1
|
Nimbeshaho F, Nihorimbere G, Arias AA, Liénard C, Steels S, Nibasumba A, Nihorimbere V, Legrève A, Ongena M. Unravelling the secondary metabolome and biocontrol potential of the recently described species Bacillus nakamurai. Microbiol Res 2024; 288:127841. [PMID: 39153465 DOI: 10.1016/j.micres.2024.127841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/19/2024]
Abstract
In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described Bacillus nakamurai was selected for its strong in vitro antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced B. nakamurai strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in B. velezensis, greenhouse experiments show that B. nakamurai BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by Alternaria solani and Exserohilum turcicum, respectively, at levels similar to or better than B. velezensis QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that B. nakamurai BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.
Collapse
Affiliation(s)
- François Nimbeshaho
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium; Laboratoire de Nutrition-Phytochimie, d'Ecologie et d'Environnement Appliquée, Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Institut de Pédagogie Appliquée, Université du Burundi, Avenue de l'Unesco 2, P.O Box 1550, Bujumbura, Burundi.
| | - Gaspard Nihorimbere
- Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium; Research department, Institut des Sciences Agronomiques du Burundi (ISABU), Boulevard du Japon, Rohero 1, P.O Box 795, Bujumbura, Burundi.
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium.
| | - Charlotte Liénard
- Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium.
| | - Sébastien Steels
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium.
| | - Anaclet Nibasumba
- Institut Supérieur de Formation Agricole, Université du Burundi, P.O Box 241, Gitega, Burundi.
| | - Venant Nihorimbere
- Laboratoire de Microbiologie, Faculté d'Agronomie et de BioIngéniérie (FABI), Université du Burundi, Avenue de l'Unesco 2, P.O Box 2940, Bujumbura, Burundi.
| | - Anne Legrève
- Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium.
| | - Marc Ongena
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium.
| |
Collapse
|
2
|
Ueda D, Abe T, Fujihashi M, Sato T. Identification and functional/structural analyses of large terpene synthases. Methods Enzymol 2024; 699:477-512. [PMID: 38942515 DOI: 10.1016/bs.mie.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Large terpene synthases (large-TSs) are a new family of TSs. The first large-TS discovered was from Bacillus subtilis (BsuTS), which is involved in the biosynthesis of a C35 sesquarterpene. Large-TSs are the only enzymes that enable the biosynthesis of sesquarterpenes and do not share any sequence homology with canonical Class I and II TSs. Thus, the investigation of large-TSs is promising for expanding the chemical space in the terpene field. In this chapter, we describe the experimental methods used for identifying large-TSs, as well as their functional and structural analyses. Additionally, several enzymes related to the biosynthesis of large-TS substrates have been described.
Collapse
Affiliation(s)
- Daijiro Ueda
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Tohru Abe
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Masahiro Fujihashi
- Department of Chemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
| | - Tsutomu Sato
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Japan.
| |
Collapse
|
3
|
Willdigg JR, Patel Y, Arquilevich BE, Subramanian C, Frank MW, Rock CO, Helmann JD. The Bacillus subtilis cell envelope stress-inducible ytpAB operon modulates membrane properties and contributes to bacitracin resistance. J Bacteriol 2024; 206:e0001524. [PMID: 38323910 PMCID: PMC10955860 DOI: 10.1128/jb.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Antibiotics that inhibit peptidoglycan synthesis trigger the activation of both specific and general protective responses. σM responds to diverse antibiotics that inhibit cell wall synthesis. Here, we demonstrate that cell wall-inhibiting drugs, such as bacitracin and cefuroxime, induce the σM-dependent ytpAB operon. YtpA is a predicted hydrolase previously proposed to generate the putative lysophospholipid antibiotic bacilysocin (lysophosphatidylglycerol), and YtpB is the branchpoint enzyme for the synthesis of membrane-localized C35 terpenoids. Using targeted lipidomics, we reveal that YtpA is not required for the production of lysophosphatidylglycerol. Nevertheless, ytpA was critical for growth in a mutant strain defective for homeoviscous adaptation due to a lack of genes for the synthesis of branched chain fatty acids and the Des phospholipid desaturase. Consistently, overexpression of ytpA increased membrane fluidity as monitored by fluorescence anisotropy. The ytpA gene contributes to bacitracin resistance in mutants additionally lacking the bceAB or bcrC genes, which directly mediate bacitracin resistance. These epistatic interactions support a model in which σM-dependent induction of the ytpAB operon helps cells tolerate bacitracin stress, either by facilitating the flipping of the undecaprenyl phosphate carrier lipid or by impacting the assembly or function of membrane-associated complexes involved in cell wall homeostasis.IMPORTANCEPeptidoglycan synthesis inhibitors include some of our most important antibiotics. In Bacillus subtilis, peptidoglycan synthesis inhibitors induce the σM regulon, which is critical for intrinsic antibiotic resistance. The σM-dependent ytpAB operon encodes a predicted hydrolase (YtpA) and the enzyme that initiates the synthesis of C35 terpenoids (YtpB). Our results suggest that YtpA is critical in cells defective in homeoviscous adaptation. Furthermore, we find that YtpA functions cooperatively with the BceAB and BcrC proteins in conferring intrinsic resistance to bacitracin, a peptide antibiotic that binds tightly to the undecaprenyl-pyrophosphate lipid carrier that sustains peptidoglycan synthesis.
Collapse
Affiliation(s)
| | - Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | | | - Chitra Subramanian
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew W. Frank
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Charles O. Rock
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Smita N, Sasikala C, Ramana C. New insights into peroxide toxicology: sporulenes help Bacillus subtilis endospores from hydrogen peroxide. J Appl Microbiol 2023; 134:lxad238. [PMID: 37863832 DOI: 10.1093/jambio/lxad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023]
Abstract
AIM The purpose of the present study was to understand the possible events involved in the toxicity of hydrogen peroxide (H2O2) to wild and sporulene-deficient spores of Bacillus subtilis, as H2O2 was previously shown to have deleterious effects. METHODS AND RESULTS The investigation utilized two strains of B. subtilis, namely the wild-type PY79 (WT) and the sporulene-deficient TB10 (ΔsqhC mutant). Following treatment with 0.05% H2O2 (v/v), spore viability was assessed using a plate count assay, which revealed a significant decrease in cultivability of 80% for the ΔsqhC mutant spores. Possible reasons for the loss of spore viability were investigated with microscopic analysis, dipicholinic acid (DPA) quantification and propidium iodide (PI) staining. Microscopic examinations revealed the presence of withered and deflated morphologies in spores of ΔsqhC mutants treated with H2O2, indicating a compromised membrane permeability. This was further substantiated by the absence of DPA and a high frequency (50%-75%) of PI infiltration. The results of fatty acid methyl ester analysis and protein profiling indicated that the potentiation of H2O2-induced cellular responses was manifested in the form of altered spore composition in ΔsqhC B. subtilis. The slowed growth rates of the ΔsqhC mutant and the heightened sporulene biosynthesis pathways in the WT strain, both upon exposure to H2O2, suggested a protective function for sporulenes in vegetative cells. CONCLUSIONS Sporulenes serve as a protective layer for the inner membrane of spores, thus assuming a significant role in mitigating the adverse effects of H2O2 in WT B. subtilis. The toxic effects of H2O2 were even more pronounced in the spores of the ΔsqhC mutant, which lacks this protective barrier of sporulenes.
