accepted: 05/11/2018] [Indexed: 01/20/2023]
Abstract
Adhesion G protein-coupled receptors (ADGRs) encompass 33 human transmembrane proteins with long N termini involved in cell-cell and cell-matrix interactions. We show the ADGRB1 gene, which encodes Brain-specific angiogenesis inhibitor 1 (BAI1), is epigenetically silenced in medulloblastomas (MBs) through a methyl-CpG binding protein MBD2-dependent mechanism. Knockout of Adgrb1 in mice augments proliferation of cerebellar granule neuron precursors, and leads to accelerated tumor growth in the Ptch1+/- transgenic MB mouse model. BAI1 prevents Mdm2-mediated p53 polyubiquitination, and its loss substantially reduces p53 levels. Reactivation of BAI1/p53 signaling axis by a brain-permeable MBD2 pathway inhibitor suppresses MB growth in vivo. Altogether, our data define BAI1's physiological role in tumorigenesis and directly couple an ADGR to cancer formation.
Collapse
Affiliation(s)
- Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Satoru Osuka
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zhaobin Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | - Liquan Yang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, 2-1-14 Hoenzaka, Chuo-ku, Osaka 540-0006, Japan
| | - Ying Jiang
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA 30322, USA
| | - Shuo You
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hanwen Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Narra S Devi
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Debanjan Bhattacharya
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tobey Macdonald
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, 1365C Clifton Road N.E, C5078, Atlanta, GA 30322, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA 30322, USA
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - William G Nelson
- Johns Hopkins University, 401 North Broadway, Baltimore, MD 21287, USA
| | - Jeffrey J Olson
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, 1365C Clifton Road N.E, C5078, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, 1365C Clifton Road N.E, C5078, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J, Day ES. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget 2018; 9:27000-27015. [PMID: 29930746 PMCID: PMC6007474 DOI: 10.18632/oncotarget.25467] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Resistance to chemotherapy substantially hinders successful glioblastoma (GBM) treatment, contributing to an almost 100% mortality rate. Resistance to the frontline chemotherapy, temozolomide (TMZ), arises from numerous signaling pathways that are deregulated in GBM, including Hedgehog (Hh) signaling. Here, we investigate suppression of Hh signaling as an adjuvant to TMZ using U87-MG and T98G cell lines as in vitro models of GBM. We found that silencing GLI1 with siRNA reduces cell metabolic activity by up to 30% in combination with TMZ and reduces multidrug efflux activity by 2.5-fold. Additionally, pharmacological GLI inhibition modulates nuclear p53 levels and decreases MGMT expression in combination with TMZ. While we surprisingly found that silencing GLI1 does not induce apoptosis in the absence of TMZ co-treatment, we discovered silencing GLI1 without TMZ co-treatment induces senescence as evidenced by a significant 2.3-fold increase in senescence associated β-galactosidase staining, and this occurs in a loss of PTEN-dependent manner. Finally, we show that GLI inhibition increases apoptosis in glioma stem-like cells by up to 6.8-fold in combination with TMZ, and this reduces the size and number of neurospheres grown from glioma stem-like cells. In aggregate, our data warrant the continued investigation of Hh pathway inhibitors as adjuvants to TMZ chemotherapy and highlight the importance of identifying signaling pathways that determine whether co-treatment will be successful.
