1
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
3
|
Chen F, Yin Y, Chen H, Wang R, Wang S, Wang H. Global genetic diversity and Asian clades evolution: a phylogeographic study of Staphylococcus aureus sequence type 5. Antimicrob Agents Chemother 2024; 68:e0117523. [PMID: 38259089 PMCID: PMC10916392 DOI: 10.1128/aac.01175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus sequence type (ST) 5 has spread worldwide; however, phylogeographic studies on the evolution of global phylogenetic and Asian clades of ST5 are lacking. This study included 368 ST5 genome sequences, including 111 newly generated sequences. Primary phylogenetic analysis suggested that there are five clades, and geographical clustering of ST5 methicillin-resistant S. aureus (MRSA) was linked to the acquisition of S. aureus pathogenicity islands (SaPIs; enterotoxin gene island) and integration of the prophage φSa3. The most recent common ancestor of global S. aureus ST5 dates back to the mid-1940s, coinciding with the clinical introduction of penicillin. Bayesian phylogeographic inference allowed to ancestrally trace the Asian ST5 MRSA clade to Japan, which may have spread to major cities in China and Korea in the 1990s. Based on a pan-genome-wide association study, the emergence of Asian ST5 clades was attributed to the gain of prophages, SaPIs, and plasmids, as well as the coevolution of resistance genes. Clade IV displayed greater genomic diversity than the Asian MRSA clades. Collectively, our study provides in-depth insights into the global evolution of S. aureus ST5 mainly in China and the United States and reveals that different S. aureus ST5 clades have arisen independently in different parts of the world, with limited geographic dispersal across continents.
Collapse
Affiliation(s)
- Fengning Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
4
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
5
|
Barcudi D, Blasko E, Gonzalez MJ, Gagetti P, Lamberghini R, Garnero A, Sarkis C, Faccone D, Lucero C, Tosoroni D, Bocco JL, Corso A, Sola C. Different evolution of S. aureus methicillin-resistant and methicillin-susceptible infections, Argentina. Heliyon 2024; 10:e22610. [PMID: 38163174 PMCID: PMC10755277 DOI: 10.1016/j.heliyon.2023.e22610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Staphylococcus aureus-(SA) is widespread among healthcare-associated-(HA) and the community-associated-(CA) infections. However, the contributions of MRSA and MSSA to the SA overall burden remain unclear. In a nationally-representative-survey conducted in Argentina, 668 SA clinical isolates from 61 hospitals were examined in a prospective, cross-sectional, multicenter study in April 2015. The study aimed to analyze MRSA molecular epidemiology, estimate overall SA infection incidence (MSSA, MRSA, and genotypes) in community-onset (CO: HACO, Healthcare-Associated-CO and CACO, Community-Associated-CO) and healthcare-onset (HO: HAHO, Healthcare-associated-HO) infections, stratified by age groups. Additionally temporal evolution was estimated by comparing this study's (2015) incidence values with a previous study (2009) in the same region. Erythromycin-resistant-MSSA and all MRSA strains were genetically typed. The SA total-infections (TI) overall-incidence was 49.1/100,000 monthly-visits, 25.1 and 24.0 for MRSA and MSSA respectively (P = 0.5889), in April 2015. In adults with invasive-infections (INVI), MSSA was 15.7 and MRSA was 11.8 (P = 0.0288), 1.3-fold higher. HA SA infections, both MSSA and MRSA, surpassed CA infections by over threefold. During 2009-2015, there was a significant 23.4 % increase in the SA infections overall-incidence, mainly driven by MSSA, notably a 54.2 % increase in INVI among adults, while MRSA infection rates remained stable. The MSSA rise was accompanied by increased antimicrobial resistance, particularly to erythromycin, linked to MSSA-CC398-t1451-ermT + -IEC+-pvl- emergence. The SA-infections rise was primarily attributed to community-onset-infections (37.3 % and 62.4 % increase for TI and INVI, respectively), particularly HACO-MSSA and HACO-MRSA in adults, as well as CACO-MSSA. The main CA-MRSA-PFGE-typeN-ST30-SCCmecIVc-PVL+/- clone along with other clones (USA300-ST8-IV-LV-PVL+/-, PFGE-typeDD-ST97-IV- PVL-) added to rather than replaced CA-MRSA-PFGE-typeI-ST5-SCCmecIVa-PVL+/- clone in HA invasive-infections. They also displaced clone HA-MRSA-PFGE-typeA-ST5-SCCmecI, mainly in HAHO infections. The overall-burden of SA infections is rising in Argentina, driven primarily by community-onset MSSA, particularly in adults, linked to increased erythromycin-resistance and MSSA-CC398-t1451-ermT + -IEC+-pvl- emergence. Novel knowledge and transmission-control strategies are required for MSSA.
Collapse
Affiliation(s)
- Danilo Barcudi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET and Universidad Nacional de Córdoba, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000, Córdoba, Argentina
| | - Enrique Blasko
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET and Universidad Nacional de Córdoba, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000, Córdoba, Argentina
| | - María José Gonzalez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET and Universidad Nacional de Córdoba, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000, Córdoba, Argentina
| | - Paula Gagetti
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ricardo Lamberghini
- Cátedra de Infectología I, Hospital Rawson, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Bajada Pucará 2025, X5000, Córdoba, Argentina
| | - Analía Garnero
- Servicio de Infectología, Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Bajada Pucará 787, X 5000, ANN, Argentina
| | - Claudia Sarkis
- Hospital de Pediatría S.A.M.I.C."Prof. Dr. Juan P. Garrahan”, Combate de los Pozos 1881, C1245, AAM, CABA, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Celeste Lucero
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Dario Tosoroni
- Informática Médica, Facultad de Medicina, Universidad Católica de Córdoba, Jacinto Ríos 555, X5004, ASK, Córdoba, Argentina
| | | | - José L. Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET and Universidad Nacional de Córdoba, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000, Córdoba, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Sola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET and Universidad Nacional de Córdoba, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000, Córdoba, Argentina
| |
Collapse
|
6
|
Wang Y, Zhang P, Wu J, Chen S, Jin Y, Long J, Duan G, Yang H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86521-86539. [PMID: 37418185 DOI: 10.1007/s11356-023-28532-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Peihua Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jian Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Molecular Epidemiology, Antimicrobial Susceptibility, and Clinical Features of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections over 30 Years in Barcelona, Spain (1990-2019). Microorganisms 2022; 10:microorganisms10122401. [PMID: 36557654 PMCID: PMC9788191 DOI: 10.3390/microorganisms10122401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus bloodstream infections (MRSA-BSI) are a significant cause of mortality. We analysed the evolution of the molecular and clinical epidemiology of MRSA-BSI (n = 784) in adult patients (Barcelona, 1990−2019). Isolates were tested for antimicrobial susceptibility and genotyped (PFGE), and a selection was sequenced (WGS) to characterise the pangenome and mechanisms underlying antimicrobial resistance. Increases in patient age (60 to 71 years), comorbidities (Charlson’s index > 2, 10% to 94%), community-onset healthcare-associated acquisition (9% to 60%), and 30-day mortality (28% to 36%) were observed during the 1990−1995 and 2014−2019 periods. The proportion of catheter-related BSIs fell from 57% to 20%. Current MRSA-BSIs are caused by CC5-IV and an upward trend of CC8-IV and CC22-IV clones. CC5 and CC8 had the lowest core genome proportions. Antimicrobial resistance rates fell, and only ciprofloxacin, tobramycin, and erythromycin remained high (>50%) due to GyrA/GrlA changes, the presence of aminoglycoside-modifying enzymes (AAC(6′)-Ie-APH(2″)-Ia and ANT(4′)-Ia), and mph(C)/msr(A) or erm (C) genes. Two CC22-IV strains showed daptomycin resistance (MprF substitutions). MRSA-BSI has become healthcare-associated, affecting elderly patients with comorbidities and causing high mortality rates. Clonal replacement with CC5-IV and CC8-IV clones resulted in lower antimicrobial resistance rates. The increased frequency of the successful CC22-IV, associated with daptomycin resistance, should be monitored.
Collapse
|
8
|
Aerts M, Battisti A, Hendriksen R, Larsen J, Nilsson O, Abrahantes JC, Guerra B, Papanikolaou A, Beloeil P. Technical specifications for a baseline survey on the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in pigs. EFSA J 2022; 20:e07620. [PMID: 36267542 PMCID: PMC9579990 DOI: 10.2903/j.efsa.2022.7620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The European Commission requested scientific and technical assistance in the preparation of a EU-wide baseline survey protocol for a European Union (EU) coordinated monitoring programme on the prevalence of methicillin-resistant Staphylococcus Aureus (MRSA) in pigs. The objective of the survey is to estimate the MRSA prevalence in batches of fattening pigs at slaughter at both European and national levels, with a 95% level of confidence and a level of precision of 10% considering an expected prevalence of 50%. The survey protocol defines the target population, the sample size for the survey, sample collection requirements, the analytical methods (for isolation, identification, phenotypic susceptibility testing and further genotypic testing of MRSA isolates), the data reporting requirements and the plan of analysis. The samples are to be analysed according to the laboratory protocols available on the European Union Reference Laboratory (EURL-AR) website. Generalised linear models will be used to estimate proportion (with 95% confidence intervals) of batches of slaughter pigs tested positive to MRSA. The necessary data to be reported by the EU Member States to support this baseline survey are presented in three data models. The results of the survey should be reported using the EFSA data collection framework.