Collapse
Affiliation(s)
- N Smita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J.N.T. University Hyderabad, Hyderabad 500085, India
| | - ChV Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
5
|
Thanh Tam LT, Jähne J, Luong PT, Phuong Thao LT, Nhat LM, Blumenscheit C, Schneider A, Blom J, Kim Chung LT, Anh Minh PL, Thanh HM, Hoat TX, Hoat PC, Son TC, Weinmann M, Herfort S, Vater J, Van Liem N, Schweder T, Lasch P, Borriss R. Two plant-associated Bacillus velezensis strains selected after genome analysis, metabolite profiling, and with proved biocontrol potential, were enhancing harvest yield of coffee and black pepper in large field trials. FRONTIERS IN PLANT SCIENCE 2023; 14:1194887. [PMID: 37426979 PMCID: PMC10327441 DOI: 10.3389/fpls.2023.1194887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Elimination of chemically synthesized pesticides, such as fungicides and nematicides, in agricultural products is a key to successful practice of the Vietnamese agriculture. We describe here the route for developing successful biostimulants based on members of the Bacillus subtilis species complex. A number of endospore-forming Gram-positive bacterial strains with antagonistic action against plant pathogens were isolated from Vietnamese crop plants. Based on their draft genome sequence, thirty of them were assigned to the Bacillus subtilis species complex. Most of them were assigned to the species Bacillus velezensis. Whole genome sequencing of strains BT2.4 and BP1.2A corroborated their close relatedness to B. velezensis FZB42, the model strain for Gram-positive plant growth-promoting bacteria. Genome mining revealed that at least 15 natural product biosynthesis gene clusters (BGCs) are well conserved in all B. velezensis strains. In total, 36 different BGCs were identified in the genomes of the strains representing B. velezensis, B. subtilis, Bacillus tequilensis, and Bacillus. altitudinis. In vitro and in vivo assays demonstrated the potential of the B. velezensis strains to enhance plant growth and to suppress phytopathogenic fungi and nematodes. Due to their promising potential to stimulate plant growth and to support plant health, the B. velezensis strains TL7 and S1 were selected as starting material for the development of novel biostimulants, and biocontrol agents efficient in protecting the important Vietnamese crop plants black pepper and coffee against phytopathogens. The results of the large-scale field trials performed in the Central Highlands in Vietnam corroborated that TL7 and S1 are efficient in stimulating plant growth and protecting plant health in large-scale applications. It was shown that treatment with both bioformulations resulted in prevention of the pathogenic pressure exerted by nematodes, fungi, and oomycetes, and increased harvest yield in coffee, and pepper.
Collapse
Affiliation(s)
- Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Pham Thi Luong
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Thi Phuong Thao
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Mai Nhat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Le Thi Kim Chung
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Ha Noi, Vietnam
| | - Pham Le Anh Minh
- Department of Biotechnology, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ha Minh Thanh
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Trinh Xuan Hoat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Pham Cong Hoat
- Department of Science and Technology for Economic Technical Branches, Ministry of Science and Technology (MOST), Hanoi, Vietnam
| | - Tran Cao Son
- Laboratory of Food Toxicology and Allergens, National Institute for Food Control (NIFC), Ha Noi, Vietnam
| | - Markus Weinmann
- Ernährungsphysiologie Der Kulturpflanzen, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Herfort
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nguyen Van Liem
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
6
|
Smita N, Anusha R, Indu B, Sasikala C, Ramana CV. In silico analysis of sporulene biosynthesis pathway genes in the members of the class Bacilli. Arch Microbiol 2023; 205:233. [PMID: 37171632 DOI: 10.1007/s00203-023-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Sporulene, a pentacyclic triterpenoid, was discovered in Bacillus subtilis and is associated with bacterial endospores. However, the study was not further extended, leaving a trail of questions. One such question is what diversity of sporulenes exists among spore-forming members? Considering the sporulene biosynthesis pathway as a fundamental tool to survey the distribution of this molecule, a genome mining study was conducted. Mining for genes encoding putative proteins of sporulene biosynthesis pathway among the class Bacilli members revealed the presence of hepS, hepT, ytpB, and sqhC genes in the members of the family Bacillaceae, Caryophanaceae, Paenibacillaceae, and Sporolactobacillaceae. However, these genes were completely absent in the members of Staphylococcaceae, Lactobacillaceae, Aerococcaceae, Carnobacteriaceae, and Leuconostocaceae. Unlike other probable pathway related proteins, a conserved amino acid domain of putative terpenoid cyclase (YtpB) appeared deep-rooted among the genus Bacillus members. In-depth analysis showed the constant gene arrangement of hepS, hepT, ytpB, and sqhC genes in these members, there by demonstrating the conserved nature of sporulene biosynthesis pathway in the members of the genus Bacillus. Our study suggests confinement of the sporulene biosynthesis pathway to spore-forming members of the class Bacilli, majorly to the genus Bacillus.
Collapse
Affiliation(s)
- N Smita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - R Anusha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - B Indu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J.N.T. University Hyderabad, Kukatpally, Hyderabad, 500085, India.
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.
| |
Collapse
|
7
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
CO2-Degassing Carbonate Conduits in Early Pleistocene Marine Clayey Deposits in Southwestern Umbria (Central Italy). MINERALS 2022. [DOI: 10.3390/min12070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early Pleistocene marine deposits in southwestern Umbria (Orvieto–Allerona area, Italy) recently revealed the presence of more than forty carbonate conduits distributed over 2 km along the Paglia riverbed. In order to investigate their origins, analyses of their mineralogy, δ18O and δ13C stable isotopes, and organic geochemistry were conducted. All the carbonate conduits are made of euhedral microcrystals of dolomite with subordinate quartz, plagioclases, and micas. The stable carbon and oxygen isotope values of the bulk concretionary carbonates range from −0.57 to +4.79‰ (δ13C) and from +1.58 to +4.07‰ (δ18O), respectively. The lack of organic geochemical biomarkers of anaerobic methane oxidation (AOM) and the very low values of extractable organic matter suggest a non-biological origin for the dolomite precipitation. The latter is probably related to the rise of volcanic carbon dioxide due to the incipient Vulsini magmatism recorded in Early Pleistocene marine deposits all around the study site. The spatial distribution of the structures indicates that the upward migration of the CO2 was controlled by the fault system, while the vertical development of the conduits suggests that carbon dioxide degassing occurred, with multiple events. Carbon dioxide was probably stored in pockets within the clayey sediments until the pressure exceeded the eruptive threshold. These structures represent the first documentation of a volcanic carbon dioxide marine seepage event in the Umbria region.