Collapse
Affiliation(s)
| | - Joshua T Morgan
- Bioengineering, University of California, Riverside, CA, USA
| | - Stephen A Ioele
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Biomedical Engineering, University of Delaware, Newark, DE, USA.,Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Emily S Day
- Biomedical Engineering, University of Delaware, Newark, DE, USA.,Helen F. Graham Cancer Center and Research Institute, Newark, DE, USA.,Materials Science and Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
40
|
Teichman J, Dodbiba L, Thai H, Fleet A, Morey T, Liu L, McGregor M, Cheng D, Chen Z, Darling G, Brhane Y, Song Y, Espin-Garcia O, Xu W, Girgis H, Schwock J, MacKay H, Bristow R, Ailles L, Liu G. Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma. PLoS One 2018; 13:e0194809. [PMID: 29715275 PMCID: PMC5929523 DOI: 10.1371/journal.pone.0194809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background The Hedgehog (Hh) signaling pathway is active in esophageal adenocarcinoma (EAC). We used a patient-derived murine xenograft (PDX) model of EAC to evaluate tumour response to conventional treatment with radiation/chemoradiation with or without Hh inhibition. Our goal was to determine the potential radioresistance effects of Hh signaling and radiosensitization by Hh inhibitors. Methods PDX models were treated with radiation, chemotherapy or combined chemoradiation. Tumour response was measured by growth delay. Hh transcript levels (qRT-PCR) were compared among frozen tumours from treated and control mice. 5E1, a monoclonal SHH antibody, or LDE225, a clinical SMO inhibitor (Novartis®) inhibited Hh signaling. Results Precision irradiation significantly delayed xenograft tumour growth in all 7 PDX models. Combined chemoradiation further delayed growth relative to either modality alone in three of six PDX models. Following irradiation, two of three PDX models demonstrated sustained up-regulation of Hh transcripts. Combined LDE225 and radiation, and 5E1 alone delayed growth relative to either treatment alone in a Hh-responsive PDX model, but not in a non-responsive model. Conclusion Hh signaling mediates the radiation response in some EAC PDX models, and inhibition of this pathway may augment the efficacy of radiation in tumours that are Hh dependent.
Collapse
Affiliation(s)
- Jennifer Teichman
- Postgraduate Medical Education, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lorin Dodbiba
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Henry Thai
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Andrew Fleet
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Trevor Morey
- Postgraduate Medical Education, University of Toronto, Toronto, Canada
| | - Lucy Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | - Zhuo Chen
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Gail Darling
- Department of Thoracic Surgery, University Health Network, Toronto, Canada
| | - Yonathan Brhane
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | - Yuyao Song
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | | | - Wei Xu
- Princess Margaret Cancer Centre, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Canada
| | - Hala Girgis
- Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Joerg Schwock
- Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Helen MacKay
- Department of Medicine, Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Robert Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Canada
- * E-mail:
| |
Collapse
|
41
|
Pietrobono S, Santini R, Gagliardi S, Dapporto F, Colecchia D, Chiariello M, Leone C, Valoti M, Manetti F, Petricci E, Taddei M, Stecca B. Targeted inhibition of Hedgehog-GLI signaling by novel acylguanidine derivatives inhibits melanoma cell growth by inducing replication stress and mitotic catastrophe. Cell Death Dis 2018; 9:142. [PMID: 29396391 PMCID: PMC5833413 DOI: 10.1038/s41419-017-0142-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Aberrant activation of the Hedgehog (HH) signaling is a critical driver in tumorigenesis. The Smoothened (SMO) receptor is one of the major upstream transducers of the HH pathway and a target for the development of anticancer agents. The SMO inhibitor Vismodegib (GDC-0449/Erivedge) has been approved for treatment of basal cell carcinoma. However, the emergence of resistance during Vismodegib treatment and the occurrence of numerous side effects limit its use. Our group has recently discovered and developed novel and potent SMO inhibitors based on acylguanidine or acylthiourea scaffolds. Here, we show that the two acylguanidine analogs, compound (1) and its novel fluoride derivative (2), strongly reduce growth and self-renewal of melanoma cells, inhibiting the level of the HH signaling target GLI1 in a dose-dependent manner. Both compounds induce apoptosis and DNA damage through the ATR/CHK1 axis. Mechanistically, they prevent G2 to M cell cycle transition, and induce signs of mitotic aberrations ultimately leading to mitotic catastrophe. In a melanoma xenograft mouse model, systemic treatment with 1 produced a remarkable inhibition of tumor growth without body weight loss in mice. Our data highlight a novel route for cell death induction by SMO inhibitors and support their use in therapeutic approaches for melanoma and, possibly, other types of cancer with active HH signaling.