Collapse
|
9
|
Ramos B, Rosalino LM, Palmeira JD, Torres RT, Cunha MV. Antimicrobial resistance in commensal Staphylococcus aureus from wild ungulates is driven by agricultural land cover and livestock farming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119116. [PMID: 35276250 DOI: 10.1016/j.envpol.2022.119116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
Staphylococcus aureus is a human pathobiont (i.e., a commensal microorganism that is potentially pathogenic under certain conditions), a nosocomial pathogen and a leading cause of morbidity and mortality in humans. S. aureus is also a commensal and pathogen of companion animals and livestock. The dissemination of antimicrobial resistant (AMR) S. aureus, particularly methicillin-resistant (MRSA), has been associated to its ability for establishing new reservoirs, but limited attention has been devoted to the role of the environment. To fill this gap, we aimed to characterize animal carrier status, AMR phenotypes, predominant clonal lineages and their relationship with clinical and food-chain settings, as well as to find predictors of AMR occurrence. Nasal swabs (n = 254) from wild boar (n = 177), red deer (n = 54) and fallow deer (n = 23) hunted in Portugal, during the season 2019/2020, yielded an overall carrier proportion of 35.8%, ranging from 53.7% for red deer and 32.2% for wild boar to 21.7% for fallow deer. MRSA from wild boar and phenotypically linezolid-resistant S. aureus from wild boar and red deer were isolated, indicating that resistance to antimicrobials restricted to clinical practice also occurs in wildlife. The most prevalent genotypes were t11502/ST2678 (29.6%) and t12939/ST2678 (9.4%), previously reported in wild boar from Spain. Clonal lineages reported in humans and livestock, like CC1, CC5 or CC8 (19.1%) and ST425, CC133 or CC398 (23.5%), respectively, were also found. The sequence type ST544, previously restricted to humans, is described in wildlife for the first time. We also identified that land use (agricultural land cover), human driven disturbance (swine abundance) and host-related factors (sex) determine resistance occurrence. These findings suggest that antibiotics used in clinical settings, agriculture and livestock farming, spill over to wildlife, leading to AMR emergence, with potential biological, ecological, and human health effects. This work is one of the most comprehensive surveys in Europe of S. aureus occurrence and determinants among widely distributed wild ungulates.
Collapse
Affiliation(s)
- Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Luís Miguel Rosalino
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Josman D Palmeira
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rita T Torres
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
10
|
Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, Deplano A, Vandendriessche S, Černá Bolfíková B, Hulva P, Arendrup MC, Hare RK, Barnadas C, Stegger M, Sieber RN, Skov RL, Petersen A, Angen Ø, Rasmussen SL, Espinosa-Gongora C, Aarestrup FM, Lindholm LJ, Nykäsenoja SM, Laurent F, Becker K, Walther B, Kehrenberg C, Cuny C, Layer F, Werner G, Witte W, Stamm I, Moroni P, Jørgensen HJ, de Lencastre H, Cercenado E, García-Garrote F, Börjesson S, Hæggman S, Perreten V, Teale CJ, Waller AS, Pichon B, Curran MD, Ellington MJ, Welch JJ, Peacock SJ, Seilly DJ, Morgan FJE, Parkhill J, Hadjirin NF, Lindsay JA, Holden MTG, Edwards GF, Foster G, Paterson GK, Didelot X, Holmes MA, Harrison EM, Larsen AR. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022; 602:135-141. [PMID: 34987223 PMCID: PMC8810379 DOI: 10.1038/s41586-021-04265-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.
Collapse
Affiliation(s)
- Jesper Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - Claire L Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Heidrun Kerschner
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Petra Apfalter
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Ariane Deplano
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Stien Vandendriessche
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Laboratory for Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Barbora Černá Bolfíková
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Hulva
- Department of Zoology, Charles University, Prague, Czech Republic
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Maiken C Arendrup
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Rasmus K Hare
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Céline Barnadas
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Marc Stegger
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Raphael N Sieber
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Robert L Skov
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Petersen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sophie L Rasmussen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Wildlife Conservation Research Unit (WildCRU), Department of Zoology, University of Oxford, Tubney, UK
| | - Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura J Lindholm
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Frederic Laurent
- Bacteriology Department and French National Reference Center for Staphylococci, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Birgit Walther
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig University Giessen, Giessen, Germany
| | - Christiane Cuny
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Franziska Layer
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Wolfgang Witte
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | | | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | | | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, ITQB NOVA, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Emilia Cercenado
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Fernando García-Garrote
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
- Servicio de Microbiología, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sara Hæggman
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Andrew S Waller
- Animal Health Trust, Newmarket, UK
- Intervacc AB, Stockholm, Stockholm, Sweden
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bruno Pichon
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - Martin D Curran
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew J Ellington
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - David J Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Fiona J E Morgan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nazreen F Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jodi A Lindsay
- Institute of Infection and Immunity, St George's, University of London, London, UK
| | | | - Giles F Edwards
- Scottish MRSA Reference Laboratory, NHS Greater Glasgow and Clyde, Stobhill Hospital, Glasgow, UK
| | | | - Gavin K Paterson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Warwick, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Anders R Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
11
|
Barua N, Huang L, Li C, Yang Y, Luo M, Wei WI, Wong KT, Lo NWS, Kwok KO, Ip M. Comparative Study of Two-Dimensional (2D) vs. Three-Dimensional (3D) Organotypic Kertatinocyte-Fibroblast Skin Models for Staphylococcus aureus (MRSA) Infection. Int J Mol Sci 2021; 23:ijms23010299. [PMID: 35008727 PMCID: PMC8745520 DOI: 10.3390/ijms23010299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 01/03/2023] Open
Abstract
The invasion of skin tissue by Staphylococcus aureus is mediated by mechanisms that involve sequential breaching of the different stratified layers of the epidermis. Induction of cell death in keratinocytes is a measure of virulence and plays a crucial role in the infection progression. We established a 3D-organotypic keratinocyte-fibroblast co-culture model to evaluate whether a 3D-skin model is more effective in elucidating the differences in the induction of cell death by Methicillin-resistant Staphylococcus aureus (MRSA) than in comparison to 2D-HaCaT monolayers. We investigated the difference in adhesion, internalization, and the apoptotic index in HaCaT monolayers and our 3D-skin model using six strains of MRSA representing different clonal types, namely, ST8, ST30, ST59, ST22, ST45 and ST239. All the six strains exhibited internalization in HaCaT cells. Due to cell detachment, the invasion study was limited up to two and a half hours. TUNEL assay showed no significant difference in the cell death induced by the six MRSA strains in the HaCaT cells. Our 3D-skin model provided a better insight into the interactions between the MRSA strains and the human skin during the infection establishment as we could study the infection of MRSA in our skin model up to 48 h. Immunohistochemical staining together with TUNEL assay in the 3D-skin model showed co-localization of the bacteria with the apoptotic cells demonstrating the induction of apoptosis by the bacteria and revealed the variation in bacterial transmigration among the MRSA strains. The strain representing ST59 showed maximum internalization in HaCaT cells and the maximum cell death as measured by Apoptotic index in the 3D-skin model. Our results show that 3D-skin model might be more likely to imitate the physiological response of skin to MRSA infection than 2D-HaCaT monolayer keratinocyte cultures and will enhance our understanding of the difference in pathogenesis among different MRSA strains.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Lin Huang
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Ying Yang
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Mingjing Luo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wan In Wei
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Kam Tak Wong
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Norman Wai Sing Lo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Kin On Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Correspondence: ; Tel.: +852-35051265
| |
Collapse
|
12
|
Hsu BM, Chen JS, Lin IC, Hsu GJ, Koner S, Hussain B, Huang SW, Tsai HC. Molecular and Anti-Microbial Resistance (AMR) Profiling of Methicillin-Resistant Staphylococcus aureus (MRSA) from Hospital and Long-Term Care Facilities (LTCF) Environment. Antibiotics (Basel) 2021; 10:antibiotics10060748. [PMID: 34205552 PMCID: PMC8235027 DOI: 10.3390/antibiotics10060748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
To provide evidence of the cross-contamination of emerging pathogenic microbes in a local network between long-term care facilities (LTCFs) and hospitals, this study emphasizes the molecular typing, the prevalence of virulence genes, and the antibiotic resistance pattern of methicillin-resistant Staphylococcus aureus. MRSA isolates were characterized from 246 samples collected from LTCFs, medical tubes of LTCF residents, and hospital environments of two cities, Chiayi and Changhua. Species identification, molecular characterization, and drug resistance analysis were performed. Hospital environments had a higher MRSA detection rate than that of LTCF environments, where moist samples are a hotspot of MRSA habitats, including tube samples from LTCF residents. All MRSA isolates in this study carried the exfoliative toxin eta gene (100%). The majority of MRSA isolates were resistant to erythromycin (76.7%), gentamicin (60%), and ciprofloxacin (55%). The percentage of multidrug-resistant MRSA isolates was approximately 50%. The enterobacterial repetitive intergenic consensus polymerase chain reaction results showed that 18 MRSA isolates belonged to a specific cluster. This implied that genetically similar isolates were spread between hospitals and LTCFs in Changhua city. This study highlights the threat to the health of LTCFs’ residents posed by hospital contact with MRSA.
Collapse
Affiliation(s)
- Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; (B.-M.H.); (S.K.); (B.H.)
- Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung City 824, Taiwan;
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung City 413, Taiwan;
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Chenghua County 500, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City 600, Taiwan;
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; (B.-M.H.); (S.K.); (B.H.)
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; (B.-M.H.); (S.K.); (B.H.)