Collapse
|
9
|
Determination of Volatile Compounds of Mentha piperita and Lavandula multifida and Investigation of Their Antibacterial, Antioxidant, and Antidiabetic Properties. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9306251. [PMID: 35747375 PMCID: PMC9213120 DOI: 10.1155/2022/9306251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Mentha piperita and Lavandula multifida are widely used in Moroccan traditional medicine for the treatment of diabetes and infectious diseases. The aims of this work were the determination of the chemical composition of Mentha piperita (MPEO) and Lavandula multifida (LMEO) essential oils and the evaluation of their antibacterial, antioxidant, and antidiabetic activities. The chemical composition was determined by GC-MS analysis. The antibacterial effects were evaluated against several bacterial strains using disc diffusion, MIC, and MBC methods. The antioxidant activity was evaluated in vitro using DPPH, H2O2, and xanthine oxidase, and the antidiabetic activity was estimated by the inhibitory effects of α-amylase, α-glucosidase, and lipase activities. GC-MS results showed that the main compounds of MPEO were menthone (29.24%), levomenthol (38.73%), and eucalyptol (6.75%). However, eucalyptol (28.11%), 2-bornanone (11.57%), endo-borneol (7.82%), and linalyl acetate (5.22%) are the major compounds of LMEO. The results exhibited important inhibitory effects against some bacterial strains with MIC = MBC = 0.39 mg/mL for MPEO against Staphylococcus aureus ATCC. However, LMEO exhibited remarkable antioxidant and antidiabetic activities compared to MPEO. Indeed, LMEO inhibited DPPH, H2O2, and xanthine oxidase with concentrations of 15.23, 21.52, and 8.89 µg/mL, respectively. Moreover, LMEO exhibited α-amylase and α-glucosidase at IC50 = 85.34 and IC50 = 59.36 µg/mL, respectively. The findings showed that both MPEO and LMEO exhibit promising biological properties. However, the application of these species or their main bioactive compounds requires further investigation.
Collapse
|
10
|
Girinathan BP, DiBenedetto N, Worley JN, Peltier J, Arrieta-Ortiz ML, Immanuel SRC, Lavin R, Delaney ML, Cummins CK, Hoffman M, Luo Y, Gonzalez-Escalona N, Allard M, Onderdonk AB, Gerber GK, Sonenshein AL, Baliga NS, Dupuy B, Bry L. In vivo commensal control of Clostridioides difficile virulence. Cell Host Microbe 2021; 29:1693-1708.e7. [PMID: 34637781 DOI: 10.1016/j.chom.2021.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.
Collapse
Affiliation(s)
- Brintha P Girinathan
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay N Worley
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; National Center of Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-yvette Cedex, France
| | | | | | - Richard Lavin
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary L Delaney
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Christopher K Cummins
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Hoffman
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Andrew B Onderdonk
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Georg K Gerber
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
12
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Zhang X, Wang G, Xue H, Zhang J, Wang Q, Zhang Z, Zhang B. Metabolite Profile of Xylem Sap in Cotton Seedlings Is Changed by K Deficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:592591. [PMID: 33362821 PMCID: PMC7758293 DOI: 10.3389/fpls.2020.592591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Xylem sap, belonging to the plant apoplast, not only provides plant tissues with inorganic and organic substances but also facilitates communication between the roots and the leaves and coordinates their development. This study investigated the effects of potassium (K) deficiency on the morphology and the physiology of cotton seedlings as well as pH, mineral nutrient contents, and metabolites of xylem sap. In particular, we compared changes in root-shoot communication under low K (LK) and normal K (NK, control) levels. Compared to control, LK stress significantly decreased seedling biomass (leaf, stem, and root dry weight; stem and root length; root surface area and root volume) and the levels of K, Na (sodium), Mg (magnesium), Fe (iron), and Zn (zinc) in xylem sap. A total of 82 metabolites in sap analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) showed significant differences between the two conditions; among these, 38 were up-regulated more than 2-fold, while the others were down-regulated less than 0.5-fold. In particular, several metabolites found in the cell membrane including three cholines (glycerophosphatecholine, 2-hexenylcholine, and caproylcholine) and desglucocoroloside and others such as malondialdehyde, α-amino acids and derivatives, sucrose, and sugar alcohol significantly increased under LK stress, indicating that cell membranes were damaged and protein metabolism was abnormal. It is worth noting that glycerophosphocholine was up-regulated 29-fold under LK stress, indicating that it can be used as an important signal of root-shoot communication. Furthermore, in pathway analyses, 26 metabolites were matched to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways; L-aspartic acid, which was associated with 10 KEGG pathways, was the most involved metabolite. Overall, K deficiency reduced the antioxidant capacity of cotton seedlings and led to a metabolic disorder including elevated levels of primary metabolites and inhibited production of secondary metabolites. This eventually resulted in decreased biomass of cotton seedlings under LK stress. This study lays a solid foundation for further research on targeted metabolites and signal substances in the xylem sap of cotton plants exposed to K deficiency.
Collapse
Affiliation(s)
- Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guo Wang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Huiyun Xue
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinbao Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Qinglian Wang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
15
|
Pramastya H, Song Y, Elfahmi EY, Sukrasno S, Quax WJ. Positioning Bacillus subtilis as terpenoid cell factory. J Appl Microbiol 2020; 130:1839-1856. [PMID: 33098223 PMCID: PMC8247319 DOI: 10.1111/jam.14904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022]
Abstract
Increasing demands for bioactive compounds have motivated researchers to employ micro‐organisms to produce complex natural products. Currently, Bacillus subtilis has been attracting lots of attention to be developed into terpenoids cell factories due to its generally recognized safe status and high isoprene precursor biosynthesis capacity by endogenous methylerythritol phosphate (MEP) pathway. In this review, we describe the up‐to‐date knowledge of each enzyme in MEP pathway and the subsequent steps of isomerization and condensation of C5 isoprene precursors. In addition, several representative terpene synthases expressed in B. subtilis and the engineering steps to improve corresponding terpenoids production are systematically discussed. Furthermore, the current available genetic tools are mentioned as along with promising strategies to improve terpenoids in B. subtilis, hoping to inspire future directions in metabolic engineering of B. subtilis for further terpenoid cell factory development.
Collapse
Affiliation(s)
- H Pramastya
- University of Groningen, Groningen, The Netherlands.,Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Y Song
- University of Groningen, Groningen, The Netherlands
| | - E Y Elfahmi
- Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - S Sukrasno
- Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - W J Quax
- University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Metab Eng 2020; 61:96-105. [DOI: 10.1016/j.ymben.2020.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
17
|
"Sporotan" a new fluorescent stain for identifying cryptic spores of Rhodobacter johrii. J Microbiol Methods 2020; 177:106019. [PMID: 32805369 DOI: 10.1016/j.mimet.2020.106019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/27/2022]
Abstract
We propose a new fluorescent stain "sporotan" and staining protocol which aid in the identification of cryptic endospores which are otherwise mistaken as poly-β-hydroxyalkanoate granules.