Collapse
Affiliation(s)
| | - Roberta Santini
- Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy
| | | | - Francesca Dapporto
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Core Research Laboratory, Istituto Toscano Tumori, AOU Senese, Siena, Italy
| | - David Colecchia
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Core Research Laboratory, Istituto Toscano Tumori, AOU Senese, Siena, Italy
| | - Mario Chiariello
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Core Research Laboratory, Istituto Toscano Tumori, AOU Senese, Siena, Italy
| | - Cosima Leone
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Taddei
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Barbara Stecca
- Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy. .,Department of Oncology, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
42
|
Roles of the Hedgehog Signaling Pathway in Epidermal and Hair Follicle Development, Homeostasis, and Cancer. J Dev Biol 2017; 5:jdb5040012. [PMID: 29615568 PMCID: PMC5831796 DOI: 10.3390/jdb5040012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022] Open
Abstract
The epidermis is the outermost layer of the skin and provides a protective barrier against environmental insults. It is a rapidly-renewing tissue undergoing constant regeneration, maintained by several types of stem cells. The Hedgehog (HH) signaling pathway is one of the fundamental signaling pathways that contributes to epidermal development, homeostasis, and repair, as well as to hair follicle development and follicle bulge stem cell maintenance. The HH pathway interacts with other signal transduction pathways, including those activated by Wnt, bone morphogenetic protein, platelet-derived growth factor, Notch, and ectodysplasin. Furthermore, aberrant activation of HH signaling is associated with various tumors, including basal cell carcinoma. Therefore, an understanding of the regulatory mechanisms of the HH signaling pathway is important for elucidating fundamental mechanisms underlying both organogenesis and carcinogenesis. In this review, we discuss the role of the HH signaling pathway in the development and homeostasis epidermis and hair follicles, and in basal cell carcinoma formation, providing an update of current knowledge in this field.
Collapse
|
43
|
Tsao AS, Wistuba I, Xia D, Byers L, Diao L, Wang J, Papadimitrakopoulou V, Tang X, Lu W, Kadara H, Grigoryev DN, Selvan ME, Gümüş ZH, Tan Z, Zhang S, Nilsson M, Heymach JV. Germline and Somatic Smoothened Mutations in Non–Small-Cell Lung Cancer Are Potentially Responsive to Hedgehog Inhibitor Vismodegib. JCO Precis Oncol 2017; 1:1-10. [DOI: 10.1200/po.17.00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Anne S. Tsao
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ignacio Wistuba
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dianren Xia
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lauren Byers
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lixia Diao
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jing Wang
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vassiliki Papadimitrakopoulou
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ximing Tang
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wei Lu
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Humam Kadara
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dimitry N. Grigoryev
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Myvizhi Esai Selvan
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zeynep H. Gümüş
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhi Tan
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shuxing Zhang
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monique Nilsson
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John V. Heymach
- Anne S. Tsao, Ignacio Wistuba, Dianren Xia, Lauren Byers, Lixia Diao, Jing Wang, Vassiliki Papadimitrakopoulou, Ximing Tang, Wei Lu, Zhi Tan, Shuxing Zhang, Monique Nilsson, and John V. Heymach, The University of Texas MD Anderson Cancer Center, Houston, TX; Humam Kara, American University of Beirut, Beirut, Lebanon; and Dimitry N. Grigoryev, Myvizhi Esai Selvan, and Zeynep H. Gümüş, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
44
|
Genipin suppresses colorectal cancer cells by inhibiting the Sonic Hedgehog pathway. Oncotarget 2017; 8:101952-101964. [PMID: 29254217 PMCID: PMC5731927 DOI: 10.18632/oncotarget.21882] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/04/2017] [Indexed: 01/12/2023] Open
Abstract
Genipin, a major component of Gardenia jasminoides Ellis fruit, has been shown to inhibit the growth of gastric, prostate, and breast cancers. However, the anti-proliferative activity of genipin in colorectal cancer (CRC) has not been characterized. Herein, we demonstrated that genipin inhibits the proliferation of CRC cells and that genipin suppressed the Hedgehog pathway. Further investigation showed that p53 and NOXA protein levels were increased during inhibition of Hedgehog pathway-mediated apoptosis in CRC cells. We also showed that p53 modulated the expression of NOXA during genipin-induced apoptosis, and suppression via SMO also played a role in this process. Subsequently, GLI1 was ubiquitinated by the E3 ligase PCAF. In a xenograft tumor model, genipin suppressed tumor growth, which was also associated with Hedgehog inactivation. Taken together, these results suggest that genipin induces apoptosis through the Hedgehog signaling pathway by suppressing p53. These findings reveal a novel regulatory mechanism involving Hedgehog/p53/NOXA signaling in the modulation of CRC cell apoptosis and tumor-forming defects.