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung City 830, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung City 830, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien County 970, Taiwan
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien County 970, Taiwan
- Correspondence: ; Tel.: +88-638-561-825
| |
Collapse
|
13
|
Park S, Ronholm J. Staphylococcus aureus in Agriculture: Lessons in Evolution from a Multispecies Pathogen. Clin Microbiol Rev 2021; 34:e00182-20. [PMID: 33568553 PMCID: PMC7950364 DOI: 10.1128/cmr.00182-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a formidable bacterial pathogen that is responsible for infections in humans and various species of wild, companion, and agricultural animals. The ability of S. aureus to move between humans and livestock is due to specific characteristics of this bacterium as well as modern agricultural practices. Pathoadaptive clonal lineages of S. aureus have emerged and caused significant economic losses in the agricultural sector. While humans appear to be a primary reservoir for S. aureus, the continued expansion of the livestock industry, globalization, and ubiquitous use of antibiotics has increased the dissemination of pathoadaptive S. aureus in this environment. This review comprehensively summarizes the available literature on the epidemiology, pathophysiology, genomics, antibiotic resistance (ABR), and clinical manifestations of S. aureus infections in domesticated livestock. The availability of S. aureus whole-genome sequence data has provided insight into the mechanisms of host adaptation and host specificity. Several lineages of S. aureus are specifically adapted to a narrow host range on a short evolutionary time scale. However, on a longer evolutionary time scale, host-specific S. aureus has jumped the species barrier between livestock and humans in both directions several times. S. aureus illustrates how close contact between humans and animals in high-density environments can drive evolution. The use of antibiotics in agriculture also drives the emergence of antibiotic-resistant strains, making the possible emergence of human-adapted ABR strains from agricultural practices concerning. Addressing the concerns of ABR S. aureus, without negatively affecting agricultural productivity, is a challenging priority.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
14
|
Naorem RS, Blom J, Fekete C. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 2021; 9:e10185. [PMID: 33520430 PMCID: PMC7811285 DOI: 10.7717/peerj.10185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a drug-resistant pathogen, capable of colonizing diverse ecological niches and causing a broad spectrum of infections related to a community and healthcare. In this study, we choose four methicillin-resistant S. aureus (MRSA) clinical isolates from Germany and Hungary based on our previous polyphasic characterization finding. We assumed that the selected strains have a different genetic background in terms of the presence of resistance and virulence genes, prophages, plasmids, and secondary metabolite biosynthesis genes that may play a crucial role in niche adaptation and pathogenesis. To clarify these assumptions, we performed a comparative genome analysis of these strains and observed many differences in their genomic compositions. The Hungarian isolates (SA H27 and SA H32) with ST22-SCCmec type IVa have fewer genes for multiple-drug resistance, virulence, and prophages reported in Germany isolates. Germany isolate, SA G6 acquires aminoglycoside (ant(6)-Ia and aph(3’)-III) and nucleoside (sat-4) resistance genes via phage transduction and may determine its pathogenic potential. The comparative genome study allowed the segregation of isolates of geographical origin and differentiation of the clinical isolates from the commensal isolates. This study suggested that Germany and Hungarian isolates are genetically diverse and showing variation among them due to the gain or loss of mobile genetic elements (MGEs). An interesting finding is the addition of SA G6 genome responsible for the drastic decline of the core/pan-genome ratio curve and causing the pan-genome to open wider. Functional characterizations revealed that S. aureus isolates survival are maintained by the amino acids catabolism and favor adaptation to growing in a protein-rich medium. The dispersible and singleton genes content of S. aureus genomes allows us to understand the genetic variation among the CC5 and CC22 groups. The strains with the same genetic background were clustered together, which suggests that these strains are highly alike; however, comparative genome analysis exposed that the acquisition of phage elements, and plasmids through the events of MGEs transfer contribute to differences in their phenotypic characters. This comparative genome analysis would improve the knowledge about the pathogenic S. aureus strain’s characterization, and responsible for clinically important phenotypic differences among the S. aureus strains.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Csaba Fekete
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
15
|
Singh-Moodley A, Lowe M, Mogokotleng R, Perovic O. Diversity of SCCmec elements and spa types in South African Staphylococcus aureus mecA-positive blood culture isolates. BMC Infect Dis 2020; 20:816. [PMID: 33167886 PMCID: PMC7654578 DOI: 10.1186/s12879-020-05547-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prevalence of Staphylococcus aureus varies depending on the healthcare facility, region and country. To understand its genetic diversity, transmission, dissemination, epidemiology and evolution in a particular geographical location, it is important to understand the similarities and variations in the population being studied. This can be achieved by using various molecular characterisation techniques. This study aimed to provide detailed molecular characterisation of South African mecA-positive S. aureus blood culture isolates by describing the SCCmec types, spa types and to lesser extent, the sequence types obtained from two consecutive national surveillance studies. METHODS S. aureus blood culture isolates from a national laboratory-based and enhanced surveillance programme were identified and antimicrobial susceptibility testing was performed using automated systems. A real-time PCR assay confirmed the presence of the methicillin-resistance determinant, mecA. Conventional PCR assays were used to identify the SCCmec type and spa type, which was subsequently analysed using the Ridom StaphType™ software. Multilocus sequence typing was performed on selected isolates using conventional methods. MRSA clones were defined by their sequence type (ST), SCCmec type and spa type. RESULTS A detailed description of findings is reported in this manuscript. SCCmec type III predominated overall followed by type IV. A total of 71 different spa types and 24 novel spa types were observed. Spa type t037 was the most common and predominated throughout followed by t1257. Isolates were multidrug resistant; isolates belonging to all SCCmec types were resistant to most of the antibiotics with the exception of type I; isolates with spa type t045 showed resistance to all antibiotics except vancomycin. The most diverse SCCmec-spa type complex was composed of the SCCmec type IV element and 53 different spa types. CONCLUSION Although ST data was limited, thereby limiting the number of clones that could be identified, the circulating clones were relatively diverse.
Collapse
Affiliation(s)
- Ashika Singh-Moodley
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,Faculty of Health Sciences, School of Pathology, Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, South Africa.
| | - Michelle Lowe
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa
| | - Ruth Mogokotleng
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa
| | - Olga Perovic
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa.,Faculty of Health Sciences, School of Pathology, Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, South Africa
| |
Collapse
|
16
|
Matuszewska M, Murray GGR, Harrison EM, Holmes MA, Weinert LA. The Evolutionary Genomics of Host Specificity in Staphylococcus aureus. Trends Microbiol 2020; 28:465-477. [PMID: 31948727 DOI: 10.1016/j.tim.2019.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is an important human bacterial pathogen that has a cosmopolitan host range, including livestock, companion and wild animal species. Genomic and epidemiological studies show that S. aureus has jumped between host species many times over its evolutionary history. These jumps have involved the dynamic gain and loss of host-specific adaptive genes, usually located on mobile genetic elements. The same functional elements are often consistently gained in jumps into a particular species. Further sampling of diverse animal species is likely to uncover an even broader host range and greater genetic diversity of S. aureus than is already known, and understanding S. aureus host specificity in these hosts will mitigate the risks of emergent human and livestock strains.
Collapse
Affiliation(s)
- Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Ewan M Harrison
- Wellcome Sanger Institute, University of Cambridge, Cambridge, CB10 1SA, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| |
Collapse
|
17
|
Morley VJ, Woods RJ, Read AF. Bystander Selection for Antimicrobial Resistance: Implications for Patient Health. Trends Microbiol 2019; 27:864-877. [PMID: 31288975 PMCID: PMC7079199 DOI: 10.1016/j.tim.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Antimicrobial therapy promotes resistance emergence in target infections and in off-target microbiota. Off-target resistance emergence threatens patient health when off-target populations are a source of future infections, as they are for many important drug-resistant pathogens. However, the health risks of antimicrobial exposure in off-target populations remain largely unquantified, making rational antibiotic stewardship challenging. Here, we discuss the contribution of bystander antimicrobial exposure to the resistance crisis, the implications for antimicrobial stewardship, and some novel opportunities to limit resistance evolution while treating target pathogens.
Collapse
Affiliation(s)
- Valerie J Morley
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA; Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Barraud O, Laurent F, Dyon-Tafani V, Dupieux-Chabert C, Bes M, Ploy MC, Garnier F, Martins Simoes P. Novel staphylococcal cassette chromosome composite island (SCC-CI) with a new subtype of SCCmecVI cassette found in ST5 methicillin-resistant Staphylococcus aureus in France. Int J Antimicrob Agents 2019; 53:694-697. [PMID: 30878667 DOI: 10.1016/j.ijantimicag.2019.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022]
Abstract
An emergent kanamycin-susceptible ST5 methicillin-resistant Staphylococcus aureus (MRSA) lineage has been identified in France. Whole-genome sequencing revealed a 40-kb staphylococcal cassette chromosome (SCC) composite island with a mosaic structure including three SCC elements: a ΨSCCcop/ars, a SCCLim88A with a ccrC recombinase, and a novel subtype of SCCmec type VI (VIb). This mosaic structure suggests a high recombination rate of SCC elements from distinct staphylococci species.
Collapse
Affiliation(s)
- Olivier Barraud
- CHU de Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France; Inserm, U1092, Limoges, France; University of Limoges, UMR-S1092, Limoges, France
| | - Frederic Laurent
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France; Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectious diseases, INSERM U1111, University of Lyon, Lyon, France
| | - Virginie Dyon-Tafani
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Celine Dupieux-Chabert
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France; Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Michele Bes
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France; Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Marie-Cecile Ploy
- CHU de Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France; Inserm, U1092, Limoges, France; University of Limoges, UMR-S1092, Limoges, France
| | - Fabien Garnier
- CHU de Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France; Inserm, U1092, Limoges, France; University of Limoges, UMR-S1092, Limoges, France
| | - Patricia Martins Simoes
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France; Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectious diseases, INSERM U1111, University of Lyon, Lyon, France.
| |
Collapse
|
19
|
Becker K, van Alen S, Idelevich EA, Schleimer N, Seggewiß J, Mellmann A, Kaspar U, Peters G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg Infect Dis 2019; 24:242-248. [PMID: 29350135 PMCID: PMC5782906 DOI: 10.3201/eid2402.171074] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections.
Collapse
|
20
|
Gerlach D, Guo Y, De Castro C, Kim SH, Schlatterer K, Xu FF, Pereira C, Seeberger PH, Ali S, Codée J, Sirisarn W, Schulte B, Wolz C, Larsen J, Molinaro A, Lee BL, Xia G, Stehle T, Peschel A. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 2018; 563:705-709. [PMID: 30464342 DOI: 10.1038/s41586-018-0730-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of difficult-to-treat, often fatal infections in humans1,2. Most humans have antibodies against S. aureus, but these are highly variable and often not protective in immunocompromised patients3. Previous vaccine development programs have not been successful4. A large percentage of human antibodies against S. aureus target wall teichoic acid (WTA), a ribitol-phosphate (RboP) surface polymer modified with N-acetylglucosamine (GlcNAc)5,6. It is currently unknown whether the immune evasion capacities of MRSA are due to variation of dominant surface epitopes such as those associated with WTA. Here we show that a considerable proportion of the prominent healthcare-associated and livestock-associated MRSA clones CC5 and CC398, respectively, contain prophages that encode an alternative WTA glycosyltransferase. This enzyme, TarP, transfers GlcNAc to a different hydroxyl group of the WTA RboP than the standard enzyme TarS7, with important consequences for immune recognition. TarP-glycosylated WTA elicits 7.5-40-fold lower levels of immunoglobulin G in mice than TarS-modified WTA. Consistent with this, human sera contained only low levels of antibodies against TarP-modified WTA. Notably, mice immunized with TarS-modified WTA were not protected against infection with tarP-expressing MRSA, indicating that TarP is crucial for the capacity of S. aureus to evade host defences. High-resolution structural analyses of TarP bound to WTA components and uridine diphosphate GlcNAc (UDP-GlcNAc) explain the mechanism of altered RboP glycosylation and form a template for targeted inhibition of TarP. Our study reveals an immune evasion strategy of S. aureus based on averting the immunogenicity of its dominant glycoantigen WTA. These results will help with the identification of invariant S. aureus vaccine antigens and may enable the development of TarP inhibitors as a new strategy for rendering MRSA susceptible to human host defences.