Collapse
|
18
|
Santana-Molina C, Rivas-Marin E, Rojas AM, Devos DP. Origin and Evolution of Polycyclic Triterpene Synthesis. Mol Biol Evol 2020; 37:1925-1941. [PMID: 32125435 PMCID: PMC7306690 DOI: 10.1093/molbev/msaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycyclic triterpenes are members of the terpene family produced by the cyclization of squalene. The most representative polycyclic triterpenes are hopanoids and sterols, the former are mostly found in bacteria, whereas the latter are largely limited to eukaryotes, albeit with a growing number of bacterial exceptions. Given their important role and omnipresence in most eukaryotes, contrasting with their scant representation in bacteria, sterol biosynthesis was long thought to be a eukaryotic innovation. Thus, their presence in some bacteria was deemed to be the result of lateral gene transfer from eukaryotes. Elucidating the origin and evolution of the polycyclic triterpene synthetic pathways is important to understand the role of these compounds in eukaryogenesis and their geobiological value as biomarkers in fossil records. Here, we have revisited the phylogenies of the main enzymes involved in triterpene synthesis, performing gene neighborhood analysis and phylogenetic profiling. Squalene can be biosynthesized by two different pathways containing the HpnCDE or Sqs proteins. Our results suggest that the HpnCDE enzymes are derived from carotenoid biosynthesis ones and that they assembled in an ancestral squalene pathway in bacteria, while remaining metabolically versatile. Conversely, the Sqs enzyme is prone to be involved in lateral gene transfer, and its emergence is possibly related to the specialization of squalene biosynthesis. The biosynthesis of hopanoids seems to be ancestral in the Bacteria domain. Moreover, no triterpene cyclases are found in Archaea, invoking a potential scenario in which eukaryotic genes for sterol biosynthesis assembled from ancestral bacterial contributions in early eukaryotic lineages.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Ana M Rojas
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
19
|
Stier P, Kulozik U. Effect of Sporulation Conditions Following Submerged Cultivation on the Resistance of Bacillus atrophaeus Spores against Inactivation by H 2O 2. Molecules 2020; 25:molecules25132985. [PMID: 32629775 PMCID: PMC7412142 DOI: 10.3390/molecules25132985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
The resistance formation of spores in general and of Bacillus atrophaeus in particular has long been the focus of science in the bio-defense, pharmaceutical and food industries. In the food industry, it is used as a biological indicator (BI) for the evaluation of the inactivation effects of hydrogen peroxide in processing and end packaging lines’ sterilization. Defined BI resistances are critical to avoid false positive and negative tests, which are salient problems due to the variable resistance of currently available commercial BIs. Although spores for use as BIs have been produced for years, little is known about the influence of sporulation conditions on the resistance as a potential source of random variability. This study therefore examines the dependence of spore resistance on the temperature, pH and partial oxygen saturation during submerged production in a bioreactor. For this purpose, spores were produced under different sporulation conditions and their resistance, defined by the D-value, was determined using a count reduction test in tempered 35% liquid hydrogen peroxide. The statistical analysis of the test results shows a quadratic dependence of the resistance on the pH, with the highest D-values at neutral pH. The sporulation temperature has a linear influence on the resistance. The higher the temperature, the higher the D-value. However, these factors interact with each other, which means that the temperature only influences the resistance when the pH is within a certain range. The oxygen partial pressure during sporulation has no significant influence. Based on the data obtained, a model could be developed enabling the resistance of BIs to be calculated, predicted and standardized depending on the sporulation conditions. BI manufacturers could thus produce BIs with defined resistances for the validation of sterilization effects in aseptic packaging/filling lines for the reliable manufacture of shelf-stable and safe food products.
Collapse
|
20
|
Senthilnathan N, Gaurav K, Venkata Ramana C, Radhakrishnan TP. Zwitterionic small molecule based fluorophores for efficient and selective imaging of bacterial endospores. J Mater Chem B 2020; 8:4601-4608. [PMID: 32391841 DOI: 10.1039/d0tb00470g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the emerging scenario of increasing antibiotic resistance and pathogen transmission channels, the grave danger posed by bacterial endospores in critical fields like food industry, health and medicine highlights the urgent need to develop efficient probes for their detection; their sturdy and impermeable multilayer coat makes desirable methods like fluorescence imaging extremely difficult. Selective imaging of the endospores in the presence of the bacteria is even more challenging. Furthermore, it is preferable to maintain the dormant state of endospores through the imaging process, if extended monitoring is required; many of the available techniques involve lethal germination or destruction of the endospores. We show that simple zwitterionic diaminodicyanoquinodimethane (DADQ) molecules with selected functionalities are efficient dyes for fluorescence imaging due to their dipolar structure that facilitates the penetration into the endospore system, and the enhanced fluorescence in their rigid/aggregated state. The facile structural tailorability allows DADQs with various appendage moieties to be synthesized; a derivative with ionic substituents (BT2), and another with optimally long alkyl chains and the resultant hydrophobic character (BHADQ) are shown to be excellent fluorescent probes for endospores. Nanomolar amounts of dyes provide effective staining; while BT2 stains bacteria and endospores, most significantly, BHADQ stains endospores selectively. To the best of our knowledge, this is the first example of selective fluorescence imaging of endospores in their dormant state. A range of spectroscopy, microscopy and calorimetry studies provide insight into the molecular level interactions that enable efficient staining and bright images. DADQ fluorophores are photostable and non-cytotoxic, hence useful in practical applications. The versatile structural tailorability of these dye molecules holds great promise for targeted imaging.
Collapse
Affiliation(s)
- N Senthilnathan
- School of Chemistry, University of Hyderabad, Hyderabad - 500 046, India.
| | | | | | | |
Collapse
|
21
|
Synthesis of 2-(2-Hydroxyethoxy)-3-hydroxysqualene and Characterization of Its Anti-Inflammatory Effects. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9584567. [PMID: 32382581 PMCID: PMC7180416 DOI: 10.1155/2020/9584567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/28/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
Abstract
Squalene (SQ), a natural precursor of many steroids, can inhibit tumor progression and decrease serum cholesterol levels. However, it is difficult to discern the effect of highly active molecules in the treatment of diseases because not enough active compounds reach the site of pathology in crowded biosystems. Therefore, it is necessary to design artificial probes that work effectively within crowded systems. In this study, to facilitate cell penetration, the ethylene glycol moiety (used as a probe) was chemically added to SQ to form 2-(2-hydroxyethoxy)-3-hydroxysqualene (HEHSQ). HEHSQ was prepared from 2,3-epoxysqualene and characterized by Rf, FT-IR, 1H NMR, 13C NMR, and high-resolution mass spectrometry. We then evaluated the anti-inflammatory effects of SQ and HEHSQ on lipopolysaccharide- (LPS-) stimulated RAW264.7 murine macrophages. To determine the effect of SQ and HEHSQ on the viability of RAW264.7 cells, an MTT assay was performed. To quantify the anti-inflammatory effect of SQ and HEHSQ, we measured nitric oxide (NO) production, gene expression, and secretion of the proinflammatory cytokine tumor necrosis factor α (TNF-α) and chemokine C-C motif chemokine 2 (CCL2) in LPS-stimulated RAW264.7 cells using an in vitro inflammatory model. 2,3-Epoxysqualene was prepared according to a reported methodology. The reaction of 2,3-epoxysqualene and ethylene glycol in 2-propanol produced 49% HEHSQ. MTT results showed that 10 and 100 µg/mL HEHSQ treatment decreased cell viability, whereas SQ treatment (1-100 µg/mL) did not have any effect on viability. SQ (100 µg/mL) and HEHSQ (1 µg/mL) treatment significantly reduced the production of LPS-stimulated NO and decreased the expression and secretion of proinflammatory TNF-α and CCL2. Therefore, our results suggested that the anti-inflammatory effects of HEHSQ are 100 times higher than that of unmodified SQ. To the best of our knowledge, this study has demonstrated for the first time that HEHSQ can be potentially used as a safe alternative treatment to anti-inflammatory drugs.