Collapse
|
45
|
Ricciotti RW, Baraff AJ, Jour G, Kyriss M, Wu Y, Liu Y, Li SC, Hoch B, Liu YJ. High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases. Cancer Genet 2017; 218-219:69-80. [PMID: 29153098 DOI: 10.1016/j.cancergen.2017.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
Dedifferentiated liposarcoma (DDLS) is characterized at the molecular level by amplification of genes within 12q13-15 including MDM2 and CDK4. However, other than FNCLCC grade, prognostic markers are limited. We aim to identify molecular prognostic markers for DDLS to help risk stratify patients. To this end, we studied 49 cases of DDLS in our institutional archives and performed cytogenomic microarray analysis on 47 cases. Gene copy numbers for 12 loci were evaluated and correlated with outcome data retrieved from our institutional electronic medical records. Using cut point analysis and comparison of Kaplan-Meier survival curves by log rank tests, high amplification levels of MDM2 (>38 copies) and CDK4 (>30 copies) correlated with decreased disease free survival (DFS) (P = .0168 and 0.0169 respectively) and disease specific survival (DSS) (P = .0082 and 0.0140 respectively). Additionally, MDM2 and CDK4 showed evidence of a synergistic effect so that each additional copy of one enhances the effect on prognosis of each additional copy of the other for decreased DFS (P = .0227, 0.1% hazard). High amplification of JUN (>16 copies) also correlated with decreased DFS (P = .0217), but not DSS. The presence of copy number alteration at 3q29 correlated with decreased DSS (P = .0192). The presence of >10 mitoses per 10 high power fields and FNCLCC grade 3 also correlated with decreased DFS (P = .0310 and 0.0254 respectively). MDM2 and CDK4 gene amplification levels, along with JUN amplification and copy alterations at 3q29, can be utilized for predicting outcome in patients with DDLS.
Collapse
Affiliation(s)
- Robert W Ricciotti
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Aaron J Baraff
- Department of BioStatistics, University of Washington School of Medicine, Seattle, WA
| | - George Jour
- Department of Pathology and Laboratory Medicine, MD Anderson Cancer Center at Cooper, Camden, NJ
| | | | - Yu Wu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Yuhua Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Shao-Chun Li
- Department of Pharmacology, School of Medicine, Hebei University, PR China
| | - Benjamin Hoch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA.
| | - Yajuan J Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
46
|
Differing tumor-suppressor functions of Arf and p53 in murine basal cell carcinoma initiation and progression. Oncogene 2017; 36:3772-3780. [PMID: 28263978 DOI: 10.1038/onc.2017.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
Human basal cell carcinomas (BCCs) very frequently carry p53 mutations, and p53 loss markedly accelerates murine BCC carcinogenesis. We report here our studies of the mechanism by which p53 is activated to suppress BCC carcinogenesis. We find that aberrant hedgehog signaling in microscopic BCCs activates p53 in part via Arf (that is, the oncogene-induced stress pathway) but not via the DNA damage response pathway. However, Arf loss and p53 loss produce differing outcomes-loss of p53 promotes both tumor initiation and progression; loss of Arf promotes tumor progression but not initiation. Intriguingly, increased expression of Arf in tumor stromal cells, as in tumor keratinocytes themselves, contributes to suppression of BCC carcinogenesis.