Collapse
Affiliation(s)
- David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Yinglan Guo
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | - Sun-Hwa Kim
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Pusan, South Korea
| | - Katja Schlatterer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Fei-Fei Xu
- Max-Planck-Institute for Colloids and Interfaces, Potsdam, Germany
| | - Claney Pereira
- Max-Planck-Institute for Colloids and Interfaces, Potsdam, Germany
| | | | - Sara Ali
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Wanchat Sirisarn
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Berit Schulte
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Medical Microbiology, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Medical Microbiology, University of Tübingen, Tübingen, Germany
| | - Jesper Larsen
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Pusan, South Korea
| | - Guoqing Xia
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. .,Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
High prevalence of spa type t571 among methicillin-susceptible Staphylococcus aureus from bacteremic patients in a French University Hospital. PLoS One 2018; 13:e0204977. [PMID: 30300375 PMCID: PMC6177137 DOI: 10.1371/journal.pone.0204977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus bacteremia is one of the most frequent severe bacterial infections worldwide, with an associated mortality of about 20–40% in developed countries. In 2013, we noted an increase in this infection in the teaching hospital in Grenoble, France, compared to 2012. The mean incidence of S. aureus bacteremia was 0.28 per 1,000 patient-days in 2012 and 0.35 per 1,000 patient-days in 2013. This trend was confirmed in 2014 (0.35 per 1,000 patient-days). In the present work we aimed to study the population of patients presenting with S. aureus bacteremia in 2013 and to genotype the corresponding S. aureus strains in order to identify a successful and/or virulent genotype to design a specific infection control program. One hundred ninety-one S. aureus isolates (including 9 methicillin-resistant) out of 199 corresponding cases of bacteremia were characterized with the spa typing method. Among 108 spa types, t571, t002, t008 and t084 were the most prevalent. Although not widely prevalent, t571 was the most frequently identified clone (8.4% of all isolates). Spa type t571 has been described in previous studies as belonging to the clonal complex CC398, which is consistent with the recent emergence of methicillin-susceptible S. aureus CC398 reported in blood cultures in Europe.
Collapse
|
22
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1252] [Impact Index Per Article: 178.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev 2018; 31:e00020-18. [PMID: 30209034 PMCID: PMC6148192 DOI: 10.1128/cmr.00020-18] [Citation(s) in RCA: 821] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus, a major human pathogen, has a collection of virulence factors and the ability to acquire resistance to most antibiotics. This ability is further augmented by constant emergence of new clones, making S. aureus a "superbug." Clinical use of methicillin has led to the appearance of methicillin-resistant S. aureus (MRSA). The past few decades have witnessed the existence of new MRSA clones. Unlike traditional MRSA residing in hospitals, the new clones can invade community settings and infect people without predisposing risk factors. This evolution continues with the buildup of the MRSA reservoir in companion and food animals. This review focuses on imparting a better understanding of MRSA evolution and its molecular characterization and epidemiology. We first describe the origin of MRSA, with emphasis on the diverse nature of staphylococcal cassette chromosome mec (SCCmec). mecA and its new homologues (mecB, mecC, and mecD), SCCmec types (13 SCCmec types have been discovered to date), and their classification criteria are discussed. The review then describes various typing methods applied to study the molecular epidemiology and evolutionary nature of MRSA. Starting with the historical methods and continuing to the advanced whole-genome approaches, typing of collections of MRSA has shed light on the origin, spread, and evolutionary pathways of MRSA clones.
Collapse
Affiliation(s)
- Sahreena Lakhundi
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
| | - Kunyan Zhang
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Bonar EA, Bukowski M, Hydzik M, Jankowska U, Kedracka-Krok S, Groborz M, Dubin G, Akkerboom V, Miedzobrodzki J, Sabat AJ, Friedrich AW, Wladyka B. Joint Genomic and Proteomic Analysis Identifies Meta-Trait Characteristics of Virulent and Non-virulent Staphylococcus aureus Strains. Front Cell Infect Microbiol 2018; 8:313. [PMID: 30237986 PMCID: PMC6136393 DOI: 10.3389/fcimb.2018.00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen of humans and warm-blooded animals and presents a growing threat in terms of multi-drug resistance. Despite numerous studies, the basis of staphylococcal virulence and switching between commensal and pathogenic phenotypes is not fully understood. Using genomics, we show here that S. aureus strains exhibiting virulent (VIR) and non-virulent (NVIR) phenotypes in a chicken embryo infection model genetically fall into two separate groups, with the VIR group being much more cohesive than the NVIR group. Significantly, the genes encoding known staphylococcal virulence factors, such as clumping factors, are either found in different allelic variants in the genomes of NVIR strains (compared to VIR strains) or are inactive pseudogenes. Moreover, the pyruvate carboxylase and gamma-aminobutyrate permease genes, which were previously linked with virulence, are pseudogenized in NVIR strain ch22. Further, we use comprehensive proteomics tools to characterize strains that show opposing phenotypes in a chicken embryo virulence model. VIR strain CH21 had an elevated level of diapolycopene oxygenase involved in staphyloxanthin production (protection against free radicals) and expressed a higher level of immunoglobulin-binding protein Sbi on its surface compared to NVIR strain ch22. Furthermore, joint genomic and proteomic approaches linked the elevated production of superoxide dismutase and DNA-binding protein by NVIR strain ch22 with gene duplications.
Collapse
Affiliation(s)
- Emilia A Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Groborz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Viktoria Akkerboom
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacek Miedzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur J Sabat
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
25
|
Rodrigues S, Conceição T, Silva IS, de Lencastre H, Aires-de-Sousa M. Frequent MRSA nasal colonization among hospitalized children and their parents in Angola and São Tomé and Príncipe. J Hosp Infect 2018; 100:344-349. [PMID: 29807064 DOI: 10.1016/j.jhin.2018.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND The prevalence of nosocomial meticillin-resistant Staphylococcus aureus (MRSA) was previously estimated as 23% in a paediatric hospital in Luanda, Angola and 18% in a general hospital in São Tomé and Príncipe. AIM To evaluate the prevalence of S. aureus/MRSA colonization among hospitalized children and their parents at two hospitals in Angola and São Tomé and Príncipe. METHODS In 2017, 127 hospitalized children and 129 of their parents had nasal swabs for S. aureus/MRSA carriage in the two countries. The isolates were tested for the presence of the mecA and Panton-Valentine leukocidin (PVL) genes, and characterized by pulsed-field gel electrophoresis (PFGE), spa typing, multi-locus sequence typing and SCCmec typing. FINDINGS Twenty of 127 children (15.7%) and 13 of 129 parents (10.1%) were MRSA nasal carriers. Three lineages comprised 88% of the MRSA isolates: (i) PFGE A-ST5-SCCmec IVa (N=15; 45%), associated with spa type t105, recovered in Angola alone; (ii) PFGE N-ST8-IV/V (N=7; 21%), associated with spa types t008/t121, recovered in São Tomé and Príncipe alone; and (iii) PFGE B-ST88-IVa (N=7; 21%), associated with spa types t325/t786, present in both countries. Fifteen child/guardian pairs were colonized with identical MRSA (N=8) or meticillin-susceptible S. aureus (N=7) strains. PVL was detected in 25% of isolates, including two MRSA (ST30-V and ST8-IVa). CONCLUSION Hospitalized children and their parents are important reservoirs of MRSA. Infection control measures should focus on parents in order to minimize the spread of MRSA to the community.
Collapse
Affiliation(s)
- S Rodrigues
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - T Conceição
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - I Santos Silva
- Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisboa, Portugal
| | - H de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal; Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA
| | - M Aires-de-Sousa
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal; Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisboa, Portugal.
| |
Collapse
|
26
|
Improved Subtyping of Staphylococcus aureus Clonal Complex 8 Strains Based on Whole-Genome Phylogenetic Analysis. mSphere 2018; 3:3/3/e00464-17. [PMID: 29720527 PMCID: PMC5932376 DOI: 10.1128/msphere.00464-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen worldwide in both community and health care settings. Surveillance for S. aureus strains is important to our understanding of their spread and to informing infection prevention and control. Confusion surrounding the strain nomenclature of one of the most prevalent lineages of S. aureus, clonal complex 8 (CC8), and the imprecision of current tools for typing S. aureus make surveillance and source tracing difficult and sometimes misleading. In this study, we clarify the CC8 strain designations and propose a new typing scheme for CC8 isolates that is rapid and easy to use. This typing scheme is based on relatively stable genomic markers, and we demonstrate its superiority over traditional typing techniques. This scheme has the potential to greatly improve epidemiological investigations of S. aureus. Strains of Staphylococcus aureus in clonal complex 8 (CC8), including USA300, USA500, and the Iberian clone, are prevalent pathogens in the United States, both inside and outside health care settings. Methods for typing CC8 strains are becoming obsolete as the strains evolve and diversify, and whole-genome sequencing has shown that some strain types fall into multiple sublineages within CC8. In this study, we attempt to clarify the strain nomenclature of CC8, classifying the major strain types based on whole-genome sequence phylogenetics using both methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) genomes. We show that isolates of the Archaic and Iberian clones from decades ago make up the most basal clade of the main CC8 lineages and that at least one successful lineage of CC8, made up mostly of MSSA, diverged before the other well-known strain types USA500 and USA300. We also show that the USA500 type includes two clades separated by the previously described “Canadian epidemic MRSA” strain CMRSA9, that one clade containing USA500 also contains the USA300 clade, and that the USA300-0114 strain type is not a monophyletic group. Additionally, we present a rapid, simple CC8 strain-typing scheme using real-time PCR assays that target single nucleotide polymorphisms (SNPs) derived from our CC8 phylogeny and show the significant benefit of using more stable genomic markers based on evolutionary lineages over traditional S. aureus typing techniques. This more accurate and accessible S. aureus typing system may improve surveillance and better inform the epidemiology of this very important pathogen. IMPORTANCEStaphylococcus aureus is a major human pathogen worldwide in both community and health care settings. Surveillance for S. aureus strains is important to our understanding of their spread and to informing infection prevention and control. Confusion surrounding the strain nomenclature of one of the most prevalent lineages of S. aureus, clonal complex 8 (CC8), and the imprecision of current tools for typing S. aureus make surveillance and source tracing difficult and sometimes misleading. In this study, we clarify the CC8 strain designations and propose a new typing scheme for CC8 isolates that is rapid and easy to use. This typing scheme is based on relatively stable genomic markers, and we demonstrate its superiority over traditional typing techniques. This scheme has the potential to greatly improve epidemiological investigations of S. aureus.