Collapse
|
22
|
Rudolf JD, Chang CY. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Nat Prod Rep 2020; 37:425-463. [PMID: 31650156 PMCID: PMC7101268 DOI: 10.1039/c9np00051h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to July 2019 Terpene synthases (TSs) are responsible for generating much of the structural diversity found in the superfamily of terpenoid natural products. These elegant enzymes mediate complex carbocation-based cyclization and rearrangement cascades with a variety of electron-rich linear and cyclic substrates. For decades, two main classes of TSs, divided by how they generate the reaction-triggering initial carbocation, have dominated the field of terpene enzymology. Recently, several novel and unconventional TSs that perform TS-like reactions but do not resemble canonical TSs in sequence or structure have been discovered. In this review, we identify 12 families of non-canonical TSs and examine their sequences, structures, functions, and proposed mechanisms. Nature provides a wide diversity of enzymes, including prenyltransferases, methyltransferases, P450s, and NAD+-dependent dehydrogenases, as well as completely new enzymes, that utilize distinctive reaction mechanisms for TS chemistry. These unique non-canonical TSs provide immense opportunities to understand how nature evolved different tools for terpene biosynthesis by structural and mechanistic characterization while affording new probes for the discovery of novel terpenoid natural products and gene clusters via genome mining. With every new discovery, the dualistic paradigm of TSs is contradicted and the field of terpene chemistry and enzymology continues to expand.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| |
Collapse
|
23
|
Kotowicz N, Bhardwaj R, Ferreira W, Hong H, Olender A, Ramirez J, Cutting S. Safety and probiotic evaluation of two Bacillus strains producing antioxidant compounds. Benef Microbes 2019; 10:759-771. [DOI: 10.3920/bm2019.0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus species are becoming increasingly relevant for use as probiotics or feed additives where their heat stability can ensure survival in the food matrix or enable long-term storage at ambient temperature. Some Bacillus species are pigmented and in this study, we have examined two strains, one Bacillus pumilus (pigmented red) and the other Bacillus megaterium (pigmented yellow) for their safety for potential use in humans as dietary supplements. In addition, we have set out to determine if they might confer any potential health benefits. Both strains produce C30 carotenoids while the B. pumilus strain also produced large quantities of riboflavin equivalent to genetically modified Bacillus strains and most probably contributing to this strain’s pigmentation. Riboflavin’s and carotenoids are antioxidants, and we have evaluated the ability of vegetative cells and/or spores to influence populations of Faecalibacterium prausnitzii in the colon of mice. While both strains increased levels of F. prausnitzii, spores of the B. pumilus strain produced a significant increase in F. prausnitzii levels. If found to be reproducible in humans such an effect might, potentially, confer health benefits particularly for those suffering from inflammatory bowel disease.
Collapse
Affiliation(s)
- N. Kotowicz
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
| | - R.K. Bhardwaj
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - W.T. Ferreira
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - H.A. Hong
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - A. Olender
- Department of Medical Microbiology, Medical University of Lublin, Chodzki 1 Street, Lublin, 20-093, Poland
| | - J. Ramirez
- Enviromedica, 2301 Scarbrough Drive, Suite 300, Austin, TX 78728, USA
| | - S.M. Cutting
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| |
Collapse
|
24
|
Mangiarotti A, Galassi VV, Puentes EN, Oliveira RG, Del Pópolo MG, Wilke N. Hopanoids Like Sterols Form Compact but Fluid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9848-9857. [PMID: 31268719 DOI: 10.1021/acs.langmuir.9b01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hopanoids are pentacyclic molecules present in membranes from some bacteria, recently proposed as sterol surrogates in these organisms. Diplopterol is an abundant hopanoid that, similar to sterols, does not self-aggregate in lamellar structures when pure, but forms monolayers at the air-water interface. Here, we analyze the interfacial behavior of pure diplopterol and compare it with sterols from different organisms: cholesterol from mammals, ergosterol from fungi, and stigmasterol from plants. We prepared Langmuir monolayers of the compounds and studied their surface properties using different experimental approaches and molecular dynamics simulations. Our results indicate that the films formed by diplopterol, despite being compact with low mean molecular areas, high surface potentials, and high refractive index, depict shear viscosity values similar to that for fluid films. Altogether, our results reveal that hopanoids have similar interfacial behavior than that of sterols, and thus they may have the capacity of modulating bacterial membrane properties in a similar way sterols do in eukaryotes.
Collapse
Affiliation(s)
| | - Vanesa V Galassi
- CONICET y Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Cuyo , Padre Jorge Contreras 1300 , Parque General San Martín, M5502JMA Mendoza , Argentina
| | | | | | - Mario G Del Pópolo
- CONICET y Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Cuyo , Padre Jorge Contreras 1300 , Parque General San Martín, M5502JMA Mendoza , Argentina
| | | |
Collapse
|
25
|
Abdallah II, Pramastya H, van Merkerk R, Sukrasno, Quax WJ. Metabolic Engineering of Bacillus subtilis Toward Taxadiene Biosynthesis as the First Committed Step for Taxol Production. Front Microbiol 2019; 10:218. [PMID: 30842758 PMCID: PMC6391936 DOI: 10.3389/fmicb.2019.00218] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Terpenoids are natural products known for their medicinal and commercial applications. Metabolic engineering of microbial hosts for the production of valuable compounds, such as artemisinin and Taxol, has gained vast interest in the last few decades. The Generally Regarded As Safe (GRAS) Bacillus subtilis 168 with its broad metabolic potential is considered one of these interesting microbial hosts. In the effort toward engineering B. subtilis as a cell factory for the production of the chemotherapeutic Taxol, we expressed the plant-derived taxadiene synthase (TXS) enzyme. TXS is responsible for the conversion of the precursor geranylgeranyl pyrophosphate (GGPP) to taxa-4,11-diene, which is the first committed intermediate in Taxol biosynthesis. Furthermore, overexpression of eight enzymes in the biosynthesis pathway was performed to increase the flux of the GGPP precursor. This was achieved by creating a synthetic operon harboring the B. subtilis genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway (dxs, ispD, ispF, ispH, ispC, ispE, ispG) together with ispA (encoding geranyl and farnesyl pyrophosphate synthases) responsible for providing farnesyl pyrophosphate (FPP). In addition, a vector harboring the crtE gene (encoding geranylgeranyl pyrophosphate synthase, GGPPS, of Pantoea ananatis) to increase the supply of GGPP was introduced. The overexpression of the MEP pathway enzymes along with IspA and GGPPS caused an 83-fold increase in the amount of taxadiene produced compared to the strain only expressing TXS and relying on the innate pathway of B. subtilis. The total amount of taxadiene produced by that strain was 17.8 mg/l. This is the first account of the successful expression of taxadiene synthase in B. subtilis. We determined that the expression of GGPPS through the crtE gene is essential for the formation of sufficient precursor, GGPP, in B. subtilis as its innate metabolism is not efficient in producing it. Finally, the extracellular localization of taxadiene production by overexpressing the complete MEP pathway along with IspA and GGPPS presents the prospect for further engineering aiming for semisynthesis of Taxol.