Collapse
|
47
|
Riku M, Inaguma S, Ito H, Tsunoda T, Ikeda H, Kasai K. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis. Oncotarget 2016; 7:5690-701. [PMID: 26744317 PMCID: PMC4868714 DOI: 10.18632/oncotarget.6788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022] Open
Abstract
Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1.
Collapse
Affiliation(s)
- Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takumi Tsunoda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
48
|
Wen J, Lee J, Malhotra A, Nahta R, Arnold AR, Buss MC, Brown BD, Maier C, Kenney AM, Remke M, Ramaswamy V, Taylor MD, Castellino RC. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma. Oncogene 2016; 35:5552-5564. [PMID: 27086929 PMCID: PMC5069081 DOI: 10.1038/onc.2016.96] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/28/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
Abstract
High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer (EGL) in early postnatal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with an Shh-activated MB mouse model. Conversely, Wip1 knockout significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knockdown or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
| | - Juhyun Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
| | - Anshu Malhotra
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
| | - Rita Nahta
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pharmacology, Atlanta, GA 30322, USA
| | - Amanda R. Arnold
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
| | - Meghan C. Buss
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
| | - Briana D. Brown
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
| | - Caroline Maier
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
| | - Anna M. Kenney
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marc Remke
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Center, and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Center, and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Center, and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Robert C. Castellino
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Vishnoi K, Mahata S, Tyagi A, Pandey A, Verma G, Jadli M, Singh T, Singh SM, Bharti AC. Cross-talk between Human Papillomavirus Oncoproteins and Hedgehog Signaling Synergistically Promotes Stemness in Cervical Cancer Cells. Sci Rep 2016; 6:34377. [PMID: 27678330 PMCID: PMC5039669 DOI: 10.1038/srep34377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Viral oncoproteins E6/E7 play key oncogenic role in human papillomavirus (HPV)-mediated cervical carcinogenesis in conjunction with aberrant activation of cellular signaling events. GLI-signaling has been implicated in metastasis and tumor recurrence of cervical cancer. However, the interaction of GLI-signaling with HPV oncogenes is unknown. We examined this relationship in established HPV-positive and HPV-negative cervical cancer cell lines using specific GLI inhibitor, cyclopamine and HPVE6/E7 siRNAs. Cervical cancer cell lines showed variable expression of GLI-signaling components. HPV16-positive SiHa cells, overexpressed GLI1, Smo and Patch. Inhibition by cyclopamine resulted in dose-dependent reduction of Smo and GLI1 and loss of cell viability with a higher magnitude in HPV-positive cells. Cyclopamine selectively downregulated HPVE6 expression and resulted in p53 accumulation, whereas HPVE7 and pRb level remained unaffected. siRNA-mediated silencing of HPV16E6 demonstrated reduced GLI1 transcripts in SiHa cells. Cervical cancer stem-like cells isolated by side population analysis, displayed retention of E6 and GLI1 expression. Fraction of SP cells was reduced in cyclopamine-treated cultures. When combined with E6-silencing cyclopamine resulted in loss of SP cell’s sphere-forming ability. Co-inhibition of GLI1 and E6 in cervical cancer cells showed additive anti-cancer effects. Overall, our data show existence of a cooperative interaction between GLI signaling and HPVE6.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Abhishek Tyagi
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India
| | - Arvind Pandey
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Gaurav Verma
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| |
Collapse
|
50
|
Abstract
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Lukas Tamayo-Orrego
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada
| | - Shannon M Swikert
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada
| | - Frédéric Charron
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada.,c Department of Medicine , University of Montreal , Montreal , Quebec , Canada.,d Division of Experimental Medicine , Department of Medicine, Department of Anatomy and Cell Biology, Department of Biology , McGill University , Quebec , Canada
| |
Collapse
|