Collapse
|
27
|
Ben Said M, Abbassi MS, Gómez P, Ruiz-Ripa L, Sghaier S, Ibrahim C, Torres C, Hassen A. Staphylococcus aureus isolated from wastewater treatment plants in Tunisia: occurrence of human and animal associated lineages. JOURNAL OF WATER AND HEALTH 2017; 15:638-643. [PMID: 28771160 DOI: 10.2166/wh.2017.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The objective was to characterize Staphylococcus aureus isolated from two wastewater treatment plants (WWTPs) located in Tunis City (Tunisia), during the period 2014-2015. Genetic lineages, antibiotic resistance mechanisms and virulence factors were determined for the recovered isolates. S. aureus isolates were recovered from 12 of the 62 wastewater samples tested (19.35%), and one isolate/sample was characterized, all of them being methicillin-susceptible (MSSA). Six spa types (t587, t674, t224, t127, t701 and t1534) were found among the 12 isolates, and the spa-t587, associated with the new sequence type ST3245, was the most predominant one (7 isolates). The remaining isolates were assigned to five clonal complexes (CC5, CC97, CC1, CC6 and CC522) according to the sequence-type determined and/or the spa-type detected. S. aureus isolates were ascribed to agrI (n = 3), agrII (n = 7) and agrIII (n = 1); however, one isolate was non-typeable. S. aureus showed resistance to (number of isolates): penicillin (12), erythromycin (7), tetracycline (one) and clindamycin (one). Among the virulence factors investigated, only one isolate harboured the tst gene, encoding the TSST-1 (toxic shock syndrome toxin 1). Despite the low number of studied isolates, the present study reports the occurrence of both human- and animal-associated S. aureus clonal complexes in WWTPs in Tunisia.
Collapse
Affiliation(s)
- Meriam Ben Said
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia; Laboratoire de Traitement des Eaux Usées, Centre de Recherche et des Technologies des Eaux (CERTE), Technopoles Borj-Cédria, BP 273, 8020 Soliman, Tunisia
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia; Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de résistance aux antibiotiques LR99ES09, Tunisie
| | - Paula Gómez
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain E-mail:
| | - Laura Ruiz-Ripa
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain E-mail:
| | - Senda Sghaier
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia; Laboratoire de Traitement des Eaux Usées, Centre de Recherche et des Technologies des Eaux (CERTE), Technopoles Borj-Cédria, BP 273, 8020 Soliman, Tunisia
| | - Chourouk Ibrahim
- Laboratoire de Traitement des Eaux Usées, Centre de Recherche et des Technologies des Eaux (CERTE), Technopoles Borj-Cédria, BP 273, 8020 Soliman, Tunisia
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain E-mail:
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre de Recherche et des Technologies des Eaux (CERTE), Technopoles Borj-Cédria, BP 273, 8020 Soliman, Tunisia
| |
Collapse
|
28
|
Nübel U. Emergence and Spread of Antimicrobial Resistance: Recent Insights from Bacterial Population Genomics. Curr Top Microbiol Immunol 2017; 398:35-53. [PMID: 27738914 DOI: 10.1007/82_2016_505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Driven by progress of DNA sequencing technologies, recent population genomics studies have revealed that several bacterial pathogens constitute 'measurably evolving populations'. As a consequence, it was possible to reconstruct the emergence and spatial spread of drug-resistant bacteria on the basis of temporally structured samples of bacterial genome sequences. Based on currently available data, some general inferences can be drawn across different bacterial species as follows: (1) Resistance to various antibiotics evolved years to decades earlier than had been anticipated on the basis of epidemiological surveillance data alone. (2) Resistance traits are more rapidly acquired than lost and commonly persist in bacterial populations for decades. (3) Global populations of drug-resistant pathogens are dominated by very few clones, yet the features enabling such spreading success have not been revealed, aside from antibiotic resistance. (4) Whole-genome sequencing proved very effective at identifying bacterial isolates as parts of the same transmission networks.
Collapse
Affiliation(s)
- Ulrich Nübel
- DZIF Group on Microbial Genome Research, Leibniz Institute DSMZ, Braunschweig, Germany. .,Technical University Braunschweig, Braunschweig, Germany. .,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.
| |
Collapse
|
29
|
Murray S, Pascoe B, Méric G, Mageiros L, Yahara K, Hitchings MD, Friedmann Y, Wilkinson TS, Gormley FJ, Mack D, Bray JE, Lamble S, Bowden R, Jolley KA, Maiden MCJ, Wendlandt S, Schwarz S, Corander J, Fitzgerald JR, Sheppard SK. Recombination-Mediated Host Adaptation by Avian Staphylococcus aureus. Genome Biol Evol 2017; 9:830-842. [PMID: 28338786 PMCID: PMC5469444 DOI: 10.1093/gbe/evx037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus are globally disseminated among farmed chickens causing skeletal muscle infections, dermatitis, and septicaemia. The emergence of poultry-associated lineages has involved zoonotic transmission from humans to chickens but questions remain about the specific adaptations that promote proliferation of chicken pathogens. We characterized genetic variation in a population of genome-sequenced S. aureus isolates of poultry and human origin. Genealogical analysis identified a dominant poultry-associated sequence cluster within the CC5 clonal complex. Poultry and human CC5 isolates were significantly distinct from each other and more recombination events were detected in the poultry isolates. We identified 44 recombination events in 33 genes along the branch extending to the poultry-specific CC5 cluster, and 47 genes were found more often in CC5 poultry isolates compared with those from humans. Many of these gene sequences were common in chicken isolates from other clonal complexes suggesting horizontal gene transfer among poultry associated lineages. Consistent with functional predictions for putative poultry-associated genes, poultry isolates showed enhanced growth at 42 °C and greater erythrocyte lysis on chicken blood agar in comparison with human isolates. By combining phenotype information with evolutionary analyses of staphylococcal genomes, we provide evidence of adaptation, following a human-to-poultry host transition. This has important implications for the emergence and dissemination of new pathogenic clones associated with modern agriculture.
Collapse
Affiliation(s)
- Susan Murray
- Swansea University Medical School, Swansea University, United Kingdom
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom.,MRC CLIMB Consortium, United Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom
| | | | - Koji Yahara
- Swansea University Medical School, Swansea University, United Kingdom.,The Biostatistics Center, Kurume University, Fukuoka, Japan
| | | | - Yasmin Friedmann
- Swansea University Medical School, Swansea University, United Kingdom
| | | | - Fraser J Gormley
- Brewdog PLC, Balmacassie Industrial Estate, Ellon, Aberdeenshire, United Kingdom
| | - Dietrich Mack
- Bioscientia Labor Ingelheim, Institut für Medizinische Diagnostik GmbH, Ingelheim, Germany
| | - James E Bray
- Department of Zoology, University of Oxford, United Kingdom
| | - Sarah Lamble
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Keith A Jolley
- Department of Zoology, University of Oxford, United Kingdom
| | | | - Sarah Wendlandt
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt, Germany
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Finland.,Department of Biostatistics, University of Oslo, Norway
| | - J Ross Fitzgerald
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, United Kingdom
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom.,MRC CLIMB Consortium, United Kingdom.,Department of Zoology, University of Oxford, United Kingdom
| |
Collapse
|
30
|
Post V, Harris LG, Morgenstern M, Geoff Richards R, Sheppard SK, Fintan Moriarty T. Characterization of nasal methicillin-resistant Staphylococcus aureus isolated from international human and veterinary surgeons. J Med Microbiol 2017; 66:360-370. [PMID: 28005521 DOI: 10.1099/jmm.0.000415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Nasal colonization with methicillin-resistant Staphylococcus aureus (MRSA) is poorly described for surgeons, despite the increased exposure to nosocomial pathogens and at-risk patients. This study investigated the molecular epidemiology and antimicrobial resistance of 26 MRSA isolates cultured from the nares of an international cross-sectional study of 1166 human and 60 veterinary surgeons. METHODOLOGY All isolates were subjected to agr, spa and multilocus sequence typing, and the presence of 22 virulence factors was screened for by PCR. Additionally, biofilm-forming ability, haemolytic activity, staphyloxanthin production and antibiotic resistance were determined. The genome of a rifampicin-resistant MRSA was sequenced. RESULTS Approximately half of the isolates belonged to well-described clonal lineages, ST1, ST5, ST8, ST45 and ST59, that have previously been associated with severe infections and increased patient mortality. Two of the three veterinarian MRSA belonged to epidemic livestock-associated MRSA clonal lineages (ST398 and ST8) previously associated with high transmission potential between animals and humans. The isolates did not display any consistent virulence gene pattern, and 35 % of the isolates carried at least one of the Panton-Valentine leukocidin (lukFS-PV), exfoliative toxin (eta) or toxic shock syndrome (tst) genes. Resistance to rifampicin was detected in one veterinarian isolate and was found to be due to three mutations in the rpoB gene. CONCLUSION Surgeons occupy a critical position in the healthcare profession due to their close contact with patients. In this study, surgeons were found to be colonized with MRSA at low rates, similar to those of the general population, and the colonizing strains were often common clonal lineages.