Collapse
Affiliation(s)
- Ingy I Abdallah
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Hegar Pramastya
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Sukrasno
- Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Nguyen AD, Kim D, Lee EY. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. BMC Genomics 2019; 20:130. [PMID: 30755173 PMCID: PMC6373157 DOI: 10.1186/s12864-019-5487-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Methanotrophs play an important role in biotechnological applications, with their ability to utilize single carbon (C1) feedstock such as methane and methanol to produce a range of high-value compounds. A newly isolated obligate methanotroph strain, Methylomonas sp. DH-1, became a platform strain for biotechnological applications because it has proven capable of producing chemicals, fuels, and secondary metabolites from methane and methanol. In this study, transcriptome analysis with RNA-seq was used to investigate the transcriptional change of Methylomonas sp. DH-1 on methane and methanol. This was done to improve knowledge about C1 assimilation and secondary metabolite pathways in this promising, but under-characterized, methane-bioconversion strain. Results We integrated genomic and transcriptomic analysis of the newly isolated Methylomonas sp. DH-1 grown on methane and methanol. Detailed transcriptomic analysis indicated that (i) Methylomonas sp. DH-1 possesses the ribulose monophosphate (RuMP) cycle and the Embden–Meyerhof–Parnas (EMP) pathway, which can serve as main pathways for C1 assimilation, (ii) the existence and the expression of a complete serine cycle and a complete tricarboxylic acid (TCA) cycle might contribute to methane conversion and energy production, and (iii) the highly active endogenous plasmid pDH1 may code for essential metabolic processes. Comparative transcriptomic analysis on methane and methanol as a sole carbon source revealed different transcriptional responses of Methylomonas sp. DH-1, especially in C1 assimilation, secondary metabolite pathways, and oxidative stress. Especially, these results suggest a shift of central metabolism when substrate changed from methane to methanol in which formaldehyde oxidation pathway and serine cycle carried more flux to produce acetyl-coA and NADH. Meanwhile, downregulation of TCA cycle when grown on methanol may suggest a shift of its main function is to provide de novo biosynthesis, but not produce NADH. Conclusions This study provides insights into the transcriptomic profile of Methylomonas sp. DH-1 grown on major carbon sources for C1 assimilation, providing in-depth knowledge on the metabolic pathways of this strain. These observations and analyses can contribute to future metabolic engineering with the newly isolated, yet under-characterized, Methylomonas sp. DH-1 to enhance its biochemical application in relevant industries. Electronic supplementary material The online version of this article (10.1186/s12864-019-5487-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering & School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
27
|
Moser S, Strohmeier GA, Leitner E, Plocek TJ, Vanhessche K, Pichler H. Whole-cell (+)-ambrein production in the yeast Pichia pastoris. Metab Eng Commun 2018; 7:e00077. [PMID: 30197866 PMCID: PMC6127371 DOI: 10.1016/j.mec.2018.e00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
The triterpenoid (+)-ambrein is a natural precursor for (-)-ambrox, which constitutes one of the most sought-after fragrances and fixatives for the perfume industry. (+)-Ambrein is a major component of ambergris, an intestinal excretion of sperm whales that is found only serendipitously. Thus, the demand for (-)-ambrox is currently mainly met by chemical synthesis. A recent study described for the first time the applicability of an enzyme cascade consisting of two terpene cyclases, namely squalene-hopene cyclase from Alicyclobacillus acidocaldarius (AaSHC D377C) and tetraprenyl-β-curcumene cyclase from Bacillus megaterium (BmeTC) for in vitro (+)-ambrein production starting from squalene. Yeasts, such as Pichia pastoris, are natural producers of squalene and have already been shown in the past to be excellent hosts for the biosynthesis of hydrophobic compounds such as terpenoids. By targeting a central enzyme in the sterol biosynthesis pathway, squalene epoxidase Erg1, intracellular squalene levels in P. pastoris could be strongly enhanced. Heterologous expression of AaSHC D377C and BmeTC and, particularly, development of suitable methods to analyze all products of the engineered strain provided conclusive evidence of whole-cell (+)-ambrein production. Engineering of BmeTC led to a remarkable one-enzyme system that was by far superior to the cascade, thereby increasing (+)-ambrein levels approximately 7-fold in shake flask cultivation. Finally, upscaling to 5 L bioreactor yielded more than 100 mg L-1 of (+)-ambrein, demonstrating that metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-ambrein.
Collapse
Key Words
- (+)-ambrein
- AOX1, alcohol oxidase
- AaSHC, Alicyclobacillus acidocaldarius squalene-hopene cyclase
- BSM, basal salt medium
- BmeTC, Bacillus megaterium terpene cyclase
- CDW, cell dry weight
- FLD1, formaldehyde dehydrogenase 1
- HRP, horse radish peroxidase
- Metabolic engineering
- PTM1, Pichia trace metals
- Pichia pastoris
- Squalene
- Terpene cyclase
- Triterpenoid
- YNB, yeast nitrogen base
- YPD, yeast extract peptone dextrose medium
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Gernot A Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Organic Chemistry, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Thomas J Plocek
- ACS International S.A., 184 Route de St-Julien, CH-1228 Plan-les-Ouates, Switzerland
| | - Koenraad Vanhessche
- ACS International S.A., 184 Route de St-Julien, CH-1228 Plan-les-Ouates, Switzerland
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14/2, 8010 Graz, Austria
| |
Collapse
|
28
|
Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A, Newman DK. Hopanoid lipids: from membranes to plant-bacteria interactions. Nat Rev Microbiol 2018; 16:304-315. [PMID: 29456243 PMCID: PMC6087623 DOI: 10.1038/nrmicro.2017.173] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid research represents a frontier for microbiology, as showcased by hopanoid lipids. Hopanoids, which resemble sterols and are found in the membranes of diverse bacteria, have left an extensive molecular fossil record. They were first discovered by petroleum geologists. Today, hopanoid-producing bacteria remain abundant in various ecosystems, such as the rhizosphere. Recently, great progress has been made in our understanding of hopanoid biosynthesis, facilitated in part by technical advances in lipid identification and quantification. A variety of genetically tractable, hopanoid-producing bacteria have been cultured, and tools to manipulate hopanoid biosynthesis and detect hopanoids are improving. However, we still have much to learn regarding how hopanoid production is regulated, how hopanoids act biophysically and biochemically, and how their production affects bacterial interactions with other organisms, such as plants. The study of hopanoids thus offers rich opportunities for discovery.
Collapse
Affiliation(s)
- Brittany J. Belin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nicolas Busset
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, University of Montpellier, CIRAD, France
| | - Eric Giraud
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, University of Montpellier, CIRAD, France
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
29
|
Linearmycins are lytic membrane-targeting antibiotics. J Antibiot (Tokyo) 2018; 71:372-381. [PMID: 29348524 DOI: 10.1038/s41429-017-0005-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023]
Abstract
The linearmycin family of polyketides was originally classified as antifungal metabolites. However, in addition to antifungal activity, we previously found that linearmycins cause cellular lysis and colony degradation of the Gram-positive bacterium Bacillus subtilis. We recently showed that Streptomyces sp. strain Mg1 incorporates linearmycins into extracellular vesicles, which are capable of lysing B. subtilis. However, the mechanism of linearmycin-induced lysis was hitherto unexplored. Therefore, we sought to determine how linearmycin-laden vesicles cause lysis. In this study, we found that linearmycins inhibited the growth of all Gram-positive bacteria that we tested, but lysis was limited to some Bacillus species. Next, we found that linearmycin-induced lysis occurred even when cellular metabolism and growth were inhibited, which suggested that linearmycins possess the intrinsic capacity to lyse cells, unlike cell-wall targeting antibiotics. We showed that linearmycin exposure caused changes consistent with rapid depolarization of the B. subtilis cytoplasmic membrane, which was correlated with a loss of viability. Finally, using liposomes as in vitro membrane models, we demonstrated that linearmycins are capable of disrupting lipid bilayers without any other cellular components. Taken together, our results strongly indicate that the cytoplasmic membrane is the direct antibacterial target of linearmycins.