Collapse
Affiliation(s)
| | - Llinos G Harris
- Department of Microbiology and Infectious Diseases, Swansea University Medical School, Swansea, UK
| | - Mario Morgenstern
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Joseph SJ, Li B, Petit Iii RA, Qin ZS, Darrow L, Read TD. The single-species metagenome: subtyping Staphylococcus aureus core genome sequences from shotgun metagenomic data. PeerJ 2016; 4:e2571. [PMID: 27781166 PMCID: PMC5075713 DOI: 10.7717/peerj.2571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023] Open
Abstract
In this study we developed a genome-based method for detecting Staphylococcus aureus subtypes from metagenome shotgun sequence data. We used a binomial mixture model and the coverage counts at >100,000 known S. aureus SNP (single nucleotide polymorphism) sites derived from prior comparative genomic analysis to estimate the proportion of 40 subtypes in metagenome samples. We were able to obtain >87% sensitivity and >94% specificity at 0.025X coverage for S. aureus. We found that 321 and 149 metagenome samples from the Human Microbiome Project and metaSUB analysis of the New York City subway, respectively, contained S. aureus at genome coverage >0.025. In both projects, CC8 and CC30 were the most common S. aureus clonal complexes encountered. We found evidence that the subtype composition at different body sites of the same individual were more similar than random sampling and more limited evidence that certain body sites were enriched for particular subtypes. One surprising finding was the apparent high frequency of CC398, a lineage often associated with livestock, in samples from the tongue dorsum. Epidemiologic analysis of the HMP subject population suggested that high BMI (body mass index) and health insurance are possibly associated with S. aureus carriage but there was limited power to identify factors linked to carriage of even the most common subtype. In the NYC subway data, we found a small signal of geographic distance affecting subtype clustering but other unknown factors influence taxonomic distribution of the species around the city.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ben Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University , Atlanta , GA , USA
| | - Robert A Petit Iii
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine , Atlanta , GA , USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University , Atlanta , GA , USA
| | - Lyndsey Darrow
- Department of Epidemiology, Rollins School of Public Health, Emory University , Atlanta , GA , USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
32
|
Pires Dos Santos T, Damborg P, Moodley A, Guardabassi L. Systematic Review on Global Epidemiology of Methicillin-Resistant Staphylococcus pseudintermedius: Inference of Population Structure from Multilocus Sequence Typing Data. Front Microbiol 2016; 7:1599. [PMID: 27803691 PMCID: PMC5067483 DOI: 10.3389/fmicb.2016.01599] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background and rationale: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of infections in dogs, also posing a zoonotic risk to humans. This systematic review aimed to determine the global epidemiology of MRSP and provide new insights into the population structure of this important veterinary pathogen. Methodology: Web of Science was searched systematically for articles reporting data on multilocus sequence typing (MLST) of S. pseudintermedius isolates from dogs or other animal or human patients and carriers. Data from the eligible studies were then integrated with data from the MLST database for this species. Analysis of MLST data was performed with eBURST and ClonalFrame, and the proportion of MRSP isolates resistant to selected antimicrobial drugs was determined for the most predominant clonal complexes. Results: Fifty-eight studies published over the last 10 years were included in the review. MRSP represented 76% of the 1428 isolates characterized by the current MLST scheme. The population of S. pseudintermedius was highly diverse and included five major MRSP clonal complexes (CCs). CC71, previously described as the epidemic European clone, is now widespread worldwide. In Europe, CC258, which is more frequently susceptible to enrofloxacin and aminoglycosides, and more frequently resistant to sulphonamides/trimethoprim than CC71, is increasingly reported in various countries. CC68, previously described as the epidemic North American clone, is frequently reported in this region but also in Europe, while CC45 (associated with chloramphenicol resistance) and CC112 are prevalent in Asia. It was estimated that clonal diversification in this species is primarily driven by homologous recombination (r/m = 7.52). Conclusion: This study provides evidence that S. pseudintermedius has an epidemic population structure, in which five successful MRSP lineages with specific traits regarding antimicrobial resistance, genetic diversity and geographical distribution have emerged upon a weakly clonal background through acquisition of SCCmec and other mobile genetic elements.
Collapse
Affiliation(s)
- Teresa Pires Dos Santos
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Peter Damborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Arshnee Moodley
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Frederiksberg, Denmark
| | - Luca Guardabassi
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg, Denmark; Department of Biomedical Sciences, Ross University School of Veterinary MedicineSt Kitts, West Indies
| |
Collapse
|
33
|
Azarian T, Maraqa NF, Cook RL, Johnson JA, Bailey C, Wheeler S, Nolan D, Rathore MH, Morris JG, Salemi M. Genomic Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Neonatal Intensive Care Unit. PLoS One 2016; 11:e0164397. [PMID: 27732618 PMCID: PMC5061378 DOI: 10.1371/journal.pone.0164397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
Despite infection prevention efforts, neonatal intensive care unit (NICU) patients remain at risk of Methicillin-resistant Staphylococcus aureus (MRSA) infection. Modes of transmission for healthcare-associated (HA) and community-associated (CA) MRSA remain poorly understood and may vary by genotype, hindering the development of effective prevention and control strategies. From 2008–2010, all patients admitted to a level III NICU were screened for MRSA colonization, and all available isolates were spa-typed. Spa-type t008, the most prevalent CA- genotype in the United States, spa-type t045, a HA- related genotype, and a convenience sample of strains isolated from 2003–2011, underwent whole-genome sequencing and phylodynamic analysis. Patient risk factors were compared between colonized and noncolonized infants, and virulence and resistance genes compared between spa-type t008 and non-t008 strains. Epidemiological and genomic data were used to estimate MRSA importations and acquisitions through transmission reconstruction. MRSA colonization was identified in 9.1% (177/1940) of hospitalized infants and associated with low gestational age and birth weight. Among colonized infants, low gestational age was more common among those colonized with t008 strains. Our data suggest that approximately 70% of colonizations were the result of transmission events within the NICU, with the remainder likely to reflect importations of “outside” strains. While risk of transmission within the NICU was not affected by spa-type, patterns of acquisition and importation differed between t008 and t045 strains. Phylodynamic analysis showed the effective population size of spa-type t008 has been exponentially increasing in both community and hospital, with spa-type t008 strains possessed virulence genes not found among t045 strains; t045 strains, in contrast, appeared to be of more recent origin, with a possible hospital source. Our data highlight the importance of both intra-NICU transmission and recurrent introductions in maintenance of MRSA colonization within the NICU environment, as well as spa-type-specific differences in epidemiology.
Collapse
Affiliation(s)
- Taj Azarian
- College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, University of Florida, Gainesville, FL, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Nizar F. Maraqa
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
- University of Florida Center for HIV/AIDS Research, Education and Service, University of Florida, College of Medicine, Jacksonville, FL, United States of America
| | - Robert L. Cook
- College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, University of Florida, Gainesville, FL, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Judith A. Johnson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| | - Christine Bailey
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
| | - Sarah Wheeler
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
| | - David Nolan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| | - Mobeen H. Rathore
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
- University of Florida Center for HIV/AIDS Research, Education and Service, University of Florida, College of Medicine, Jacksonville, FL, United States of America
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Division of Infectious Diseases, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
34
|
Abstract
Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe’s success as a human pathogen.
Collapse
|
35
|
Varona-Barquín A, Iglesias-Losada JJ, Ezpeleta G, Eraso E, Quindós G. Vancomycin heteroresistant community associated methicillin-resistant Staphylococcus aureus ST72-SCCmecIVa strain colonizing the nostrils of a five-year-old Spanish girl. Enferm Infecc Microbiol Clin 2016; 35:148-152. [PMID: 27590877 DOI: 10.1016/j.eimc.2016.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES During a community methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization study, an MRSA strain with vancomycin hetero-resistance (h-VISA) was isolated from a five year-old girl with tetralogy of Fallot without previous exposure to vancomycin. An extended nasal colonization study was performed on all her close relatives. RESULTS Only the patient and her sister were colonized by an h-VISA MRSA strain (clone USA 700, ST72, t148, agr 1 and SCCmec IVa). Mupirocin decolonisation was effective in the elder sister. A new nasal decolonisation in the younger girl using fusidic acid was also successful. However, after decolonisation both sisters were colonized by a methicillin-susceptible S. aureus (ST30, t012 and agr 3) previously isolated from their mother's nostrils. CONCLUSION As S. aureus have a great capacity to spread among people in close contact, knowledge of a patients' colonization status, tracing contacts, and a correct management are critical issues for the successful containment of multiresistant staphylococci.
Collapse
Affiliation(s)
- Aketza Varona-Barquín
- Laboratorio de Micología Médica, UFI 11/25 'Microbios y Salud', Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | | | - Guillermo Ezpeleta
- Departamento de Medicina Preventiva y Salud Pública, UFI 11/25 'Microbios y Salud', Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain; Servicio de Medicina Preventiva e Higiene Hospitalaria, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Elena Eraso
- Laboratorio de Micología Médica, UFI 11/25 'Microbios y Salud', Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain
| | - Guillermo Quindós
- Laboratorio de Micología Médica, UFI 11/25 'Microbios y Salud', Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Bilbao, Spain.
| |
Collapse
|
36
|
Fan J, Zeng Z, Mai K, Yang Y, Feng J, Bai Y, Sun B, Xie Q, Tong Y, Ma J. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet Microbiol 2016; 191:65-71. [DOI: 10.1016/j.vetmic.2016.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 01/17/2023]
|
37
|
Panesso D, Planet PJ, Diaz L, Hugonnet JE, Tran TT, Narechania A, Munita JM, Rincon S, Carvajal LP, Reyes J, Londoño A, Smith H, Sebra R, Deikus G, Weinstock GM, Murray BE, Rossi F, Arthur M, Arias CA. Methicillin-Susceptible, Vancomycin-Resistant Staphylococcus aureus, Brazil. Emerg Infect Dis 2016; 21:1844-8. [PMID: 26402569 PMCID: PMC4593430 DOI: 10.3201/eid2110.141914] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat.
Collapse
|
38
|
Rapid Emergence and Evolution of Staphylococcus aureus Clones Harboring fusC-Containing Staphylococcal Cassette Chromosome Elements. Antimicrob Agents Chemother 2016; 60:2359-65. [PMID: 26856837 PMCID: PMC4808225 DOI: 10.1128/aac.03020-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023] Open
Abstract
The prevalence of fusidic acid (FA) resistance among Staphylococcus aureus strains in New Zealand (NZ) is among the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistant S. aureus clones (ST5 MRSA, ST1 MSSA, and ST1 MRSA) have emerged over the past decade and now predominate in NZ, and in all three clones FA resistance is mediated by the fusC gene. In particular, ST5 MRSA has rapidly become the dominant MRSA clone in NZ, although the origin of FA-resistant ST5 MRSA has not been explored, and the genetic context of fusC in FA-resistant NZ isolates is unknown. To better understand the rapid emergence of FA-resistant S. aureus, we used population-based comparative genomics to characterize a collection of FA-resistant and FA-susceptible isolates from NZ. FA-resistant NZ ST5 MRSA displayed minimal genetic diversity and represented a phylogenetically distinct clade within a global population model of clonal complex 5 (CC5) S. aureus. In all lineages, fusC was invariably located within staphylococcal cassette chromosome (SCC) elements, suggesting that SCC-mediated horizontal transfer is the primary mechanism of fusC dissemination. The genotypic association of fusC with mecA has important implications for the emergence of MRSA clones in populations with high usage of fusidic acid. In addition, we found that fusC was colocated with a recently described virulence factor (tirS) in dominant NZ S. aureus clones, suggesting a fitness advantage. This study points to the likely molecular mechanisms responsible for the successful emergence and spread of FA-resistant S. aureus.