Collapse
|
30
|
The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME JOURNAL 2017; 12:885-897. [PMID: 29259290 DOI: 10.1038/s41396-017-0017-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/17/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The ecology of antibiotic resistance involves the interplay of a long natural history of antibiotic production in the environment, and the modern selection of resistance in pathogens through human use of these drugs. Important components of the resistome are intrinsic resistance genes of environmental bacteria, evolved and acquired over millennia, and their mobilization, which drives dissemination in pathogens. Understanding the dynamics and evolution of resistance across bacterial taxa is essential to address the current crisis in drug-resistant infections. Here we report the exploration of antibiotic resistance in the Paenibacillaceae prompted by our discovery of an ancient intrinsic resistome in Paenibacillus sp. LC231, recovered from the isolated Lechuguilla cave environment. Using biochemical and gene expression analysis, we have mined the resistome of the second member of the Paenibacillaceae family, Brevibacillus brevis VM4, which produces several antimicrobial secondary metabolites. Using phylogenomics, we show that Paenibacillaceae resistomes are in flux, evolve mostly independent of secondary metabolite biosynthetic diversity, and are characterized by cryptic, redundant, pseudoparalogous, and orthologous genes. We find that in contrast to pathogens, mobile genetic elements are not significantly responsible for resistome remodeling. This offers divergent modes of resistome development in pathogens and environmental bacteria.
Collapse
|
31
|
Response induced in Mycoplasma gallisepticum under heat shock might be relevant to infection process. Sci Rep 2017; 7:11330. [PMID: 28900116 PMCID: PMC5595898 DOI: 10.1038/s41598-017-09237-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Despite the fact the term "proteome" was proposed to characterize a set of proteins in one of mycoplasma species, proteome response to various exposures in this bacteria are still obscure. Commonly, authors studying proteomic response on perturbation models in mycoplasmas use single approach and do not confirm their findings by alternative methods. Consequently, the results of proteomic analysis should be validated by complementary techniques. In this study we utilized three complementary approaches (SWATH, MRM, 2D-DIGE) to assess response of Mycoplasma gallisepticum under heat stress on proteomic level and combined these findings with metabolic response and the results of transcriptional profiling. We divide response into two modes - one is directly related to heat stress and other is triggered during heat stress, but not directly relevant to it. The latter includes accumulation of ATP and shedding of antigens. Both of these phenomena may be relevant to evasion of host's immune system and dissemination during mycoplasmosis in vivo.
Collapse
|
32
|
Tenkovskaia L, Murakami M, Okuno K, Ueda D, Sato T. Analysis of the Catalytic Mechanism of Bifunctional Triterpene/Sesquarterpene Cyclase: Tyr167 Functions To Terminate Cyclization of Squalene at the Bicyclic Step. Chembiochem 2017; 18:1910-1913. [DOI: 10.1002/cbic.201700329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Liudmila Tenkovskaia
- Department of Applied Biological Chemistry; Faculty of Agriculture, and; Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Mizuki Murakami
- Department of Applied Biological Chemistry; Faculty of Agriculture, and; Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Kotone Okuno
- Department of Applied Biological Chemistry; Faculty of Agriculture, and; Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Daijiro Ueda
- Department of Applied Biological Chemistry; Faculty of Agriculture, and; Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Tsutomu Sato
- Department of Applied Biological Chemistry; Faculty of Agriculture, and; Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
33
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
34
|
Millan-Oropeza A, Henry C, Blein-Nicolas M, Aubert-Frambourg A, Moussa F, Bleton J, Virolle MJ. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans. J Proteome Res 2017; 16:2597-2613. [DOI: 10.1021/acs.jproteome.7b00163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron Millan-Oropeza
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Céline Henry
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mélisande Blein-Nicolas
- Génétique
Quantitative et Évolution (GQE) - Le Moulon, INRA, Univ Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Anne Aubert-Frambourg
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Fathi Moussa
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Jean Bleton
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Marie-Jöelle Virolle
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
35
|
Lopez D, Koch G. Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 2017; 36:76-84. [PMID: 28237903 DOI: 10.1016/j.mib.2017.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
Recent studies show that internal organization of bacterial cells is more complex than previously appreciated. A clear example of this is the assembly of the nanoscale membrane platforms termed functional membrane microdomains. The lipid composition of these regions differs from that of the surrounding membrane; these domains confine a set of proteins involved in specific cellular processes such as protease secretion and signal transduction. It is currently thought that functional membrane microdomains act as oligomerization platforms and promote efficient oligomerization of interacting protein partners in bacterial membranes. In this review, we highlight the most noteworthy achievements, challenges and controversies of this emerging research field over the past five years.
Collapse
Affiliation(s)
- Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; Spanish National Centre for Biotechnology (CNB), Madrid 28049, Spain.
| | - Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
36
|
Vega-Cabrera LA, Pardo-López L. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes. IUBMB Life 2017; 69:55-62. [DOI: 10.1002/iub.1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Luz A. Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| |
Collapse
|
37
|
From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Prog Lipid Res 2016; 63:1-13. [DOI: 10.1016/j.plipres.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
|
38
|
Abstract
Spores of various Bacillus and Clostridium species are among the most resistant life forms known. Since the spores of some species are causative agents of much food spoilage, food poisoning, and human disease, and the spores of Bacillus anthracis are a major bioweapon, there is much interest in the mechanisms of spore resistance and how these spores can be killed. This article will discuss the factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali. These resistance factors include the outer layers of the spore, such as the thick proteinaceous coat that detoxifies reactive chemicals; the relatively impermeable inner spore membrane that restricts access of toxic chemicals to the spore core containing the spore's DNA and most enzymes; the low water content and high level of dipicolinic acid in the spore core that protect core macromolecules from the effects of heat and desiccation; the saturation of spore DNA with a novel group of proteins that protect the DNA against heat, genotoxic chemicals, and radiation; and the repair of radiation damage to DNA when spores germinate and return to life. Despite their extreme resistance, spores can be killed, including by damage to DNA, crucial spore proteins, the spore's inner membrane, and one or more components of the spore germination apparatus.
Collapse
|
39
|
Shinozaki J, Hiruta M, Okada T, Masuda K. Migrated Hopene Synthases fromColysis pothifoliaand Identification of a Migration Switch Controlling the Number of 1,2-Hydride and Methyl Shifts. Chembiochem 2015; 17:65-70. [DOI: 10.1002/cbic.201500511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Junichi Shinozaki
- Showa Pharmaceutical University; Higashi-Tamagawagakuen Machida City Tokyo 194-8543 Japan
| | - Masayoshi Hiruta
- Showa Pharmaceutical University; Higashi-Tamagawagakuen Machida City Tokyo 194-8543 Japan
| | - Takayuki Okada
- Showa Pharmaceutical University; Higashi-Tamagawagakuen Machida City Tokyo 194-8543 Japan
| | - Kazuo Masuda
- Showa Pharmaceutical University; Higashi-Tamagawagakuen Machida City Tokyo 194-8543 Japan
| |
Collapse
|
40
|
Lopez D. Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 2015; 192:3-11. [PMID: 26320704 DOI: 10.1016/j.chemphyslip.2015.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022]
Abstract
Membranes of eukaryotic cells organize a number of proteins related to signal transduction and membrane trafficking into microdomains, which are enriched in particular lipids, like cholesterol and sphingolipids and are commonly referred as to lipid rafts or membrane rafts. The existence of this type of signaling platforms was traditionally associated with eukaryotic membranes because prokaryotic cells were considered too simple organisms to require a sophisticated organization of their signaling networks. However, the research that have been performed during last years have shown that bacteria organize many signaling transduction processes in Functional Membrane Microdomains (FMMs), which are similar to the lipid rafts that are found in eukaryotic cells. The current knowledge of the existence of FMMs in bacteria is described in this review and the specific structural and biological properties of these membrane microdomains are introduced. The organization of FMMs in bacterial membranes reveals an unexpected level of sophistication in signaling transduction and membrane organization that is unprecedented in bacteria, suggesting that bacteria as more complex organisms than previously considered.
Collapse
Affiliation(s)
- Daniel Lopez
- Research Center for Infectious Diseases (ZINF), Institute for Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider Strasse (2), 97080 Würzburg, Germany; Spanish National Center for Biotechnology (CNB), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
41
|
Ueda D, Yamaga H, Murakami M, Totsuka Y, Shinada T, Sato T. Biosynthesis of Sesterterpenes, Head-to-Tail Triterpenes, and Sesquarterpenes inBacillus clausii: Identification of Multifunctional Enzymes and Analysis of Isoprenoid Metabolites. Chembiochem 2015; 16:1371-7. [DOI: 10.1002/cbic.201500138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/08/2022]
|
42
|
Checinska A, Paszczynski A, Burbank M. Bacillusand Other Spore-Forming Genera: Variations in Responses and Mechanisms for Survival. Annu Rev Food Sci Technol 2015; 6:351-69. [DOI: 10.1146/annurev-food-030713-092332] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandra Checinska
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
- Present address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109;
| | - Andrzej Paszczynski
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
| | - Malcolm Burbank
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
- Present address: BioCement Technologies Inc., Seattle, Washington 98101
| |
Collapse
|
43
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
44
|
Abstract
An interesting concept in the organization of cellular membranes is the proposed existence of lipid rafts. Membranes of eukaryotic cells organize signal transduction proteins into membrane rafts or lipid rafts that are enriched in particular lipids such as cholesterol and are important for the correct functionality of diverse cellular processes. The assembly of lipid rafts in eukaryotes has been considered a fundamental step during the evolution of cellular complexity, suggesting that bacteria and archaea were organisms too simple to require such a sophisticated organization of their cellular membranes. However, it was recently discovered that bacteria organize many signal transduction, protein secretion, and transport processes in functional membrane microdomains, which are equivalent to the lipid rafts of eukaryotic cells. This review contains the most significant advances during the last 4 years in understanding the structural and biological role of lipid rafts in bacteria. Furthermore, this review shows a detailed description of a number of molecular and genetic approaches related to the discovery of bacterial lipid rafts as well as an overview of the group of tentative lipid-protein and protein-protein interactions that give consistency to these sophisticated signaling platforms. Additional data suggesting that lipid rafts are widely distributed in bacteria are presented in this review. Therefore, we discuss the available techniques and optimized protocols for the purification and analysis of raft-associated proteins in various bacterial species to aid in the study of bacterial lipid rafts in other laboratories that could be interested in this topic. Overall, the discovery of lipid rafts in bacteria reveals a new level of sophistication in signal transduction and membrane organization that was unexpected for bacteria and shows that bacteria are more complex than previously appreciated.
Collapse
Affiliation(s)
- Marc Bramkamp
- Department of Biology I, University of Munich (LMU), Planegg/Martinsried, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nat Commun 2014; 5:5106. [PMID: 25355435 DOI: 10.1038/ncomms6106] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/29/2014] [Indexed: 01/21/2023] Open
Abstract
Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states.
Collapse
|
46
|
Lee J, Jung Y, Shin JH, Kim HK, Moon BC, Ryu DH, Hwang GS. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules 2014; 19:9535-51. [PMID: 25000465 PMCID: PMC6270825 DOI: 10.3390/molecules19079535] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023] Open
Abstract
Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS) and ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| | - Jeoung-Hwa Shin
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| | - Ho Kyoung Kim
- Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Byeong Cheol Moon
- Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| |
Collapse
|
47
|
Kingston AW, Zhao H, Cook GM, Helmann JD. Accumulation of heptaprenyl diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of resistance mediated by the BceAB transporter. Mol Microbiol 2014; 93:37-49. [PMID: 24806199 DOI: 10.1111/mmi.12637] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
Heptaprenyl diphosphate (C35 -PP) is an isoprenoid intermediate in the synthesis of both menaquinone and the sesquarterpenoids. We demonstrate that inactivation of ytpB, encoding a C35 -PP utilizing enzyme required for sesquarterpenoid synthesis, leads to an increased sensitivity to bacitracin, an antibiotic that binds undecaprenyl pyrophosphate (C55 -PP), a key intermediate in cell wall synthesis. Genetic studies indicate that bacitracin sensitivity is due to accumulation of C35 -PP, rather than the absence of sesquarterpenoids. Sensitivity is accentuated in a ytpB menA double mutant, lacking both known C35 -PP consuming enzymes, and in a ytpB strain overexpressing the HepST enzyme that synthesizes C35 -PP. Conversely, sensitivity in the ytpB background is suppressed by mutation of hepT or by supplementation with 1,4-dihydroxy-2-naphthoate, a co-substrate with C35 -PP for MenA. Bacitracin sensitivity results from impairment of the BceAB and BcrC resistance mechanisms by C35 -PP: in a bceAB bcrC double mutant disruption of ytpB no longer increases bacitracin sensitivity. These results suggest that C35 -PP inhibits both BcrC (a C55 -PP phosphatase) and BceAB (an ABC transporter that confers bacitracin resistance). These findings lead to a model in which BceAB protects against bacitracin by transfer of the target, C55 -PP, rather than the antibiotic across the membrane.
Collapse
Affiliation(s)
- Anthony W Kingston
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | | | | | |
Collapse
|
48
|
|
49
|
Novel Compounds of Octahydroheptaprenyl Mycolic Acyl Ester and Monocyclic C35-Terpene, Heptaprenylcycline B, from Non-PathogenicMycobacteriumSpecies. Biosci Biotechnol Biochem 2014; 74:147-51. [DOI: 10.1271/bbb.90669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Poger D, Mark AE. The Relative Effect of Sterols and Hopanoids on Lipid Bilayers: When Comparable Is Not Identical. J Phys Chem B 2013; 117:16129-40. [DOI: 10.1021/jp409748d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|