Collapse
|
39
|
Valle DL, Paclibare PAP, Cabrera EC, Rivera WL. Molecular and phenotypic characterization of methicillin-resistant Staphylococcus aureus isolates from a tertiary hospital in the Philippines. Trop Med Health 2016; 44:3. [PMID: 27398062 PMCID: PMC4934148 DOI: 10.1186/s41182-016-0003-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/15/2016] [Indexed: 11/10/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to public health worldwide. There are relatively few studies addressing the molecular epidemiology of MRSA in the Philippines. Methods This study characterized MRSA isolates in terms of their antimicrobial susceptibility profile, the SCCmec type, and the presence of lukF-lukS genes for Panton-Valentine leukocidin (PVL) and determined the relatedness of the isolates by random amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR). Results A total of 236 S. aureus were isolated from clinical specimens of the Makati Medical Center in Makati City, Philippines, between January 2013 and June 2013, and 108 or 45.76 % were found to be MRSA. Results showed that the MRSA strains were resistant to trimethoprim-sulfamethoxazole (20.37 %), azithromycin (10.19 %), gentamicin (5.56 %), and linezolid (4.63 %), while all were susceptible to vancomycin, nitrofurantoin, levofloxacin, minocycline, rifampin, and tetracycline. One isolate was found positive for inducible clindamycin resistance. All of the 108 MRSA strains were confirmed to carry the mecA and SCCmec genes, while the PVL genes were detected in 41 (38 %) of the isolates. Ninety-six isolates (89 %) carried SCCmec type IV, while the remaining isolates carried SCCmec type I (11 isolates) or type III (one isolate). Conclusion This study is the first to present a comprehensive MRSA surveillance data with molecular characterization in a tertiary hospital in the Philippines.
Collapse
Affiliation(s)
- Demetrio L Valle
- Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101 Philippines ; Department of Pathology and Laboratories, Makati Medical Center, Makati City, 1229 Philippines
| | - Phyllis Anne P Paclibare
- Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101 Philippines ; Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, 1101 Philippines
| | - Esperanza C Cabrera
- Biology Department, De La Salle University, Taft Ave., Manila City, 1004 Philippines
| | - Windell L Rivera
- Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101 Philippines ; Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, 1101 Philippines
| |
Collapse
|
40
|
Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance. PLoS One 2016; 11:e0146349. [PMID: 26741962 PMCID: PMC4704777 DOI: 10.1371/journal.pone.0146349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022] Open
Abstract
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.
Collapse
|
41
|
Wilson BA, Garud NR, Feder AF, Assaf ZJ, Pennings PS. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol Ecol 2016; 25:42-66. [PMID: 26578204 PMCID: PMC4943078 DOI: 10.1111/mec.13474] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023]
Abstract
Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance. Throughout this review, we discuss the uses of sequence data and population genetic theory in studying the evolution of drug resistance.
Collapse
Affiliation(s)
| | | | | | - Zoe J. Assaf
- Department of GeneticsStanford UniversityStanfordCA94305USA
| | - Pleuni S. Pennings
- Department of BiologySan Francisco State UniversityRoom 520Hensill Hall1600 Holloway AveSan FranciscoCA94132USA
| |
Collapse
|
42
|
Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide Epidemiology and Antibiotic Resistance of Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:21-56. [PMID: 27025380 DOI: 10.1007/82_2016_3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is an important human pathogen, responsible for infections in the community and the healthcare setting. Although much of the attention is focused on the methicillin-resistant "variant" MRSA, the methicillin-susceptible counterpart (MSSA) remains a prime species in infections. The epidemiology of S. aureus, especially of MRSA, showed a rapid evolution in the last years. After representing a typical nosocomial multidrug-resistant pathogen, MRSA has recently emerged in the community and among farmed animals thanks to its ability to evolve and adapt to different settings. Global surveillance has shown that MRSA represents a problem in all continents and countries where studies have been carried out, determining an increase in mortality and the need to use last-resource expensive antibiotics. S. aureus can easily acquire resistance to antibiotics and MRSA is characteristically multidrug resistant. Resistance to vancomycin, the principal anti-MRSA antibiotic is rare, although isolates with decreased susceptibility are recovered in many areas. Resistance to the more recently introduced antibiotics, linezolid and daptomycin, has emerged; however, they remain substantially active against the large majority of MSSA and MRSA. Newer antistaphylococcal drugs have been developed, but since their clinical use has been very limited so far, little is known about the emergence of resistance. Molecular typing techniques have allowed to identify the major successful clones and lineages of MSSA and MRSA, including high-risk clones, and to trace their diffusion. In the face of a continuously evolving scenario, this review depicts the most common clones circulating in different geographical areas and in different settings at present. Since the evolution of S. aureus will continue, it is important to maintain the attention on the epidemiology of S. aureus in the future with a global view.
Collapse
Affiliation(s)
- Monica Monaco
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Fernanda Pimentel de Araujo
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Melania Cruciani
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Eliana M Coccia
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Annalisa Pantosti
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
43
|
O'Hara FP, Suaya JA, Ray GT, Baxter R, Brown ML, Mera RM, Close NM, Thomas E, Amrine-Madsen H. spa Typing and Multilocus Sequence Typing Show Comparable Performance in a Macroepidemiologic Study of Staphylococcus aureus in the United States. Microb Drug Resist 2015; 22:88-96. [PMID: 26669861 PMCID: PMC4722571 DOI: 10.1089/mdr.2014.0238] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants.
Collapse
Affiliation(s)
- F Patrick O'Hara
- 1 Department of Computational Biology, GlaxoSmithKline , Collegeville, Pennsylvania
| | - Jose A Suaya
- 2 Department of Health Outcomes, GSK Vaccines , Philadelphia, Pennsylvania
| | - G Thomas Ray
- 3 Division of Research, Kaiser Permanente Medical Care Program , Northern California Region, Oakland, California
| | - Roger Baxter
- 4 Kaiser Permanente Vaccine Study Center , Oakland, California
| | - Megan L Brown
- 1 Department of Computational Biology, GlaxoSmithKline , Collegeville, Pennsylvania
| | - Robertino M Mera
- 5 Department of Statistics, GlaxoSmithKline , Research Triangle Park, North Carolina
| | - Nicole M Close
- 1 Department of Computational Biology, GlaxoSmithKline , Collegeville, Pennsylvania
| | - Elizabeth Thomas
- 6 Research and Development , GlaxoSmithKline, Collegeville, Pennsylvania
| | - Heather Amrine-Madsen
- 7 Alternative Discovery and Development, GlaxoSmithKline , Research Triangle Park, North Carolina
| |
Collapse
|
44
|
Williamson DA, Heffernan H, Nimmo G. Contemporary genomic approaches in the diagnosis and typing of Staphylococcus aureus. Pathology 2015; 47:270-5. [PMID: 25764206 DOI: 10.1097/pat.0000000000000236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is a major human pathogen, causing disease in both community and healthcare settings. Over the past two decades, the epidemiology of S. aureus disease has changed dramatically, with the emergence and spread of community-associated methicillin-resistant S. aureus clones. This epidemiological shift, coupled with the association between delayed antimicrobial therapy and increased mortality in S. aureus bacteraemia, has greatly facilitated advances in the rapid molecular diagnosis of S. aureus. Rapid molecular testing for S. aureus can greatly reduce laboratory turnaround time, and in some circumstances, may lead to improved clinical outcomes. In addition, advances in DNA sequencing technology and bioinformatic analysis have shed new lights on the molecular epidemiology and transmission dynamics of S. aureus. In this context, we provide an overview of the key advances in the molecular diagnosis and typing of S. aureus, with a particular focus on the clinical impact and utility of genomic technologies.
Collapse
Affiliation(s)
- Deborah A Williamson
- 1Institute of Environmental Science and Research, Wellington 2Department of Pathology, University of Otago, Wellington, New Zealand 3Pathology Queensland Central Laboratory, Brisbane 4Griffith University School of Medicine, Gold Coast, Qld, Australia
| | | | | |
Collapse
|
45
|
Changes in the Population of Methicillin-Resistant Staphylococcus pseudintermedius and Dissemination of Antimicrobial-Resistant Phenotypes in the Netherlands. J Clin Microbiol 2015; 54:283-8. [PMID: 26582835 DOI: 10.1128/jcm.01288-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP), which is often multidrug resistant (MDR), has recently emerged as a threat to canine health worldwide. Knowledge of the temporal distribution of specific MRSP lineages, their antimicrobial resistance phenotypes, and their association with clinical conditions may help us to understand the emergence and spread of MRSP in dogs. The aim of this study was to determine the yearly proportions of MRSP lineages and their antimicrobial-resistant phenotypes in the Netherlands and to examine possible associations with clinical conditions. MRSP was first isolated from a canine specimen submitted for diagnostics to the Faculty of Veterinary Medicine of Utrecht University in 2004. The annual cumulative incidence of MRSP among S. pseudintermedius increased from 0.9% in 2004 to 7% in 2013. MRSP was significantly associated with pyoderma and, to a lesser extent, with wound infections and otitis externa. Multilocus sequence typing (MLST) of 478 MRSP isolates yielded 39 sequence types (ST) belonging to 4 clonal complexes (CC) and 15 singletons. CC71 was the dominant lineage that emerged since 2004, and CC258, CC45, and several unlinked isolates became more frequent during the following years. All but two strains conferred an MDR phenotype, but strains belonging to CC258 or singletons were less resistant. In conclusion, our study showed that MDR CC71 emerged as the dominant lineage from 2004 and onward and that less-resistant lineages were partly replacing CC71.
Collapse
|
46
|
Conceição T, Coelho C, Santos Silva I, de Lencastre H, Aires-de-Sousa M. Methicillin-Resistant Staphylococcus aureus in the Community in Luanda, Angola: Blurred Boundaries with the Hospital Setting. Microb Drug Resist 2015; 22:22-7. [PMID: 26505094 DOI: 10.1089/mdr.2015.0236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the nosocomial prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in Angola is over 60% and one of the highest in Africa, the extent of MRSA in the community is unknown. To fill this gap, we conducted a hospital-based study in which 158 children attending the emergency ward and ambulatory services of a pediatric hospital in Luanda, the capital of Angola, were screened for S. aureus nasal colonization. Overall, 70 (44.3%) individuals were colonized with S. aureus, of which 20 (28.6%) carried MRSA, resulting in a prevalence of 12.7% (20/158) of MRSA in the population screened. Molecular characterization by pulsed-field gel electrophoresis (PFGE), spa typing, multilocus sequence typing, and SCCmec typing distributed the isolates into two major MRSA clones and one dominant methicillin-susceptible S. aureus (MSSA) lineage, corresponding to the main clones circulating in hospitals in Luanda. The MRSA isolates mainly belonged to clones A (PFGE type A, spa type t105, ST5-IVa-65%) and B (PFGE B, t3869, ST88-IVa-30%), while MSSA isolates mainly belonged to clone L (PFGE type L, t861, ST508-42%). S. aureus isolates showed resistance to penicillin (96%), rifampin (87%), and trimethoprim-sulfamethoxazole (21%). In conclusion, the prevalence of MRSA among children in the community in Luanda is high and seems to originate from hospitals, warranting continuous monitoring and implementation of additional infection control measures.
Collapse
Affiliation(s)
- Teresa Conceição
- 1 Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL) , Oeiras, Portugal
| | - Céline Coelho
- 1 Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL) , Oeiras, Portugal
| | - Isabel Santos Silva
- 2 Escola Superior de Saúde da Cruz Vermelha Portuguesa (ESSCVP) , Lisboa, Portugal
| | - Hermínia de Lencastre
- 1 Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL) , Oeiras, Portugal .,3 Laboratory of Microbiology and Infectious Diseases, The Rockefeller University , New York, New York
| | - Marta Aires-de-Sousa
- 2 Escola Superior de Saúde da Cruz Vermelha Portuguesa (ESSCVP) , Lisboa, Portugal
| |
Collapse
|
47
|
Yan X, Schouls LM, Pluister GN, Tao X, Yu X, Yin J, Song Y, Hu S, Luo F, Hu W, He L, Meng F, Donker T, Tsompanidou E, van Dijl JM, Zhang J, Grundmann H. The population structure of Staphylococcus aureus in China and Europe assessed by multiple-locus variable number tandem repeat analysis; clues to geographical origins of emergence and dissemination. Clin Microbiol Infect 2015; 22:60.e1-60.e8. [PMID: 26344334 DOI: 10.1016/j.cmi.2015.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/25/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
Abstract
To compare the genetic population structure of Staphylococcus aureus from China and Europe, 1294 human isolates were characterized by multiple-locus variable number tandem repeat analysis (MLVA). In total, MLVA identified 17 MLVA complexes (MCs), comprising 260 MLVA types (MTs) among the Chinese isolates and 372 MTs among the European isolates. The five most frequent MCs among the Chinese isolates belonged to MC398, MC5 subclade a, MC8, MC437 and MC7 and made up 55% of the sample. For the European isolates, the five most frequent MCs consisted of MC5 subclade a, MC45, MC8, MC30 and MC22, which accounted for 64% of the sample. Phylogeographic analysis of the major MCs shared between China and Europe points to a European origin of MC8 but cannot provide a consistent signal for MC5 subclade a, probably indicating a different origin. Diversity and frequency distributions of other lineages were also compared. Altogether, this study provides the first snapshot of two extant populations of S. aureus from Europe and China, and important clues on the emergence and dissemination of different lineages of S. aureus.
Collapse
Affiliation(s)
- X Yan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Rijksuniversiteit Groningen, The Netherlands; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - L M Schouls
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - G N Pluister
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - X Tao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - X Yu
- Heilongjiang Provincial Centre for Disease Control and Prevention Harbin, China
| | - J Yin
- Heilongjiang Provincial Centre for Disease Control and Prevention Harbin, China
| | - Y Song
- Chaoyang Centre for Disease Control and Prevention, Beijing, China
| | - S Hu
- Anhui Provincial Centre for Disease Control and Prevention, Hefei, China
| | - F Luo
- Chaoyang Centre for Disease Control and Prevention, Beijing, China
| | - W Hu
- Anhui Provincial Centre for Disease Control and Prevention, Hefei, China
| | - L He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - F Meng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - T Donker
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Rijksuniversiteit Groningen, The Netherlands
| | - E Tsompanidou
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Rijksuniversiteit Groningen, The Netherlands
| | - J M van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Rijksuniversiteit Groningen, The Netherlands
| | - J Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| | - H Grundmann
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Rijksuniversiteit Groningen, The Netherlands.
| |
Collapse
|
48
|
Budd KE, McCoy F, Monecke S, Cormican P, Mitchell J, Keane OM. Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97. PLoS One 2015; 10:e0134592. [PMID: 26317849 PMCID: PMC4552844 DOI: 10.1371/journal.pone.0134592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/11/2015] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126) was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52%) demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST). In total, 18 different sequence types (STs) were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST) 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup.
Collapse
Affiliation(s)
- Kathleen E. Budd
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Finola McCoy
- Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland
| | - Stefan Monecke
- Alere Technologies GmbH, Löbstedter Straße 103–105, D-07749 Jena, Germany
| | - Paul Cormican
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Jennifer Mitchell
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M. Keane
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- * E-mail:
| |
Collapse
|
49
|
Hamed M, Nitsche-Schmitz DP, Ruffing U, Steglich M, Dordel J, Nguyen D, Brink JH, Chhatwal GS, Herrmann M, Nübel U, Helms V, von Müller L. Whole genome sequence typing and microarray profiling of nasal and blood stream methicillin-resistant Staphylococcus aureus isolates: Clues to phylogeny and invasiveness. INFECTION GENETICS AND EVOLUTION 2015; 36:475-482. [PMID: 26297907 DOI: 10.1016/j.meegid.2015.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 11/29/2022]
Abstract
Hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) infections are frequently caused by predominant clusters of closely related isolates that cannot be discriminated by conventional diagnostic typing methods. Whole genome sequencing (WGS) and DNA microarray (MA) now allow for better discrimination within a prevalent clonal complex (CC). This single center exploratory study aims to distinguish invasive (blood stream infection) and non-invasive (nasal colonization) MRSA isolates of the same CC5 into phylogenetic- and virulence-associated genotypic subgroups by WGS and MA. A cohort of twelve blood stream and fifteen nasal MRSA isolates of CC5 (spa-types t003 and t504) was selected. Isolates were propagated at the same period of time from unrelated patients treated at the University of Saarland Medical Center, Germany. Rooted phylotyping based on WGS with core-genome single nucleotide polymorphism (SNP) analysis revealed two local clusters of closely related CC5 subgroups (t504 and Clade1 t003) which were separated from other local t003 isolates and from unrelated CC5 MRSA reference isolates of German origin. Phylogenetic subtyping was not associated with invasiveness when comparing blood stream and nasal isolates. Clustering based on MA profiles was not concordant with WGS phylotyping, but MA profiles may identify subgroups of isolates with nasal and blood stream origin. Among the new putative virulence associated genes identified by WGS, the strongest association with blood stream infections was shown for ebhB mutants. Analysis of the core-genome together with the accessory genome enables subtyping of closely related MRSA isolates according to phylogeny and presumably also to the potential virulence capacity of isolates.
Collapse
Affiliation(s)
- Mohamed Hamed
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | | | - Ulla Ruffing
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | | | | | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Jan-Hendrik Brink
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | - Gursharan Singh Chhatwal
- Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | | | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Lutz von Müller
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany.
| |
Collapse
|
50
|
Epidemiology of Staphylococcus aureus in Italy: First nationwide survey, 2012. J Glob Antimicrob Resist 2015; 3:247-254. [PMID: 27842868 DOI: 10.1016/j.jgar.2015.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022] Open
Abstract
A 3-month epidemiological study to determine the prevalence and antibiotic resistance of Staphylococcus aureus nosocomial infections was performed in 52 centres throughout Italy in 2012. A total of 21,873 pathogens were analysed. The prevalence of S. aureus among all nosocomial pathogens isolated in that period was 11.6% (n=2541), whilst the prevalence of methicillin-resistant S. aureus (MRSA) among the S. aureus was 35.8% (n=910). All tested antimicrobials demonstrated ≥92.2% susceptibility against methicillin-susceptible S. aureus, with the exception of clindamycin (89.7%) and erythromycin (84.2%). Among MRSA, percentages of resistance ranged from 12.6% to >39% for tetracycline, rifampicin, clindamycin and gentamicin; higher percentages were found for erythromycin (65.4%) and fluoroquinolones (72.3-85.8%). Overall, the glycopeptide minimum inhibitory concentration (MIC) distribution showed that 58.3% of strains possessed MICs of 1-2mg/L and few strains were linezolid- or daptomycin-resistant. Molecular characterisation was performed on 102 MRSA selected from Northern, Central and Southern regions. Five major clones were found: Italian/ST228-I (t001-t023-t041-t1686-t3217), 33.3%; USA500/ST8-IV (t008), 17.6%; E-MRSA15/ST22-IVh (t020-t025-t032-t223), 16.7%; USA100/ST5-II (t002-t653-t1349-t2164-t3217-t388), 14.7%; and Brazilian/ST239/241-III (t030-t037), 3.9%. Five PVL-positive CA-MRSA isolates, belonging to USA300 and minor clones, were also identified. In conclusion, this first nationwide surveillance study showed that in Italy, S. aureus infections accounted for 11.6% of all nosocomial infections; MRSA accounted for approximately one-third of the S. aureus isolates and these were multidrug-resistant organisms. Five major MRSA epidemic clones were observed and were inter-regionally distributed, with ST228-SCCmecI becoming predominant.
Collapse
|